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Abstract: Floods are one of the most fatal and devastating disasters, instigating an immense loss of 
human lives and damage to property, infrastructure, and agricultural lands. To cater to this, there 
is a need to develop and implement real-time flood management systems that could instantly detect 
flooded regions to initiate relief activities as early as possible. Current imaging systems, relying on 
satellites, have demonstrated low accuracy and delayed response, making them unreliable and im-
practical to be used in emergency responses to natural disasters such as flooding. This research em-
ploys Unmanned Aerial Vehicles (UAVs) to develop an automated imaging system that can identify 
inundated areas from aerial images. The Haar cascade classifier was explored in the case study to 
detect landmarks such as roads and buildings from the aerial images captured by UAVs and iden-
tify flooded areas. The extracted landmarks are added to the training dataset that is used to train a 
deep learning algorithm. Experimental results show that buildings and roads can be detected from 
the images with 91% and 94% accuracy, respectively. The overall accuracy of 91% is recorded in 
classifying flooded and non-flooded regions from the input case study images. The system has 
shown promising results on test images belonging to both pre- and post-flood classes. The flood 
relief and rescue workers can quickly locate flooded regions and rescue stranded people using this 
system. Such real-time flood inundation systems will help transform the disaster management sys-
tems in line with modern smart cities initiatives. 
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1. Introduction and Background 
On average, 60,000 lives are lost to natural disasters every year, accounting for 0.1% 

of the global deaths [1]. These natural disasters include floods, earthquakes, hurricanes, 
landslides, and others. Floods are the most frequently occurring natural disasters globally, 
representing 40% of global natural disasters [2]. Climate change, hurricanes, heavy pre-
cipitation, glacier melting, and winter storms are the underlying factors to be blamed for 
the dramatic rise in flood risks [3,4].  

Floods have induced damages amounting to hundreds of millions of dollars on av-
erage, along with the loss of thousands of human lives [5–8]. Apart from the loss of lives, 
floods cause great damage to the infrastructure and property, agricultural lands, crops, 
and livestock, resulting in huge economic losses, which must be minimized in the era of 
focus on sustainability and smart cities [9–11]. Extreme rainfall events occurring in the 
first decade of the new millennium have caused a substantial increase in flood events, 
raising the flood-related losses from USD 6 billion to USD 10 billion. Accordingly, billions 
of dollars have been invested in implementing effective flood control measures [2,12]. The 
associated rescue missions, rehabilitation, and relief services also place an additional eco-
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nomic burden on the economic development of the affected country. According to an es-
timate of flood-related economic loss in 2012, the world lost USD 19 billion to floods in 
various global regions. Due to untimely detection of floods and lack of accurate and fast 
technologies that could automatically detect the occurrence of flooding in an area, lives 
are lost as aids and recovery services cannot be provided on time. This signifies the need 
to use advanced digital technologies to detect flood-affected areas quickly and accurately 
so that rescue activities can be initiated as soon as possible [2,12–18]. Such timely flood 
detection is crucial to efficiently plan relief missions and rescue the stranded people, thus 
minimizing its economic impacts and casualties [19–21]. 

Geographic Information System (GIS) is an important component that provides es-
sential disaster management decision support and analytical capabilities [21,22]. It enables 
the authorities to acquire, save, manage, and analyze spatial or geographic data to provide 
appropriate disaster response [23,24]. GIS can automatically determine the flood-affected 
regions and integrate the results with the available geographic data, thus assisting in the 
better detection of floods [21]. It has been used to determine rescue routes and the availa-
ble transport facilities in flood-affected areas [25,26]. However, this technology relies 
heavily on the availability of information about the disaster. Such information is only 
available after a couple of days, if not weeks, resulting in a slow response in an emergency 
case such as a flood. Global Positioning System (GPS) is a global navigation satellite sys-
tem (GNSS) that provides geolocation and time information to a GPS receiver anywhere 
on or near the Earth where there is an unobstructed line of sight to four or more GPS 
satellites [23]. This technology has been frequently used in post-flood disaster manage-
ment and relief activities. An example is that of the GPS sensor nodes installed on the 
rooftop of a building, providing relative position information from both pre- and post-
flood disaster periods.  

The changes in geolocation points between different building components before and 
after the flood are calculated and used to estimate damage, building movement scale, and 
factors such as stress and strain for a precise assessment of the damage. Similarly, the 
images captured by GPS-enabled devices can be further analyzed using image processing 
techniques to detect a flood event. However, GPS-based estimations have a certain degree 
of ambiguity, as the exact location of the flooded area cannot be mapped. This is because 
there is roughly an error of 15 m for every 3 km in the GPS results [27]. Moreover, another 
limitation of the GPS is that it relies on internet services. In times of emergency, network 
services such as the internet and Wi-Fi are mostly unavailable. Hence, technologies such 
as GIS and GPS become inaccessible. This leads to a lack of precise data about the location 
of flooded areas and the affected people requiring aid. Accordingly, the rescue services 
may be delayed or interrupted.  

Satellite imaging has been used to capture high-quality images of the target area. 
These images are analyzed using image processing methods such as edge detection, seg-
mentation, and pixel-based analysis [28,29]. However, the quality of these satellite images 
is greatly affected by noise, illumination conditions, weather, and other barriers between 
the earth and the satellite, such as clouds [30]. Furthermore, due to the large number of 
high-resolution images stored in the satellite databases, the speed of image processing is 
affected, resulting in a slower response. To address the speed concerns, remote sensing 
techniques are used to collect data of large areas quickly. Moreover, these techniques also 
allow the generation of detailed descriptions of the objects without having any direct con-
nection. The working mechanism involves using optical and radar imagery to measure 
water levels to define the scope of a flooded area [31]. 

Similarly, object detection has been utilized with aerial images to extract features that 
can be analyzed to make flood-related response decisions. Target recognition of land-
marks such as roads and buildings from aerial images has been done using Hough trans-
form and isotropic surround suppression to find rescue routes [32,33]. Furthermore, edge 
detection methods can be used to identify and extract objects from images, such as detect-
ing a horizontal water line representing the surface level of water on roads and streets or 
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the height of a dam [28]. Bridge detection has been performed using aerial images to aid 
disaster relief missions by mining and analyzing multispectral aerial image patterns 
[32,33]. Synthetic Aperture Radar (SAR) has been used to capture remote images, define 
a pixel-based threshold and classify flooded or non-flooded regions [34]. Mason et al. [35] 
used image segmentation and classification techniques on SAR images for real-time flood 
detection. However, the quality of images and availability of internet or satellite connec-
tivity may affect disaster response planning. Therefore, alternate methods need to be ex-
plored and utilized for disaster response planning in flooded regions [36]. 

Accordingly, Unmanned Aerial Vehicles (UAVs) can be used as efficient tools that 
can capture high-resolution spatial images from the target sites [22]. These UAVs are 
widely used these days instead of the traditional imaging tools such as satellite imaging 
and GPS-based monitoring as smart technologies in the industry 4.0 era [37–41]. UAVs 
can quickly collect precise image data and transmit it to their respective off-site servers 
for sharper, smarter, and more informed responses [41]. Similarly, Artificial Neural Net-
work (ANN) models are increasingly used for flood prediction and detection [42,43]. 
Chang et al. [44] proposed a hybrid ANN-based model using a self-organizing map (SOM) 
and the recurrent nonlinear autoregressive network with exogenous inputs (RNARX) to 
generate regional flood inundation maps during storms events. The authors stated that 
the 4 × 4 SOM network could cluster inundation depths of the target area, while the 
RNARX network can forecast the inundation depths. 

Similarly, Chang et al. [45] developed an early flood warning system by integrating 
a hydrodynamic model, k-means clustering algorithm, and support vector machines 
(SVM) to detect typhoon flood events and accurately predict both the inundation depth 
and extent [46]. Fuzzy-logic-based systems are also quite popular and have been used to 
forecast river water levels and raise an early alarm in case of floods [47]. Harmonic anal-
ysis and change detection have been used on multi-temporal data for flood detection, with 
an accuracy of 80% [48]. Likewise, a new method for change detection and thresholding 
(CDAT) was used with SAR images to delineate the extent of flooding for the Chobe flood-
plain in the Caprivi region of Namibia [49]. A Bayesian network has also been proposed 
to integrate remotely sensed data, such as multi-temporal SAR intensity images and in-
terferometric-SAR coherence data, with geomorphic and other ground information such 
as roads and buildings [50]. 

Furthermore, a back-propagation-based ANN method called Multilayer Perceptron 
(MLP) has been used to predict floods using rainfall time series data and water levels in a 
weir that can spread into the cities [51]. Similarly, a Wavelength Neural Network (WNN) 
has been used for flood modeling [52]. Thus the pertinent literature shows that image 
processing and machine learning techniques have been widely used for flood detection, 
but deep learning is rare and not well experimented with or documented for such pur-
poses [46]. This presents a gap targeted on the current study. 

Accordingly, a set of key landmarks comprising roads and buildings is detected and 
extracted in this study. These landmarks are added to the original dataset used to train a 
deep learning model to help the disaster management team plan an effective response. 
The study demonstrates the results using original and altered datasets and compares them 
with previous flood detection methodologies to highlight their significance. A case study 
approach is adopted where the flood-prone area of northern Pakistan, known as Swat, is 
investigated, and the technique is applied to extract landmark objects in the flooded re-
gion. 

The motivation for using UAVs for capturing aerial images of the disaster-hit region 
is due to its potential to capture high-resolution images in a short period without requir-
ing human assistance. This makes UAVs safe to investigate high-risk areas that are un-
reachable by humans during disaster events. Thus, UAVs are ideal for acquiring image 
data in disasters. The idea of integrating machine learning and image processing for flood 
detection and damage assessment facilitates generating results in the least amount of time, 
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which are accurate and precise without relying on human intervention. The problem ad-
dressed in this paper is the “detection of floods”. For this purpose, UAVs are used that 
are complemented through the implementation of deep learning models on aerial images 
acquired by them. The detection and monitoring of flooded areas in rural zones are essen-
tial to assess the damages to critical infrastructure, find and locate the population, and 
find an evacuation route for the disaster victims. The proposed system ensures the extrac-
tion of key landmarks such as roads, buildings, and bridges that are georeferenced with 
the stored maps to make appropriate post-disaster decisions. 

Pakistan is a developing country with a growing economy that is faced with several 
challenges. These challenges range from cost and time overruns in projects to brain drain, 
lack of competitiveness of local industries, corruption, political instability, lack of legal 
frameworks and insurances, and frequent natural disasters such as floods and earth-
quakes [21,24,53–58]. The regularly occurring devastating floods severely dent the local 
economy. In Pakistan, flood events in 2010, 2011, and 2013 caused immense destruction 
and fatalities [21]. Pakistan has faced a loss of approximately USD 38 billion owing to 
floods in the past 70 years [59,60]. In 2010, massive floods caused by the monsoon rains 
caused 2000 casualties, affected 20 million people, caused food shortage for 7.8 million 
people, and resulted in damages worth USD 16 billion [21]. The healthcare facilities of the 
country also suffered as 436 settings providing health-related facilities were lost in the 
disaster [61]. The underlying cause of floods in Pakistan is heavy rainfall every year dur-
ing the monsoon season (July–August). Last year alone, more than 230 lives were lost to 
the floods generated by monsoon rains in Pakistan [62–64]. Therefore, there is a dire need 
to propose effective flood mapping techniques in Pakistan. 

For pertinent flood detection in this study, Convolution Neural Network (CNN) is 
used. It is a multilayer neural network, and one of the most classical and common deep 
learning frameworks [65]. Previously, this classification model has demonstrated excel-
lent performance for image classification, segmentation, and extraction [65,66]. One ad-
vantage is its self-learning ability, as it can automatically learn features from large datasets 
by organizing multiple layers of neurons. Traditional machine learning models such as 
SVM have been used for flood detection that has shown good results, but the complexity 
of this model grows significantly as the training dataset increases. Apart from that, SVMs 
need to be tuned to find the optimal kernel function for training. The parameter optimi-
zation related to the kernel function is the key factor affecting the classification effect [66]. 
Therefore, to handle datasets such as the one in the current study, researchers are moving 
towards deep learning and utilizing deep learning models such as RNN and CNN for 
image classification and segmentation problems. Previously, CNN has been applied for 
the classification of data captured through remote sensing [67]. However, the application 
of CNN for flood mapping is rare and has not been thoroughly investigated. Therefore, 
the current study utilizes CNN to detect floods from aerial images captured through 
UAVs in Pakistan. 

In the current study, a detailed literature review of the recently used flood detection 
technologies was performed to obtain insights into the existing methods used for flood 
detection. This information was subsequently used to select the most appropriate meth-
odologies/parameters well suited to our data set. Moreover, by reviewing the existing 
work, current gaps in the research were identified, and proper strategies to overcome 
these gaps were devised and implemented. For this purpose, several search queries were 
formulated and used in literature search engines (i.e., Scopus and Web of Science) to ex-
tract the most recent studies using literature retrieval methods [2,9–12,17,18,68,69]. The 
search process was restricted to the last decade (2010–20) so that the most recent articles 
were retrieved. The review process was conducted in two phases: article retrieval and 
screening, as shown in Figure 1. The literature review was performed by removing dupli-
cates articles, and screening research articles, book chapters, and conference papers pub-
lished in the English language only. 
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After the screening process, a total of 98 articles were shortlisted. Among these, 34% 
of articles proposed image-processing-based techniques for flood mapping, 26% used ma-
chine learning, 21% were based on deep learning, and 19% of articles used methods be-
longing to other domains, as shown in Figure 1. 

The paper is organized as follows. The second section explains the research method-
ology adopted in this study. One of the most flood-prone areas in the country, i.e., Swat, 
is discussed as a case study, and the process of acquiring images for the dataset from this 
area is also elaborated. The third section presents an overview of the evaluation process, 
experimental results, and comparison with existing techniques. Finally, the overall 
achievements and limitations of the proposed study are presented, and the study is con-
cluded. 

 
Figure 1. Detailed process of screening for the most relevant papers related to our research ques-
tions. 

2. Research Methodology 
2.1. Case Study Area 

The case study for the current study is the Swat valley, a district of Khyber Pakh-
tunkhwa, situated in northern Pakistan, as shown in Figure 2a,b. Located at the conver-
gence of two rivers, called “Daral” and “Swat”, this region is constantly at high risk of 
floods and was severely affected by floods in 2010. Last year alone, 30 lives were lost, and 
38 others were injured in this region during the recent flash flood event. In addition, more 
than 130 houses, 1 bridge, and a worship place have been damaged or destroyed in these 
flash floods. Furthermore, several roads have been blocked or damaged by flash floods, 
isolating many communities [64].  

Swat is enlisted under the high-risk areas for floods by Pakistan Disaster Manage-
ment Authority (PDMA). According to PDMA, this area can become completely inacces-
sible if hit by a massive flood again. The recent flash flooding tested this statement and 
proved rightful as there occurred a significant delay in rescue services due to the inacces-
sibility of the land and damage of connecting bridges leading to more fatalities. Owing to 
this significance, this area is selected as a case study for the current research.  
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(a) (b) (c) 

Figure 2. (a) Swat District on a map of Pakistan; (b) Swat area; (c) aerial image of a flood-hit area in Swat. 

To address the flood risks in this region, multispectral aerial images from this area 
were captured for developing a comprehensive dataset. A Red-Green-Blue (RGB) image 
captured by UAV from this region is shown in Figure 2c that covers a residential area of 
Swat. The spatial resolution of the image is 0.23 m, allowing precise detection of inundated 
areas. The image has a size of 19,956 × 12,444 and covers an overall area of approximately 
11 kmଶ. In total, 300 images were captured by the UAV, whereas the remaining dataset 
was constructed using the pre- and post-flood images collected from the local databases 
maintained by PDMA. 

2.2. Proposed System Workflow 
An abstract-level flowchart of the proposed methodology is shown in Figure 3 that 

has six major steps: 
1. Image acquisition and data collection using UAV;  
2. Preprocessing of the images; 
3. Selection of landmarks features for detection; 
4. Training the model on the dataset; 
5. Flood detection using image classification;  
6. Performance evaluation of the proposed system. 

Swat 
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Figure 3. Proposed methodology. 

2.2.1. Image Acquisition  
For surveillance of the flooded areas and their inundation detection, a small-sized 

UAV called River-map was selected. Go-Pro® digital camera was onboard for capturing 
high-resolution RGB aerial images of the case study area. Using this set up, real-time sur-
veillance of the case study area was performed on 2 September 2020, as shown in Figure 
4a,b, highlighting the destruction caused by the flood in this area. The images show that 
most roads are sunk into the water, and buildings are collapsed due to the high intensity 
of floodwater, making the process of relief work more difficult and time-consuming, if not 
impossible. 

The data acquired by the UAV was in the form of RGB images with some level of 
distortion. Such distortion is an inherent characteristic of the images captured through 
satellite imagery or an aerial imaging system. Furthermore, the surface of the earth has 
some topographical differences, and due to an inclined angle of satellite, the UAV, or the 
aerial camera, the distance between the displayed features may not be 100% accurate or a 
true representative of the ground realities. The distortion in images increases with an in-
crease in the topographical variance of the landscape. This distortion must be eliminated 
to infer meaningful insights from the captured images. For this purpose, the image pro-
cessing technique of “orthorectification” was applied. The orthorectification process re-
moves the effects of tilts and terrain from the images to create a planimetrically correct 
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image. The resultant orthorectified image had a more constant scale showing captured 
features in their ‘true’ positions.  

  
(a) (b) 

Figure 4. Flooded regions of Swat Valley. (a) A village (b) A damaged bridge 

Furthermore, the captured images may have some noise due to environmental fac-
tors such as air pollution, dust, smoke, and fog. Therefore, a median filter with good de-
noising power and mathematical accuracy is applied to the captured images to reduce this 
noise. The median filter is one of the popular order-statistic filters that is effectively used 
in digital image processing. It is a nonlinear filter used to remove “salt and pepper” noise 
from images while maintaining the edges of features. This filter was applied to the cap-
tured images in the current study so that the feature extraction in the next steps would 
not be affected, and high-quality images can be utilized for inferring meaningful results. 
A fixed filtering window size is used in a median filter, and the pixel value (target pixel) 
is replaced by the median value of the intensity levels of its neighboring pixels. Herein, 
the filter sorts all pixels in a window according to their numerical value and replaces the 
value of the target pixel with the median of the values of pixels in that window as shown 
in Figure 5. The working of the median filter is described using Equation (1) and Figure 5, 
respectively:   𝐼ᇱ(𝑢, 𝑣)‹– 𝑀𝑒𝑑𝑖𝑎𝑛{𝐼(𝑢 + 𝑖, 𝑣 + 𝑗)|(𝑖, 𝑗)Ɛ 𝑅} (1)

Here, R is defined as the moving region for all values in the median filter, I’(u, v) 
represents the current location, and I(u + i, v + j) denotes the corresponding image element.  
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Figure 5. The working of the median filter for noise removal. 

2.2.2. Preprocessing 
Image preprocessing is a prerequisite step to enhance the quality of the input images 

and prepare them for further processing in the subsequent steps. It involves downloading 
the raw images from the UAV’s digital camera, storing them in a database, removing 
noise, and applying orthorectification. Data preprocessing is performed to take into ac-
count different variations (i.e., size, shape, and brightness) in images. Therefore, after data 
collection, preprocessing was performed in the current study to remove unwanted objects 
and noise from the captured images. Additionally, the brightness and sizes of the collected 
images were also adjusted, followed by the removal of unwanted background re-
gions/surfaces using image cropping. For the proposed CNNs, data augmentation was 
performed based on random image cropping and patching that was further used for label 
generation and flood detection in the entire training procedure [70]. Furthermore, the fea-
ture selection was conducted by extracting landmark features from the preprocessed im-
ages using a supervised learning approach.  

In the current study, landmark objects are restricted to bridges, buildings, and roads. 
The extracted landmarks are then combined with the raw Red-Green-Blue (RGB) images 
to build the feature space for training a CNN classifier. Furthermore, the classifier is eval-
uated to test its flood detection capability on new test images. Finally, the performance is 
assessed using the confusion matrix derived from the validation process. 

2.2.3. Selection of Landmarks Features for Detection  
In the context of image classification, feature selection plays a vital role in achieving 

high accuracy. Good features can enhance the inter-class separation and decrease the in-
class variance [71]. Thus, it is imperative to capture and select high-quality images with 
more pronounced attributes for getting accurate results. The images captured by the UAV 
in the current study had three color bands: red, green, and blue, which are not sufficient 
to achieve high classification performance since many other objects on the ground may 
have the same color leading to false detections by the classifier. Thus, it is necessary to 
extract relevant features from the input images, increase the inter-class separability, and 
remove irrelevant and redundant parts of the images. By analyzing the aerial images, it 
was noticed that most of the key landmarks were roads, buildings, and bridges that were 
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subsequently chosen as target landmarks to be extracted using an automated tool. From 
the literature review, common image processing techniques used for road detection from 
images are edge detection and line-based extraction used in this study. 

Supervised learning was utilized in this study to detect the objects of interest using 
the Haar cascade classifier. This classifier uses Haar-like features to identify objects from 
images. The main advantage is its high computational speed, making it suitable for real-
time landmark detection when planning emergency responses. Thus, this method is 
adopted to detect roads, bridges, and buildings such as houses from the input images in 
the current study. Instead of looking at the pixels in an image, a Haar-like feature detector 
analyzes rectangular blocks and computes the total pixel intensity in the region. It then 
determines the differences between the calculated sums of each region.  

For example, consider the shaded area shown in Figure 6. If ‘I’ denotes the integral 
image and ‘P’, ‘Q’, ‘R’, and ‘S’ are points of a rectangular area in this image. The points P, 
Q, R, and S represent the four reference points used for the computation of images values 
on the black region. These points are described as P(x0, y0), Q(x1, y0), R(x0, y1), and S(x1, y1), 
respectively, as shown in Figure 6. The sum of the shaded region/area with points P, Q, R, 
and S is calculated using the sum(PQRS), as described in Equation (2). Thus, the 
sum(PQRS) can be computed in a constant time using only four references, i.e., I(P(x0, y0)), 
I(Q(x1, y0)), I(R(x0, y1)) and I(S(x1, y1)) to the integral image (Equation (2) [72–74], as fol-
lows: 𝑠𝑢𝑚(𝑃𝑄𝑅𝑆) = 𝐼(𝑆) + 𝐼(𝑃) − 𝐼(𝑄) − 𝐼(𝑅) (2)

 
Figure 6. Integral image and Haar-like features. 

This use of integral images helps in achieving computational efficiency, which is lack-
ing in traditional methods. Haar-like features consist of predefined edge, line, and center-
surround features, as shown in Figure 6. A strong classifier such as the Haar classifier can 
detect a feature under varying illumination, scale, and color. This makes the Haar classi-
fier an ideal method for landmarks detection in aerial images, as these images can have 
varying lighting conditions and color properties during day and night or under different 
climatic conditions. Accordingly, it has been used in the current study. 

2.2.4. Training Datasets 
The RGB format is one of the most prominent encoding formats used for the repre-

sentation of most natural images. As discussed earlier, for training the CNN, we used the 
original images in the RGB format that were used to extract landmark features from the 
preprocessed images using a supervised learning approach. The collected dataset con-
tained both original RGB images and the landmarks extracted from these images in the 
feature selection stage. Generally, during the training procedure, the high performance 
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CNNs are likely to display chances of over-fitting, which might be due to the memoriza-
tion of the non-generalized image features by the CNNs that are present in the training 
set. Therefore, using a sufficient set of training samples is extremely important to avoid 
the over-fitting of the model [75]. Collecting a sufficient set of training samples is costly; 
therefore, data augmentation methods such as flipping, resizing, and random cropping 
are used to cater to it [76,77]. Applying the aforementioned augmentation techniques is 
essential to increase the level of variations in the collected images to prevent model over-
fitting [76,77]. Accordingly, these have been used in the current study. 

Additionally, for the current study, both training and test sets were visually inter-
preted. The visual interpretation of both sets highlighted that the test set images contain 
five pixel classes (i.e., buildings, bridges, roads, soil, vegetation, and water). However, all 
the classes were not present in all training images, thus leading to an imbalance problem. 
This imbalance problem was resolved using a balancing function based on median fre-
quency in which a weight is assigned to each of the five-pixel classes that are absent in an 
image using the following Equation (3): 𝑤 = 𝑀𝑒𝑑𝑖𝑎𝑛(𝑐𝑓)𝑐𝑙𝑎𝑠𝑠 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 (3)

where ‘cf’ represents the class frequencies calculated over the whole dataset that are cal-
culated using Equation (4):  𝑐𝑙𝑎𝑠𝑠 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑖𝑥𝑒𝑙𝑠 𝑖𝑛 𝑒𝑎𝑐ℎ 𝑐𝑙𝑎𝑠𝑠𝑇𝑜𝑡𝑎𝑙 𝑝𝑖𝑥𝑒𝑙𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑖𝑚𝑎𝑔𝑒  (4)

The frequency of each of the classes in the training dataset of the current study is 
shown in Table 1. 

Table 1. Frequency of each class in the dataset. 

Class Frequency (%) 
Buildings 30.1 

Roads 42.8 
Soil 11.9 

Grass 10 
Water 5.2 

Bridges 1.1 

By analyzing the map of Swat, training samples containing the images of river 
“Swat” and river “Daral” were eliminated to avoid the ambiguity arising from their clas-
sification under the flooded category. Overall, the training dataset contained 3000 images 
that were utilized for the current study. These images are used to extract the landmark 
features and subsequently aid in rescue operations. 

To train the classifier, a set of labeled positive sample images containing the object to 
be detected and a set of labeled negative samples that do not contain the object are needed 
[78]. These datasets were constructed from scratch for the case study area as there is no 
previous research that used supervised learning for object detection in aerial images in 
the case study area. Images were gathered from available online databases of Microsoft 
Bing Maps, Google Maps, and Google Earth. Furthermore, images were extracted at var-
ying altitudes, brightness, and scales to form a dataset containing diverse images. A total 
of 3000 aerial images of buildings (1000), bridges (1000), and images of roads (1000) were 
extracted for the case study area.  

Figure 7 shows part of the road and building images datasets used for training the 
classifier. The next step was to label objects in each of the downloaded images. This in-
volves highlighting, cropping, and naming the target object in each image. Furthermore, 
a negative training set was developed by cropping the regions not containing the target 
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object from the images. In total, 1000 negative samples were collected for buildings, 
bridges, and road datasets, respectively. Finally, the OpenCV computer vision library, 
which provides the utility to train a Haar cascade classifier, was used for training. This 
involves creating a feature vector of the training dataset and providing it as an input to 
the classifier. The detected images of buildings and roads were cropped and added to the 
original dataset containing the RGB images, as shown in Figure 7. 

 
Figure 7. (a) Subset of aerial road images used for training (b) Subset of aerial building images used for training (c) Haar 
Cascade Classifier Results. 

2.2.5. Flood Detection Using Image Classification 
CNN has been used in this study for detecting floods. The architecture for CNN is 

shown in Figure 8, in which three layers are used: convolution, pooling, and fully con-
nected layers.  
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Figure 8. Proposed architecture diagram of CNN. 

Convolution is a common analytical operation that is applied to signal and image 
processing problems. Different features from an image, such as texture and edges, can be 
obtained using a convolution function. The overlapping area of two functions, ‘x’ and ‘y’, 
can be computed using the convolution operator. If ‘x’ is the original function and ‘y’ rep-
resents its flipped form, Equation (5) can determine the third function ‘c’ [43,52] as follows: 𝑐(𝑡) = 𝑥(𝑡) ∗ 𝑦(𝑡) = න 𝑥(𝜏)𝑦(𝑡 − 𝜏)𝑑𝜏ାஶ

ିஶ  (5)

Furthermore, a digital image is viewed as a two-dimensional function such as ‘x(a, 
b)’ in image processing. Therefore, using a two-dimensional convolution function, ‘y(a, b)’, 
the output image ‘c(a, b)’ can be determined through Equation (6) as follows: 𝑐(𝑎, 𝑏) = 𝑥(𝑎, 𝑏) ∗ 𝑦(𝑎, 𝑏) (6)

Similarly, in the case of a colored image that contains three channels, red, green, and 
blue, the input image of width ‘w’ and length ‘l’ is an array of size ‘S’, which is calculated 
using Equation (7) as follows: 

S = 3 × w × l (7)

A feature map is obtained as an output of the convolutional layer. This is obtained 
by taking a sum of the inputs (𝑦) of all neurons multiplied by their weights (𝑤), plus a 
bias value (𝑣) and an activation function as shown in Equation (8): 

𝑂 =  𝑤 × 𝑦 + 𝑣
ୀଵ  (8)

The Rectified Linear Unit (ReLU) is a standard activation function for neural net-
works. It makes the model easier to train and brings better performance outcomes. This 
function activates a node by outputting the input directly if it is positive and otherwise 
returning zero. This has been applied in the current study.  

A pooling layer is added immediately after the convolutional layer and applied to 
decrease the width and height of the test image in the current study. This simplifies the 
computation as the number of parameters is reduced by decreasing the spatial size. This 
also tackles the over-fitting problem. Max pooling is the most widely used pooling tech-
nique in which a filter of size “s × s” is selected, and a maximum operation is applied over 
the “s × s”-sized subset of the image. After the pooling layer is added, a fully connected 
layer is introduced in which each neuron receives input from every neuron present in the 
previous layer. Computation, based on the multiplication of matrices and a bias offset, is 

Convolution + ReLu Pooling Fully Connected 

Fully Connected + ReLu 

Input 
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used to determine the output. The aim is to compute class scores to classify the image in 
the current study. 

2.2.6. Results Extraction and Performance Evaluation of the Proposed System 
Images captured by the UAV in the current study contained rich spatial information 

and hence consumed more memory space. Due to limited memory capacity, these images 
were divided into smaller patches of 525 × 525 in size. To test the model, an evaluation 
method based on 10-fold cross-validation was applied, in which the dataset was divided 
into 10 equal parts or folds. This method was used to overcome the problem of overfitting 
of data and enhance the generalization performance of the classifier. One fold was used 
as the test set in each iteration, and the remaining parts were combined and used for train-
ing the system. This step was repeated 10 times, taking a new set for testing in each itera-
tion, thus using unique testing set in each step. The classification accuracy and error were 
calculated using accuracy and error percentages from all 10 folds.  

To train the CNN, images from both flooded and non-flooded categories were fed to 
the first convolutional layer, followed by two convolutional layers, a pooling layer, and 
finally, two fully connected layers. Initially, data is collected when the concept of CNNs 
is introduced, and models are trained using machine learning. Accordingly, in this study, 
data collection was performed using images from the flooded and non-flooded categories. 
This was followed by data preprocessing and labeling. For data labeling, different tech-
niques, including bonding box and semantic segmentation, can be used. Accordingly, in 
this study, we have used semantic segmentation, which is a pixel-by-pixel labeling 
method where the water pixels, and the background pixels were extracted separately. 
Thus, an improved version of CNN was used in this study. Herein, the final fully con-
nected layers produce only two outputs that classify the image into either a flooded or 
non-flooded category.  

During the learning process, weights of the input variables were tuned in the convo-
lutional layer in this study by taking random values for the parameters and updating them 
using back-propagation. The learning rate was 0.0001, and the maximum epoch value was 
set as 5 for all classes. A total of 167,400 iterations were conducted in the training process 
of the 10-fold validation. As a result of the training, the model learned to link images with 
class labels and make predictions about test images. It took a 24-hour period for cross-
validation using an Intel Quad Core i7-8550U Processor at 1.8 GHz to extract the results. 
For assessing the performance of the system, a confusion matrix was used to assess and 
highlight the accuracy of the classification method. It provided a complete measure of the 
performance of a classifier by separating correct predictions from the incorrect ones for 
each class in the dataset. The confusion matrix was divided into four cells representing 
true positives (T.P.), true negatives (T.N.), false positives (F.P.), and false negatives (F.N.), 
as shown in Table 2. 

Table 2. The confusion matrix. 

Predicted Values 
Actual Values 

Positive Negative 
Positive TP FP 

Negative FN TN 

Other measures such as precision, recall, and F-score were taken along with accuracy 
for performance evaluation of the classifier, as the accuracy alone does not give sufficient 
information about the class-wise results. For example, consider a dataset having 100 im-
ages, of which 95 belong to the non-flooded class and 5 belong to the flooded class. If all 
the images are classified as non-flooded, the accuracy will still be 95%, even though the 
flood was not successfully detected in any of the images. Hence, relying only upon accu-
racy may not be the right approach, and other measures are needed need to be put in 
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place. Accordingly, in this study, other measures such as recall, precision, and others cal-
culate the TP. The formula for these performance measures, including the accuracy, recall, 
precision, f-score, true positive rate, and false-positive rate, are given in Equations (9)–
(14): 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁𝑇𝑃 + 𝐹𝑁 + 𝑇𝑁 + 𝐹𝑃 × 100% (9)

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃𝑇𝑃 + 𝐹𝑁 (10)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃𝑇𝑃 + 𝐹𝑃 (11)

𝐹 − 𝑆𝑐𝑜𝑟𝑒 = 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙  (12)

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 = 𝑇𝑃𝑅 = 𝑇𝑃𝑇𝑃 + 𝐹𝑁 (13)

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 (𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦) = 𝐹𝑃𝑅 = 𝐹𝑃𝑇𝑁 + 𝐹𝑃 (14)

Overall, in terms of the time taken to conduct the study, it took almost nine hours to 
preprocess the input raw images. This included noise removal and orthorectification op-
erations. Landmarks extraction by training a Haar cascade classifier and cropping the 
landmarks took 5 h. Finally, training the CNN-based deep neural network using the up-
dated dataset took 24 h. Using the trained model to extract flooded regions took almost 
eight hours. This is a reasonable time to preprocess, analyze, extract features, and train a 
flood detection model from scratch, beginning with remotely sensed raw data to instigate 
an immediate response plan. Compared to other techniques that take weeks or sometimes 
months to plan a proper response, the current method is speedy and accurate. Upon com-
pleting the training process, testing was carried out using 300 aerial images of buildings 
and roads that included images captured at varying altitudes, scales, and illumination 
conditions. The classifier correctly identified roads and buildings from the dataset with 
91% and 94% accuracy, respectively.  

3. Results and Discussions 
As explained in the method section, the model was first trained using the original 

dataset and the generated test results. Table 3 shows the confusion matrix generated by 
applying a dataset of test images to the trained model. The test dataset consists of 400 
flooded and 400 non-flooded images. The results show that out of a total of 800 images, 
675 were correctly classified, showing an 84.4% accuracy.  

Table 3. Confusion matrix generated for a model trained using an original dataset. 

 
Predicted Class 

Flooded Non-Flooded Total 

Actual Class Flooded 352 48 400 
Non-Flooded 77 323 400 

Table 4 shows the confusion matrix generated after applying the test images dataset 
to a model trained using the altered (improved) dataset. This resulted in 728 out of 800 
images being correctly classified, making the trained model 91% accurate. 
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Table 4. Confusion matrix generated for a model trained using an altered dataset. 

 
Predicted Class 

Flooded Non-Flooded Total 

Actual Class Flooded 371 19 400 
Non-Flooded 33 357 400 

By applying Equations (9)–(12) to determine accuracy, recall, precision, and f-Score, 
respectively, we get the values as reported in Table 5. The results with and without land-
marks addition have been compared in Table 5. The overall accuracy of 91% has been 
recorded after adding landmarks to the dataset, with a 6% improvement in the accuracy 
achieved using the original dataset. Furthermore, as shown in Table 5, the precision, re-
call, and f-scores of the model have been improved by 8%, 5%, and 6%, respectively, when 
the altered dataset is used to train the CNN model. 

Table 5. Experimental results. 

No. Metrics 
Altered Dataset 

(Landmarks + Original Images) 
Original Dataset 

(Without Landmarks) 
1 Accuracy 91% 84.4% 
2 Precision 0.92 0.84 
3 Recall 0.95 0.90 
4 F-Score 0.93 0.87 

Compared to other studies, Fuentes et al. [64] used semantic metadata and visual 
cues to train a CNN model for flood detection and achieved an average accuracy of 
83.96%. Feng et al. [71] obtained an accuracy of 87.5% using texture features and random 
forests along with RGB images for flood mapping. Elkhrachy [79] obtained an accuracy of 
84.4% using an Analytical Hierarchical Process (AHP) to determine the relative impact 
weight of flood causative factors. Tehrany et al. [80] used different kernel types with an 
SVM classifier to develop a flood susceptibility mapping system integrated with GIS and 
achieved an accuracy of 84.97%. Thus, the current study system shows superior results 
compared to similar studies.  

Table 6 compares the performance of the proposed system with recent methodologies 
for flood detection. These results show that the proposed flood-mapping model outper-
forms the recently proposed techniques for flood detection. The only method that shows 
results superior to the current CNN method is the deep learning neural network. How-
ever, the difference is minor (1%); hence the two methods can yield nearly similar results. 
Hence based on its high performance, the proposed model is very promising for real-time 
flood mapping. 

Table 6. Comparison of flood mapping results of the current study with previous research. 

No. Method 
Accuracy 

Result 
Images in 

Dataset Location 

1 Deep Learning Neural Network [81] 92% 1464 Lao Cai, Vietnam 

2 
Semantic metadata and visual data with Convolutional 

Neural Network [82] 83.96% 6600 Misc (Flickr images)  

3 Random Forest Classifier [71] 87.5% 5000 Yuyao, China 

4 Analytical Hierarchical Process [79] 84.4% 519 Najran City, Kingdom of 
Saudi Arabia 

5 Support Vector Machines (SVM) [80] 84.97% 1000 Terengganu, Malaysia 
6 Proposed Model (CNN with landmarks extraction) 91% 3000 Swat, Pakistan 
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Figure 9 depicts the dependence of the classification accuracy on the number of im-
ages in the training set used in the current study. The x-axis and y-axis represent the num-
ber of training samples in the dataset and the corresponding classification accuracies, re-
spectively. This graph indicates that the accuracy increases considerably with an increase 
in the number of input samples in the training set. Hence, expanding the size of the train-
ing dataset is one way to improve the performance of this model. If more training data, 
say a million or even billions of samples, are used, a better performance will be achieved 
as predicted by the graph. Adding the key distinguishing features to the training set helps 
the network learn more about classifying the images. The idea is to increase the size of the 
dataset by applying processes that imitate real-world variations. In this research, the back-
ground or irrelevant features present in the images were cropped. 

Furthermore, the classification model was trained on a set of key features to be ana-
lyzed while distinguishing the classes. This is synonymous with the tactics used by a hu-
man while differentiating between a set of images manually. The performance of a learn-
ing model depends deeply on the training dataset, so expanding the dataset in a mean-
ingful way is one way to yield a high classification accuracy. However, this approach can 
be expensive and slows down the training, so the tradeoff should be carefully analyzed. 

 
Figure 9. Graph showing classification performance with the number of samples in the training 
dataset. 

Figure 10 illustrates a Receiver Operator Characteristic (ROC) curve plotted using 
true positive rate (TPR) (y-axis) against False Positive Rate (FPR) (x-axis) with a cut-point 
of 0.5 probability. The area under the curve (AUC) represents one value that summarizes 
the result of the ROC curve. A value of AUC close to one represents its good classification 
performance, while AUC = 0.5 represents a bogus or no-skill model. For the CNN-based 
model in the current study, the values of AUC, TPR, and FPR are 95.7, 88.0, and 86.7%, 
respectively. Accuracy is the most simple and intuitive measure for highlighting classifi-
cation performance. However, there are certain conditions where accuracy may not be a 
satisfactory measure. For example, if only one of a thousand test images belongs to the 
flooded class, the accuracy of a model predicting each image as “negative or non-flooded” 
will still be 99.99%. Unlike accuracy, ROC curves are not sensitive to the imbalance of 
classes in the dataset. They depict the ability of a model to distinguish between classes. 
The classification model in the example provided will have an ROC curve of 0.5, repre-
senting a “no skill” prediction model. 
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Figure 10. ROC Curve. 

The output of the flood detection model is tested with 50 new test images captured 
from the case study area using the UAVs. Figure 11 shows sample test images used with 
the current model. Firstly, orthorectification and noise filtering were applied to the input 
image. The image at this stage was smoother, with certain noise arising from the shadows, 
reflections, or other factors completely removed or reduced to some extent. The color at-
tributes of the image were preserved as the prediction model was trained for classifying 
multispectral images. This image was then fed to the trained CNN model for predicting 
its class. The classifier presented its output as shown in Figure 11, where the red high-
lighted regions show flooding. Accordingly, the image was classified as “flooded”, and 
hence responses can be instigated. The results clearly demonstrate the efficiency of the 
model for detecting and mapping flooded regions. All major areas in the image showing 
floodwater were identified. Some little patches of flooded regions may have been misclas-
sified due to shadows or reflections in the image. However, the image will still be classi-
fied as flooded, which is the main objective of the CNN model in the current study. Fur-
thermore, it must be noted that whenever we utilize real time imagery for capturing the 
shore or collateral regions, there are chances of achieving true negatives. Therefore, the 
edges of water were not classified in Figure 11. Overall, all the significant flood-affected 
areas were detected by the model.  

In summary, UAV-based image acquisition is a promising method to capture high-
resolution spatial images of the disaster site during emergencies such as floods. Such im-
ages containing rich information about the ground objects boost the performance of ma-
chine learning models. The associated image processing techniques result in increased 
precision and accuracy of the landmark identification and helps instigate a proper emer-
gency response. UAVs are not restricted by their takeoff and landing conditions, making 
them more flexible and safer to be used than man-driven aerial vehicles. They also fly at 
a low altitude, enabling them to overcome the limitation of satellite imaging, such as 
blocking target view due to cloud cover or other barriers and accessing otherwise inacces-
sible locations. Thus, such imagery has the edge over GIS-based satellite imagery. 



Smart Cities 2021, 4 1238 
 

 
Figure 11. Flood mapping results on input test images. 
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Furthermore, the type of sensor used with the UAV determines the effectiveness of 
the real-time data. By using a digital camera such as the Go-Pro® used in the current study, 
high-quality images can be captured and quickly sent to the server based on the ground 
station. These images can be seen on screen in real-time, allowing for relief workers to 
make quick decisions in an emergency. This addresses the limitations of commercial cam-
eras where RGB images will only be accessible after the landing of the UAV and cannot 
be viewed or analyzed in real-time hence delaying the response and hindering the rescue 
operation. Thus, to provide the feature of real-time surveillance, a versatile camera such 
as a Go-Pro ® should be used with the UAV. 

A deep learning approach based on CNN was used in the current study to classify 
the images that showed highly promising results. By including landmark features with 
the original dataset, a 5% improvement in overall accuracy was recorded. This is because 
expanding the dataset results in more data to the model, leading to increased learning and 
forming a better and improved prediction model. However, the results are highly depend-
ent on the content of images and features for training. Key landmarks must be extracted 
and added to the training dataset to provide the model with the most relevant features. A 
comparison with recent flood mapping techniques that used SVM, random forests, deep 
learning, and AHP shows that the CNN model of the current study had superior perfor-
mance. Furthermore, it had comparable results to deep learning neural-network-based 
image processing. Hence, deep learning approaches are highly recommended for flood 
detection in aerial images captured through UAVs. This will help pave the way for smart 
disaster management in the Industry 4.0 era and move towards the goals of smart cities 
and regions. 

The current study does not detect or assess the population to provide aid and poten-
tial calculating damages to the population. Furthermore, it is limited to a maximum cov-
erage area through a limited number of UAVs. Due to limited battery timings of UAVs, 
i.e., 30–45 min, the regions should be prioritized for capturing images and detecting 
floods. To deal with this, swarm intelligence should be considered where UAVs can be 
made smart/intelligent by a heuristic-based approach.  

4. Conclusions 
This study presented a hybrid model for landmarks-based feature selection and 

CNN-based flood detection. The key landmarks (i.e., roads, bridges, and buildings) were 
detected using supervised learning and added to the training dataset through swift re-
sponse instigation, which was further used for training the CNN model. The inclusion of 
landmark features with the original RGB images significantly improved the model’s per-
formance. Moreover, using the CNN model on a large dataset based on aerial images has 
shown superior results, which surpassed traditional machine learning classifiers. Thus, 
successful implementation of UAV-based imaging for flood inundation mapping has been 
demonstrated in the study, proving that UAVs are ideal for the facilitation of real-time 
surveillance of inundated regions. Additionally, an accuracy of 92% was observed for ex-
traction of the inundated areas from images. An overall 5% improvement in accuracy was 
observable when landmark features were included in the dataset. Overall, our model 
demonstrated an improvement over previous techniques that used classifiers such as 
SVM and random forests. 

The outcomes of this research are directly aligned with the United Nations Interna-
tional Strategy for Disaster Reduction and Sendai Framework for Disaster Risk Reduction 
2015–2030 that is aimed at providing practical solutions to rescue people in flood-affected 
areas. Our study can help the disaster management authorities (i.e., PDMA) in Pakistan 
to carry out post-disaster rescue services efficiently and quickly. This will help them to 
supply aid and relief to the stranded people, thus saving lives and reducing the impacts 
of disasters such as floods. This will pave the way for the adoption of smart technologies 
in the Industry 4.0 era. 
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A limitation of the proposed model is that it highlights the flood-affected and sub-
merged areas using the two-dimensional images captured by UAV and cannot specify the 
depth of floodwater in the region, which may be needed to analyze the extent of flood 
intensity in a region. This issue can be overcome using technologies such as Digital Eleva-
tion Model (DEM) and Light Detection and Ranging Equipment (LiDAR). In the future, 
the accuracy of the system can be enhanced by expanding the dataset through the addition 
of more landmarks and features. Additionally, the feature selection based on rivers, peo-
ple, and vehicles can also improve the quality of the dataset. Furthermore, other deep 
learning approaches, including RNN and LSTM, can be explored to perform flood inun-
dation mapping in addition to its detection. Similarly, the study can be merged with ve-
hicle routing techniques to plan rescue and emergency first aid responses in disaster-
struck areas. This will help the flood management, fire, and search and rescue authorities 
in any country. Accordingly, the goals of modern smart cities and smart regions could be 
achieved.  
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