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Abstract  

Driver sleepiness is a major contributor to road crashes. A system that monitors and warns the 

driver at a certain, critical level of arousal, could aid in reducing sleep-related crashes. To 

determine how driver sleepiness detection systems perform, a systematic review of the 

sensitivity and specificity outcomes was performed. In total, 21 studies were located that met 

inclusion criteria for the review. The range of sensitivity outcomes was between 39.0-98.8% 

and between 73.0-98.9% for specificity outcomes. There was considerable variation in the 

outcomes of the studies employing only one physiological measure (mono-signal approach), 

whereas, a poly-signal approach with multiple physiological signals resulted in more 

consistency with higher outcomes on both sensitivity and specificity metrics. Only six of the 

21 studies had both sensitivity and specificity outcomes above 90.0%, which included mono- 

and poly-signal approaches. Moreover, increases in the number of features used in the 

sleepiness detection system did not result in higher sensitivity and specificity outcomes. 

Overall, there was considerable variability between the studies reviewed, including measures 

of ground truth, the features employed and the machine learning approach of the systems. A 

critical need for progressing any system is a revalidation of the system on a new sample of 

users. These aspects indicate considerable progress is needed with physiological-based driver 

sleepiness systems before they are at a sufficient standard to be deployed on-road. 
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1. Introduction 

Driver sleepiness is a major issue for road safety (Australian Transport Council, 2011; Connor 

et al., 2002; Tefft, 2014). It has been noted that approximately 17.0% of fatal crashes in the 

USA (1999-2008) (Tefft, 2014) and 20.0-30.0% of road crash deaths and severe injuries in 

Australia (Australian Transport Council, 2011) are due to driver sleepiness. Thus, concerted 

efforts are necessary to mitigate its contribution to crash statistics.  

Commonly, sleepiness is caused by insufficient sleep, although other factors such as time-on-

task (Zeller et al., 2020), reduced stimulation from the environment (Larue et al., 2011) as well 

as environmental light levels (Ahlström et al., 2018), circadian-related factors or having a sleep 

disorder (Williamson et al., 2011), or use of medications (National Highway Traffic Safety 

Administration, 1998) can lead to reductions in alertness. Experiencing sleepiness is also a 

naturally occurring event governed by two intrinsic factors: a homeostatic component and a 

circadian component (Borbely, 1982). The homeostatic component is an increasing need to 

sleep that gradually develops from the time of awakening, whereas the circadian component 

promotes alertness in the morning with sleepiness gradually increasing from 14:00 and 

reaching a maximum sleep pressure during the hours of 02:00-06:00. A substantial proportion 

of drivers (59.0-77.0%) have reported feeling sleepy while driving (Armstrong et al., 2010; 

Vanlaar et al., 2008; Watling et al., 2015), indicating the behaviour is widespread. Moreover, 

certain driver types such as professional drivers, including bus drivers (Miller et al., 2020), 

heavy vehicle and taxi drivers (Meng et al., 2015), also commonly reported feeling sleepy while 

driving. Considered together, driver sleepiness is a prevalent and critical road safety issue. 

Thus, detecting and alerting a sleepy driver so they can implement a sleepiness countermeasure 

(i.e., nap or coffee consumption) would be beneficial for mitigating risk associated with sleepy 

driving.  

Recent research on driver sleepiness detection has used data from three areas, including 

vehicle-based measures, behavioural measures, and physiological measures (Sahayadhas et al., 

2012). Vehicle-based measures include wheel movement, pedal and accelerator movement, 

while behavioural-based measures comprise the detection of facial changes such as eye 

movements, yawning or changes in speech (Fan et al., 2007; Sahayadhas et al., 2012; Zhang & 

Zhang, 2010). There are several limitations of these two data sources as they are impacted by 

factors such as road markings, lighting conditions, climatic conditions, vehicle kinetic 

characteristics, facial characteristics, visual distraction and presence of a passenger (Choudhary 
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et al., 2017; Sahayadhas et al., 2012). Ongoing advances in hardware, as well as deep learning 

techniques, have led to improvements in behaviour-based measures. However, physiological 

measures are suggested as an effective measure for driver sleepiness detection (Doudou et al., 

2019; Lal & Craig, 2001; Ramzan et al., 2019). Physiological signals including cortical activity 

via electroencephalography (EEG), various eye-related metrics from electrooculography 

(EOG) or infrared reflectance, and cardiac-related measures via electrocardiography (ECG) or 

pulse plethysmography and oximetry (Choudhary et al., 2016; Lal & Craig, 2001), have been 

found to reflect changes in arousal.  

A number of approaches and methods have been used with the detection of sleepiness, 

including the mono-signal approach or the poly-signal approach being the use of one or several 

physiological signals, respectively. Moreover, a number of features can be extracted from the 

physiological signals; however, it is unclear which features might have more prominence with 

a well performing detection system. That is, while EEG-based measures of sleepiness such as 

alpha and theta power bands have been consistently related to increases in sleepiness, entropy-

based measures (e.g., Min et al., 2017) and wavelet packet transformations (e.g., Chen et al., 

2019) of the EEG signal also show promise with the assessment of sleepiness. Nevertheless, it 

is possible that the combination of different features might also improve detection outcomes, 

as sleepiness is a multifaceted state. 

The most important aspect of a detection system is the sensitivity and specificity metrics to 

determine the overall performance of the system (Parikh et al., 2008). High sensitivity indicates 

that a system is highly capable of detecting the factor of interest, whereas high specificity 

signifies the ability of the system to identify the undesired factors more correctly. In the case 

of sleepiness detection systems, sensitivity is the estimate of the successful detection of 

sleepiness, and specificity is the estimate of the successful detection of alert state (Parikh et al., 

2008). As the two metrics have implications for the efficacy of a system, it is important to 

consider these metrics with driver sleepiness detection systems.  

Several driver sleepiness detection studies have some notable discrepancies with sensitivity 

and specificity of their proposed systems. For example, (Pritchett et al.'s 2011) detection system 

resulted in high sensitivity of 95.4% but a substantially lower specificity value of 75.8%. In 

this case, higher sensitivity and lower specificity characteristics can lead to the possibility of 

false alarms. On the other hand, Liang et al. (2019) achieved a low sensitivity of 39.0% and a 
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higher specificity of 98.0% while detecting driver sleepiness utilising the EEG signal. In this 

instance, there is a possible lower false alarm, but it is likely to misclassify sleepy states.  

As sleepiness detection systems will be implemented as a part of the advanced driver-assistance 

systems, assessing the sensitivity and specificity of the detection models is a critical factor 

(Dawson et al., 2014). Previous work undertaken on this topic focused on describing driver 

sleepiness detection techniques with a limited examination of physiological signals 

(Sahayadhas et al., 2012) or the performance measures of any of the detection models (Saini & 

Saini, 2014), or included a high-level detailed review of detection technology but did not focus 

on classification, sensitivity or specificity (Dawson et al., 2014). Moreover, none of these 

studies followed the Preferred Reporting Items for Systematic reviews and Meta-Analyses 

(PRISMA; Moher et al., 2009).  

Understanding sensitivity and specificity outcomes of sleepiness detection systems provides a 

gauge of the success of these systems and analytical techniques. In addition, the utility of the 

classifiers and their relationship with sensitivity and specificity metrics can be assessed. 

Therefore, systematically reviewing empirical studies that have measured the sensitivity and 

specificity of their detection system is an important issue. The PRISMA criteria (Moher et al., 

2009) guided the following review, including the development of the research questions, and 

consideration of participants, interventions, comparators, and outcomes. Thus, the following 

research questions were developed: i) what is the sensitivity and specificity of the driver 

sleepiness detection methods using physiological signals? and ii) does the number of features 

extracted from the physiological signals impact on the sensitivity and specificity metrics? 

2. Methods 

2.1. Data sources 

A total of five databases (i.e., PubMed, Embase, Scopus, Web of Science and IEEE Xplore 

Digital Library) were searched in this systematic review. Moreover, other relevant literature 

identified from the initial search was manually screened. No starting date restriction was used 

given the recency of machine learning paradigms and their practical application. The end date 

was September 2020. 

2.2. Study selection 

Electronic databases were searched, and the title, abstracts and full-text documents were 

downloaded to EndNote for screening purposes. The screening and selection were performed 
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independently by two of the authors (CNW, MMH) and was validated by the third author 

(GSL). Disagreements on study inclusion was resolved via discussions between the three 

authors (CNW, MMH, and GSL).  

2.3. Eligibility criteria 

First, the terms for searching the databases, ‘drowsiness’, ‘sleepiness’ and ‘fatigue’, were 

utilised by using the ‘OR’ function. Second, for physiological signals, ‘biosignal’, ‘EEG’, 

‘EOG’, ‘ECG’, ‘EMG’, ‘skin conductance’ and ‘pulse oximetry’ were used. Third, for the 

performance measure, ‘sensitivity’, ‘specificity’, and their synonyms (sensitivity: ‘recall’, ‘true 

positive rate’; specificity: ‘true negative rate’) were used. After downloading all the articles 

with abstracts, further screening was done in the bibliographic software (EndNote), where 

studies were excluded other than the search results from the ANDing of ‘driver’, ‘sleepiness’, 

‘sensitivity’ and ‘specificity’ (with their synonyms). This was performed to ensure only studies 

focusing on driver sleepiness were selected for review. The search strategy based on the 

PRISMA flow diagram is shown in Figure 1. All published and unpublished articles were 

considered, and there were no restrictions on the age or gender of the subjects. Moreover, there 

were no restrictions on language or location of data collection.  

2.4. Data Extraction 

The data extraction was performed by two authors (CNW and MMH), and was further validated 

by the third author (GSL). The information extracted from the selected publications included 

demographics, driving setting (simulator or on-road), data/measures used, extracted features, 

classification approach, sensitivity and specificity outcomes. A total of 69 articles were found, 

which specifically included the driver, sensitivity and specificity (and their synonyms). These 

articles were manually searched, and a total of 18 articles were excluded due to classifying 

sleep stages or stress level detection, being signal detection method papers, speech-, 

respiratory-, or vehicle-based detection methods. Articles that included at least one 

physiological measure and other signals such as respiration were still included in the review. 

Full-text articles of the remaining 51 studies were manually assessed for analysis. As 30 articles 

did not report the sensitivity, specificity or other vital aspects (e.g., ground truth, features 

extracted, classification method) of their proposed sleepiness detection systems, they were 

excluded as well, leaving 21 articles for review.  
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Figure 1: PRISMA-based flow diagram for the retrieval of studies on detection of driver 
sleepiness via physiological measures. Columns  

3. Results 

Table 1 displays the 21 studies included in the final study synthesis. Out of 21 studies, 17 

studies used a mono-signal approach: 13 studies used EEG features  (Chai et al., 2017; Chai et 

al., 2016; Chai et al., 2015; Chen et al., 2018a; Chen et al., 2018b; Chen et al., 2019; He et al., 

2014; King et al., 2006; Ko et al., 2020; Liang et al., 2019; Mardi et al., 2011; Min et al., 2017; 
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Pritchett et al., 2011), two studies used ECG features (Persson et al., 2020; Vicente et al., 2016), 

one study used EOG features (Akerstedt et al., 2010) and one study used EMG features 

(Mahmoodi & Nahvi, 2019). A poly-signal approach was used by four studies, including the 

combination of EEG and EOG (Barua et al., 2019), EEG and ECG (Guo et al., 2016), EEG, 

EOG and ECG (Martensson et al., 2019), and EDA and PO (Bundele & Banerjee, 2010). It is 

worth noting that substantial variability is evident with the measures of ground truth employed 

(e.g., observer ratings of video, subjective sleepiness, performance indices), the classification 

models utilised, as well as the features extracted, even between studies that have used the same 

physiological signal (e.g., EEG: spectral power bands, wavelet transformations, entropies 

metrics). 
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Table 1: Details of the reviewed studies including demographics, study setting, data/measures used, extracted features, classification approach, sensitivity and specificity outcomes. 

Study Sample and 
demographics Study Settings Data/measures Final model features Classifiers Sensitivity Specificity 

Ko et al. 
(2020) 

N = 15 participants, 
aged: 22-28 

Driving Simulator 
Driving route: 
highway driving (60 
mins) 
 

Ground truth: response times via 
steering wheel corrections 
Input data: physiological (EEG) 
and blink frequency 
Classification time window: 1 min 

4 features: EEG: delta, theta, alpha 
and beta EEG power bands as well 
as blink frequency, duration, 
amplitude 

One classifier: multiple regression model  
Validation: leave-one-trial-out cross-
validation  
Classes: 2 (alert and fatigued) 

58.0% 73.0% 

Persson et 
al. (2020) 

N = 86 sleep-deprived 
participants: 
Session 1: 18 (M:10, 
F:8); mean age: 41  
Session 2: 24 (M:12; 
F:12); mean age: 35  
Session 3: 44 (M:23; 
F:21); mean age: 44 

On-road driving 
Session 1: 
Motorway (90 
mins) 
Session 2: 
Motorway (135 
mins) 
Session 3: Rural 
road (90 mins) 

Ground truth: subjective 
sleepiness (KSS) 
Input data: physiological (ECG) 
Classification time window: 5 min 

5 features: RMSSD, mean NN, 
LFabs, SSD1, SSD2 

Four classifiers: KNN, Gaussian kernel 
SVM, AdaBoost, random forest 
Validation: all classifiers were trained using 
10-fold cross-validation 
Data partitioning:  feature selection set (30 
%), training set (50 %) and test set (20 %) 
using a holdout approach 
Classes: 3 (alert (KSS ≤ 5), somewhat sleepy 
(6 ≤ KSS ≤ 7), and severely sleepy (KSS ≥ 8) 

57.9% 
random 
forest 

79.3% 
random 
forest 

Barua et al. 
(2019) 

N = 30 male 
participants, age 
range: 18-25 

Driving simulator 
Driving route: i) 
rural road-daylight; 
ii) rural road-night-
time; iii) suburban 
road-daylight 
Driving session: 3 x 
30-min driving  

Ground truth: subjective 
sleepiness (KSS) 
Input data: physiological (EEG, 
EOG); PERCLOS, sleep-wake 
timing 
Classification time window: 5 min 

13 features: EEG: δ-PSD, θ-PSD, α-
PSD, β-PSD, (θ+α)/ β, α/ β, (θ+ α)/( 
α+ β), θ/β; EOG: blink duration; 
PERCLOS; sleep/wake predictor; 
driving condition: road type (rural or 
suburban road), lighting (daylight or 
night-time conditions) 

Four classifiers: KNN, SVM, case-based 
reasoning, random forest  
Validation: 10-fold cross-validation and 
leave-one-out validation  
Classes: 2 (alert, sleepy); a multiclass also 
trialled but resulted in poorer outcomes 

85.0% 
case-based 
reasoning 

81.0% 
case-based 
reasoning 

Chen et al. 
(2019) 

N = 16 male 
participants, mean 
age: 28.0 

On-road driving 
Driving route:  
Driving session: 60-
min driving 

Ground truth: arbitrary 
classification of alert or fatigued 
based on first 3 min and last 3 min 
of driving respectively, confirmed 
by KSS values 
Input data: physiological (14 
channel EEG) 
Classification time window: 3 min 

4 features: Wavelet packet 
transform (WPT) of EEG data into 
δ-WPT, θ-WPT, α-WPT, β-WPT 

One classifier: SVM  
Validation: 10-fold cross-validation 
Classes: 2 (alert or fatigued) 

94.6% 94.3% 
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Study Sample and 
demographics Study Settings Data/measures Final model features Classifiers Sensitivity Specificity 

Martensson 
et al. (2019) 

N = 86 sleep-deprived 
participants: 
Session 1: 18 (M:10, 
F:8); mean age: 41  
Session 2: 24 (M:12; 
F:12); mean age: 35  
Session 3: 44 (M:23; 
F:21); mean age: 44 

On-road driving 
Session 1: 
Motorway (90 
mins) 
Session 2: 
Motorway (135 
mins) 
Session 3: Rural 
road (90 mins) 

Ground truth: subjective 
sleepiness (KSS) 
Input data: physiological (EEG, 
EOG, ECG), sleep-wake timing 
Classification time window: 5 min 

10 features: sleep/wake predictor; 5 
EEG: θ/β (Cz-A2), θ/β (Oz-Pz), 
θ/(θ+α) (Fz-A1), α power (Cz-A2), 
α power (Fz-A1); EOG: mean lid 
closure speed, 90th percentile blink 
duration; ECG: RMSSD, Higuchi 
dimension 

Five classifiers: random forest; AdaBoost, 
KNN, Linear SVM, Gaussian SVM 
Validation: 10-fold cross-validation 
Data partitioning:  feature selection set 
(30%), training set (50%) and test set (20%) 
using a holdout approach 
Classes: 2 (severely sleepy (KSS≥8) or as 
sufficiently alert (KSS≤6)) 

86.5% 
random 
forest 

95.7% 
random 
forest 

Mahmoodi 
and Nahvi 
(2019) 

N = 13 male 
participants, age 
range: 26-50  

Driving simulator 
Driving route: 67 
km closed-loop 
highway  
Driving speed: 80-
100 km/h 

Ground truth: observer rating of 
sleepiness 
Input data: physiological (EMG) 
Classification time window: 30 
sec 

5 features: EMG: range, variance, 
relative spectral power, kurtosis, and 
shape factor of EMG data 

Six classifiers: KNN, regression tree, binary 
SVM, naïve bayes model, ensemble of 
learners for regression, SVM regression 
model 
Validation: 20-fold cross-validation  
Data partitioning: 70% for the training set, 
15% for validation, and 15% for testing test 
Classes: 2 (alert or drowsy) 

77.0% 
KNN 

92.0% 
KNN 

Liang et al. 
(2019) 

N = 16 participants 
(M:7; F:9) night shift 
workers, mean age: 
48.7 
 

On-road driving  
Driving route: two-
lane 0.8 km closed-
loop 
Driving session: 2 x 
2-h driving  
 

Ground truth: model 1: 
microsleeps (EEG)  
model 2: lane crossing events 
Input data:  
Vehicle data and ocular data 
(Optalert™) 
Classification time window:  
Model 1: 1 min 
Model 2: 10 min 

10 features: vehicle data: SD of land 
position, SD of steering wheel 
position, mean steering wheel error; 
ocular data: mean and SD of 
amplitude/ velocity ratio (AVR), 
mean and SD of negative AVR, % 
Eye Closure (PERCLOS), John’s 
drowsiness score (JDS); individual 
driver factor 

One classifier: logistic regression models  
Validation: 75% training and 25% testing 
via a random spilt 
Classes: 2 (non-drowsiness or drowsiness) 
 

Model 1: 
39.0% 
Model 2: 
36.0% 

Model 1: 
98.0% 
Model 2: 
98.0% 

Chen et al. 
(2018a) 

N = 12 male 
participants, mean 
age: 27.33 

Driving simulator 
Driving route: 
monotonous driving 
scenario 
Driving session: 60-
min driving  

Ground truth: arbitrary 
classification of alert or fatigued 
based on first 3 min and last 3 min 
of driving respectively, confirmed 
by KSS values 
Input data: physiological (30 
channel EEG) 
Classification time window: 3 min 

4 features: EEG: delta, theta, alpha 
and beta EEG power bands  
 

One classifier: novel fusion feature (FBN-
PSD-FF) and Extreme learning machine 
(ELM) 
Validation: leave-one-participant-out-cross-
validation 
Classes: 2 (alert or fatigued) 
 

95.7% 94.3% 
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Study Sample and 
demographics Study Settings Data/measures Final model features Classifiers Sensitivity Specificity 

Chen et al. 
(2018b) 

N = 15 participants, 
mean age: 26.2 

Driving simulator 
Task 1: crowded 
four-lane road 
Task 2: monotonous 
driving two-lane 
road 

Ground truth: arbitrary 
classification of alert or fatigued 
based on first 2 min and last 2 min 
of driving respectively, confirmed 
by KSS values 
Input data: physiological (30 
channel EEG) 
Classification time window: 2 min 

4 features: EEG: delta, theta, alpha 
and beta EEG power bands 

Four classifiers: Gaussian SVM, KNN, 
logistic regression, decision trees  
Validation: 10-fold cross-validation 
Classes: 2 (alert and drowsy state) 

98.8% 
KNN 
 

98.9% 
KNN 

Chai et al. 
(2017) 

N = 43 participants, 
age range: 18-55 

Divided Attention 
Steering Simulator 
(DASS)  
Driving session: up 
to 2 hrs 

Ground truth: arbitrary 
classification of alert-fatigued 
based on first and last 5 min of 
driving respectively, 20 sec of 
data selected classification from 
each 5 min period  
Input data: physiological: (32 
channel EEG), behavioural: 
reaction time  
Classification time window: 2 sec 

128 features: 32 EEG channels x δ-
PSD, θ-PSD, α-PSD, β-PSD with 
autoregressive modelling 

Four classifiers: ANN, Bayesian neural 
network, deep belief network, sparse-deep 
belief networks 
Validation: hold-out cross-validation and k-
fold cross-validation. 
Data partitioning: 33% training, validation 
33%, and testing 34% 
Classes: 2 (alert or fatigued) 

93.9% 
sparse-deep 
belief 
networks 

92.3% 
sparse-
deep belief 
networks 

Min et al. 
(2017) 

N = 12 sleep deprived 
participants (M: 12, 
F:0), age range: 19-24 

Driving simulator 
Driving session: 1-2 
hours of highway 
driving - low traffic 
density 

Ground truth: arbitrary 
classification of alert or fatigued 
based on first 5 min and last 5 min 
of driving respectively, confirmed 
by Chalder Fatigue Scale, Li's 
Subjective Fatigue Scale, visual 
signs of sleepiness, crashes and 
lane deviations  
Input data: physiological (30 
channel EEG) 
Classification time window: 5 min 

4 features: EEG: spectral entropy, 
approximate entropy, sample 
entropy and fuzzy entropy 

Four classifiers: radial basis functions SVM, 
back-propagation neural network (BPNN), 
random forest, KNN 
Validation: leave-one-out cross-validation 
approach 
Data partitioning: 50% training and 50% 
testing datasets (random allocation) 
Classes: 2 (normal and a fatigued state) 

98.3% 
BPNN 
 
 

98.2% 
BPNN 
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Study Sample and 
demographics Study Settings Data/measures Final model features Classifiers Sensitivity Specificity 

Chai et al. 
(2016) 

N = 43 participants, 
age range: 18-55 

Divided Attention 
Steering Simulator 
(DASS)  
Driving session: up 
to 2 hrs 

Ground truth: arbitrary 
classification of alert-fatigued 
based on first and last 5 min of 
driving respectively, 20 sec of 
data selected classification from 
each 5 min period  
Input data: physiological: (32 
channel EEG), behavioural: 
reaction time  
Classification time window: 2 sec 

128 features: 32 EEG channels x δ-
PSD, θ-PSD, α-PSD, β-PSD with 
autoregressive modelling 

One classifier: Bayesian neural network 
Validation: validation set not used with 
inclusion of hyperparameters in the cost 
function of the Bayesian regularisation 
algorithm 
Data partitioning: 50% training and 25% 
testing sets via random split 
Classes: 2 (alert or fatigued) 

89.7% 86.8% 

Vicente et 
al. (2016) 

N = 30 participants, 
some sleep deprived, 
(M: 17, F:13), age 
range: 25-60 
 
 

Driving simulator 
and on-road driving  
Session 1 
(Simulator): n = 9, 
120 mins 
Session 2 
(Simulator): n = 11, 
100 mins 
Session 3 (on-road): 
n = 8, 8h driving, 
stop every 2 hrs for 
10 min 

Ground truth: model 1: awake or 
drowsy via observer ratings 
model 2: sleep deprived or not-
sleep deprived 
Input data: physiological (ECG) 
Classification time window: 1 min 
(both models) 

7 features: ECG: heart rate, absolute 
and normalised LF and HF powers, 
LF/HF ratio, respiratory frequency 
and percentage of total power (ξ) 

One classifier: linear discriminant analysis  
Validation: leave-one-participant-out-cross-
validation 
Classes: Model 1, 2 (awake or sleepy) and 
Model 2, (sleep deprived or not-sleep 
deprived) 

Model 1: 
59.0% 
Model 2: 
62.0% 

Model 1: 
98.0% 
Model 2: 
88.0% 

Guo et al. 
(2016) 

N = 20 participants, 
(M:12, F:8), age 
range: 24-51 

Driving simulator  
Driving session: 4-6 
hrs freeway driving 

Ground truth: subjective 
sleepiness, via Stanford 
Sleepiness Scale (SSS) 
Input data: physiological: (EEG, 
ECG), behavioural: reaction time  
Classification time window: 3 min 

9 features: EEG: α-PSD, β-PSD, δ-
PSD, EEG-PSD (1-30 Hz), α/β, 
(α+θ)/ β, α-PSD/β-PSD; ECG: heart 
rate, RRSD (Standard deviation (SD) 
of the RR interval) 

One classifier: genetic algorithm-based SVM 
Validation: 10-fold Cross-Validation 
Data partitioning: 33% training, validation 
33%, and testing 34% 
Classes: 2 (alert or sleepy) 

87.5%  85.5%  

Chai et al. 
(2015) 

N = 43 participants, 
age range: 18-55 

Divided Attention 
Steering Simulator 
(DASS)  
Driving session: up 
to 2 hrs 

Ground truth: arbitrary 
classification of alert-fatigued 
based on first and last 5 min of 
driving respectively 
Input data: physiological: (32 
channel EEG), behavioural: 
reaction time  
Classification time window: 5 min 

128 features: 32 EEG channels x δ-
PSD, θ-PSD, α-PSD, β-PSD 

One classifier: Fuzzy swarm based-artificial 
neural network (ANN) 
Data partitioning: 33% training, validation 
33%, and testing 34% 
Classes: 2 (alert or fatigued) 

78.2% 79.6% 
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Study Sample and 
demographics Study Settings Data/measures Final model features Classifiers Sensitivity Specificity 

He et al. 
(2014) 

N = 30 participants, 
age range: 18-43 

Driving simulator  
Driving session: 1 
hr 

Ground truth: observer ratings of 
fatigued state 
Input data: physiological: 
(MindWave EEG headset) 
Classification time window: not 
reported 

2 features: EEG: attention and 
meditation metrics based on 
propriety algorithms (NeuroSky, 
Inc, California)  

One classifier: KNN 
Data separation: 12 participants for training 
and 18 participants for testing   
Classes: 2 (alert or fatigued) 

68.3% 90.4% 

Mardi et al. 
(2011) 

N = 10 participants 
(M: 7, F: 3), mean 
age: 27.7 

Driving simulator  
Driving session: 45 
min 

Ground truth: driving 
performance and observer rating 
Input data: physiological: (24 
channel EEG)  
Classification time window: 2 sec 

3 features: Higuchi's Fractal 
Dimension, Petrosian's Fractal 
Dimension, Logarithm of Energy of 
Signal  

One classifier: ANN 
Data separation: 80% training and testing 
20% 
Classes: 2 (alert or drowsy) 

83.8% 84.9% 

Pritchett et 
al. (2011) 

N = 45 participants, 
age range: 20-60 
 

Driving simulator 
Driving session: 2.5 
h (starting from 
2:30 pm) 

Ground truth: observer ratings of 
sleepiness state 
Input data: Physiological: EEG, 
body movement data via 
piezoelectric sensors  
Classification time window: 1 min 

6 features: EEG: alpha burst 
duration, current alpha wave count, 
minimum alpha wave count, wave 
duration variance, slope smoothness 
measurement; Body movement: 
average peak-to-peak body 
movement 

Two classifiers: single and hybrid source 
algorithm.  
Classes: 2 (alert or sleepy) 

95.4% 75.8% 

Bundele 
and 
Banerjee 
(2010) 

N = 10 participants, 
professional drivers, 
age range: 25-55 
 

On-road driving 
Driving session: not 
reported 

Ground truth: arbitrary 
classification of alert or fatigued 
based on pre-driving and post-
driving values respectively 
Input data: Physiological: EDA, 
PO  
Classification time window: not 
reported 

16 features: skin conductance and 
pulse oximetry: mean of signal, SD 
of signal, frame energy, maximum 
frequency, SD of frequency 
spectrum, mean of frequency 
spectrum, gradient, slope 

One classifier: Multilayer perceptron neural 
network (MLPNN) 
Data partitioning: 50% training, validation 
25%, and testing 25% 
Classes: 2 (alert or fatigued) 

94.1% 
MLPNN 
 

97.3% 
MLPNN 

Åkerstedt et 
al. (2010) 

N = 13 participants 
(50% male), mean 
age: 37.9, range: 24-
57 

Driving simulator 
Driving session: six 
1 h sessions over  a 
24 h period, when 
rested and partially 
sleep deprived 

Ground truth: model 1: subjective 
sleepiness (KSS) 
model 2: driving performance  
Input data: physiological (EOG), 
driving performance 
Classification time window: 5 min 
(both models) 

3 features: EOG: blink duration, 
blink amplitude ⁄ peak closing 
velocity, driving performance: 
SDLP 

One classifier: linear discriminant analysis  
Classes: Model 1, 2 (awake or severe 
sleepiness (KSS ≥ 8));  
Model 2, 2 (driving with no line crossing or 
line crossing – 2 wheels crossing outer edge 
of centre line) 

Model 1: 
73.0% 
Model 2: 
23.0% 

Model 1: 
71.0% 
Model 2: 
99.0% 
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Study Sample and 
demographics Study Settings Data/measures Final model features Classifiers Sensitivity Specificity 

King et al. 
(2006) 

N = 55 participants 
n = 20 professional 
drivers, mean age 
range: 44 (SD = 11) 
n = 20 non-
professional drivers, 
mean age range: 34 
(SD = 21) 

Driving simulator 
Driving session: 
drive until judged 
fatigued 

Ground truth: observer ratings of 
drivers fatigued state 
Input data: Physiological: 19 
channel EEG  
Classification time window: 1 min 

4 features: delta, theta, alpha and 
beta EEG power bands  

One classifier: ANN 
Data partitioning: 60% training, validation 
15%, and testing 15% 
Classes: 2 (alert or fatigued) 

80.5% (pro 
drivers) 
84.0% 
(non-pro 
drivers) 
 

82.4% (pro 
drivers) 
82.1% 
(non-pro 
drivers) 

Note: EEG, electroencephalography; ECG, electrography; EMG, electromyography; EDA, electrodermal activity; PO, pulse oximetry; PSD, power spectrum density; WPT, Wavelet packet transform; 
PERCLOS, percentage of eyelid closure; JDS, John’s drowsiness score; KSS, Karolinska Sleepiness Scale; SSS. Stanford Sleepiness Scale; RMSSD, root mean square of successive RR interval differences; 
Higuchi dimension, a measure of irregularity; LF, low frequency; HF, high frequency; RRSD, Standard deviation of the RR interval; NN, interval; SD1, Poincaré plot standard deviation perpendicular the line 
of identity; SD2, Poincaré plot standard deviation along the line of identity; SVM, support vector machine; KNN, k-nearest neighbours; ANN, artificial neural networks; BPNN, back-propagation neural 
network; DGM, hybrid deep generic model; MLPNN, multilayer perceptron neural network; DASS, Divided Attention Steering Simulator; SDLP, Standard deviation of lateral position. 
The impaired state (sleepy/fatigued/drowsy) was the predicted outcome thus, sensitivity represents the correct detection of the impaired state across all studies. 
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3.1 Sensitivity and specificity outcomes 

The sensitivity and specificity outcomes from the different studies highlight considerable 

variability across the studies. Figure 2 shows the sensitivity and specificity outcomes for each 

study which is arranged by the average of sensitivity and specificity as well as by mono-signal 

versus poly-signal approach. The use of a mono-signal approach has not been a particularly 

reliable approach to detect sleepiness. Studies using a mono-signal approach either have 

obtained a higher sensitivity with a lower specificity (i.e., Pritchett et al., 2011) or vice versa 

(i.e., Liang et al., 2019; Persson et al., 2020; Vicente et al., 2016). There are some exceptions 

where high, or a moderate level of both sensitivity and specificity (range = 82.1-98.9%) were 

achieved in the study (i.e., Chai et al., 2017; Chai et al., 2016; Chen et al., 2018a; Chen et al., 

2018b; Chen et al., 2019; King et al., 2006; Mardi et al., 2011; Min et al., 2017) despite using 

a single physiological signal. Whereas, all the poly-signal approaches consistently achieved 

moderate to high sensitivity and specificity compared to the single physiological signal-based 

systems (Barua et al., 2019; Bundele & Banerjee, 2010; Guo et al., 2016; Martensson et al., 

2019). Thus, the use of a poly-signal approach consistently provides both higher sensitivity and 

specificity outcomes and appears as a useful approach for improving sleepiness detection 

systems.  

 

Figure 2: Sensitivity (blue bars) and specificity (orange bars) values of mono- (light colours) 
and poly-signal (darker bars) based sleepiness detection approaches. EEG, 
electroencephalography; ECG, electrography; EMG, electromyography; EDA, electrodermal 
activity; PO, pulse oximetry. Studies have been arranged by an average of sensitivity and 
specificity as well as by mono-signal versus poly-signal approach. 
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3.2 Extracted features  

Figure 3 displays the relationship between sensitivity and specificity metrics plotted against 

the number of features extracted. The number of different features range from 4 to 13. It must 

be noted that using a greater number of features does not necessarily increase the sensitivity 

and specificity of the driver sleepiness detection system. For instance, Barua et al. (2019), using 

a mono-signal approach with 13 features, achieved an 85.0% sensitivity and 81.0% specificity, 

whereas, Chen et al. (2018b), using a mono-signal approach, used four features and obtained 

98.8% sensitivity and 98.9% specificity. Variations of sensitivity and specificity also occur 

when the same number of features are used. Chen et al. (2018a) and King et al. (2006) both 

used a mono-signal approach with four features, yet obtained vastly different indices of 

sensitivity (95.7% versus 84.0%) and specificity (94.3% vs 82.1%), respectively. Considered 

together, there is no clear relationship between the number of features and the resultant 

sensitivity and specificity outcomes.  

The use of features that have more relevance for variations in sleepiness seemingly provides 

better outcomes (e.g., EEG features; Chen et al., 2018b; King et al., 2006; Min et al., 2017, see 

Table 1) and could be an important consideration for improving outcomes with any detection 

model. However, there are some exceptions with using features that are more relevant with 

sleepiness. Pritchett et al. (2011) and Chai et al. (2015) reported using EEG defined sleepiness 

features in their studies’ methods; however, the sensitivity and specificity outcomes (both <  

80%) were not that impressive. Further, Bundele and Banerjee (2010) used features from 

electrodermal activity and pulse oximetry, and obtained sensitivity and specificity outcomes of 

94.1% and 97.3% respectively. Suggesting that alternative measures of sleepiness may also 

have some utility for the detection of sleepiness.  
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Figure 3: Sensitivity (blue bars) and specificity (orange bars) values of mono-signal (light 
colours) and poly-signal approaches (dark colours) of the studies included in the review with 
the number of features plotted also plotted (black line). Data order by the number of features.  

4. Discussion 

The current study sought to evaluate the sensitivity and specificity outcomes for studies 

examining the detection of driver sleepiness. Overall, the outcomes show substantial variability 

across the studies included in the review; however, some trends were apparent. For instance, 

sensitivity and specificity metrics were consistently higher when poly-signal approaches were 

used with less variability between sensitivity and specificity outcomes. There was also no 

consistency for sensitivity and specificity outcomes when consideration was given to the 

number of features used in the analysis.  

4.1. Sensitivity and Specificity 

The first aim of review was to determine the sensitivity and specificity of the driver sleepiness 

detection methods using physiological signals. The review highlights variations across the 

types of physiological measures used, as well as variations in the magnitude of sensitivity and 

specificity outcomes. Overall, a poly-signal approach (using multiple physiological measures) 

consistently provides higher values of sensitivity and specificity (i.e., Bundele & Banerjee, 

2010; Guo et al., 2016; Martensson et al., 2019). This outcome is not surprising, especially 

when one considers the varied and multifaceted nature of sleepiness, as well as the diverse way 

in which sleepiness can present between individuals (e.g., Ingre et al., 2006; Van Dongen et 

al., 2012). The general trend was for poly-signal approaches to have higher sensitivity and 

specificity values with a smaller range between the two metrics. However, additional 

physiological signals does not guarantee higher sensitivity and specificity values. Such that, 

the studies of Barua et al. (2019) and Guo et al. (2016) had moderate sensitivity and specificity 

outcomes in the range of 81.0-87.5%. 

The use of more signals does represent some theoretical and practical issues. Theoretical issues 

with the use of multiple sensors relate to individual differences regarding sleepiness 

impairment (e.g., Ingre et al., 2006; Van Dongen et al., 2012), but also differences between 

individuals on how this is reflected in physiological data (Schleicher et al., 2008). A concern 

related to individual differences is that of training of the driver sleepiness detection system and 

how best this can be achieved between individuals. Certainly, the response to sleepiness is 

suggested to be a stable, trait-like feature (Leproult et al., 2003; Van Dongen et al., 2004) and 

thus, once a system is tuned to a particular individual, could theoretically function without an 
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issue. Some initial progress with adapting a pre-trained artificial neural network for use on a 

new driver has provided positive results (i.e., de Naurois et al., 2018). Moreover, using 

baseline-corrected features during the training phase, as well as leave-one-out cross-validation, 

will likely improve the predictive utility across individuals. However, further work is 

seemingly needed to explore how best to account for interindividual differences in sleepiness. 

Practical issues relate to transferring laboratory and field-based research outcomes to on-road 

applications and user acceptance. First, field-based research is likely to encounter several 

confounding factors such as environmental (i.e., sun glare and changes to ocular 

characteristics) and/or endogenous (i.e., a relaxed driver and changes to arousal levels) factors 

that might result in increased false positives or negatives. It has been noted that both subjective 

(i.e., KSS) and physiological (i.e., blink durations, Karolinska Drowsiness Scores) arousal 

levels are lower in driving simulator settings when compared to the on-road settings (Fors et 

al., 2018; Hallvig et al., 2013) which could present issues when transferring simulator-based 

detection models to real road environments. All of these issues will need meticulous and 

systematic assessment during testing and development. Moreover, laboratory and field-based 

studies allow for careful setup of physiological sensors and meticulous post-processing of 

physiological data, given the sensitive nature of physiological data and, consequently, signal 

artefact (Gratton, 2007). However, the use of multiple sensors is a major issue to be considered 

in the real-time implementation, especially for computational load and setup time (Balandong 

et al., 2018; Belakhdar et al., 2016) as well as user-friendliness, intrusiveness and ergonomics 

(Sahayadhas et al., 2012). In addition, multiple sensors will naturally increase the cost of the 

system (Patel et al., 2012), while reliable wearable technology and non-obtrusive sensors could 

alleviate or mitigate issues with user-friendliness, intrusiveness and ergonomics for the user. 

Nevertheless, research should focus on achieving an optimal balance of these noted factors, 

which will influence user acceptance. 

4.2. Extracted Features 

The current review also sought to examine the relationship between the number of features 

extracted on sensitivity and specificity metrics. Overall, no clear relationship between the 

number of features and the resultant sensitivity and specificity outcomes could be determined. 

The use of features that have more relevance to sleepiness seems to be a key consideration. 

Specifically, EEG, which is a measure of cortical arousal, has been a favoured physiological 

signal, as increases in theta and alpha power is consistently associated with increased sleepiness 

(Dawson et al., 2014).  



Sleepy Driving Detection Methods   19 
 

A number of studies have used EEG data and extracted various features, including spectral 

analysis, on different power bands, frequency and wavelet transforms, nonlinear methods, and 

entropies (e.g., He et al., 2014; Khushaba et al., 2013; Min et al., 2017). Some features seem 

to be successful in obtaining higher sensitivity and specificity outcomes. For example, the 

fusion of the multiple entropies, that being spectral entropy, approximate entropy, sample 

entropy and fuzzy entropy extracted from EEG in the study of Min et al. (2017) are more 

successful than the EEG-α, β, and θ band powers extracted by Chai et al. (2015). Potential 

reasons for the higher outcomes could be the fusion of all the entropy-based features and 

selection of significant channel regions using their proposed channel selection method (Min et 

al., 2017). Moreover, the authors emphasised that the natural variability of the awaking EEG 

over time (i.e., entropy) naturally suits entropy metrics and facilitates higher sensitivity and 

specificity outcomes (Min et al., 2017). 

4.3. Issues of consistency  

The reviewed studies included a number of inconsistent findings that relate to the types of 

classifiers, the features extracted, the measure used as ground truth, and the classification time 

window. Several classifiers provided the higher estimates of sensitivity and specificity. In 

particular, random forest (Martensson et al., 2019; Persson et al., 2020), KNN (Chen et al., 

2018b), SVM (Guo et al., 2016), and various neural networks classifiers (Bundele & Banerjee, 

2010; Min et al., 2017) all provided the highest estimates of sensitivity and specificity. This 

does signify that these various learning techniques all have some utility with classification of 

sleepiness, however, which techniques holds the most promise is still unclear. There was also 

substantial variability with the extracted features employed and, along with the different 

classifiers, it is also difficult to consolidate which features are more relevant. For instance, 

considering the studies from Chen et al. (2018b) and Min et al. (2017), both studies achieved 

very high outcomes on sensitivity and specificity (range = 98.2-98.9) using EEG data but both 

extracted substantially different features (traditional power bands verses entropy features, 

respectively) and also used different classifiers (KNN and back-propagation neural network). 

Martensson et al. (2019)’s study included the traditional EEG power bands and entropy 

features; however, the entropy features did not make the cut off marks for inclusion in that 

study’s final model. 

Given the discrepancy noted above, it is possible that different design aspects could be an 

influential factor. Examining Table 1, several studies (i.e., Bundele & Banerjee, 2010; Chai et 

al., 2017; Chai et al., 2016; Chai et al., 2015; Chen et al., 2018a; Chen et al., 2018b; Chen et 
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al., 2019; Min et al., 2017) used an arbitrary classification approach with determining ground 

truth and used the first and last sections of the driving task when sleepiness would be at its 

lowest and highest. Aside from results found in Chai et al.’s (2015) study, the comparison of 

limited time windows of an alert and fatigued state resulted in very high sensitivity and 

specificity outcomes (between 94.1-98.9%). Although these outcomes are encouraging, the 

utility of such a design is extremely limited, as moment-to-moment monitoring of the driver’s 

state should be the goal for any detection system.  

The studies performed by Guo et al. (2016) and Martensson et al. (2019) employed 

classification time windows of 3 and 5 minutes respectively, over the entire driving session, 

and provided a more useful monitoring strategy of the drivers’ state – sensitivity and specificity 

outcomes ranged between 84.5-95.7%. Improvements in sensitivity and specificity outcomes 

are, of course, required; however, the temporal resolution of the time windows does allow for 

a system to ‘warn’ the driver in a timely manner. Research on commercially available 

monitoring devices suggests that reliable outcomes were only obtained when a temporal 

resolution of greater than 30 minutes was used (e.g., Golz et al., 2010). It is possible that this 

could be problematic in certain driving situations (but not all). 

The training and testing of the models also had some considerable differences across studies 

that likely influenced the overall outcomes. Common validation techniques noted were the k-

fold cross-validation, hold-out validation, and leave-one-out (trial or participant) validation. 

Hold-out validation is known to overfit the data; however, the review noted a wide range of 

sensitivity and specificity values (36.0-98.3%) using this technique. Whereas, the k-fold cross-

validation can limit issues with overfitting, yet, sensitivity and specificity outcomes ranged 

between 57.9-98.9% with similar ranges with the leave-one-out validation (58.0-98.3%). As 

such, variations in sensitivity and specificity outcomes with the different validation techniques 

could be due to the different validation techniques and/or linked to the issues previously noted 

above. 

Perhaps the most salient issue relating to inconsistencies is the different measures used as 

ground truth. Measures of ground truth include reaction times and vehicle performance (i.e., 

Ko et al., 2020), and arbitrary classification of alert or fatigue based on pre-driving data and at 

the end of an extended driving period (e.g., Bundele & Banerjee, 2010; Chai et al., 2015; Chen 

et al., 2018a; Chen et al., 2019; Phyo Phyo et al., 2016). The majority of studies reviewed have 

employed observer ratings as the ground truth (see Table 1). However, issues associated with 
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observer ratings include low inter-rater agreements and poor correspondence with subjective 

sleepiness measures (Ahlstrom et al., 2015), such as the well-validated and widely used 

Karolinska Sleepiness Scale (Åkerstedt et al., 2014), which is also a commonly used measure 

of ground truth. Performance-based measures of ground truth could also be problematic, as 

motivational factors including exerting more effort to the task can, for a limited amount of 

time, lessen performance decrements associated with sleepiness (Boksem et al., 2006; Watling, 

2016).  

Subjective sleepiness measures, however, seem to hold some promise as a measure of ground 

truth. Martensson et al. (2019) employed a two-class system based on the participants 

subjective sleepiness scores via the 9-point Karolinska Sleepiness Scale (KSS; Åkerstedt & 

Gillberg, 1990). In this study, being sleepy was determined when KSS scores were ≥ 8, and 

being sufficiently alert was determined when KSS scores were ≤ 6. This procedure allowed for 

clear separation of the two classification states. Several studies show KSS values of 8 or more 

clearly demonstrate sleepiness-related impairment (Ingre et al., 2006; Watling et al., 2016) and, 

importantly, are predictive of a greater likelihood of on-road sleep-related crashes (Åkerstedt 

et al., 2008). Though, it should be noted that KSS ratings, like any subjective/self-report data, 

are subject to bias and can be influenced by the context (monotonous settings, light levels, 

social interaction) when ratings are obtained (Åkerstedt et al., 2014). Lastly, a driver’s 

acceptance of a detection system could also be highly influenced by what the driver 

subjectively feels, which could also influence actions such as choosing to stop driving when 

too sleepy. 

Overall, there are several inconsistencies across a range of study variables, including the 

driving environment, ground truth measures as well as time windows, and the physiological 

signals. As such, the results from different studies are problematic to compare with so many 

and varied differences, and this makes for a lack of generalisation when specific aspects (e.g., 

classifier or extracted features) are to be improved. 

4.4 Limitations and Future Considerations 

The current review is not without limitation and, as such, the findings need to be interpreted 

with the limitations in mind. A study limitation was the choice of key search terms, as other 

terms such as ‘confusion matrix’ could have been included in the review. As noted in the 

results, numerous data sources for the classifier and inputs have been used, numerous analytical 

techniques are used with feature extraction and classification, and all of these are not without 
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their limitations. Given the varied metrics and analytical techniques, comparisons of each were 

not always feasible. Future considerations necessitate some consistency with the measures used 

and the sources of ground truth, such as the well-validated KSS. Lastly, no study was found 

that has applied a detection system with a high level of sensitivity or specificity to a completely 

new sample for revalidation – this should be common procedure if detection systems are to be 

successful. A number of considerations should be examined with classification systems and 

the measure of ground truth.  

4.5 Conclusion 

In summary, sleep-related crashes account for a substantial proportion of road crash incidents. 

Driver sleepiness detection systems have the potential to warn drivers should their level of 

sleepiness increase, and can thus reduce the risk associated with sleep-related crashes. 

Detection systems that use a poly-signal approach seemingly have more utility for producing 

higher sensitivity and specificity values. The number of extracted features is of little 

consequence with sensitivity and specificity values; however, what is clear is the need to use 

features more relevant for sleepiness. As no individual is immune to the effects of sleepiness, 

developing systems that can aid drivers to make safer sleepy driving choices are vital.  
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