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ABSTRACT Secret Sharing has been recently used as an alternative approach to solve privacy-preserving
issues in cloud-based data outsourcing, for overcoming the challenges faced when encryption-basedmethods
are adopted. In this work we revisit secret sharing-based text data outsourcing schemes and focus on
their applications into an Internet-of-Things (IoT) system with resource constrained IoT devices as clients.
We propose a new method which is secure against common attacks to secret sharing-based text data
outsourcing schemes. Compared with the existing works under the same assumption that the cloud servers
are possibly colluded, our scheme is more efficient and supports multiplication based operations.

INDEX TERMS Data outsourcing, privacy-preserving, secret sharing, Internet-of-Things (IoT).

I. INTRODUCTION
A. PROBLEM STATEMENT
We consider a typical data outsourcing system as shown in
FIGURE 1 below, where user data are uploaded to a group of
cloud servers via Internet-of-Things (IoT) devices, for record-
ing, sharing and research purposes [1]. Leveraging cloud ser-
vices not only provides an increased storage capacity, but also
offers an enhanced processing power and thus computational
capabilities for the underlying IoT system.Apart from storage
services, we consider two minimum functionalities that are
required to perform at the cloud servers: SQL queries [2], and
computations such asmachine learning as a service [11], [12].

Without loss of generality, we consider two cloud servers
used to host customers’ data: Server 1, Server 2. And we
assume these two servers have a priori knowledge of the
data, including the distribution or frequency of their values.
Furthermore, we assume the servers can communicate and
exchange with each other the information they possess.

There are well-known security breaches to data out-
sourcing systems on various security aspects including
privacy-preservingwhich is of particular interest to this paper.

One approach of solving data privacy-preserving issues
in data outsourcing is through traditional encryption [2]–[6]
which is computationally expensive and faces a big challenge
if further complex processing is required because decryp-
tion is needed prior to further processing. Homomorphic
encryption [9], [10] has therefore been introduced to enable
intermediaries and end users to further process encrypted
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data without decrypting them. Nevertheless, the practicality
of homomorphic encryption is still arguable because an effi-
cient homomorphic encryption does not always exist for all
applications.

An alternative approach, secret sharing-based data out-
sourcing, has been recently proposed to overcome the afore-
mentioned challenges faced by encryption-based schemes.

Under the secret sharing-based approach, each cloud server
is given a random share of the secret (i.e., a data owner’s
confidential information). A group of servers are able to
reconstruct the secret if and only if they possess a suffi-
cient amount of shares (instead of privately-owned keys in
encryption-based schemes). Further processing is possible
based on the shares without the need of decryption.

Among the existing secret sharing schemes, Shamir’s
(k,N )-threshold secret sharing scheme (Section III-A1) has
been widely used to preserve the privacy of outsourced
text data for various organizations including hospitals and
medical research institutes [15], smart grid companies [16],
intelligent transportation solution providers [17] and
others [1], [18], [19].

Nevertheless, it is noteworthy to mention that Shamir’s
(k, N)-threshold secret sharing scheme requires a share size
of N times the size of the secret. Different from text data
outsourcing, applications with massive amounts of images
have faced memory space issues with Shamir’s scecret shar-
ing scheme due to the N times of share size (of the images)
required. For efficiency consideration, another secret sharing
scheme, called ramp secret sharing (or multi-secret shar-
ing) has therefore been utilized to replace Shamir’s secret
sharing scheme for outsourcing image datasets [20], [21].

76908 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0003-4415-7707
https://orcid.org/0000-0001-7070-6699


Z. Tang: Secret Sharing-Based IoT Text Data Outsourcing: A Secure and Efficient Scheme

FIGURE 1. An IoT data outsourcing system.

More precisely, as compared with Shamir’s (k,N )-threshold
secret sharing scheme, an (`, k,N ) ramp secret sharing
scheme reduces the share size by 1

`
times at the sacrifice

of security level though (which can be improved by incor-
porating an additional security solution such as permutation,
stenography, matrix projection, etc..) [21].

In this work we concentrate on text data outsourcing which
can be efficiently protected by Shamir’s secre sharing scheme
without the need of any additional security mechanism.
As such, for convenience of discussion in this paper, we refer
to secret sharing as Shamir’s secret sharing scheme and data
type as text format, unless otherwise stated.

As observed in previous works [22]–[24], potentially there
are two types of attacks against secret sharing-based out-
sourcing schemes.

The first type of attacks, called inference attacks, will be
explained in detail in Section III-C1. An inference attack was
discovered by Dautrich and Ravishankar [22] who exploited
an inherent vulnerability in Shamir’s secret sharing scheme.
Hadavi et al. [23] mitigated inference attacks through a
method called secure partitioning. However, as admitted by
the authors in the literature [23], their approach incurs a
high storage overhead at the client side who is required to
securely store themapping function that is generated by a data
owner and must be securely kept by the client for recovering
the original secret. The security of their secure partitioning
approach relies on the assumption that the mapping function
is out of the access of any attacker including the outsourced
cloud servers.

The second type of attacks, termed as gcd-based attacks,
will be described in Section III-C2. A gcd-based attack has
been discovered by Ghasemi in the literature [24] where a
countermeasure was also proposed by inserting 10% extra
records as fake records in order to protect the real records.

We refer to this approach as fake record approach in the later
sections.

Apart from the security concerns, there is another issue
that should have been investigated in the secret sharing based
publications mentioned above. While these literatures sup-
port additions and addition related operations thanks to the
additive homomorphism property in their proposed schemes,
none of them has discussed how to perform multiplication
operations in their schemes which lack the multiplicative
homomorphism property.

There is another line of related research which built on
secure multi-party computation with an assumption that
the servers are not allowed to communicate with each
other [11], [12]. Although this series of publications have sup-
ported multiplication operations, they are vulnerable to both
inference attacks and gcd-based attacks mentioned above.

B. MOTIVATION
This paper worked on secret sharing-based approach, with an
assumption that the various cloud servers can collude to poll
their shares for retrieving data owners’ sensitive inputs.

We aimed to devise a scheme to achieve the following two
goals.
• Our first goal was set to overcome the challenges faced
when applying existing schemes into a large domain
database.
– In terms of the efficiency against inference attacks,

the authors of secure partitioning approach have
acknowledged that the client storage size needs to
be reduced for a large domain database, due to their
demanding size of order O(|Dv|) (Dv stands for the
domain of unique values in the database).

– For mitigating gcd-based attacks, a minimum
amount of 10% fake records are required for the
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fake record approach to protect real records, which
is impractical for a large domain database.
Motivated by these facts, the first goal of our current
work is to propose a scheme which is not only
secure against both inference attacks and gcd-based
attacks, but also more efficient than [23], [24] espe-
cially in terms of the storage overhead at clients
(which are resource constrained IoT devices).

• Secondly, as mentioned in Section I-A, none of these
literatures has realized multiplication operations, which
are essential and commonly used in real-life applica-
tions. Motivated by this, we aim to support multiplica-
tion based queries and computations in this paper.

It’s worth to mention that it’s not the purpose of this paper
to compare our scheme with the line of secure multiparty
computation (SMC)-basaed works which also support mul-
tiplication operations. This is due to the different assump-
tions we made in our work. More specifically, our proposed
scheme tolerates possible collusion between honest-but-
curious servers, which is prohibited in the line of SMC-based
literatures.

C. ORGANIZATION
The paper is organized as follows. We give full details of
assumptions and threat modeling in Section II. Preliminaries
including secret sharing related concepts and a brief intro-
duction of secret sharing-based data outsourcing schemes can
be found in Section III. Our detailed solution is presented in
Section IV followed by its security analysis in Section V. The
experimental results and comparisons with existing works are
shown in Section VI. We conclude the paper in Section VII.

II. ASSUMPTIONS AND THREAT MODELING
A. ENTITIES
We assume there’re three types of entities in the data out-
sourcing system illustrated in FIGURE 1:
• Data owners who own the original data.
• Servers who receive, store the data from data owners,
as well as responding to query and computation requests
from clients.

• Clients who send query and computation requests.

B. ASSUMPTIONS AND THREAT MODELING
1) ASSUMPTIONS
We made the following assumptions about the data outsourc-
ing system:
• Servers are passive attackers, i.e., they are honest-but-
curious but not malicious.

• Servers have a prior knowledge of the statistical infor-
mation about the original data, including the distribution
of all values of the data.

• Servers can possibly collude by pooling their shares to
recover sensitive information belonging to a data owner.

2) THREAT MODELING
We assume data owners and clients are trusted, while
servers can be compromised to reconstruct the data

owners’ confidential information based on what’s stored at
their premises.

3) NOTATIONS
We use the notation

{
A
}
frequently in this paper where A is a

variable. By the notation of
{
A
}
we refer to the collection of

all possible A values. By a more specific notation of
{
Ai
}
we

refer it to the collection of values Ai for all possible i’s.

III. SECRET SHARING-BASED DATA OUTSOURCING
A. INTRODUCTION ON SECRET SHARING
The idea behind secret sharing is to share a secret among
multiple participants. Each participant is given one or more
shares, and whether a group of participants are able to recon-
struct the secret is determined by what shares they possess.

A common type of secret sharing is called threshold secret
sharing scheme where participants are able to reconstruct the
secret if and only if the number of shares they hold reaches
a threshold number. A classical implementation of threshold
secret sharing scheme is the (k,N ) Shamir Secret Sharing.

1) SHAMIR’s (k, N)-THRESHOLD SECRET SHARING
Shamir’s (k,N )-threshold secret sharing scheme is designed
to share a secret, denoted as v, among N participants
such that at least k shares are required for successfully
reconstructing v.

There are two steps involved in Shamir’s (k,N )-threshold
secret sharing, which are presented in Section III-A1.a:
Share Generation and Section III-A1.b: Secret Reconstruc-
tion respectively.

a: SHARE GENERATION
To share a secret v, the sender chooses a number p > v, and
randomly selects k−1 coefficients c1, · · · , ck−1 from a finite
field Fp. A unique polynomial is therefore formed and can be
represented as follows:

q(x) = v+
k−1∑
h=1

chxh mod p (1)

The sender also generates a distribution vector

X = (x1, · · · , xN ) (2)

of distinct elements from Fp.
Finally, for Participant 1 ≤ i ≤ N , the sender computes

and sends it a share yi = q(xi).

b: SECRET RECONSTRUCTION
A group of k participants are able to reconstruct the original
secret v, by utilizing their shares yj,1, · · · , yj,k and unique
elements xj,1, · · · , xj,k (see Equation (2) above).More specif-
ically, they reconstruct v through the following calculation:

v =
k∑
i=1

yj,i`j,i(0) mod p. (3)
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The notation `j,i(0) here refers to the following Lagrange
basis polynomial `j,i(x) evaluated at x = 0:

`j,i(x) =
∏

1≤m≤k,m6=i

x − xj,m
xj,i − xj,m

mod p (4)

The security of Shamir’s (k,N )-threshold secret sharing rests
on the fact that at least k points are needed to reconstruct a
unique polynomial of degree k − 1.

B. INTRODUCTION: SECRET SHARING-BASED DATA
OUTSOURCING
The basic idea of secret sharing-based data outsourcing is
to treat the multiple servers as participants who receive
and store shares that are generated by data owners, through
the traditional Sharmir’s secret sharing scheme as depicted
in Section III-A.

However, there exists a significant difference between
a conventional secret sharing scheme and applying it into
our data outsourcing setting. The receivers of the shares in
our scenario, i.e., the cloud servers are not authorized to
gain knowledge of any secret that is originated from a data
owner and recoverable at clients. To meet this security goal,
we have to prevent the servers from accessing the distribu-
tion vector X which is needed for recovering the secret v
(see Section III-A1.b above). The vector X should be only
accessible to the authorized clients in addition to the respec-
tive data owner.

In this paper, for simplicity we assume k = N = 2 and thus
a Shamir’s (2, 2)-threshold secret sharing scheme is adopted.
This means an authorized client has to receive the shares from
both the two servers in order to obtain an accurate query and
computation result. More formally, Polynomial (1) can be
formatted as:

q(x) = v+ c1x mod p.

For convenience of discussion, we use the notation cv to
denote the coefficient that is associated with the secret v. As a
result the polynomial q(x) can be re-written as:

q(x) = v+ cvx mod p.

We assume a data owner outsources his sensitive value v by
generating and storing the resultant shares at cloud servers.
Furthermore, all subsequent SQL query and computation
operations requested by clients on v are performed based
on v’s shares that are stored at cloud servers.

C. POTENTIAL ATTACKS TO SECRET SHARING-BASED
APPROACH
1) INFERENCE ATTACKS
In an inference attack, an attacker conducts statistical analysis
by exploiting a prior knowledge about the victim’s original
data distribution [7], [22], [23].

If there exists an association between the frequency of a
secret and the frequency of its shares, it has been demon-
strated in [22] that the attacker is able to recover all the

remaining secrets provided that k secrets are known before-
hand.

Existing works mitigated inference attacks by pertur-
bating the original data distribution in their shares, more
specifically, by distributing shares across a well-defined
domain such that the association between a secret and
its shares does not exist any more. An exact implemen-
tations of data perturbation to remove the aforementioned
association has been presented in a recent work, i.e.,
Hadavi et al. [23]. In their work, Hadavi et al. tackled infer-
ence attacks through secure partitioning which divides the
domain of shares in such a way that equal secret values are
more likely to be mapped onto different shares.

2) GCD-BASED ATTACKS
Gcd-based attacks were first discovered in [24] whereas com-
promised cloud servers are able to retrieve the distribution
vector X , by recovering each of the individual reconstruction
element xi based on the shares they received.

It has been claimed in [24] that, subtracting any two shares
that are associated with the same secret will result in a multi-
ple of the reconstruction element xi. To see this, readers can
refer to Equation (5) below, where (cvn ∗ xi + v) is the share
generated from the secret v for an n-th time and (cvm ∗ xi+ v)
is the share for an m-th time.

(cvn ∗ xi + v)− (cvm ∗ xi + v) = (cvn − cvm) ∗ xi (5)

One can easily see that the right hand side of Equation (5) is
essentially a multiple of xi.

The value of xi has been successfully retrieved in [24]
by observing that xi turns out to be the greatest common
divisor (gcd) appearing most frequently in a set of data called
Med. The datasetMedwas newly generated by subtracting all
two adjacent values from a sorted set of shares that are stored
in a server.

With xi(1 ≤ i ≤ k) recovered by the servers, it’s easy
to check from Equation (3) and Section III-B that these
servers are able to reconstruct the secret value v, given the
fact that these servers are holding the shares as well, i.e., the{
yj,i, 1 ≤ i ≤ k

}
in Equation (3).

D. OUR CONTRIBUTION
Our contribution lies in proposing a scheme to achieve the
two goals as defined in Section I-B:
• Firstly, we proposed one solution to mitigate infer-
ence attacks and gcd-based attacks with reduced costs,
as compared with the two existing approaches.
– As compared with the secure partitioning

approach [23], our work is more cost-effective
in mitigating inference attacks. More importantly,
our scheme thwarted gcd-based attacks while [23]
didn’t:
∗ Similar to [23], we perturbed the original data

distribution in their shares and thus thwarted
inference attacks. Our solution requires a stor-
age overhead of order O(1), which is a reduced
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FIGURE 2. Our proposed secret sharing-based IoT outsourcing scheme.

cost as compared with the overhead of order
O(|Dv|) as required in the secure partitioninging
approach.
In other words, we only need a constant size of
storage overhead while the secure partitioning
approach requires an extra storage which grows
linearly in the domain size of secret values (read-
ers can recall that Dv is the domain of unique
values originated from data owners.).

∗ When compared with the fake record
approach [24] which tackled gcd-based attacks
by introducing an additional 10% overhead, our
scheme is more efficient thanks to the constant
size storage overhead achieved.
Our idea of mitigating gcd-based attacks is to
mask the original secret vwith a random variable
prior to share generation. Furthermore, a newly
generated random variable was utilized when an
equal value was outsourced for another time.
That is, we used rvm 6= rvn for the m-th and
n-th times when vwas outsourced (m 6= n). With
our design, as can be seen below, subtracting two
adjacent values will generate some random value
rather than a multiple of xi:

cvxi + v+ rvm − (vvxi + v+ rvn ) = rvm − rvn .

This thwarts gcd-based attacks.
Our first contribution, i.e., reducing storage overhead
without sacrificing security, helps to maximize the
benefits that cloud-based technologies can offer to a
resource-constrained IoT system.

• Our second contribution is that we supported multiplica-
tion operations on outsourced data, which has never been
considered in any of the existing secret sharing-based
outsourcing schemes where servers are allowed to
collude.

IV. OUR APPROACH
A. ARCHITECTURE
As mentioned in Section III-B, we assume there are two
servers: Server 1 and Server 2 in the system, which can be
easily extended to a scenario of more than two servers.

As can be seen from FIGURE 2, our scheme consists of
five algorithms: ShareGeneration, ServiceRequest, Query
Request Translation, Server Results Return, Results
Processing.

The algorithm Service Request allows a client to
send query and computation requests without any security
consideration, which is straightforward and thus omitted
here. As follows we describe each of the remaining four
algorithms.

1) GENERAL IDEA
Before describing our scheme and algorithms in great detail,
we show a general idea on how to accomplish the two goals
listed in Section I-B:
• Similar to the secure partitioning approach which suc-
cessfully tackled inference attacks, we divide the value
domain Dv into segments by following Algorithm 2,
which results in a random variable domain Rv for each
value v. The domain Rv will be used later on when a data
owner picks a coefficient (cv in Equation (6) below) or
random variable (rvm in Equation (6)) for the value v.
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For mitigating inference attacks, it is critical to generate
differen shares when an equal value is outsourced for
multiple times. Distinct from the secure partitioning
approach where a different coefficient is used, we use
the same coefficient (cv in Equation (6)) but introduce
a mask (rvm in Equation (6)) prior to sharing the value
v. Furthermore, a new mask is used whenever the same
value v is outsourced for another time, that is, we use
rvn 6= rvm when the value v is shared for an n-th time.
Equation (6) below can be obtained from Algorithm 1
which generates shares for each of the i-th server when
the value v is outsourced for the m-th time.
The significance of our approach of perturbating the
secret share distribution is twofold: (1) our method
achieves the same security level against inference
attacks without asking a client to store mapping func-
tions as the secure partitioning approach, and (2) our
scheme is secure against gcd-based attacks by avoiding
resulting in a multiple of xi when subtracting two shares
associated with v.
The only storage overhead required by our approach
is a pair of vectors that are needed for reconstructing
the mask, which is of constant size of 2 log(p) bits
when 2 servers are utilized. For a general scenario with
N servers, our required storage overhead is 2N log(p)
bits, which is constant and independent of the domain
of values or the number of records in the database.

Sharei(v+ rvm ) = cv ∗ xi + v+ rvm (6)

• Considering the adopted Shamir’s (k,N )-threshold
secret sharing scheme is additive homomorphic, all addi-
tion related functions can be realized by asking servers
to locally add all the shares stored. However, due to
the lack of multiplicative homomorphism property, it is
challenging to accomplish a multiplication operation by
this scheme (to be discussed in Section IV-E0.c).

B. SHARE GENERATION
1) SHARE GENERATION
Every time a data owner intends to outsource a value v, there
are two steps and two algorithms involved for generating and
distributing shares to the servers:
• Step 1: Random Variable Domain Generation. For
each value v the function RVDomainGeneration shown
in Algorithm 2 returns v’s random variable domain
(denoted as Rv) based on its frequency (denoted as
freqv). Rv is the domain of random values, from where
a data owner can choose coefficients and random values
for generating v’s shares, as shown in Step 2 below.

• Step 2: Share Generation, as shown in Algorithm 1. For
the value v, a data owner randomly chooses cv ∈ Rv
as the coefficient associated with v. In addition to cv,
another random value rvm is chosen from Rv when the
m-th time v is outsourced. Together with the secret
element xi, we generate the share for Server i as:

share(v)i = cvxi + v + rvm where xi is from the dis-
tribution vector (see Equation (2) ).

C. SQL QUERY REQUEST TRANSLATION
It’s important to recall that the data stored in the servers are
shares of the original values while conventional SQL queries
are meant for the original values. Therefore, the client is
required to translate the original SQL queries into new queries
which are meant for the shares (rather than the original
values).

We provide the SQL query request algorithm below, fol-
lowed by examples of translating two simple types of SQL
query requests: equality query and range query. Other types
of SQL query requests can be translated in a similar way or
derived from our translation algorithm, and thus omitted in
this paper.

Algorithm 1 ShareGeneration(
{
Serveri

}
,
{
v
}
,
{
freqv

}
,Fp,{

xi
}
,
{
xri
}
)

Rv =RVDomainGeneration(
{
v
}
,
{
freqv

}
,Fp)

for all v do
Randomly choose cv ∈ Rv.

Randomly choose rv ∈ Rv, with a guarantee that rv is
newly generated every time an equal v is outsourced.{
Sharei(v+rv) = cvxi+v+rv

}
{Comments: Computing

shares for servers on v+ rv.}{
Sharei(rv) = cvxri + rv

}
{Comments: Computing

shares for servers on rv.}

end for

return
{
Sharei(v+ rv)

}
and

{
Sharei(rv)

}

1) EXAMPLE (Equality Query)
As follows is one example on equality query translation.
Example 1: We assume this is the original SQL query

intended for Server i:

Select ∗ from Table1 where age = 30.

The client has to translate this query into:

Min(R30)(xi + 1)+ 30 mod p ≤ share(Si)

≤ Max(R30)(xi + 1)+ 30 mod p

and sends to Server i.

2) EXAMPLE (Range Query)
Here is one example of how to translate a range query.
Example 2: We assume this is the original SQL query

intended for Server i:

Select ∗ from Table1 where 20 ≤ Age ≤ 70.
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Algorithm 2 RVDomainGeneration(
{
v
}
,
{
freqv

}
,Fp)

Sort
{
v
}
in an ascending order and form the new set of

values
{
v
}
.

Compute |Dv| as the number of unique values in
{
v
}
.

{Comments: Dv refers to the domain of values in the value
set
{
v
}
}

Divide Fp into |Dv| segments, where
Segment1 = [ 1, dp ∗ freq1/

∑|Dv|
i=1 freqie ];

for 2 ≤ i ≤ |Dv|, Segmenti = [ 1 +
dp ∗

∑i−1
j=1 freqj/

∑|Dv|
i=1 freqie, dp ∗

∑i
j=1 freqi/

∑|Dv|
i=1 freqie ].

for all v do
Rv = Segmentord(v){Comments: Rv stands for the domain
of random variables for v, while ord(v) is defined as the
order of v in the set

{
v
}
.}

end for

return
{
Rv
}

Algorithm 3 Query Request Translation(Request)
if (request == equality query with condition as
‘‘where attrName = v’’) then
return

Min(Rv)(xi + 1)+ v mod p ≤ share(Si)

≤ Max(Rv)(xi + 1)+ v mod p

{Comments: This returns a translated equality query to
Server i. By ‘‘equality query’’ it means the condition in
the query is attrName = vwhere attrName is the attribute
being queried and v is the value.}

else if (request== range query with condition as ‘‘where
vl ≤ attrName ≤ vh’’) then
return

Min(Rvl )(xi + 1)+ vl mod p ≤ share(Si)

≤ Max(Rvh )(xi + 1)+ vh mod p

{Comments: This returns a translated range query to
Server i. By ‘‘range query’’ it means the condition in
the query is vl ≤ attrName ≤ vh where attrName is
the attribute being queried. [vl, vh] is the range of values
under search.}
end if

The client has to translate this query into:

Min(R20)(xi + 1)+ 20 mod p ≤ share(Si)

≤ Max(R70)(xi + 1)+ 70 mod p

and sends to Server i.

D. SERVER RESULTS RETURN
As shown in Algorithm 4 below, the returned results are
aggregated shares if the request is an aggregate SQL query
or computation, otherwise individual shares of each value.

The parameter rqType stands for the request type, while
agrtFunc refers to the aggregate function provided by the
client.

Algorithm 4 Server Results Return (
{
Sharei(v + rv)

}
,{

Sharei(u+ru)
}
,
{
Sharei(rv)

}
,
{
Sharei(ru)

}
, rqType, agrtFunc)

if (rqType == aggregate) then
return

{
agrtFunc

{
Sharei(v + rv), Sharei(u +

ru)
}
, agrtFunc(

{
Sharei(rv)

}
,
{
Sharei(ru)

}
)
}

else
return

{ {
Sharei(v + rv)

}
,
{
Sharei(u +

ru)
}
,
{
Sharei(rv)

}
,
{
Sharei(ru)

} }
end if

E. RESULTS PROCESSING
Algorithm 5 below demonstrates how the results are pro-
cessed at a client.

The parameter
{
Sharei(v+ rv)

}
stands for the collection of

shares from all servers. Each share, denoted as Sharei(v+ rv)
was received by Server i ( 1 ≤ i ≤ 2 ) on the secret v + rv.
The parameter

{
`i(0)

}
is the collection of values held by the

client. Each value, denoted as `i(0), is the following Lagrange
basis polynomial `i(x) evaluated at x = 0 for Server i (derived
from Equation (4) in Section III-A1.b):

`i(x) =
∏

1≤m≤2,m6=i

x − xm
xi − xm

mod p (7)

Similarly,
{
Sharei(rv)

}
is the collection of shares received by

Server i(1 ≤ i ≤ 2) for the secret rv. The parameter
{
`ri (0)

}
refers to the set of values possessed by the client. Each value,
denoted as `ri (0), is an evaluation of Polynomial (8) at x = 0:

`ri (x) =
∏

1≤m≤2,m 6=i

x − xrm
xri − xrm

mod p (8)

a: AGGREGATE REQUEST
Our scheme supports aggregate requests, which can be imple-
mented by specifying the parameter agrtFun in Algorithm 7
below.

In this paper we focus on basic aggregate functions which
can be reduced to additions and multiplications, and more
complex aggregate functions can be discussed in our future
work.

While Algorithm 7 takes in a general agrtFun as input,
we provide more details on addition and multiplication
implementations in Section IV-E0.b and Section IV-E0.c
respectively.
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Algorithm 5 Results Processing (
{
Sharei(v + rv)

}
,{

Sharei(u+ru)
}
,
{
Sharei(rv)

}
,
{
Sharei(ru)

}
,
{
`i(0)

}
,
{
`ri (0)

}
,

rqType, agrtFunc)
if (rqType == aggregate) then
ResultsProcess4Aggregate(

{ {
Sharei(v +

rv) + Sharei(u + ru)
}
,
{
Sharei(rv) +

Sharei(ru)
}}

,
{
`i(0)

}
,
{
`ri (0)

}
, agrtFun)

else if (valRequested == v) then
ResultsProcess4nonAgg(

{ {
Sharei(v +

rv)
}
,
{
Sharei(rv)

}}
,
{
`i(0)

}
,
{
`ri (0)

}
)

{Comments: valRequested stands for the value that is
requested by the client}

else if (valRequested == u) then
ResultsProcess4nonAgg(

{ {
Sharei(u +

ru)
}
,
{
Sharei(ru)

}}
,
{
`i(0)

}
,
{
`ri (0)

}
)

{Comments: valRequested stands for the value that is
requested by the client}

end if

The function SecretReconstruction in Algorithm 6 and
Algorithm 7 refers to the secret sharing reconstruc-
tion functionality as depicted in Section III-A1.b: Secret
Reconstruction.

Algorithm 6 ResultsProcess4nonAgg(
{ {

Sharei(v +
rv)
}
,
{
Sharei(rv)

}}
,
{
`i(0)

}
,
{
`ri (0)

}
)

v+ rv = SecretReconstruction(
{
Sharei(v+ rv)

}
,
{
`i(0)

}
)

rv = SecretReconstruction(
{
Sharei(rv)

}
,
{
`ri (0)

}
)

return v = (v+ rv)− rv

Algorithm 7 ResultsProcess4Aggregate(
{ {

Sharei(v +
rv) + Sharei(u + ru)

}
,
{
Sharei(rv) +

Sharei(ru)
}}

,
{
`i(0)

}
,
{
`rv (0)

}
, agrtFun)

agrtFunc(v + rv, u + ru) =

SecretReconstruction(agrtFunc(
{
Sharei(v +

rv)
}
,
{
Sharei(u+ ru)

}
),
{
`i(0)

}
)

agrtFunc(rv + ru) =

SecretReconstruction(agrtFunc(
{
Sharei(rv +

ru)
}
),
{
`ri (0)

}
)

return agrtFunc(v, u) = agrtFunc(v + rv, u + ru) −
agrtFunc(rv + ru)

b: ADDITIONS
A simple example for demonstrating an addition-based query
or computation can be the SQL SUM function.

Without loss of generality, we assume a SUM query based
on two values v and u is requested by the client who expects
a summation of v and u. In this section we discuss how to
process a SQL SUM query.

Recall from Algorithm 1 that Server i received the follow-
ing shares from the data owner (xi,rv = xi,ru ):
• With regard to the value v, Server i received the follow-
ing two shares:
– cvxi+v+rv mod p, which is the share corresponding

to the message v+ rv.
– cvxi,rv+rv mod p, which is the share corresponding

to the message rv.
• With regard to the value u, Server i received the follow-
ing two shares:
– cuxi+u+ru mod p, which is the share correspond-

ing to the message u+ ru.
– cuxi,ru+ru mod p, which is the share corresponding

to the message ru.
Apart from the aforementioned shares that a client can receive
from Server i as a response to his SQL SUM query, the client
can utilize the following information he received from the
data owner:
• `i(0) which can be used for reconstructing the message
v+ rv as well as the message u+ ru.

• `i,ru (0) 6= `i(0) for reconstructing ru.
• `i,rv (0) = `i,ru (0) for reconstructing rv.

With all the information listed above, the summation of v and
u can be calculated via the following two steps:
• Step 1: Calculating rv + ru :

– After receiving ((cvxi,rv+rv)+(cuxi,ru+ru)) mod p
from Server i (1 ≤ i ≤ 2), the client reconstructs
rv + ru by:

rv + ru

=

2∑
i=1

`i,rv (0)((cvxi,rv+rv)+(cuxi,ru+ru)) mod p.

The correctness can be proved by:

rv + ru

=

2∑
i=1

`i,rv (0)(cvxi,rv + rv) mod p

+

2∑
i=1

`i,ru (0)(cuxi,ru + ru) mod p

=

2∑
i=1

`i,rv (0)((cvxi,rv+rv)+(cuxi,ru+ru)) mod p

(9)

• Step 2: Calculating the final result v+ u:
– After receiving ((cvxi + v + rv) + (cuxi + u +
ru)) mod p from Server i (1 ≤ i ≤ 2), the client
reconstructs u+ v+ ru + rv by:

v+ u+ rv + ru
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=

2∑
i=1

`i(0)((cvxi+v+rv)+(cuxi+u+ru)) mod p

(10)

– Finally the client calculates v+ u by (recall rv + ru
is obtained in Step 1 above):

v+ u = ((v+ u+ rv + ru)− (rv + ru)) mod p

c: MULTIPLICATIONS
Our multiplication implementation was inspired by the fol-
lowing expressions:

u = gū (11)

v = gv̄, (12)

where g is a primitive element of the finite field Fp.
Based on Equations (11) and (12) above, we can obtain the

multiplication of u and v by:

uv = gūgv̄ = gū+v̄ (13)

As a result, we can reduce the complicated multiplication of u
and v to an addition of ū and v̄, which can be accomplished
by following the descriptions in Section IV-E0.b.

More formally, our multiplication operation involves three
steps:
• The data owner chooses a primitive element g of Fp,
based on which he calculates ū for u satisfying u = gū,
and v̄ for v satisfying v = gv̄.

• The client runs an algorithm Additions as depicted in
Section IV-E0.b, and calculates the summation of ū
and v̄.

• Finally the client calculates the multiplication of u and v
as uv = gū+v̄.

V. SECURITY ANALYSIS
In this section we show that our proposed scheme is secure
against both inference attacks and gcd-based attacks.

A. SECURITY ANALYSIS: SECURITY AGAINST INFERENCE
ATTACKS
Lemma 1: Our scheme is secure against inference attacks,

with the same security level as the secure partitioning
approach [23]. However, our scheme requires less storage
overhead than the secure partitioning approach.
Proof 1: We start the proof of achieving the same security

level as the secure partitioning approach, followed by the
proof on storage overhead reduction.
• Proof on security achievement. We use s to represent
the share stored at some server, whereas the goal of an
inference attack is to retrieve the original value v that
corresponds to s, that is, s = share(v). More specifically,
the following equation holds for some i and j:

s = cvxi + v+ rvj (14)

We define Pr(s = share(v)) as the probability of
success in an inference attack, i.e., the probability of
Equation (14) holding for some i and j. We prove that

Pr(s = share(v)) ≈
1
|Dv|

(15)

where |Dv| is the number of unique values from the data
owner. This in turn implies that our scheme attains the
same security level as the secure partitioning approach.
Our detailed proof is presented below:

Pr(s = share(v))

= Pr(s = cvxi + v+ rvj )× Pr(rv = rvj )

= Pr(s = cvxi + v+ rvj )×
1
|Rv|

=

|Rv|∑
i=1

Pr(s = cvmxi + rvj + v|cv = cvm )×
1
|Rv|

≈

|Rv|∑
i=1

1
|Dv|
×

1
|Rv|

= |Rv| ×
1
|Dv|
×

1
|Rv|

=
1
|Dv|

(*)

The equation (*) holds due to Theorem 2 from the
publication [23].

• Storage overhead reduction. Storage overhead in the
secure partitioning approach is O(|Dv|). In our scheme,
the only extra storage overhead is the cost for storing
the values of

{
`i(0), `ri (0)

}N
i=1, which is of 2N log(p)

bits and constant size since we assume the number of
servers (i.e., N ) is fixed. The value of 2N log(p) is inde-
pendent from the domain size |Dv|, which implies that
our scheme is more efficient than the secure partitioning
approach in terms of storage overhead at the client.

B. SECURITY ANALYSIS: SECURITY AGAINST GCD-BASED
ATTACKS
Lemma 2: Our scheme is secure from gcd-based attacks

and more efficient than the fake record approach [24] which
was the only existing work having addressed gcd-based
attacks.
Proof 2: • Proof on security achievement. The security
against gcd-based attacks is proved from the observation
that the probability of yielding a multiple of xi when
subtracting any two shares is very low.
For the same v we choose a different random value rv
when v is outsourced for a different time, that is, rvm 6=
rvn in Statement (16) below:

cvxi+v+rvm−(cvxi+v+rvn ) = rvm − rvn 6= 0. (16)

From the statement above, one can clearly see that the
subtraction of two adjacent shares in our scheme turns
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out to be a subtraction of two distinct random num-
bers instead of a multiple of xi (as in existing secret
sharing-based schemes).

• Proof on efficiency gain. The fake record approach
requires at least 10% extra storage and overhead, which
grows linearly with the original database size. The only
extra storage overhead required in our scheme is the cost
for storing the values of

{
`i(0), `ri (0)

}N
i=1, which is of

2N log(p) bits and constant size for a fixed N number of
servers. The value of 2N log(p) is independent from the
original database size, which proves that our scheme is
more efficient than the fake record approach.

VI. EVALUATIONS AND COMPARISONS WITH RELATED
WORK
A. EVALUATIONS AND COMPARISONS WITH WORKS
UNDER A SAME ASSUMPTION (i.e., SERVERS CAN
BE COLLUDED)
In this section we evaluate and compare our scheme with
the existing works which were proposed based on the same
assumption, that is, servers are colluded. More specifi-
cally, our scheme is compared with the secure partitioning
approach, the fake record approach, as well as the encryption
and bucket-based method [25] for a more comprehensive
benchmarking.

It’s important to point out that the server-side capacity is
not of a big concern in general, because of its high storage and
processing capacities. Henceforth, the costs required from
clients became our focus when evaluating the performance of
our proposed scheme. More specifically, we evaluated both
the computational and storage costs at the client side, with
various functionalities performed including equality queries,
additions, and multiplications.

1) THEORETICAL COMPLEXITY ANALYSIS
The theoretical complexity analysis and comparison with
existing schemes are presented in TABLE 1 (for computa-
tional costs at a client) and TABLE 2 (for storage costs at a
client), where n denotes the number of records in the database
and |Dv| represents the number of unique values for a given
database.

One can see that, as compared with the secure partitioning
and fake record approaches, the storage size required by our
scheme is significantly reduced when the number of unique
values or records increases. Our scheme outperforms the
encryption and bucket-based approach in terms of computa-
tional cost.

2) EXPERIMENTS
a: TESTING ENVIRONMENT
For an experimental comparison, we have prototyped our
scheme where a data owner outsourced his sensitive text data
to a server equipped with MS SQL Server 2016. To simulate
a general cloud server configuration, we experimented with a
configuration ofWindows 10, Intel Core i5 1.6GHz processor
and 16GB of memory.

TABLE 1. Complexity comparison of client side processing time.

TABLE 2. Complexity comparison of client side storage.

TABLE 3. Comparisons with existing schemes based on assumptions
made (colluding or non-colluding servers).

For simulating an IoT device (i.e., a client) in our prototyp-
ing, we used a Raspberry Pi device which was equipped with
1.2 GHz 64-bit quad core processor and 1GB RAM.
We downloaded a dataset from IPUMS 2010 ACS

data [26], with approximately 1 million tuples in the database
containing sensitive attributes including Age, Income etc..

While our testing data were mainly numeric values, our
scheme can be easily extended to character values and thus
works with all text data.

b: EXPERIMENTAL RESULTS AND DISCUSSIONS
The experimental results of our scheme and comparisons with
other approaches are presented in FIGURE 3, FIGURE 4,
FIGURE 5 and FIGURE 6 below. A comparison on com-
putational costs can be found in FIGURE 3 and Fig. 4. One
can see clearly that the secret sharing-based approach outper-
forms the encryption-based approach in both SQL equality
queries and addition operations. Within the category of secret
sharing-based approach, our computational cost is slightly
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FIGURE 3. Experimental results on equality queries.

FIGURE 4. Experimental results on additions.

heavier than the secure partitioning approach, but signifi-
cantly lower than the fake record approach.

The experimental results on storage overhead are presented
in FIGURE 5. With two servers experimented, our scheme
requires a client to store 4 elements from Fp, i.e., the values
of
{
`i(0), `ri (0)

}2
i=1. We chose p = 264 which is sufficient

for most of the database sizes. This implies that 4 ∗ 8 = 32
bytes of storage overhead are required in our scheme, which
is slightly bigger than the 16 bytes storage size required in
the encryption-based approach using an AES-128 encryption
algorithm. However, the advantage of requiring constant size
of storage can be seen very clearly in FIGURE 5 that the
storage overheads in the secure partitioning approach and

fake record approach increased rapidly when the number of
unique values (denoted as |Dv|) increased in the database.
We also experimented with multiplication operations on

two secret values v and u. The processing time required at the
client for a multiplication operation is shown in FIGURE 6.
It took 120 milliseconds for a client to retrieve the multi-
plication result of vu based on the shares stored at servers,
when a database of 800 records was given. This is considered
as acceptable given the low computation capacity of the
Raspberry Pi device we used.

From both theoretical analysis and experimental results
presented above, one can verify that that our scheme has
achieved the goals set in Section I-B.
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FIGURE 5. Experimental results on client storage overhead.

FIGURE 6. Experimental results on multiplications.

B. COMPARISONS WITH WORKS UNDER A DIFFERENT
ASSUMPTION (i.e., SERVERS CANNOT BE COLLUDED)
While our solution tolerates possible collusion between
servers, the secure multiparty computation (SMC)-based
schemes were proposed based on a different assumption.
Due to their assumption that servers cannot be concluded,
the SMC-based schemes are inherently vulnerable to both
inference and gcd-based attacks, as can be seen from
TABLE 3 where schemes with different assumptions are
compared in terms of security and functionality.

One can easily see from TABLE 3 that our proposed
scheme is the only one that has met both security and func-
tionality requirements. More specifically, our scheme is the
only solution that not only defends against the two attacks
(inference and gcd-based attacks), but also supports the two
types of operations (additions and multiplications).

Combing the evaluation and comparison results from
Section VI-A and VI-B, we can conclude that our scheme
has achieved a best balance between functionality, security
and efficiency among all the existing works.
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VII. CONCLUSION AND FUTURE WORK
We revisited the secret sharing-based text data outsourcing
scheme in the context of an IoT system where clients are
resource constrained IoT devices. We designed a newmethod
that ismore efficient than existingworks, particularly in terms
of storage overhead at clients. To our best knowledge, our
scheme is the first secret-sharing based scheme that has real-
izedmultiplication based queries and computations, under the
assumption that the servers are colluded. Our work was fur-
ther compared with the secure MPC-based approach which
were designed for non-colluding servers, and was shown to
have achieved a best trade-off between functionality, security
and efficiency among existing works.

While our scheme achieves perfect secrecy (i.e., zero infor-
mation about the secret text is disclosed to any combination
of less than k shares), our scheme demands a considerable
amount of share size for outsourcing a large amount of
image data. Although protecting an individual pixel value
of a single image works with the same efficiency as shown
in our experimental results, the efficiency of our scheme
needs to be improved for protecting image datasets which
consist of a massive number of pixel values. Ramp secret
sharing-based schemes perform more efficiently than our
Shamir secret sharing-based scheme in terms of large image
privacy-preservation protection, at an expense of a reduced
security level.

Part of our future work is to see whether possible to make
multiplication-based computations more efficient, as well
as investigate how more complicated computations can be
efficiently realized by our scheme. Another future work is to
protect the integrity of the outsourced IoT text data since we
only discussed the privacy-preservation issues in this paper.
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