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Summary  We study the linear stability of a plane Poiseuille flow of an incompressible flhidse viscosity depends linearly on
the pressure. It is shown that the local critical Reynolds number is sitisenfunction of the applied pressure gradient and that it
decreases along the channel. While in the limit of small pressure gradmmtentional results for a pressure-independent Newtonian
fluid are recovered, a significant stabilisation of the flow and an elongetithe critical disturbance wavelength are observed when the
longitudinal pressure gradient is increased. These features diigadistinguish the stability characteristics of a piezo-viscous flow
from its pressure-independent Newtonian counterpart.

PROBLEM DEFINITION AND GOVERNING EQUATIONS

We consider a flow of an incompressible fluid with a pressumgetident viscosity. Such fluids are found, for example,
in geological, planetary and lubrication applicationswés shown in [1, 2] that steady unidirectional plane flows can
exist only when the fluid viscosity is a linear function of theessure. Therefore here we consider the flow of such a
fluid between two parallel horizontal plates separated biadce2 .. Thex andy axes have the left-to-right and upward
positive directions, respectively. The horizontal ceii@ne of a channel is located at= 0. The negative pressure
gradientVr is applied along the channel. With the gravity neglectedyiiverning equations are [1]
du
pEZ—VTF—‘rV~(2,u(7T)D) , V-u=0 (@D)]

which are complemented with the constitutive equationslénsityp and viscosityu

p=const, pu=ar >0 (2)
and the no-slip/no-penetration boundary conditions

(u,v) = (0,0) aty = L. 3)

Here the velocity fieldr = (u(x), v(x)), the pressure = 7(x), the coordinate vectat = (z,y), andD = 1(Vu +
vuT). Following [3], in order to capture the piezo-viscous natofthe flow in the most explicit way we non-dimensionalise
these equations using the pressuteevaluated atz, y) = (0,0) at timet = 0, the characteristic speed = (7*/p)!/?

and timet* = L(p/7*)'/? as the scales for length, pressure, velocity and time, ctigps, to obtain

Q4 (u-V)u=-Vr+aV-(2rD), V-u=0, 4)
(w,v)=(0,0) at y==+1, w=1 at (z,y,t)=(0,0,0), ()
3 . .
where parametex = a (p%) = p(ﬁ*%)l/zL = pg*L plays the role of effective inverse Reynolds number. No& th

all unstarred symbols now denote the corresponding noriional quantities.
BASIC FLOW

The governing equations (4), (5) admit a steady unidireetigolution for the velocity and a two-dimensional solatio
for the pressure which were first reported in [1] and are giwen
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Ul(y) (6)

Parameter’y < 0 plays a dual role. Firstly, it characterises the strengtthefapplied pressure gradient. Secondly, it
measures the piezo-viscous effects which distinguish dinsidered fluid from its conventional Newtonian countetpar
This is best seen in the limit @f; — 0 when the series expansion of (6) leads to
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The maximum flow speed achievedyat= 0 in this limit is
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In the above expressions, the terms linea€incorrespond to the flow of a
Newtonian fluid with pressure-independent viscosity wttike higher order in
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] C) terms describe piezo-viscous effects. For a more straighérd compari-
aool N ] son of our results with the conventionally non-dimensieal solutions for a
e T ] Newtonian fluid we introduce Reynolds number based on thémrmanx speed
209?0" 10 -10° -10™ Um- x *L C *L C
<, Re* — p d*u — p| 0|U — | 0‘. (9)
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102 Equations (4) and (5) are linearised about the basic flowtisolassuming the
101 disturbed flow in the form

0s9 u(x,t) =U(y) +u'(x,t), w(x,t)=1TI(x)+7'(x,t), (10)
::i whereU, v/, II, 7’ are the basic and disturbance velocity and the basic and
096 disturbance pressure, respectively. The disturbancetitjearthen are written
ossl- in a normal mode form{u’(x,t), 7'(x,t)) = (W' (y), ' (y))e’*+¥*. Upon
% discretisation using Chebyshev pseudo-spectral methtd M0 collocation

points, the resulting algebraic generalized eigenvalablpm is solved for the
Figure 1. The critical values of Reynolds complex amplification rate- over a range of wavenumbefsand Reynolds
number (a) and wavenumber (b) as functionsumbersRe*. Note that since the basic flow pressure and thus the fluid vis-
of the pressure parametér, for two lo- cosity depend om the above normal mode expansion is local in its nature. It
cations along the channel corresponding g only valid if the characteristic length over which the ssere changes sig-
E = 1 (solid lines) andE' = 1/2 (dashed nificantly is much longer than the disturbance wavelengéh,if |Cy| < 3.
lines). The critical wavenumber curves forThis condition is safely satisfied in the current analysig Bigure 1(b). The
these spatial locations overlap in plot (b).  locality of the solution is parametrised = e“0*/2,

As expected from equations (7) and (8), wheéfn — 0, the basic velocity

profile reduces to that of a conventional Poiseuille flow arerecover the
critical values of Reynolds and wavenumbiéie?, 5.) ~ (5772,1.02) for a Newtonian fluid. However increasing the
pressure gradient parametél,| gives rise to a significant stabilisation of the flow, see Fégl(a). This behaviour is
completely opposite to that observed in flows of fluids witbgsure-independent viscosity. Physically, the largaresl
of |Cy| correspond to a larger pressure difference between thenehands. In order to increase the pressure gradient
the pressure upstream has to be raised. For tested rhemlogidel this leads to the increase of the fluid’s viscosity,an
subsequently, to the decrease of the maximum speed of thé¢stmthe expression fof,.x above). Both these effects
result in the observed stabilisation. It is found that thevftemains stable near = 0 regardless of the strength of the
applied pressure gradient for the value$@f| > 0.35. This can be traced back to the channel-choking effect deseal
in [3], an essentially piezo-viscous effect when incregghre pressure gradient leads to the proportional increatei
fluid viscosity so that the flow maximum speed remains constan
At the same time, the flow is destabilised downstream whezddbal pressure and the fluid viscosity decrease, see
the dashed line in Figure 1(a). The critical Reynolds nuntieps below the classical value 872 even in the limit
of Cy — 0. This signifies the essential differences between piegoevis and Newtonian fluids. The present results
suggest that in a sufficiently long channel the instabilifif develop near the channel exit regardless of the entrance
flow conditions. This instability will destroy a unidireotial flow before the fluid reaches the channel end. Such a §indin
provides a possible resolution of the concern expressef].if here the authors noted that due to the exponential dsere
of the pressure along the channel the fluid becomes es$gmiascid, which is physically unlikely. Therefore accting
to [4] the steady plane unidirectional solutions for piezscous flows might have limited physical relevance. Theentr
study shows that such flows can exist at least in a relativedyt£hannel. They never become fully inviscid because the
instability inevitably sets once the viscosity reachesfficsently low level and then the developing pressure diséunces
guarantee (via the constitutive law (2)) that the viscosdtyains non-zero.
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