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Summary We study the linear stability of a plane Poiseuille flow of an incompressible fluid whose viscosity depends linearly on
the pressure. It is shown that the local critical Reynolds number is a sensitive function of the applied pressure gradient and that it
decreases along the channel. While in the limit of small pressure gradientsconventional results for a pressure-independent Newtonian
fluid are recovered, a significant stabilisation of the flow and an elongationof the critical disturbance wavelength are observed when the
longitudinal pressure gradient is increased. These features drastically distinguish the stability characteristics of a piezo-viscous flow
from its pressure-independent Newtonian counterpart.

PROBLEM DEFINITION AND GOVERNING EQUATIONS

We consider a flow of an incompressible fluid with a pressure-dependent viscosity. Such fluids are found, for example,
in geological, planetary and lubrication applications. Itwas shown in [1, 2] that steady unidirectional plane flows can
exist only when the fluid viscosity is a linear function of thepressure. Therefore here we consider the flow of such a
fluid between two parallel horizontal plates separated by distance2L. Thex andy axes have the left-to-right and upward
positive directions, respectively. The horizontal centre-plane of a channel is located aty = 0. The negative pressure
gradient∇π is applied along the channel. With the gravity neglected thegoverning equations are [1]

ρ
du

dt
= −∇π + ∇ · (2µ(π)D) , ∇ · u = 0 (1)

which are complemented with the constitutive equations fordensityρ and viscosityµ

ρ = const., µ = aπ > 0 (2)

and the no-slip/no-penetration boundary conditions

(u, v) = (0, 0) aty = ±L . (3)

Here the velocity fieldu = (u(x), v(x)), the pressureπ = π(x), the coordinate vectorx = (x, y), andD = 1
2 (∇u +

∇u
T ). Following [3], in order to capture the piezo-viscous nature of the flow in the most explicit way we non-dimensionalise

these equations using the pressureπ∗ evaluated at(x, y) = (0, 0) at timet = 0, the characteristic speedu∗ = (π∗/ρ)1/2

and timet∗ = L(ρ/π∗)1/2 as the scales for length, pressure, velocity and time, respectively, to obtain

∂u

∂t + (u · ∇)u = −∇π + α∇ · (2πD) , ∇ · u = 0 , (4)

(u, v) = (0, 0) at y = ±1 , π = 1 at (x, y, t) = (0, 0, 0) , (5)

where parameterα = a
(

π∗

ρL2

)
1

2

= aπ∗

ρ(π∗/ρ)1/2L
= µ∗

ρu∗L plays the role of effective inverse Reynolds number. Note that

all unstarred symbols now denote the corresponding non-dimensional quantities.

BASIC FLOW

The governing equations (4), (5) admit a steady unidirectional solution for the velocity and a two-dimensional solution
for the pressure which were first reported in [1] and are givenby

U(y) =
2

αC0
ln

cosh C0y
2

cosh C0

2

, Π(x) =
1 + e−C0y

2
eC0(x+y)/2 . (6)

ParameterC0 < 0 plays a dual role. Firstly, it characterises the strength ofthe applied pressure gradient. Secondly, it
measures the piezo-viscous effects which distinguish the considered fluid from its conventional Newtonian counterpart.
This is best seen in the limit ofC0 → 0 when the series expansion of (6) leads to

U(y) ≈
y2 − 1

4α
C0 −

y4 − 1

96α
C3

0 , Π(x) ≈ 1 +
x

2
C0 + (x2 + y2)

C2
0

8
. (7)
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Figure 1. The critical values of Reynolds
number (a) and wavenumber (b) as functions
of the pressure parameterC0 for two lo-
cations along the channel corresponding to
E = 1 (solid lines) andE = 1/2 (dashed
lines). The critical wavenumber curves for
these spatial locations overlap in plot (b).

The maximum flow speed achieved aty = 0 in this limit is

Umax ≈
|C0|

4α

(

1 −
C2

0

24

)

. (8)

In the above expressions, the terms linear inC0 correspond to the flow of a
Newtonian fluid with pressure-independent viscosity whilethe higher order in
C0 terms describe piezo-viscous effects. For a more straightforward compari-
son of our results with the conventionally non-dimensionalised solutions for a
Newtonian fluid we introduce Reynolds number based on the maximum speed

Re∗ =
ρUmaxu

∗L

µ∗
=

ρ|C0|u
∗L

4αµ∗
=

|C0|

4α2
. (9)

STABILITY RESULTS

Equations (4) and (5) are linearised about the basic flow solution assuming the
disturbed flow in the form

u(x, t) = U(y) + u
′(x, t) , π(x, t) = Π(x) + π′(x, t) , (10)

whereU, u
′, Π, π′ are the basic and disturbance velocity and the basic and

disturbance pressure, respectively. The disturbance quantities then are written
in a normal mode form(u′(x, t), π′(x, t)) = (u′(y), π′(y))eσt+iβx. Upon
discretisation using Chebyshev pseudo-spectral method with 100 collocation
points, the resulting algebraic generalized eigenvalue problem is solved for the
complex amplification rateσ over a range of wavenumbersβ and Reynolds
numbersRe∗. Note that since the basic flow pressure and thus the fluid vis-
cosity depend onx the above normal mode expansion is local in its nature. It
is only valid if the characteristic length over which the pressure changes sig-
nificantly is much longer than the disturbance wavelength, i.e. if |C0| ≪ β.
This condition is safely satisfied in the current analysis, see Figure 1(b). The
locality of the solution is parametrised byE = eC0x/2.
As expected from equations (7) and (8), whenC0 → 0, the basic velocity
profile reduces to that of a conventional Poiseuille flow and we recover the

critical values of Reynolds and wavenumber(Re∗c , βc) ≈ (5772, 1.02) for a Newtonian fluid. However increasing the
pressure gradient parameter|C0| gives rise to a significant stabilisation of the flow, see Figure 1(a). This behaviour is
completely opposite to that observed in flows of fluids with pressure-independent viscosity. Physically, the larger values
of |C0| correspond to a larger pressure difference between the channel ends. In order to increase the pressure gradient
the pressure upstream has to be raised. For tested rheological model this leads to the increase of the fluid’s viscosity and,
subsequently, to the decrease of the maximum speed of the flow(see the expression forUmax above). Both these effects
result in the observed stabilisation. It is found that the flow remains stable nearx = 0 regardless of the strength of the
applied pressure gradient for the values of|C0| ≥ 0.35. This can be traced back to the channel-choking effect discovered
in [3], an essentially piezo-viscous effect when increasing the pressure gradient leads to the proportional increase in the
fluid viscosity so that the flow maximum speed remains constant.
At the same time, the flow is destabilised downstream where the local pressure and the fluid viscosity decrease, see
the dashed line in Figure 1(a). The critical Reynolds numberdrops below the classical value of5772 even in the limit
of C0 → 0. This signifies the essential differences between piezo-viscous and Newtonian fluids. The present results
suggest that in a sufficiently long channel the instability will develop near the channel exit regardless of the entrance
flow conditions. This instability will destroy a unidirectional flow before the fluid reaches the channel end. Such a finding
provides a possible resolution of the concern expressed in [4]. There the authors noted that due to the exponential decrease
of the pressure along the channel the fluid becomes essentially inviscid, which is physically unlikely. Therefore according
to [4] the steady plane unidirectional solutions for piezo-viscous flows might have limited physical relevance. The current
study shows that such flows can exist at least in a relatively short channel. They never become fully inviscid because the
instability inevitably sets once the viscosity reaches a sufficiently low level and then the developing pressure disturbances
guarantee (via the constitutive law (2)) that the viscosityremains non-zero.
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