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Abstract

Robust test procedures are developed for testing the intercept of a simple regression

model when the slope is (i) completely unspecified, (ii) specified to a fixed value or (iii)

suspected to be a fixed value. Defining (i) unrestricted (UT), (ii) restricted (RT) and

(iii) pre-test test (PTT) functions for the intercept parameter under the three choices

of the slope, tests are formulated using the M-estimation methodology. The asymptotic

distributions of the test statistics and their asymptotic power functions are derived. The

analytical and graphical comparisons of the tests reveal that the PTT achieves a reasonable

dominance over the other tests.

Keywords: pre-test, asymptotic size, asymptotic power, M-estimation, contiguity, regression

model.

1 Introduction

In recent years many researchers have contributed to the estimation of one parameter in the

presence of uncertain prior information on the value of another parameter. In general, inclusion

of non-sample prior information improves the quality of inference. In spite of plethora of work

in the area of improved estimation using non-sample prior information (c.f. Saleh, 2006, p.2),

very little attention has been paid on the testing of parameters in the presence of uncertain

prior information. It may be a natural expectation that testing of one parameter after pre-

testing on another would improve the performance of the ultimate test in the sense of higher

power and lower size of the ultimate test.
∗on leave from Institute of Mathematical Sciences, Faculty of Sciences, University of Malaya, Malaysia.
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Consider a simple regression model of n observable random variables, Xi, i = 1, . . . , n

Xi = θ + βci + ei, (1.1)

where the errors ei’s are identically and independently distributed from an unspecified sym-

metric at 0 and continuous distribution function, Fi, i = 1, . . . , n, the ci’s are known real

constants of the explanatory variable and θ and β are the unknown intercept and slope pa-

rameters respectively.

Gilchrist (1984) used the simple linear regression model to predict the road distance, Xi,

by the linear distance, ci, between any two destinations. In the regression equation, the

intercept parameter, θ, represents the distance by road when the linear distance is zero. The

slope parameter, β, represents the rate of change in the road distance for one unit change

in the linear distance. In the absence of any knowledge on the value of the slope parameter,

the researchers may face three different scenarios when the primary interest is to test the

significance of the intercept parameter. The slope may be (i) completely unspecified, or (ii)

zero or (iii) suspected at zero. In case (i), the commonly used test is applicable for testing

θ; in case (ii), testing of θ has no bearings on β as β = 0; and in case (iii), the uncertainty

in the suspected value of β is first removed by performing a pre-test (PT) on β, then use the

PT outcome for testing θ. Let φUT
n be the test function for the unrestricted test (UT) on

H?
0 : θ = 0 against H?

A : θ > 0 when β is unspecified. For case (ii), let φRT
n be the test function

for the restricted test (RT) on H?
0 : θ = 0 against H?

A : θ > 0 when β is 0 (specified). Similarly,

let φPTT
n be the test function for the pre-test test (PTT) on H?

0 : θ = 0 against H?
A : θ > 0

following a pre-test on the slope. The test function for the pre-test (PT) on the slope to test

H
(1)
0 : β = 0 against H

(1)
A : β > 0 is denoted by φPT

n .

The properties of unrestricted estimator (UE), restricted estimator (RE) and pre-test esti-

mator (PTE) have been investigated by many authors (Khan and Saleh, 1997 & 2001, Khan,

Hoque and Saleh, 2002). Most of the studies are based on normal or t-models and the results

are non-robust. In the studies, the PTE (a linear combination of UE and RE) possesses a small

quadratic risk when the distance parameter are large and too close to zero, that makes it the

best choice over the other two estimators. Instead of least squares (LS) and maximum likeli-

hood (ML) estimators, the properties of UE, RE and PTE are also studied in the framework

of general robust estimators, explicitly, M-estimators. As such, a robust estimator namely the

preliminary test M-estimator (PTME) are proposed for linear models (Sen and Saleh, 1987). In

this paper, three tests correspond to the UE, RE and PTE are defined. They are unrestricted

test (UT), restricted test (RT) and pre-test test (PTT).

The properties of the pre-test as well as the power of the test followed by pre-test have

been studied in parametric cases (Bechhofer, 1951, Bozivich, Bancroft and Hartley, 1956).

The performance of the ultimate test after a pre-test is also investigated by Tamura (1965)

but for one sample and two sample non-parametric problems. After almost two decades, the
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effect of pre-test (on slope) on the size and power of the ultimate test (on the intercept) were

investigated for rank-based nonparametric tests by Saleh and Sen (1982). However, there

are some limited discussions on the power of the PTT provided in the paper. To author’s

knowledge, no research has been done in the investigation of the performance (size and power)

of the ultimate test following a pre-test in linear models that is formulated using the M-test,

defined along the line of M-estimation methodology. It is expected that the M-test formulated

in the M-estimation inherits the robustness properties of the estimation method, so the test is

less sensitive to departures from model assumptions. Since the M-estimation method is more

popular compared to the other robust methods, the study of the performance of the power

function of the ultimate test derived using the M-estimation method is an important addition

to the statistical literature.

This paper proposes the M-tests for the UT, RT and PTT. The M-test is originally proposed

by Sen (1982) using the score function in the M-estimation methodology and it is introduced

for testing the significance of the slope only. The asymptotic distribution theory of the test

statistics that are based on the score function in the M-estimation methodology developed by

Jurečková (1977) and Jurečková and Sen (1996) is used in this paper. Although the asymptotic

results of Jurečková and Sen (1996) are used in deriving the distribution of the proposed tests,

these results are used in a different model in the context of testing after pre-test. Along with

some preliminary notions, the method of M-estimation is presented in Section 2. In Section 3,

three statistical tests concerning testing on the intercept, namely, the UT, RT and PTT are

proposed for the three different cases mention earlier. Further, the asymptotic distributions

of the test statistics and the asymptotic power functions are derived in Section 4. Section

5 is devoted to the analytical results comparing the asymptotic power functions of the UT,

RT and PTT while the investigation of the power functions through an illustrative example is

presented in Section 6. An application to real data is provided in Section 7. The final Section

presents discussions and concluding remarks.

2 The M-estimation

Given an absolutely continuous function ρ : < → <, M-estimator of θ and β is defined as the

values of θ and β that minimize the objective function of the centered and scaled of observation,

Xi,
n∑

i=1

ρ

(
Xi − θ − βci

Sn

)
. (2.1)

M-estimator of θ and β can also be defined as the solutions of the system of equations,

n∑

i=1

∂ρ

∂θ
=

n∑

i=1

ψ

(
Xi − θ − βci

Sn

)
= 0,

n∑

i=1

∂ρ

∂β
=

n∑

i=1

ciψ

(
Xi − θ − βci

Sn

)
= 0. (2.2)
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Here ψ(·) is known as the score function and Sn is an appropriate scale statistic for some

functional S = S(F ) > 0. If F is N(0, σ2), Sn = MAD/0.6745 is an estimate of S = σ, where

MAD is the mean absolute deviation (Wilcox, 2005, p.78, Montgomery et al. 2001, p.387).

Several choices of ψ(·) function are given in literature. In this paper, we consider the Huber

ψ-function,

ψH(Ui) =

{
Ui |Ui| ≤ k,

k sign(Ui) |Ui| > k,
(2.3)

where Ui = Xi−θ−βci

Sn
and k is known as the tuning constant because it can be chosen to fine

tune the estimator so that it has a specified asymptotic efficiency for a chosen distribution,

F . Note, the Huber ψ-function is a continuous, piecewise linear function and satisfies the

properties of ψc given in equation (5.5.8) of Jurečková and Sen (1996, p.218). ψ-function Also,

the ML estimates for θ and β are obtained using ψML = Ui for any Ui ∈ <.

For any real numbers a and b, consider the statistics below

Mn1(a, b) =
n∑

i=1

ψ

(
Xi − a− bci

Sn

)
, Mn2(a, b) =

n∑

i=1

ciψ

(
Xi − a− bci

Sn

)
.

Let β̃ be the constrained M-estimator of β when θ = 0, that is, β̃ is the solution of Mn2(0, b) = 0

and it may be conveniently be expressed as

β̃ = [sup{b : Mn2(0, b) > 0}︸ ︷︷ ︸
b1

+ inf{b : Mn2(0, b) < 0}︸ ︷︷ ︸
b2

]/2. (2.4)

Any value b1 < b < b2 can serve as the estimate of Mn2(0, b). Note that Mn2(0, b) is decreasing

if b is increasing (Jurečková and Sen, 1996, p.85).

Similarly, let θ̃ be the constrained M-estimator of θ when β = 0, that is, θ̃ is the solution

of Mn1(a, 0) = 0 and conveniently be expressed as

θ̃ = [sup{a : Mn1(a, 0) > 0} + inf{a : Mn1(a, 0) < 0}]/2. (2.5)

From Sen (1982), asymptotically,

n−
1
2 Mn2(θ̃, 0) d→ N(0, σ2

0C
?2) (2.6)

under H
(1)
0 : β = 0, where

σ2
0 =

∫
ψ2

(
Xi − θ − βci

S

)
dF (Xi − θ − βci) (2.7)

is the second moment of ψ(·) while the first moment is zero due to the symmetrically distributed

at 0 of error ei. If ψ(·) is ψML(·) and F ∼ N(0, σ2), then S = σ and σ2
0 = 1. Also, C?2 =

limn→∞ n−1C?
n
2, C?

n
2 =

∑n
i=1 c2

i − nc̄2
n, c̄n = n−1

∑n
i=1 ci and limn→∞ c̄n = c̄.
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Let S
(3)
n

2
= n−1

∑n
i=1 ψ2

(
Xi−θ̃

Sn

)
. The consistency of S

(3)
n

2
as an estimator of σ2

0 follows

from Jurečková and Sen (1981) (c.f. Sen, 1982). Hence, a test statistic An = Mn2(θ̃, 0)[C?
n S

(3)
n ]−1

is proposed by Sen (1982). The advantage of this test statistic (score-type M-test) is that it does

not require the computation of the unrestricted M-estimates or the estimation of functional γ.

By the same way, it is easy to show that the asymptotic distribution of

n−
1
2 Mn1(0, β̃) d→ N(0, σ2

0C
?2/{C?2 + c̄2}) (2.8)

under H?
0 : θ = 0. By the same token, the consistency of S

(1)
n

2
= n−1

∑
ψ2

(
Xi−β̃ci

Sn

)
as an

estimator of σ2
0 follows.

3 The UT, RT, PT and PTT

In this Section, the UT, RT, PT and PTT are introduced using the notations and asymptotic

distribution results from the previous Section.

3.1 The unrestricted test (UT)

If β is unspecified, the designated test function is φUT
n to test the null hypothesis H?

0 : θ = 0

against the alternative hypothesis H?
A : θ > 0. The testing for θ involves the elimination of the

nuisance parameter β. We consider the test statistic TUT
n = Mn1(0, β̃) where β̃ is a constrained

M-estimator defined in equation (2.4). It follows from equation (2.8) that under H?
0 ,

TUT
n /

√
C

(1)
n S

(1)
n

2 d→ N(0, 1) (3.1)

as n →∞, with C
(1)
n = n− n2c̄2

n/
∑

c2
i = nC?

n
2/(C?

n
2 + nc̄2

n). We choose α1 (0 < α1 < 1) such

that for large n,

P [TUT
n > `UT

n,α1
|H?

0 : θ = 0] = α1, (3.2)

where `UT
n,α1

is the critical value of TUT
n at the α1 level of significance. Let ταi be the upper

100αith percentile and Φ(·) be the cumulative distribution function of the standard normal

distribution. Then

Φ(ταi) = 1− αi, for 0 < αi < 1, i = 1, 2, 3. (3.3)

Using (3.1), (3.2) and (3.3), we observe that as n →∞,

n−
1
2 `UT

n,α1
/

√
S

(1)
n

2
C

(1)
n /n

p→ τα1 = n−
1
2 `UT

n,α1
/
√

σ2
0C

?2/(C?2 + c̄2) (say). (3.4)

So, for the test function φUT
n = I(TUT

n > `UT
n,α1

), the power function of the UT becomes

ΠUT
n (θ) = E(φUT

n |θ) = P (TUT
n > `UT

n,α1
|θ), where I(A) stands for the indicator function of the

set A. It takes value 1 if A occurs, otherwise it is 0.
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3.2 The restricted test (RT)

If β = 0, the designated test function is φRT
n for testing the null hypothesis H?

0 : θ = 0 against

H?
A : θ > 0. The proposed test statistic is TRT

n = Mn1(0, 0). Note that for large n, under

H0 : θ = 0, β = 0,

n−
1
2 TRT

n /

√
S

(2)
n

2 d→ N(0, 1), (3.5)

where S
(2)
n

2
= n−1

∑
ψ2(Xi/Sn). For large sample size, we define

P [TRT
n > `RT

n,α2
|H0 : θ = 0, β = 0] = α2, (3.6)

where `RT
n,α2

is the critical value of TRT
n at the α2 level of significance. Using equations (3.3),

(3.5) and (3.6), we obtain

n−
1
2 `RT

n,α2
/

√
S

(2)
n

2 p→ τα2 = n−
1
2 `RT

n,α2
/
√

σ2
0 (say) (3.7)

as n → ∞. Then, for the test function φRT
n = I(TRT

n > `RT
n,α2

), the power of the RT becomes

ΠRT
n (θ) = E(φRT

n |θ) = P (TRT
n > `RT

n,α2
|θ).

3.3 The pre-test test (PTT)

In this section, test on slope is proposed first and followed by the construction of the ultimate

test for testing the intercept.

The pre-test (PT)

For the pre-test on the slope, the test function, φPT
n is designed to test the null hypothesis

H
(1)
0 : β = 0 against H

(1)
A : β > 0. The proposed test statistic is TPT

n = Mn2(θ̃, 0) where θ̃ is a

constrained M-estimator (given in equation (2.5)). Under H
(1)
0 , if follows from equation (2.6)

that

TPT
n /

√
C

(3)
n S

(3)
n

2 d→ N(0, 1) (3.8)

as n →∞, with C
(3)
n =

∑
c2
i − nc̄2

n = C?
n
2. So, for large sample size,

P [TPT
n > `PT

n,α3
|H(1)

0 : β = 0] = α3. (3.9)

Also by (3.3), (3.8) and (3.9), as n →∞,

n−
1
2 `PT

n,α3
/

√
S

(3)
n

2
C?

n
2/n

p→ τα3 = n−
1
2 `PT

n,α3
/
√

σ2
0C

?2 (say), (3.10)

where `PT
n,α3

is the critical value of TPT
n at the α3 level of significance.
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The pre-test test (PTT)

Now, we are in a position to formulate a test function φPTT
n to test H?

0 : θ = 0 following a

pre-test on β. We write

φPTT
n = I

[
(TPT

n ≤ `PT
n,α3

, TRT
n > `RT

n,α2
) or (TPT

n > `PT
n,α3

, TUT
n > `UT

n,α1
)
]

(3.11)

as the test function for testing H?
0 : θ = 0 after a pre-test on β. The function enables us to

define the power function of the test PTT, that is given by

ΠPTT
n (θ) = E(φPTT

n |θ)
= P [TPT

n ≤ `PT
n,α3

, TRT
n > `RT

n,α2
|θ] + P [TPT

n > `PT
n,α3

, TUT
n > `UT

n,α1
|θ]. (3.12)

In general, the power function of the PTT depends on α1, α2, α3, θ, n as well as β. Note that

the size of the ultimate test αPTT
n is a special case of the power of the test when θ = 0. Since

the nuisance parameter β is unknown, but, suspected to be close to 0, it is of interest to study

the dependence of both αPTT
n and ΠPTT

n (θ) on β (close to 0).

4 Asymptotic properties of UT, RT and PTT

In this section, the asymptotic joint distributions of
[
TUT

n , TPT
n

]
and

[
TRT

n , TPT
n

]
are derived

under the local alternative Kn (defined below). Then, the asymptotic distribution for the UT,

RT and PTT are used to obtain the power function of the UT, RT and PTT under Kn.

Theorem 4.1 Let {Kn} be a sequence of alternative hypotheses, where

Kn : (θ, β) = (n−
1
2 λ1, n

− 1
2 λ2), (4.1)

with λ1 =
√

nθ ≥ 0, λ2 =
√

nβ ≥ 0 are fixed real numbers. Under {Kn}, for large sample,

(i)

n−1/2

[
TRT

n

TPT
n

]
∼ N2

[(
γ(λ1 + λ2c̄)

γλ2C
?2

)
, σ2

0

(
1 0

0 C?2

)]
, (4.2)

(ii)

n−1/2

[
TUT

n

TPT
n

]
∼ N2

[(
γλ1C?2

C?2+c̄2

γλ2C
?2

)
, σ2

0

(
C?2

C?2+c̄2
− c̄C?2

C?2+c̄2

− c̄C?2

C?2+c̄2
C?2

)]
, (4.3)

where γ = 1
S

∫
ψ′

(
Xi−θ−βci

S

)
dF (Xi − θ − βci) and ψ′ is the derivative of ψ-function.

The proof of Theorem 4.1 is in the Appendix. form (1982)

Define d(q1, q2 : ζ) to be the bivariate normal probability integral for random variables x

and y,

d(q1, q2; ζ) =
1

2π(1− ζ2)1/2

∫ ∞

q1

∫ ∞

q2

exp
{−(x2 + y2 − 2ζxy)

2(1− ζ2)

}
dxdy, (4.4)
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where q1, q2 are real numbers and −1 < ζ < 1 is the correlation coefficient.

The asymptotic power functions for the UT and RT under {Kn} are respectively

ΠUT (λ1, λ2) = 1− Φ(τα1 − γλ1

√
C?2/(C?2 + c̄2) /σ0) and (4.5)

ΠRT (λ1, λ2) = 1− Φ(τα2 − γ(λ1 + λ2c̄)/σ0) (4.6)

using equations (3.3), (3.4), (3.7), (4.2) and (4.3). Note that α1 = ΠUT (0, λ2) = αUT while

α2 = ΠRT (0, 0) and αRT = ΠRT (0, λ2).

It follows from equations (3.3), (3.4), (3.7), (3.10), (4.2), (4.3) and (4.4) that the asymptotic

power function for the PTT, under {Kn}, is

ΠPTT (λ1, λ2) = Φ(τα3 − γλ2C
?/σ0)[1− Φ(τα2 − γ(λ1 + λ2c̄)/σ0)] +

d(τα3 − γλ2C
?/σ0, τα1 − γλ1

√
C?2/(C?2 + c̄2)/σ0;−c̄/

√
C?2 + c̄2 ). (4.7)

5 Asymptotic comparison

This section gives analytic asymptotic comparison of the power functions of the UT, RT and

PTT.

• Case I: When c̄ = 0, α1 = α2 = α,

ΠUT (λ1, λ2) = ΠRT (λ1, λ2) = ΠPTT (λ1, λ2) = 1− Φ(τα − γλ1/σ0) (5.1)

using equations (4.5), (4.6) and (4.7), i.e. the power functions for the UT, RT and PTT

are the same.

• Case II: When c̄ > 0, α1 = α2 = α, we find

Result (i): ΠRT (λ1, λ2) > ΠPTT (λ1, λ2) from equations (4.5) and (4.7),

Result (ii): ΠRT (λ1, λ2) > ΠUT (λ1, λ2) from equations (4.5) and (4.6) and

Result (iii): ΠUT (λ1, λ2)
<=
>

ΠPTT (λ1, λ2) if B
<=
>
|A| where A = Φ(τα−γ(λ1+λ2c̄)/σ0)−

Φ(τα−γλ1

√
C?2/(C?2 + c̄2) /σ0) and B = d(τα3−γλ2C

?/σ0, τα−γ(λ1+λ2c̄)/σ0; 0)

−d(τα3−γλ2C
?/σ0, τα−γλ1

√
C?2/(C?2 + c̄2) /σ0;−c̄/

√
C?2 + c̄2 ) from equation

(4.7).

• Case III: When c̄ < 0, α1 = α2 = α and λ1 + λ2c̄ < λ1

√
C?2/(C?2 + c̄2), we find

Result (iv): ΠRT (λ1, λ2) < ΠPTT (λ1, λ2) from equations (4.5) and (4.7), and

Result (v): ΠRT (λ1, λ2) < ΠUT (λ1, λ2) from equations (4.5) and (4.6).
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The analytical results in this section is accompanied with an illustrative example in investigat-

ing the comparison of the power of the tests discussed in the next section. The power of the

tests at any value of the intercept other than θ = 0 is also considered in the example to study

the behavior of the power functions corresponding to the probabilities of Type I and Type II

errors.

6 Power Comparison - Simulated data

The asymptotic power functions for the UT, RT and PTT are compared in this section and

are supported by the analytical results given in Section 5 for the three cases I, II and III.

The Monte Carlo method is used for this simulated example. The random errors, ei’s of

the simple linear regression model are generated from the normal distribution with mean 0

and variance 1. Then, set θ = 2 and β = 3. The sample size is n = 100. Three sets of values:

0 and 1 with 50% for each for the first set, −1 and 1 with 50% for each for the second set

and −1 and 0 with 50% for each for the third set are considered as the values of the regressor

ci, i = 1, 2, . . . , 100. These values guarantee c̄ > 0, c̄ = 0 and c̄ < 0 respectively to the sets

of regressors. Under normality assumption i.e. ei ∼ N(0, σ2) with σ2 = 1, we prefer ψ(Ui) to

be ψML(Ui) = Ui together with ψ′ML(Ui) = 1 for any Ui and Sn = MAD/0.6745. Then, the

power functions of the UT, RT and PTT for this ML ψ-function are obtained using equations

(4.5), (4.6) and (4.7) and are plotted as solid lines in Figure 1.

In practice, often the normality assumption is not met due to the presence of contaminants

in the collected data. In this example, to create contamination observations, we randomly

choose to replace m(< n) of the n responses with some additive contamination, such that the

contaminated responses X ′
i is X ′

i = θ +βci + δi with δi is generated from uniform distribution,

U [−5,−3.5] and U [3.5, 5] with 50% for each. Only 10% contamination in the data is considered

for simulation. For the contaminated data, the power functions of the UT, RT and PTT are

calculated by equations (4.5), (4.6) and (4.7) using ψML(·) and ψH(·) functions (given in

equation (2.3)) with Sn = MAD/0.6745. Three values of tuning constant for the Huber ψ-

function are selected, that are, k = 1.04, 1.28 and 1.64. The value of k = 1.28 is the 90th

quantile of a standard normal distribution, so, there is a 0.8 probability that a randomly

sampled observations will have a value between −k and k (Wilcox, 2005, p.76) while k =

1.04 (and 1.64) means there is 0.7 (and 0.90) probability that a random sample observations

will have the value in the range of (−1.04, 1.04) (and (−1.64, 1.64)). When Huber ψH(·) is

used, the estimate for σ2
0 is taken to be

∑
ψH(Ui)2/n. For the estimation of γ, an R-estimate

from the Wilcoxon sign rank statistics is used. The estimate of γ is the value of t such that

S(V1, . . . , Vn, t) =
∑n

i=1 sign(Vi − t)an(R+
ni

(t)) = 0, where R+
ni

(t) is the rank of Vi − t and

an(k) = k/(n + 1), k = 1, . . . , n. Here, Vi = ψ′H(Ui)/Sn where ψ′H(Ui) is just the derivative of

the Huber ψ-function.
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The simulated values of the response and independent variables for the contaminated nor-

mal cases are used to obtain the M-estimates of the intercept and slope. The estimated

coefficients for each set of data are used to calculate the power functions through the residual,

Xi − θ̂ − β̂ci where θ̂ and β̂ are the M-estimate of the intercept and slope. The simulation is

run 3000 times. The average values of the power functions for 3000 data sets are plotted in

Figures 1 and 2. The R-package (mvtnorm) is used to evaluate the bivariate normal probability

integral for the power function of the PTT.

The power functions for the UT, RT and PTT are plotted against λ2 at two values of λ1

in Figures 1 and 2. Here λ1 = 0 is chosen to study the asymptotic sizes of the tests and we

desire the size of a particular test to be small so that the probability of Type I error is small.

Since we also expect to get small value of probability of Type II error, the power of the test

at λ1 = 2 is considered. An acceptable power function of the test is the one has smaller values

when the null hypothesis is true and larger values when λ1 differs much from θ = 0.

The role of tuning constant of Huber ψ-function as a key parameter that control the

efficiency and robustness of the procedure is studied (see Figure 1). Figure 1 displays the

power curves obtained using the Huber ψ-function for three different values of tuning constant

when there is 10% contamination in the data. The asymptotic size and power obtained using

the ML ψ-function for the contaminated and uncontaminated data are also displayed in the

same graphs. Under the normality assumption, we know that the MLE of θ and β are unbiased

estimators. The power function of the test that is based on the ML estimates using ψML

inherits the same good property. The test becomes the most powerful test when the normality

assumption is met. However, this normality assumption may not be satisfied in practical

situations. Studies show that the ML estimator is non-robust when there is departures from

the model assumption or when outlier or contaminant occurs in the data. Figure 1 shows that

the power curves obtained using the ML ψ-function for the contaminated data is far from those

of the uncontaminated data. The large distance between two curves suggests that the MLE

is not robust when there is contamination in the data. On the other hand, there is a tuning

constant that fine tune the robustness of the Huber ψ-function based procedure. The power

curves obtained using the Huber ψ-function with appropriate selection of tuning constant is

closer to the power curves obtained using ML ψ-function for the uncontaminated data. In the

presence of contamination, the power curves obtained using the Huber ψ-function with tuning

constant k = 1.28 is closer to that of the uncontaminated ML procedure (see all plots in Figure

1). This small distance between two curves means even there is 10% contamination in the data,

the Huber procedure with tuning constant k = 1.28 is not affected by these contaminants. Thus

the power curves obtained using Huber ψ-function with k = 1.28 represents the majority of

the data and the procedure is robust against some departure from the model assumption.

In Figure 2, the comparison on the performance (size and power) of the UT, RT and PTT

are studied for three cases of regressor. All power curves in Figure 2 are obtained using the



Testing After Pre-testing 11

Huber ψ-function with tuning constant k = 1.28. The first set of regressors is used to plot

Figures 2(a) and 2(b). As λ2 grows larger, size of the RT (ΠRT (0, λ2)) approaches 1. However,

size of the PTT (ΠPTT (0, λ2)), after an initial increase, drops and converges to the nominal

size α = 0.05 as λ2 grows larger. Thus, the asymptotic size (with very small λ1) of φPTT
n is

close to α for small λ2 and large λ2, while for moderate values of λ2 it is somehow larger than

α but lesser than that of ΠRT (0, λ2). The size of the UT (ΠUT (0, λ2)) is constant and does

not depend on λ2. The same pattern occurs in Figure 2(b) but the power functions are always

significantly larger than α, in this case larger than 0.4. If one only considers the size of the test,

the PTT is preferred to RT, though the UT remains as the best choice. However, the RT is

the best choice but the PTT is preferred to UT if the power of the test at λ1 = 2 is considered.

Setting c̄ = 0 in Figures 2(c) and 2(d) imply all power functions remain the same regardless

of the value of λ2 and these constant power functions increase as λ1 increases. Figures 2(e)

and 2(f) illustrate the case when c̄ < 0. The graphs show that ΠRT < ΠPTT for any λ2 and

ΠPTT ≤ ΠUT for any λ2 more than a small positive value, say λ0. The probability of Type I

error for all test functions are fairly small. The size and power of the RT is decreasing to 0

as λ2 growing larger (Figures 2(e) and 2(f)) suggesting the RT as the best choice for size but

the worst choice for power. Since ΠPTT (2, λ2) ≥ ΠRT (2, λ2) for all λ2, the PTT is preferred

over the RT . Also, ΠPTT (2, λ2) ≥ ΠUT (2, λ2) except for some moderate values of λ2 but the

difference is relatively small.

7 Application to real data

This example relates to the study of the relationship between the distance by road and the

linear distance. Twenty different pairs of points of the values of the two variables in Sheffield is

reported by Gilchrist (1984) (c.f. Abraham and Ledolter, 2006, p.63). To check the robustness

of the test, one data point (5.0, 6.5) is changed to (5,0, 46.5) to create the modified data set.

The one sided t-test is applied to the original and modified data sets and the summary statistics

are presented in Table 1. For both original and modified data sets, the slope is significantly

different from zero. For the original data set, the intercept is not significantly different from

zero. However, the intercept is significantly different from zero for the modified data set.

In this paper, the main objective is to test the significance of the intercept parameter when

it is suspected that the slope parameter may be zero. The summary statistics for the UT,

RT and PT on the intercept are given in Table 2 for the original data. The intercept is not

significantly different from zero from the UT whereas the intercept is significantly different from

zero under the RT. The PT (on the slope) indicates a significant linear relationship between

the two variables. Obviously the RT (on the intercept) is not an appropriate test because the

hypothesis of suspected zero slope is rejected. In the analysis, the intercept is significantly

different from zero when using the RT. The UT is more appropriate than the RT since the UT
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Table 1: Summary statistics of a one sided t-test on the distance data.

Original data Modified data

coefficient t-statistic p-value coefficient t-statistic p-value

Intercept 0.379 0.282 0.3905 9.400 1.922 0.0355

Slope 1.209 16.665 0.000 0.834 3.009 0.0040

does not depend on the prior information. In general, if the prior information is available, the

uncertainty in the value of the slope is removed using the PT before testing on the intercept.

Table 2: Summary statistics of a one sided test for the UT, RT and PT using the ML ψ-function

on the original data.

UT RT PT

Null hypothesis H?
0 : θ = 0 H?

0 : θ = 0 H
(1)
0 : β = 0

Model under null Xi = βci + ei Xi = ei Xi = θ + ei

Coef β̃ = 1.289 None θ̃ = 20.855

Test statistic T UT
nq

C
(1)
n S

(1)
n

2
= 0.2967 T RT

nq
S

(2)
n

2
= 4.0795 T PT

nq
C

(3)
n S

(3)
n

2
= 2.19× 1016

p-value 0.3834 2.26× 10−5 0

The sensitivity of the robust test using the Huber ψ-function to an aberrant observation

is studied by introducing a modification in one of the data points. For the modified data,

the original data point (5.0, 6.5) is replaced by a new (arbitrary) data point (5.0, 46.5). This

replacement causes a significant change in the values of the coefficients and the outcomes of

the t-test. The summary statistics for the UT, RT and PT using both the ML and Huber

ψ-functions for the modified data are displayed in Table 3. It is found that the UT using the

Huber ψ-function is not much affected by the aberrant point, compared to that of the ML ψ-

function. From the UT based on ML ψ- function, the intercept is significantly different from

zero. However, it is not significantly different from zero under the UT that is based on the

Huber ψ-function. The outcomes for the other two tests for the modified data are not much

different from those of the original data.

8 Concluding Remarks

In the estimation regime, it is well known that the RE has the smallest MSE if distance

parameter (a function of β − β0) is 0 or close to 0, but its MSE is unbounded for larger values
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Table 3: Summary statistics of a one sided test for the UT, RT and PTT using the ML and

Huber ψ-functions on the modified data.

UT RT PT(
H?

0 : θ = 0

X ′
i = βci + ei

) (
H?

0 : θ = 0

X ′
i = ei

) (
H

(1)
0 : β = 0

X ′
i = θ + ei

)

ML Coef β̃ = 1.321 None θ̃ = 22.855

Test statistic T UT
nq

C
(1)
n S

(1)
n

2
= 1.8452 T RT

nq
S

(2)
n

2
= 4.0764 T PT

nq
C

(3)
n S

(3)
n

2
= 1.16× 1016

p-value 0.0325 2.28× 10−5 0

Huber Coef β̃ = 1.289 None θ̃ = 22.208

Test statistic T UT
nq

C
(1)
n S

(1)
n

2
= 0.9394 T RT

nq
S

(2)
n

2
= 4.4335 T PT

nq
C

(3)
n S

(3)
n

2
= 3.17× 1016

p-value 0.1738 4.64× 10−6 7.61 ×10−4

of the distance parameter. The UE has a constant MSE that does not depend on the distance

parameter. The PTE has smaller MSE than that of the RE for moderate and larger values

of the distance parameter. The PTE has smaller MSE than the UE if the value of distance

parameter is close or equal to 0. In the testing context, the power functions of the UT, RT

and PTT demonstrate a similar behavior as the MSE of the UE, RE and PTE.

For a set of realistic values of the regressor, with mean value larger than 0, the size of the

RT is small when λ2 =
√

nβ = 0 or close to 0, but the size grows large and converges to 1 for

larger values of λ2. The UT has a constant size regardless of the value of λ2. The PTT has

smaller size than that of the RT when λ2 is 0 and very close to 0, and significantly smaller

than that of the RT for moderate and large values of λ2. The PTT has smaller size than the

UT for λ2 = 0 or very close to 0.

Again for a set of realistic values of the regressor, with mean larger than 0, the RT is the

best choice for having largest power but the worst choice for having largest size. The size of

the UT is constant regardless of the value of the slope (via λ2). The UT is the best choice for

having smallest size but the worst choice for having smallest power. The PTT has smaller size

than the RT for moderate and larger values of the slope and has larger power than the UT for

smaller and moderate values of the slope. Therefore, the power function of the PTT is found

to behave similar to the MSE of the PTE in the sense that though it is not uniformly the best

statistical test with the smallest size and the largest power but it protects from the risk of a

too large size and a too small power. Thus, the power function of the PTT is a compromise

between that of the UT and RT. In the face of uncertainty on the value of the slope, if the

objective of a researcher is to minimize the size and maximize the power of the test, the PTT

is the best choice.
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To avoid the larger size of the RT, practitioners are recommended to use the PTT as it

achieves smaller size (than the RT) and higher power (than the UT) when the value of the

slope is small or moderate. Even for large values of the slope the PTT has at least as much

power as the UT.
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A Appendix

Interested readers are referred to Jurečková (1977), Sen (1982) and Jurečková and Sen (1996,

p.221) for the following asymptotic properties. For simplicity and assumption that Sn is an

unbiased estimator of S, let Sn = S in equation (5.5.29) of Jurečková and Sen (1996, p.221).

Under H0 : θ = 0, β = 0, as n grows large,

n−
1
2

(
Mn1(0, 0)

Mn2(0, 0)

)
d→ N2

([
0

0

]
, σ2

0

(
1 c̄

c̄ C?2 + c̄2

))
, (A.1)

sup{n− 1
2 |Mn1(a, b)−Mn1(0, 0) + nγ(a + bc̄)| : |a|, |b| ≤ n−

1
2 K} p→ 0 and (A.2)

sup{n− 1
2 |Mn2(a, b)−Mn2(0, 0) + nγ{ac̄ + b(C?2 + c̄2)}| : |a|, |b| ≤ n−

1
2 K} p→ 0, (A.3)

where K is a positive constant and N2(· , · ) represents a bivariate normal distribution with

appropriate parameters. The above convergence is in probability, means the sequences of

random variables converges in probability to a fix value (0).

Proof of part (i) of Theorem 4.1: Under H0 : θ = 0, β = 0, with relation to (A.2) and

(A.3),

n−
1
2 Mn2(θ̃, 0) = n−

1
2 Mn2(0, 0)− n

1
2 γθ̃c̄ + op(1) and (A.4)

n−
1
2 Mn1(θ̃, 0) = n−

1
2 Mn1(0, 0)− n

1
2 γθ̃ + op(1). (A.5)

Recalling definition (2.5), the equation (A.5) reduces to

n−
1
2 Mn1(0, 0) = n

1
2 γθ̃ + op(1), (A.6)

and hence equation (A.4) becomes

n−
1
2 Mn2(θ̃, 0) = n−

1
2 Mn2(0, 0)− n−

1
2 Mn1(0, 0)c̄ + op(1). (A.7)
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Therefore, under H0, we find
[

n−
1
2 Mn1(0, 0)

n−
1
2 Mn2(θ̃, 0)

]
−

[
1 0

−c̄ 1

][
n−

1
2 Mn1(0, 0)

n−
1
2 Mn2(0, 0)

]
p→

[
0

0

]
. (A.8)

Now utilizing the contiguity of probability measures (see Hájek et al., 1999, Chapter 7) under

{Kn} to those under H0, the equation (A.8) implies that [n−
1
2 Mn1(0, 0), n−

1
2 Mn2(θ̃, 0)]′ under

{Kn} is asymptotically equivalent to the random vector
[

1 0

−c̄ 1

][
n−

1
2 Mn1(0, 0)

n−
1
2 Mn2(0, 0)

]

under H0. But the asymptotic distribution of the above random vector under {Kn} is the same

as [
1 0

−c̄ 1

][
n−

1
2 Mn1(−n−

1
2 λ1,−n−

1
2 λ2)

n−
1
2 Mn2(−n−

1
2 λ1,−n−

1
2 λ2)

]

under H0 by the fact that the distribution of Mn1(a, b) under θ = a, β = b is the same as that

of Mn1(θ − a, β − b) under θ = 0, β = 0, and similarly for Mn2(0, 0) (c.f. Saleh, 2006 p.332).

Note that under H0 : θ = 0, β = 0, it follows from equations (A.1), (A.2) and (A.3),

n−
1
2 [Mn1(−n−

1
2 λ1,−n−

1
2 λ2),Mn2(−n−

1
2 λ1,−n−

1
2 λ2)]′

→ N2

((
γ(λ1 + λ2c̄)

γ{λ1c̄ + λ2(C?2 + c̄2)}

)
, σ2

0

(
1 c̄

c̄ C?2 + c̄2

))
. (A.9)

Thus, the distribution of n−
1
2 [TRT

n , TPT
n ]′ = n−

1
2 [Mn1(0, 0),Mn2(θ̃, 0)]′ under {Kn} is bivariate

normal with mean vector
[

1 0

−c̄ 1

][
γ(λ1 + λ2c̄)

γ{λ1c̄ + λ2(C?2 + c̄2)}

]
=

[
γ(λ1 + λ2c̄)

γλ2C
?2

]

and covariance matrix
[

1 0

−c̄ 1

]
σ2

0

(
1 c̄

c̄ C?2 + c̄2

) [
1 0

−c̄ 1

]′
= σ2

0

[
1 0

0 C?2

]
. (A.10)

Since the two statistics n−
1
2 TRT

n and n−
1
2 TPT

n are uncorrelated, asymptotically, they are inde-

pendently distributed normal variables.

Proof of part (ii) of Theorem 4.1: Under H0 : θ = 0, β = 0, using equations (2.4), (A.2),

(A.3) and (A.7), as n →∞,

[
n−

1
2 Mn1(0, β̃)

n−
1
2 Mn2(θ̃, 0)

]
−

[
1 −c̄/(C?2 + c̄2)

−c̄ 1

] [
n−

1
2 Mn1(0, 0)

n−
1
2 Mn2(0, 0)

]
p→

[
0

0

]
. (A.11)
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Now by using the contiguity of probability measures under {Kn} to those under H0, the equa-

tion (A.11) implies that [n−
1
2 Mn1(0, β̃), n−

1
2 Mn2(θ̃, 0)]′ under {Kn} is asymptotically equiva-

lent to the random vector
[

1 −c̄/(C?2 + c̄2)

−c̄ 1

][
n−

1
2 Mn1(0, 0)

n−
1
2 Mn2(0, 0)

]
.

But the asymptotic distribution of the above random vector under {Kn} is the same as
[

1 −c̄/(C?2 + c̄2)

−c̄ 1

][
n−

1
2 Mn1(−n−

1
2 λ1,−n−

1
2 λ2)

n−
1
2 Mn2(−n−

1
2 λ1,−n−

1
2 λ2)

]

under H0. Then, equation (4.3) follows from equation (A.9) after some algebra. Clearly, the

two test statistics n−
1
2 TUT

n and n−
1
2 TPT

n are not independent, rather correlated.
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(a) Size of the UT for λ1=0, c > 0
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(b) Power of the UT for λ1=2, c > 0
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(c) Size of the RT for λ1=0, c > 0
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(d) Power of the RT for λ1=2, c > 0
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(e) Size of the PTT for λ1=0, c > 0
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(f) Power of the PTT for λ1=2, c > 0

Figure 1: Graphs of power functions as a function of λ2 for selected values of λ1, α1 = α2 =

α3 = α = 0.05 and n = 100.
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(a) Size of the test for λ1=0, c > 0, k=1.28
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(b) Power of the test for λ1=2, c > 0, k=1.28
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(c) Size of the test for λ1=0, c = 0, k=1.28
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(d) Power of the test for λ1=2, c = 0, k=1.28
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(e) Size of the test for λ1=0, c < 0, k=1.28
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(f) Power of the test for λ1=2, c < 0, k=1.28

Figure 2: Graphs of power functions as a function of λ2 for selected values of λ1 and α1 =

α2 = α3 = α = 0.05.


