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Abstract: Background/Objectives: Despite recent advances in research, cancer remains a significant
public health concern and a leading cause of death. Among all cancer types, lung cancer is the most
common cause of cancer-related deaths, with most cases linked to non-small cell lung cancer (NSCLC).
Accurate classification of NSCLC subtypes is essential for developing treatment strategies. Medical
professionals regard tissue biopsy as the gold standard for the identification of lung cancer subtypes.
However, since biopsy images have very high resolutions, manual examination is time-consuming
and depends on the pathologist’s expertise. Methods: In this study, we propose a hybrid model
to assist pathologists in the classification of NSCLC subtypes from histopathological images. This
model processes deep, textural and contextual features obtained by using EfficientNet-B0, local
binary pattern (LBP) and vision transformer (ViT) encoder as feature extractors, respectively. In
the proposed method, each feature matrix is flattened separately and then combined to form a
comprehensive feature vector. The feature vector is given as input to machine learning classifiers
to identify the NSCLC subtype. Results: We set up 13 different training scenarios to test 4 different
classifiers: support vector machine (SVM), logistic regression (LR), light gradient boosting machine
(LightGBM) and extreme gradient boosting (XGBoost). Among these scenarios, we obtained the
highest classification accuracy (99.87%) with the combination of EfficientNet-B0 + LBP + ViT Encoder
+ SVM. The proposed hybrid model significantly enhanced the classification accuracy of NSCLC
subtypes. Conclusions: The integration of deep, textural, and contextual features assisted the model
in capturing subtle information from the images, thereby reducing the risk of misdiagnosis and
facilitating more effective treatment planning.

Keywords: histopathological images; vision transformer; lung cancer; feature extraction; automated
diagnosis

1. Introduction

Cancer is characterized by aberrant unregulated proliferation of cells within the
body [1]. Normally, cells undergo a specific and ordered sequence of growth, division, and
death [2]; in cancer, this process is disrupted, resulting in uncontrolled and rapid growth
of cells [3]. Despite recent advances in cancer research, cancer remains a leading cause of
death and a public health concern [4]. According to 2022 GLOBOCAN data [5], lung cancer
is the most commonly diagnosed cancer and the leading cause of cancer deaths globally,
accounting for 12.4% of all cancers, approximately 2.5 million incident cases annually, and
approximately 1.8 million deaths (18.7% of all cancer deaths).

Lung cancer is histologically classified into small cell lung cancer (SCLC) and non-
small cell lung cancer (NSCLC) [6], with the latter, which include adenocarcinoma and
squamous cell carcinoma [7], accounting for 80–85% of cases [8]. Within this, 25–30% of
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patients with stage IV NSCLC die within three months of diagnosis [9]. Treatment options
for lung cancer range from chemotherapy to targeted therapies [10,11]: the type of treatment
is determined by the cancer cell type on tissue biopsy [12]. Tissue samples taken during the
biopsy are preserved in a solution, coated with paraffin and cut into thin slices [13]. Tissue
sections are typically stained with hematoxylin and eosin (H&E) [14], and the images are
digitized for expert analysis [15]. Manual pathological reading is time-consuming and
operator-dependent [16]. Furthermore, human factors such as fatigue and distraction may
introduce errors, which can negatively affect treatment decisions [17].

To mitigate erroneous diagnosis, computer-aided diagnostic methods have been devel-
oped to help pathologists screen and examine histopathological images [18–20], including
lung cancer [21,22]. As the images are typically acquired with high-resolution scanners
at 20× or 40× magnifications [23], file sizes are often several gigabytes [24], which can
increase the computational demands of image feature extraction. Nevertheless, computer-
aided methods for image analysis are particularly effective for handling datasets that are
challenging to analyze manually [25], can be very efficient and accurate [26], and can help
reduce the workload of pathologists and speed up the diagnostic process. By improving ac-
curacy and minimizing misdiagnoses, they play a significant role in transforming pathology
workflow, ensuring faster and more precise diagnoses [27]. Moreover, computer-assisted
systems help decrease variations, standardize procedures, and enhance overall healthcare
quality by improving treatment planning [28].

Researchers often focus on isolated aspects of feature extraction, such as deep or
textural features. For example, Ebrahim and Fathi used the EfficientNet-B0 model to
classify lung cancer on histopathological images [29]. Their study dataset comprised 200
H&E-stained histopathological images of lung cancer tissues scanned at 20× magnification,
which had been sourced from four pathology laboratories. Each whole slide image (WSI)
was divided into patches of 256 × 256 pixels. Patches were labeled as “tumor” if more
than 75% of the pixel area showed cancer features; otherwise, they were labeled “normal”.
In total, 12,000 patches were analyzed, which included an equal number of normal and
tumor patches. To ensure data stability, k-fold cross-validation was employed, with the
model trained over five folds and 100 epochs. The model attained an average accuracy
of 92.58%. Ahmed et al. proposed a deep learning model for analyzing histopathological
slides for lung cancer [30] that encompassed convolutional neural networks (CNNs) and
separable CNNs with residual blocks to enhance classification performance. The dataset
included slides from adenocarcinoma patients with mixed (micropapillary, solid and acinar)
subtypes. A total of 170 WSIs stained with H&E were studied, from which an average of
six images per slide were extracted through zooming and rotation, resulting in 934 images.
These images were categorized into 557 cancer and 377 non-cancer images. They were
divided into training and test datasets using a 70/30 split ratio. The training dataset
included 401 cancer and 261 non-cancer images, with 90% used for model training and
10% for validation. The test dataset comprised 156 cancer images and 116 non-cancer
images. The method attained 97.00% accuracy on the test samples. An et al. proposed
an approach for lung cancer classification from WSIs using a transformer-based weakly
supervised learning framework [31]. Their dataset comprised 646 WSIs from 257 patients
diagnosed with adenocarcinoma and pulmonary sclerosing pneumocytoma. These tissues
were stained with H&E and scanned at 40× magnification. The WSI images, with an
average size of 125,259 × 97,272 pixels at the highest magnification, were stored in a
multi-resolution pyramid format consisting of eight different resolution levels. The model
attained 96.90% accuracy.

We observed that there is a lack of models that integrate multiple types of features.
Single-feature models often struggle with data variations and may not generalize well
across different datasets. This can result in missing important details and incomplete
image analysis, leading to suboptimal classification performance and a higher risk of
misdiagnosis, hence limiting their practical application. To address this gap, we proposed
in this study a novel hybrid model that can automatically classify different types of NSCLC
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from histopathological images. The proposed model combines deep features extracted
using the EfficientNet-B0, textural features extracted from grayscale images using the local
binary pattern (LBP), and contextual features extracted using the vision transformer (ViT)
encoder. By merging these feature sets into a single feature vector, the proposed model
achieved higher classification accuracy with classifiers, namely, support vector machine
(SVM), logistic regression (LR), light gradient boosting machine (LightGBM), and extreme
gradient boosting (XGBoost).

The main contributions of this study can be summarized as follows:

• NSCLC classification was performed with a hybrid model that uses deep, textural and
contextual fused features.

• To the best of our knowledge, this study is the first to merge LBP and CNN-based
structures with a transformer-based architecture.

• Comprehensive experiments have been conducted to analyze the impact of each
feature type on classification accuracy.

• The proposed method can be employed to automatically classify other types of can-
cer images.

The remainder of this paper is structured as follows: Section 2 describes the materials
and methods used, including the dataset and feature extraction techniques. Section 3
presents the experimental setup, performance evaluation metrics and results. Section 4
discusses the results, providing a comparative analysis of different classifiers. Finally,
Section 5 offers conclusions and potential directions for future work.

2. Materials and Methods

In this study, we proposed a hybrid model for automatically classifying lung cancer
types from histopathological images (Figure 1). On input images of size 224 × 224 pixels,
deep features are extracted from RGB images using EfficientNet-B0, textural features from
grayscale images using LBP, and contextual features by feeding input images as patches
into the ViT encoder. The extracted deep, textural and contextual feature vectors are
merged into a comprehensive combined feature vector, which is fed to a machine learning
classifier that performs classification into “lung squamous cell carcinoma (LSCC)”, “lung
adenocarcinoma (LACA)”, and “benign” categories.
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Figure 1. Block diagram of the proposed method for 3-class NSCLC histopathological classification. 
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Figure 1. Block diagram of the proposed method for 3-class NSCLC histopathological classification.

2.1. Feature Extraction Methods
2.1.1. Deep Feature Extraction

The EfficientNet family encompasses a series of models designed to enhance scalability
in CNNs. These models utilize a novel approach to scaling, compound scaling, that
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simultaneously optimizes the size, depth, and resolution of the network [32], thereby
maintaining the balance among these three factors [33]. EfficientNet offers models from B0
to B7: B1 to B7 are scaled versions of the base model EfficientNet-B0 [34], which is made up
of a series of multiple mobile inverted bottleneck convolution (MBConv) layers [35]. The
hierarchical architecture of MBConv layers allows the model to learn and represent input
images in an increasingly detailed manner: each convolutional layer extracts and refines
the feature maps, which are transformed representations of the original images (Figure 2).
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Here, 224 × 224-pixel RGB histopathological images are input to the network, which processes the 
images via a series of convolutional layers, each applying various filters to the input data that can 
identify and learn different spatial hierarchies and complex patterns in the images. The model’s 
lower layers detect basic features like edges and textures, while the higher layers build on these 
initial features, allowing the model to recognize more complex and abstract patterns. The final con-
volutional layer produces feature maps, which are high-level representations of the input images 
that capture critical patterns and structures required for further processing or classification tasks. 
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Figure 2. EfficientNet-B0 architecture of mobile inverted bottleneck convolution (MBConv) layers.
Here, 224 × 224-pixel RGB histopathological images are input to the network, which processes the
images via a series of convolutional layers, each applying various filters to the input data that can
identify and learn different spatial hierarchies and complex patterns in the images. The model’s
lower layers detect basic features like edges and textures, while the higher layers build on these
initial features, allowing the model to recognize more complex and abstract patterns. The final
convolutional layer produces feature maps, which are high-level representations of the input images
that capture critical patterns and structures required for further processing or classification tasks.

2.1.2. Textural Feature Extraction

LBP is an effective and computationally efficient feature extraction method used in
image processing and pattern recognition [36,37]. LBP encodes the texture of an image
by representing each pixel with a binary pattern derived from the intensity values of its
neighboring pixels [38] (Figure 3). The technique is simple and robust, yet is able to capture
rich descriptions of the patterns [39].
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This method uses a window consisting of a central pixel and its surrounding neighbors
is used [40]. The value of the central pixel is compared with the values of the neighboring
pixels. If a neighboring pixel’s value is greater than or equal to the central pixel’s value,
it is assigned a value of 1; otherwise, it is assigned a value of 0 [41]. This way, the binary
pattern formed by the neighboring pixels is converted into a decimal number to obtain the
LBP value. The steps for computing LBP are summarized below.

1. Take a grayscale image as input.
2. Select a radius (R) and a specific number of neighboring pixels (P) for each pixel.
3. Compare pixel values with neighboring pixel values.
4. The resulting binary values (0 or 1) create a sequence.
5. Convert this sequence to decimal values to obtain the LBP value.
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The mathematical operation for computing the LBP value of a pixel is given in Equation (1).

LBPP, R =
P−1

∑
p=0

s
(

gp − gc
)
· 2p (1)

where gc represents the value of the pixel; gp, gray values of the surrounding pixels; P,
number of neighboring pixels; R, radius of the neighboring pixels; and s(x), a threshold
function defined as follows:

s(x) =
{

0 i f x < 0
1 i f x ≥ 0

(2)

2.1.3. Contextual Feature Extraction

Transformer architectures, initially designed for natural language processing tasks,
have recently been adapted for image processing applications [42,43]. Dosovitskiy et al.
proposed the ViT model, which was specifically adapted for image-processing tasks based
on the success of the original transformer architecture [44]. We leveraged the ViT encoder
to extract contextual features from histopathological images, which complement the deep
and textural features generated by EfficientNet-B0 and LBP, respectively. The ViT encoder
architecture consists of multi-head self-attention (MHA) mechanisms and a multilayer
perceptron (MLP) head [45] (Figure 4). Each layer processes the input data by computing
attention scores that indicate the importance of different parts of the input relative to
each other [46]. This mechanism allows the model to understand contextual relationships
between different regions of the image, thereby enhancing feature extraction beyond
local patterns.
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When using the ViT encoder to extract features, the input histopathological images are
divided into smaller patches (e.g., 16 × 16 pixels). Each patch is then treated as a “token”,
akin to words in a sentence for text processing [47]. Each image patch is flattened and
linearly transformed into a fixed-size embedding vector. These embedding vectors are
then combined with positional encodings that provide information about the position of
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each patch within the original image, ensuring that spatial relationships are preserved. The
embedded patches are fed into the transformer encoder, where the multi-head self-attention
mechanism computes attention scores. Attention scores are calculated using the query (Q),
key (K), and value (V) matrices, which are derived from the input embedding vectors. The
attention mechanism is formulated as given in Equation (3).

Attention (Q, K, V) = so f tmax
(

QKT
√

dk

)
V (3)

These scores determine the relevance of each patch to all other patches, which allows
the model to focus on important regions and their contextual interactions. The final output
from the ViT encoder comprises refined contextual features for each patch. These features
are then concatenated to form a comprehensive contextual feature vector. The multi-head
self-attention mechanism computes attention in parallel across multiple heads as given in
Equation (4).

MultiHead (Q, K, V) = Concat(head1, head2, . . . ., headh)Wo (4)

Each head is computed as given in Equation (5).

headi = Attention
(
QWQi

, KWKi , VWVi

)
(5)

where WQi , WKi , WVi are the learnable weight matrices for each head; and Wo, the output
weight matrix.

2.2. LC25000 Dataset

The LC25000 dataset is a collection of histopathological images for lung and colon can-
cer diagnosis [48]. Each image was originally recorded at a resolution of 1024 × 768 pixels.
It was then cropped to 768 × 768 pixels to standardize the dataset. This dataset is divided
into five different classes (colon adenocarcinoma, benign colon tissue, lung adenocarcinoma
(LACA), lung squamous cell carcinoma (LSCC) and benign lung tissue) of 5000 images
each. In this study, we focused on the lung cancer subset of the LC25000. This subset
comprises three classes: LACA, LSCC, and benign lung tissue (Figure 5).
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2.3. Machine Learning Classifiers

Machine learning classifiers are algorithms that classify learning patterns and relation-
ships from datasets [49]. These classifiers are trained using data features extracted using
various feature extraction techniques, and they accurately classify new data samples [50]. In
this study, we used SVM, LR, LGBM, and XGBoost algorithms to classify features extracted
from histopathological images. These algorithms can be summarized as follows.

• SVM is a robust machine learning algorithm recognized for its precision in handling
datasets [51]. It maps data points into a space [52]. Identifies the best hyperplane that
maximizes the margin between different classes [53].

• LR is a statistical model widely used in classification problems and is particularly
effective when the dependent variable is categorical [54]. It predicts the probability of
class membership using a linear combination of independent variables.

• LightGBM is an efficient machine learning algorithm effective on large datasets and
high-dimensional feature vectors [55]. Based on the gradient boosting framework, it
exhibits fast training time and low memory usage [56].

• XGBoost is a widely used, powerful, and flexible gradient-boosting algorithm known
for its high accuracy and efficient computation capabilities [57]. It produces effective
results on large datasets and complex models by building decision trees sequentially
and minimizing errors at each step [58].

3. Experimental Results
3.1. Experimental Setup

The experiments were conducted using the lung cancer subset of the LC25000 dataset,
which contains 15,000 samples. The dataset was randomly split, with 80% of the samples
(12,000) used for training and 20% (3000) used for testing. Each image in the dataset was
resized from 768 × 768 pixels to 224 × 224 pixels to standardize the input size of the feature
extraction methods. Additionally, the images were converted to grayscale to facilitate the
extraction of textural features using the LBP (P = 1278, R = 1) method.

The feature extraction process employed a hybrid approach combining deep, textural,
and contextual features to comprehensively represent each image. In addition, 13 training
scenarios were created using various machine learning classifiers. Each training scenario
was tested using performance metrics. All experiments were performed using an NVIDIA
RTX 4090 GPU. Figure 6 shows a general overview of the experimental setup.
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3.2. Performance Evaluation Metrics

The confusion matrix is a tool used to assess the performance of the classification
models [59]. It shows the correct and incorrect predictions for each class by the model. The
confusion matrix has four components:

1. True Positive (TP): The number of instances correctly predicted by the model as
belonging to the class.
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2. True Negative (TN): The number of instances correctly predicted by the model as not
belonging to the class.

3. False Positive (FP): The number of instances incorrectly predicted by the model as
belonging to the class.

4. False Negative (FN): The number of instances incorrectly predicted by the model as
not belonging to the class.

For a multi-class classification model, these metrics are calculated separately for each
class [60]. Figure 7 shows the distributions of TP, TN, FP, and FN for the three different
classes used in this study.
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Various performance metrics are calculated using the components of the confusion
matrix. These metrics can be summarized as follows.

Accuracy is defined as the ratio of all correct classifications to the total number of sam-
ples. The accuracy rate is calculated using the mathematical equation given in Equation (6).

Accuracy =
TP + TN

(TP + FP + FN + TN)
(6)

Precision indicates the proportion of positive predictions that are actually positive.
The precision rate is calculated using the mathematical equation given in Equation (7).

Precision =
TP

TP + FP
(7)

Recall represents the proportion of actual positive instances correctly identified by the
model. The recall rate is calculated using the mathematical equation given in Equation (8).

Recall =
TP

TP + FN
(8)

The F1 Score is the harmonic mean of precision and recall. The F1 Score is calculated
using the mathematical expression given in Equation (9).

F1 Score = 2 × Precision × Recall
Precision + Recall

(9)

These metrics offer an evaluation of the model’s overall effectiveness in recognizing
true positives accurately and its capability to minimize false positive outcomes.
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3.3. Results

First, we evaluated the performance of the EfficientNet-B0 model in classifying images
of LACA, benign, and LSCC. We configured the model’s final layer to predict outcomes
for these three classes. Throughout the training phase, we maintained a learning rate of
0.0001 for 100 epochs. Also, we implemented the early stopping function. This function
halted the training process if no improvement in test accuracy was observed over the five
epochs. Figure 8 shows the loss and accuracy curves obtained for various epochs of the
EfficientNet-B0 model.
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The training loss of the EfficientNet-B0 model decreased rapidly from 0.4434 in the first
epoch to 0.0360 in the 11th epoch, indicating that the model quickly reduced errors during
training. Similarly, training accuracy increased from 80.07% to 98.79%, demonstrating
the model’s improved ability to classify training data correctly. Although validation loss
decreased from 0.2951 in the first epoch to 0.1180 in the 11th epoch, it exhibited fluctuations
in some epochs (e.g., 3rd and 7th epochs). This suggests that the model encountered
some challenges during validation. However, validation accuracy increased from 90.30%
to 96.13%.

After training with the default layers of the EfficientNet-B0 model, we obtained a
test accuracy rate of 96.13%. To explore additional training scenarios involving classical
machine learning classifiers, we removed the classifier layer from the EfficientNet-B0 model
and treated it as a feature extractor. The output of this feature extractor is a feature map
with dimensions of 7 × 7 × 1280.

However, classical machine learning classifiers typically require one-dimensional
vectors. To convert this 3D feature map into a 1D vector, we passed the model’s output
through a Global Average Pooling2D layer. This process averaged each channel, reducing
the feature map from 7 × 7 × 1280 to 1 × 1 × 1280. Then, we applied a flattening process to
convert the features to a 1D vector. We performed this process separately for 12,000 training
images and 3000 test images. Subsequently, we combined the 1280-dimensional vectors
obtained from the training samples into a 12,000 × 1280 matrix. Similarly, we repeated
the same process for the test samples and obtained a 3000 × 1280 matrix. Using these
matrices, we trained and tested the classifiers. The confusion matrices obtained from the
test scenarios considering only deep features are given in Figure 9.
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The highest test accuracy rate of 96.57% was achieved using the EfficientNet-B0 + SVM
hybrid approach. To further enhance the proposed model by incorporating textural features
alongside deep features, we extracted an equal number of features using the LBP method.
We combined these features with features extracted by EfficientNet-B0.

The combined training features from EfficientNet-B0 and LBP were then transformed
into a 12,000 × 2560 matrix. Similarly, we repeated the same process for the test samples and
obtained a 3000 × 2560 matrix. Using these matrices, we trained and tested the classifiers.
The confusion matrices obtained from the test scenarios considering both deep and textural
features are given in Figure 10.
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The highest test accuracy of 97.13% was achieved using the EfficientNet-B0 + LBP + SVM
hybrid approach. We used the ViT encoder to investigate the added value of contextual
features in addition to deep and textural features.

Using the ViT encoder network, we extracted 196 patches from an input image of size
224 × 224 pixels. Each patch was then converted into a 768-dimensional feature vector
by the ViT encoder. By concatenating these feature vectors, we obtained a matrix of size
196 × 768. The matrix was then flattened and combined with deep and textural feature
vectors. As a result, we obtained a 12,000 × 153,088 matrix that covers the entirety of the
training images. Similarly, we repeated the same process for the test samples, resulting in
a 3000 × 153,088 matrix. Using these matrices, we trained and tested the classifiers. The
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confusion matrices obtained from the test scenarios using deep, textural, and contextual
features are given in Figure 11.
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and contextual features.

In our experiments, the highest test accuracy of 99.87% was achieved using EfficientNet-
B0 + LBP + ViT encoder + SVM. The performance values obtained from our experimental
studies are summarized in Table 1.

Table 1. Summary of performance values obtained from the experimental studies.

Method Class Precision Recall F-1 Score Accuracy Inference Time (s)

EfficientNet-B0
LACA 0.9742 0.9080 0.9399

0.9613 0.0343Benign 1 1 1
LSCC 0.9138 0.9760 0.9439

EfficientNet-B0 + LR
LACA 0.9693 0.9170 0.9424

0.9627 0.0879Benign 1 1 1
LSCC 0.9212 0.9710 0.9454

EfficientNet-B0 + SVM
LACA 0.9571 0.9390 0.9480

0.9657 0.0868Benign 1 1 1
LSCC 0.9401 0.9580 0.9489

EfficientNet-B0 + LGBM
LACA 0.9493 0.9380 0.9436

0.9623 0.0937Benign 0.9980 1 0.9990
LSCC 0.9396 0.9490 0.9442

EfficientNet-B0 + XGBoost
LACA 0.9352 0.9530 0.9440

0.9620 0.0996Benign 0.9980 1 0.9990
LSCC 0.9530 0.9330 0.9429

EfficientNet-B0 + LBP + LR
LACA 0.9809 0.9290 0.9542

0.9703 1.1821Benign 1 1 1
LSCC 0.9325 0.9820 0.9566

EfficientNet-B0 + LBP + SVM
LACA 0.9672 0.9460 0.9565

0.9713 1.1810Benign 1 1 1
LSCC 0.9471 0.9680 0.9574

EfficientNet-B0 + LBP + LGBM
LACA 0.9603 0.9450 0.9526

0.9683 1.1879Benign 0.9970 1 0.9985
LSCC 0.9476 0.9600 0.9538

EfficientNet-B0 + LBP +
XGBoost

LACA 0.9394 0.9620 0.9505
0.9667 1.1938Benign 1 0.9990 0.9995

LSCC 0.9611 0.9390 0.9499

EfficientNet-B0 + LBP + ViT
Encoder + LR

LACA 0.9979 0.9970 0.9974
0.9983 1.3110Benign 1 1 1

LSCC 0.9970 0.9980 0.9975
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Table 1. Cont.

Method Class Precision Recall F-1 Score Accuracy Inference Time (s)

EfficientNet-B0 + LBP + ViT
Encoder + SVM

LACA 0.9989 0.9970 0.9979
0.9987 1.3099Benign 1 1 1

LSCC 0.9970 0.9990 0.9980

EfficientNet-B0 + LBP + ViT
Encoder + LGBM

LACA 0.9929 0.9910 0.9919
0.9947 1.3168Benign 0.9960 1 0.9980

LSCC 0.9949 0.9930 0.9939

EfficientNet-B0 + LBP + ViT
Encoder + XGBoost

LACA 0.9940 0.9950 0.9945
0.9963 1.3227Benign 0.9980 0.9990 0.9985

LSCC 0.9969 0.9950 0.9959

After analyzing the performance of the classifiers, we found that SVM outperforms
the others. This superior performance can be attributed to SVM’s robust handling of high-
dimensional spaces. Its effectiveness is particularly evident in scenarios characterized by
complex feature sets. Moreover, SVM’s intrinsic ability to maximize the margin between
classes facilitates a clearer separation of the data, enhancing classification accuracy.

4. Discussion

In this paper, we proposed a hybrid method for the automatic classification of histopatho-
logical lung cancer images by leveraging a combination of advanced deep learning and feature
extraction techniques. The proposed method integrates EfficientNet-B0 for deep feature
extraction, LBP for textural feature extraction, and ViT encoder for contextual feature ex-
traction. The proposed comprehensive method attempts to enhance classification accuracy
by capturing various visual features. Figure 12 shows an overview of the test accuracy
values obtained for various combinations.
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First, we examined the classification accuracy obtained using the EfficientNet-B0 model
for LACA, benign and LSCC classes. Although the overall performance of EfficientNet-
B0 was satisfactory, we observed an improvement when the model was combined with
classifiers. This shows that deep features yield better results when supported by more
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effective classification methods. When considering combinations of EfficientNet-B0 and
LBP, we found that the performance improved even further. The effectiveness of LBP
in extracting textural features significantly contributed to improving the classification
performance. The proposed hybrid method, which integrates the EfficientNet-B0, LBP,
and ViT encoder, yielded the highest performance. Specifically, nearly perfect results were
obtained when combined with SVM and LR. This demonstrates the effectiveness of the ViT
encoder for feature extraction and classification performance. Hence, ViT encoder helps to
learn the complex relationships in the data, thereby boosting the classification accuracy.

Automatic detection of lung cancer using histopathological images is a hot research
area. We performed a non-systematic search of the literature for studies conducted using the
LC25000 dataset, and summarized our findings in Table 2. Hatuwal and Thapa proposed a
CNN model for lung cancer detection using histopathological images [61]. Their model,
consisting of an input layer, three hidden layers, and a fully connected layer, achieved
an accuracy of 97.20% on test images. Mangal et al. also developed a CNN model for
lung cancer detection from histopathological images [62]. Their model consisted of three
convolutional layers, three pooling layers, and two fully connected layers. It achieved
an accuracy of 97.89% on test images. Baranwal et al. evaluated the performance of
several models for classifying lung cancer in histopathological images [63]. The models
included ResNet-50, VGG-19, Inception-ResNet-V2, and DenseNet. Among these models,
the Inception-ResNet-V2 model demonstrated the highest performance with an accuracy of
99.70%. Javier et al. investigated the impact of using color versus grayscale images on lung
cancer detection accuracy [64]. They developed a CNN model with three layers and a max-
pooling layer. Their model trained with color images achieved an accuracy of 97.11% on
the test samples, which outperformed the other models. Wadekar and Singh introduced a
modified CNN model incorporating a pretrained VGG-19 model for classifying lung cancer
histopathology images [65]. By implementing data augmentation methods and fine-tuning,
their VGG-19 model achieved an accuracy of 97.73% on test samples. Hamed et al. proposed
an approach combining a custom CNN model with a LightGBM classifier to categorize
lung tissue histopathology images, achieving an impressive accuracy rate of 99.60% on test
samples [66]. Mercaldo et al. proposed a deep learning-based technique to automatically
detect cells in lung tissue images using CNN, AlexNet, VGG-16, VGG-19, and MobileNet
models. Among these, VGG-16 demonstrated the best performance, with an accuracy
rate of 99.20% on the test samples [67]. Tian et al. introduced an approach for accurately
classifying lung cancer cells using neural networks [68]. Their model merges a feature
pyramidal network (FPN) and squeeze-and-excitation (SE) components with a ResNet-18
model to improve image processing capabilities and perform scale analysis for lung cancer
categorization. The proposed model achieved a testing accuracy of 98.84%. Noaman
et al. explored the efficacy of combining DenseNet201 with color histogram techniques to
improve lung cancer classification from histopathological images [69]. Their study applied
various machine learning algorithms, including KNN, LightGBM, CatBoost, XGBoost,
Decision Trees (DT), Random Forest (RF), Multinomial Naive Bayes (MultinomialNB), and
SVM. Their proposed method achieved an accuracy rate of 99.68%.

Table 2. Summary of studies conducted on the classification of NSCLC subtypes using the
LC25000 dataset.

Study Year Dataset Number
of Classes Method CV Ratio Performance

Hatuwal and
Thapa [61] 2020 LC25000

3
(LACA, LSCC
and Benign)

Custom CNN 90% Train,
10% Validation Accuracy = 97.20%

Mangal et al.
[62] 2020 LC25000

3
(LACA, LSCC
and Benign)

Custom CNN 90% Train,
10% Validation Accuracy = 97.89%
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Table 2. Cont.

Study Year Dataset Number
of Classes Method CV Ratio Performance

Baranwal et al.
[63] 2022 LC25000

3
(LACA, LSCC
and Benign)

Inception-ResNetv2 80% Train,
20% Validation Accuracy = 99.70%

Javier et al. [64] 2022 LC25000
3

(LACA, LSCC
and Benign)

Custom CNN 80% Train,
20% Test Accuracy = 97.11%

Wadekar and
Singh [65] 2023 LC25000

3
(LACA, LSCC
and Benign)

VGG-19 80% Train,
20% Test Accuracy = 97.73%

Hamed et al.
[66] 2023 LC25000

2
(LSCC and

Benign)

Custom CNN +
LightGBM

40% Train,
60% Test Accuracy = 99.60%

Mercaldo et al.
[67] 2024 LC25000

3
(LACA, LSCC
and Benign)

VGG-16
80% Train,

10% Validation,
10% Test

Accuracy = 99.20%

Tian et al. [68] 2024 LC25000
3

(LACA, LSCC
and Benign)

FPN + SE + ResNet-18 N/A Accuracy = 98.84%

Noaman et al.
[69] 2024 LC25000

3
(LACA, LSCC
and Benign)

DenseNet-121 + Color
Histogram + KNN N/A Accuracy = 99.68%

This study 2024 LC25000
3

(LACA, LSCC
and Benign)

EfficientNet-B0 + LBP +
ViT Encoder + SVM

80% Train,
20% Test Accuracy = 99.87%

In this study, we proposed a hybrid model for the automatic classification of lung
cancer types using the LC25000 dataset. The proposed method integrates the EfficientNet-
B0, LBP, and ViT encoders for feature extraction, and classification using SVM. This hybrid
model was developed using 3000 images and achieved an outstanding accuracy of 99.87%.

The advantages of the proposed hybrid model are summarized as follows:

• The proposed model achieved an accuracy of 99.87% surpassing previous studies.
• By combining the EfficientNet-B0, LBP, and ViT encoder, the proposed model effec-

tively captures subtle features. The proposed model can identify both high-level
abstract patterns and fine-grained local textures in histopathological images.

• The high classification accuracy of the proposed model provides the potential to be
used in real-world clinical applications.

• The modular structure of our model allows for customization to meet various clinical
needs and data types. This flexibility makes the proposed method applicable to
diagnosing different types of cancer and other medical imaging problems.

The limitation of this work is that the proposed method was evaluated on a single
dataset, the LC25000, which consists of pre-processed and standardized histopathological
images. However, real-world applications may face inconsistencies in specimen preparation
and slide positioning, which could affect model performance. To address this, future work
will focus on strategies to incorporate automated quality control measures and adapt the
model to handle such variations effectively. The dataset will also be expanded to include
rarer cases such as SCLC, and traditional immunohistochemical stains may be considered
to improve accuracy, especially for smaller sample sizes.

Future work will explore multi-modal learning techniques that combine histopatho-
logical and molecular data to improve classification accuracy in complex cases such as
undifferentiated lung cancer. We also plan to investigate the integration of traditional
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biomarkers such as TTF-1 and P40, aiming to combine morphological and molecular data
for enhanced diagnostic performance. Furthermore, efforts will focus on developing user
interfaces and software tools to facilitate clinical integration. The explainability of the
model’s decision-making process will be improved to ensure better understanding and
trust among clinical experts [70]. Pre-processing techniques, such as quality assessment
filters and noise reduction, will also be incorporated to mitigate the risk of errors in cases
with suboptimal specimen quality.

5. Conclusions

In this study, we proposed a hybrid model that integrates the EfficientNet-B0, LBP,
and ViT encoder to automatically classify NSCLC subtypes using histopathological images.
Our comprehensive feature extraction approach demonstrated superior performance using
the SVM classifier. The experimental results indicate that including textural and contextual
features significantly enhance the classification accuracy more than deep features alone.
The highest test accuracy of 99.87% indicates the potential of the proposed method in
accurate diagnosis, thereby reducing the risk of misdiagnosis and facilitating more effective
treatment planning for NSCLC patients. This study contributes to the accurate automated
lung cancer diagnosis, using multiple feature extraction techniques. Future work may focus
on expanding this approach to other cancer types and optimizing the model to handle
larger and more diverse datasets. The integration of such advanced diagnostic tools in
clinical practice helps in accurate cancer diagnosis.
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