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Abstract

This paper considers alternative estimators of the intercept parameter of the
linear regression model with normal error when uncertain non-sample prior in-
formation about the value of the slope parameter is available. The maximum
likelihood, restricted, preliminary test and shrinkage estimators are consid-
ered. Based on their quadratic biases and mean square errors the relative
performances of the estimators are investigated. Both analytical and graph-
ical methods are explored. None of the estimators is found to be uniformly
dominating the others. However, if the non-sample prior information regard-
ing the value of the slope is not too far from its true value, the shrinkage
estimator of the intercept parameter dominates the rest of the estimators.
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1 Introduction

Estimation of the slope and intercept parameter of linear regression model is a widely

used statistical procedure. The use of the maximum likelihood estimator (mle) or

least square estimator (lse) is very common in the literature. These estimators are
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solely based on the sample information, and disregard any other kind of non-sample

prior information in their definition. The notion of inclusion of non-sample prior

information to the estimation of parameters has been introduced to ‘improve’ the

quality of the estimators. The natural expectation is that the inclusion of additional

information would result in a better estimator. In some cases this may be true, but

in many other cases the risk of worse consequences can not be ruled out. A number

of estimators have been introduced in the literature that, under particular situation,

over performs the traditional exclusive sample information based unbiased estima-

tors when judged by criteria such as the mean square error and squared error loss

function. In many studies the researchers estimate the slope parameter of the regres-

sion model. However, the estimation of the intercept parameter is more difficult than

that of the slope parameter. This is because the estimator of the slope parameter is

required in the estimation of the intercept parameter. Khan et al (2002) studied the

improved estimation of the slope parameter for the linear regression model. They

introduced the coefficient of distrust on the belief of the null hypothesis, and incor-

porated this coefficient in the definition and analysis of the estimators. In this paper

we use the unrestricted estimator of the slope parameter to define the unrestricted

estimator (UE), restricted estimator (RE), preliminary test estimator (PTE) and

shrinkage estimator (SE) of the intercept parameter. Statistical properties of these

estimators are investigated both analytically and graphically.

A large number of studies have been conducted in the area of the ‘improved’

estimation following the seminal work of Bancroft (1944) and later Han and Bancroft

(1968). They developed the preliminary test estimator that uses uncertain non-

sample prior information (not in the form of prior distributions), in addition to the

sample information. Stein (1956) introduced the Stein-rule (shrinkage) estimator

for multivariate normal population that dominates the usual mle under the squared

error loss function. In a series of papers Saleh and Sen (1978, 1985) explored the

preliminary test approach to Stein-rule estimation. Many authors have contributed

to this area, notably Sclove et al. (1972), Judge and Bock (1978), Stein (1981),

Maatta and Casella (1990), and Khan (1998), to mention a few. Ahmed and Saleh

(1989) provided comparison of several improved estimators for two multivariate

normal populations with a common covariance matrix. Later Khan and Saleh (1995,

1997) investigated the problem for a family of Student-t populations. However, the

relative performance of the preliminary test and shrinkage estimators of the intercept

parameter of linear regression model has not been investigated.

Consider a linear regression model with slope and intercept parameters β and
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θ respectively. Assume that uncertain non-sample prior information on the value

of the slope parameter, β is available, either from previous study or from practical

experience of the researchers or experts. Let the non-sample prior information be

expressed in the form of a null hypothesis, H0 : β = 0 which may be true, but not

sure. We wish to incorporate both the sample information and the uncertain non-

sample prior information in estimating the intercept θ. Following Khan et al (2002)

we assign a coefficient of distrust, 0 ≤ d ≤ 1, for the non-sample prior information,

that represents the degree of distrust in the null hypothesis. It is assumed that

the intercept parameter is unknown and estimated by the mle. First we define the

unrestricted mle of the unknown intercept θ and the common variance σ2 from the

likelihood function of the sample. Based on the unrestricted and restricted (by the

null hypothesis) mle of σ2, we derive the likelihood ratio test for testing H0 : β = 0

against Ha : β 6= 0. Then use the test statistic, as well as the sample and non-

sample information to define the preliminary test and shrinkage estimators of the

unknown population intercept.

Like the mle of the slope parameter the mle of the intercept parameter is unbi-

ased. Here we attempt to search for an estimator of the intercept parameter that

is biased but may well have some superior statistical property in terms of another

more popular statistical criterion, namely the mean square error than the popular

mle. We investigate the bias and the mean square error functions, both analyti-

cally and graphically to compare the performance of the estimators. The relative

efficiency of the estimators are also studied to search for a better choice. Extensive

computations have been used to produce graphs to critically check various affects on

the properties of the estimators. The analysis reveals the fact that although there

is no uniformly superior estimator that bits the others, the SE dominates the other

two biased estimators if the non-sample prior information regarding the value of β

is not too far from its true value. Usually it is expected that the non-sample prior

information will not be too far from the true value.

The next section provides the specification of the model and definition of the

unrestricted estimators of θ, σ2 as well as the derivation of the likelihood ratio test

statistic. The three alternative ‘improved’ estimators are defined in section 3. The

expressions of bias and mse functions of the estimators are obtained in section 4. The

quadratic biases of three biased estimators are analyzed in section 5. Comparative

study of the relative efficiency of the estimators are included in section 6. Some

concluding remarks are given in section 7.
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2 The Model and Some Preliminaries

The n independently and identically distributed responses from a linear regression

model can be expressed by the equation

y = θ1n + βx + e (2.1)

where y and x are the column vectors of response and explanatory variables respec-

tively, 1n = (1, . . . , 1)′ - a vector of n-tuple of 1’s, θ and β are the unknown intercept

and slope parameters respectively and e = (e1, . . . , en)′ is a vector of errors with in-

dependent components which is distributed as Nn(0, σ2In). So that E(e) = 0 and

E(ee′) = σ2In where σ2 is the variance of each of the error component in e and In

is the identity matrix of order n. The unrestricted mle of the slope β and intercept

θ are given by

β̃ = (x′x)−1x′y and θ̃ = ȳ − β̃x̄ (2.2)

where, x̄ = 1
n

∑n
j=1 xj and ȳ = 1

n

∑n
j=1 yj. It is well known that, the sampling

distribution of the mle of θ and β are normal with respective means, E(θ̃) = θ,

E(β̃) = β and variances, E(θ̃ − θ)2 = σ2H and E(β̃ − β)2 = σ2

Sxx
in which Sxx =

∑n
j=1(xj − x̄)2 and H =

{
1
n

+ x̄2

Sxx

}
. Therefore, θ̃ is unbiased for θ. Here, the bias

and the mse of θ̃ are given by B1(θ̃) = 0 and M1(θ̃) = σ2H respectively. The mle of

σ2 is

S∗2n =
1

n
(y − ŷ)′(y − ŷ) (2.3)

where ŷ = θ̃1n + β̃x. This estimator is biased for σ2. However,

S2
n =

1

n− 2
(y − ŷ)′(y − ŷ) (2.4)

is unbiased for σ2. The above unbiased estimator of σ2 has a scaled χ2 distribution

with d.f. ν = (n− 2). It can be easily shown that the standard error of β̃ is Sn√
Sxx

.

To remove the uncertainty from the non-sample prior information, we perform an

appropriate statistical test on the null hypothesis, H0 : β = 0 against the alternative

hypothesis, Ha : β 6= 0. In this study, the appropriate test is the likelihood ratio

test (LRT) and the test statistic is given by

Lν =
S

1
2
xxβ̃

Sn

. (2.5)

Under the Ha, the above statistic Lν , follows a non-central Student-t distribution

with ν = (n−2) degrees of freedom (d.f.), and non-centrality parameter ∆2 = Sxxβ2

σ2 .
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As per the relationship between the non-central Student-t and F distributions under

the Ha, L2
ν follows the non-central F -distribution with (1, ν) d.f. and same non-

centrality parameter. Under the null-hypothesis, Lν and L2
ν follow a central Student-

t and F -distributions respectively with appropriate degrees of freedom. We use this

test statistic for defining the PTE, and the shrinkage estimator by following the

preliminary test approach to the shrinkage estimation.

3 Proposed Estimators of the Intercept

Consider a linear combination of θ̃ = ȳ − β̃x̄, mle of θ under Ha and θ̂ = ȳ, mle of

θ under H0 as

θ̂RE(d) = dθ̃ + (1− d)θ̂, 0 ≤ d ≤ 1. (3.1)

The estimator θ̂RE(d) is called the restricted estimator (RE), where d is the degree

of distrust in the null hypothesis, H0 : β = 0. Here, d = 0 means there is no distrust

on the H0, and we get θ̂RE(d = 0) = θ̂, while d = 1 means there is complete distrust

on the H0, and we get θ̂RE(d = 1) = θ̃. If 0 < d < 1, the degree of distrust is an

intermediate value which results in an interpolated value between θ̂ and θ̃ given by

(3.1). The restricted estimator, as defined above, is normally distributed with mean

and mse given by

E[θ̂RE(d)] = θ + (1− d)βx̄ and MSE[θ̂RE(d)] = d2H + (1− d)2σ2

n
(3.2)

respectively.

Following Bancroft (1944) we define a preliminary test estimator of the intercept

parameter as

θ̂PTE(d) = θ̂RE(d)I(F < Fα) + θ̃I(F ≥ Fα)

= θ̃ + β̃x̄(1− d)I(F < Fα) (3.3)

where I(A) is an indicator function of the set A and Fα is the (1 − α)th quantile

of a central F -distribution with (1, ν) degrees of freedom. For d = 0, the above

preliminary test estimator becomes

θ̂PTE(d = 0) = θ̃ + β̃x̄I(F < Fα). (3.4)

The PTE is a discontinuous function of θ̂RE(d) and θ̃. Also, it depends on the

choice of the level of significance α of the test. To overcome the above limitations

of the PTE, we define the shrinkage estimator (SE) of θ as

θ̂SE(d) = θ̃ + (1− d)β̃x̄
cSn√
Sxx|β̃|

. (3.5)
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Note that in this estimator, c is the shrinkage constant, a function of n. Unlike the

preliminary test estimator, the shrinkage estimator does not depend on the choice

of the level of significance.

4 Some Statistical Properties

The bias and the mean square error (mse) functions of RE, PTE and SE are derived

in this section. For the RE the bias and the mse are obtained as

B2[θ̂
RE(d)] =

x̄σ√
Sxx

(1− d)∆ (4.1)

and M2[θ̂
RE(d)] = σ2

[
d2H + (1− d)2 x̄2∆2

Sxx

]
(4.2)

respectively, where ∆2 is the departure constant from the null-hypothesis. Under the

null hypothesis the value of this constant is 0 while under the alternative hypothesis

it takes a positive value. The value of this constant plays an important role on the

behavior of the biased estimators. The relative efficiency of the estimators change

with the change in the value of this departure constant. We study this feature in a

greater detail in the remainder of this paper .

4.1 The Bias and the MSE of the PTE

By definition, the bias of the PTE is given by

E
[
θ̂PTE(d)− θ

]
= E

[
(θ̃ − θ) + (1− d)β̃x̄I(F < Fθ)

]
(4.3)

= (1− d)x̄
σ√
Sxx

E

[√
Sxxβ̃

σ
I
(Sxxβ̃

2

S2
n

< Fα

)]
.

Note Z =
√

Sxxβ̃
σ

is distributed as N(∆, 1), where ∆ =
√

Sxxβ
σ

, and νS2
nSxx

σ2 is dis-

tributed (independently) as a central chi-square variable with ν degrees of freedom.

Evaluating the expression in (4.3) the bias function of β̂PTE(d) is found to be

B3[θ̂
PTE(d)] = (1− d)x̄βG3,ν

(1

3
Fα; ∆2

)
, (4.4)

where Gn1,n2(·; ∆2) is the c.d.f. of a non-central F-distribution with (n1, n2) degrees

of freedom and non-centrality parameter ∆2. This bias function of the PTE depends

on the coefficient of distrust and the departure constant, among other things. To

evaluate the expression in (4.3) we used the following theorem.

Theorem 4.1. If Z ∼ N (∆, 1) and φ(Z2) is a Borel measurable function, then

E{Zφ(Z2)} = ∆Eφ[χ2
3(∆

2)]. (4.5)
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To obtain the mean square error of θ̂PTE(d) we need the following theorem.

Theorem 4.2. If Z ∼ N (∆, 1) and φ(Z2) is a Borel measurable function, then

E[Z2φ(Z2)] = E
[
φ{χ2

3(∆
2)}

]
+ ∆2E

[
φ{χ2

5(∆
2)}

]
. (4.6)

The proof of the above two theorems are given in Appendix B2 of Judge and

Bock (1978).

From the definition, the mse expression of the PTE is

M3

[
θ̂PTE(d)

]
= E

[
θ̂PTE(d)− θ

]2
(4.7)

= E(θ̃ − θ)2 + (1− d)2E[β̃2x̄2I(F < Fα)]

+2(1− d)E[(θ̃ − θ)β̃x̄I(F < Fα)]

= σ2H + (1− d)2x̄2E[β̃2I(F < Fα)]

+2x̄(1− d)E[β̃(θ̃ − θ)I(F < Fα)].

After completing the evaluation of all the terms on the R.H.S. of the above expression

in (4.7), the mse function of the PTE becomes,

M3[β̂
PTE(d)] = σ2H +

σ2x̄2

Sxx

[
∆2

{
2(1− d)G3,v

(1

3
Fα; ∆2

)

−(1− d2)G5,v

(1

5
Fα; ∆2

)}
− (1− d2)G3,v

(1

3
Fα; ∆2

)]
(4.8)

4.2 The Bias and MSE of the SE

Now, following Bolfarine and Zacks (1992) we compute the bias and the mse of the

SE, θ̂SE(d). The bias of the SE is given by

B4[θ̂
SE(d)] = (1− d)E

[
β̃x̄

cSn√
Sxx|β̃|

]
(4.9)

= (1− d)
cx̄√
Sxx

E[Sn]E

[
Z

|Z|

]

where Z =
√

Sxxβ̃
σ

∼ N (∆, 1). Now, we use the following theorem to evaluate E
[

Z
|Z|

]
.

Theorem 4.3. If Z ∼ N (∆, 1) and φ(Z2) is a Borel measurable function, then

E

[
Z

|Z|

]
= 1− 2Φ(−∆) (4.10)
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where Φ(·) is the c.d.f. of the standard normal distribution. The proof of the

theorem is straightforward.

From the expression of the above bias function, the quadratic bias of the SE,

QB4[θ̂
SE(d)] is obtained as

QB4[θ̂
SE(d)] = (1− d)2 c2x̄2σ2

Sxx

K2
ν{2Φ(∆)− 1}2 (4.11)

where Kν =
√

2
n−2

Γ(n−1
2

)

Γ(n−2
2

)
.

As ∆2 → 0, QB4[θ̂
SE(d)] → 0 and as ∆2 →∞, QB4[θ̂

SE(d)] → (1− d)2 c2x̄2σ2

Sxx
K2

ν ,

a non-decreasing monotonic function of ∆2. Thus, unless ∆2 is near the origin, the

quadratic bias of the SE is significantly large.

In order to compute the mse of θ̂SE(d) we consider

E[θ̂SE(d)− θ]2 = E[θ̃ − θ]2 + (1− d)2 c2x̄2

Sxx

E

[
S2

nβ̃
2

|β̃|2
]

(4.12)

+
2(1− d)cx̄√

Sxx

E

[
(θ̃ − θ)

Snβ̃

|β̃|

]

= σ2H + (1− d)2 c2x̄2σ2

Sxx

−2c(1− d)
x̄2σ2Kν

Sxx

{
E(|Z|)−∆E

[
Z

|Z|

]}
.

where Z ∼ N (∆, 1). To find E(|Z|), we have the following theorem.

Theorem 4.4. If Z ∼ N (∆, 1), then

E(|Z|) =

√
2

π
e−∆2/2 + ∆{2Φ(∆)− 1} (4.13)

where Φ(·) is the c.d.f. of the standard normal variable.. See Khan et al (2002) for

the proof of the above theorem.

Therefore, the mse of θ̂SE(d) is given by

M4[θ̂
SE(d)] = σ2


 1

n
+

x̄2

Sxx



1 + (1− d)2c2 − 2(1− d)cKν

√
2

π
e−

∆2

2






 . (4.14)

The value of c which minimizes (4.14) depends on ∆2 and is given by

c∗ = (1− d)−1Kν

√
2

π
e−∆2/2. (4.15)
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To make c∗ independent of ∆2, we choose c0 = (1 − d)−1
√

2
π
Kν . Thus, optimum

M4[θ̂
SE(d)] reduces to

M4[θ̂
SE(d)] = σ2

[
1

n
+

x̄2

Sxx

{
1 +

2

π
K2

ν

(
1− 2e−

∆2

2

)}]
. (4.16)

We compare the above mse with those of the other estimators in the next section.

5 Study of Bias

Here we compare the three biased estimators by analyzing their quadratic biases

analytically and graphically. Also, we propose the best performed estimator, under

certain condition.

The quadratic bias of the RE, PTE and SE are respectively given by

QB2[θ̂
RE(d)] =

x̄2σ2

Sxx

(1− d)2∆2 (5.1)

QB3[θ̂
PTE(d)] =

x̄2σ2

Sxx

(1− d)2∆2
{
G3,ν

(1

3
Fα; ∆2

)}2

(5.2)

QB4[θ̂
SE(d)] =

σ2x̄2

Sxx

K2
ν{2Φ(∆)− 1}2. (5.3)

Note that, in the derivation of QB4[θ̂
SE(d)], the optimal value of the shrinkage

constant has been used.

Under the null-hypothesis, ∆2 = 0, and hence QB2[θ̂
RE(d)] = QB3[θ̂

PTE(d)] =

QB4[θ̂
SE(d)] = 0 for all d and α. It is observed that as ∆2 →∞, QB2[θ̂

RE(d)] →∞
except for d = 1; QB3[θ̂

PTE(d)] → 0 for all α and d; and QB4[θ̂
SE] → x̄2σ2

Sxx
K2

ν , a

constant that does not depend on d. Therefore, in terms of quadratic bias, RE is

uniformly dominated by both the PTE and SE regardless of the value of d. Also,

for very large values of ∆2, the SE is dominated by the PTE regardless of the value

of α. From small to moderate values of ∆2, there is no uniform domination of one

estimator over the other. In this case, domination depends on the level of significance

α and the degree of distrust d. However, Chiou and Saleh (2002) suggest the value

of α to be between 20% and 25%. In this interval of α, the quadratic bias of the

PTE approaches to zero for a reasonable value of ∆2. If there is a complete distrust

on the null hypothesis, the quadratic bias of the RE and PTE become 0 for any α

and ∆2, while that of the SE remains greater than 0 except for ∆2 = 0. As the

prior information is usually obtained from previous studies or expert knowledge, in

practice, the chance of the non-centrality parameter to be very large is really slim

and α is usually preferred to be reasonably small. Also, the quadratic bias of the

9



0 5 10 15 20 25 30
0

2

4

6

8

10

∆2

Q
ua

dr
at

ic
 B

ia
s

For d = 0

RE
PTE(α=0.01)
PTE(α=0.05)
PTE(α=0.10)
SE

0 5 10 15 20 25 30
0

1

2

3

4

5
For d = 0.25

∆2

Q
ua

dr
at

ic
 B

ia
s

RE
PTE(α=0.01)
PTE(α=0.05)
PTE(α=0.10)
SE

0 5 10 15 20 25 30
0

1

2

3

4

∆2

Q
ua

dr
at

ic
 B

ia
s

For d = 0.5

RE
PTE(α=0.01)
PTE(α=0.05)
PTE(α=0.10)
SE

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

∆2

Q
ua

dr
at

ic
 B

ia
s

For d = 1

RE
PTE(α=0.01)
PTE(α=0.05)
PTE(α=0.10)
SE

Figure 1: Graph of the quadratic bias of the RE, PTE and SE against ∆2

SE is relatively stable and approaches to a constant value starting from some mod-

erate value of ∆2 and is unaffected by the choice of d and α. Therefore, the SE may

be a better choice among the biased estimators considered in this paper. Figure 1

is the graph of the quadratic bias of the RE, PTE and SE.

6 Study of the mean square error function

First we define the relative efficiency functions of the biased estimators as the ratio

of the reciprocal of the mse functions. Then we compare the relative performance

of the estimators by using the relative efficiency criterion.

6.1 Comparing RE against UE

The relative efficiency function of the RE relative to the UE is

RE[θ̂RE(d) : θ̃] = H

[
d2H + (1− d)2 x̄2

Sxx

∆2

]−1

. (6.1)
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The relative efficiency function of the RE relative to the UE takes its highest

possible value at ∆2 = 0 for d = 0. As ∆2 increases, the relative efficiency function

decreases for all d. It crosses the 1-line at some value of ∆2 near zero, and finally

for some moderate to large value of ∆2 it approaches to 0. But for d = 1 the RE

and UE are equally efficient regardless of the value of ∆2.
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Figure 2: Graph of the relative efficiency of RE relative to UE against ∆2.

From the expression in (6.1) we draw the following conclusions.

(i) Under H0 ∆2 = 0, and hence RE[θ̂RE(d) : θ̃] = d−2 ≥ 1. When d = 0, the

relative efficiency function of the RE grows unboundedly. As d grows larger from 0

the relative efficiency decreases, and finally reaches to the 1-line for d = 1. Therefore

under H0, the RE is a better choice than the UE.

(ii) As ∆2 grows larger, the relative efficiency function grows smaller, and finally

as ∆2 → ∞, RE[θ̂RE(d); θ̃] → 0, except for d = 1. As d → 1, RE[θ̂RE(d); θ̃] → 1

from below regardless of the value of ∆2. Therefore for very large values of ∆2, the

UE is a better choice than the RE.
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In general, the relative efficiency of the RE relative to the UE is a decreasing

function of ∆2 with it’s maximum value d−2(≥ 1) at ∆2 = 0 and minimum value 0 at

∆2 = ∞, unless d = 1. The relative efficiency of the RE equals 1 at ∆2 = H (1+d)Sxx

(1−d)x̄2 .

Thus, if ∆2 ∈
[
0, H (1+d)Sxx

(1−d)x̄2

]
, the RE is more efficient than the UE, otherwise the

reverse is true. However, in practice the non-sample prior information is usually

obtained from some previous experience or expert knowledge, and hence it is very

unlikely for ∆2 to be very large. Therefore for ∆2 = 0 or near 0 the restricted

estimator is a better choice than the unrestricted estimator.

6.2 Comparing PTE against UE and RE

The relative efficiency of the PTE relative to the UE and RE are

RE
[
θ̂PTE(d) : θ̃

]
= H

[
H +

x̄2σ2

Sxx

g(∆2)

]−1

(6.2)

RE
[
θ̂PTE(d) : θ̂RE(d)

]
=

[
d2H + (1− d)2∆2 x̄2

Sxx

] [
H +

x̄2

Sxx

g(∆2)

]−1

(6.3)

respectively, where

g(∆2) = ∆2
{
2(1− d)G3,v

(1

3
Fα; ∆2

)
− (1− d2)G5,v

(1

5
Fα; ∆2

)}

−(1− d2)G3,v

(1

3
Fα; ∆2

)
. (6.4)

From the expressions in (6.2) and (6.3) we draw the following conclusions.

i) Under H0 ∆2 = 0, and the relative efficiency functions become

RE
[
θ̂PTE(d) : θ̃

]
= H

[
H − x̄2σ2

Sxx

(1− d2)G3,v

(1

3
Fα; 0

)]−1

(6.5)

and RE
[
θ̂PTE(d) : θ̂RE(d)

]
= d2H

[
H − σ2x̄2

Sxx

(1− d2)G3,ν

(1

3
Fα; 0

)]−1

. (6.6)

Therefore, for any fixed d (< 1), the maximum relative efficiency of the PTE relative

to the UE attains at ∆2 = 0, while the minimum relative efficiency of the PTE

relative to the RE attains at ∆2 = 0. As d grows larger the maximum relative

efficiency of the PTE relative to the UE decreases, while the minimum relative

efficiency of the PTE relative to the RE increases. For d = 1, the efficiency of the

PTE, RE and UE are same regardless of the values of α and ∆2.
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Figure 3: Graph of the relative efficiency of PTE relative to UE and RE against ∆2.

As ∆2 grows up, the relative efficiency of the PTE relative to the UE goes down

and crosses the 1-line at

∆2
∗ =

(1 + d)G3,ν(
1
3
Fα; ∆2)

2G3,ν(
1
3
Fα; ∆2)− (1 + d)G5,ν(

1
5
Fα; ∆2)

(6.7)

while the relative efficiency of the PTE compare to the RE goes up and crosses the

1-line at

∆2
∗∗ =

(1 + d)
{
1−G3,ν

(
1
3
Fα; ∆2

)}

(1− d)
{
1− 2G3,ν

(
1
3
Fα; ∆2

)
− (1 + d)G5,ν

(
1
5
Fα; ∆2

)} (6.8)

ii) Finally, as ∆2 → ∞, RE
[
θ̂PTE(d) : θ̃

]
→ 1 regardless of the value of d and

α, while the relative efficiency of the PTE relative to the RE grows unboundedly

regardless of the value of α, unless d = 1.

In general, the PTE is more efficient than the UE if 0 ≤ ∆2 < ∆2
∗. Starting from

some ∆2 > ∆2
∗ the UE is more efficient than the PTE up to a moderate value of ∆2,

13



and then slowly approaches to the 1-line. On the other hand, for general ∆2 > 0,

we have RE[θ̂PTE(d) : θ̂RE(d)]
<
=
>

1 according as ∆2 <
=
>

∆2
∗∗.

6.3 Comparing SE against UE, RE and PTE

The relative efficiency of the SE relative to the UE, RE and PTE are respectively

RE
[
θ̂SE(d) : θ̃

]
=

[
1 + H−1 2x̄2K2

νξ

πSxx

]−1

(6.9)

RE
[
θ̂SE(d) : θ̂RE(d)

]
=

[
d2H + (1− d)2 x̄2K2

ν∆2

Sxx

][
H +

2x̄2ξ

πSxx

]−1

(6.10)

RE
[
θ̂SE(d) : θ̂PTE(d)

]
=

[
H +

x̄2σ2

Sxx

g(∆2)

] [
H +

2x̄2K2
νξ

πSxx

]−1

(6.11)

where ξ =
{
1− 2e

−∆2

2

}
, and g(∆2) is defined earlier.

The relative efficiency of the SE relative to the UE is a decreasing function of ∆2

which takes its maximum value at ∆2 = 0. It falls sharply as ∆2 moves away from

0, and approaches to some constant value from some moderate value of ∆2. The

relative efficiency of the SE relative to the RE is an increasing function of ∆2 which

takes its minimum value at ∆2 = 0. It grows unboundedly as ∆2 increases. The

relative efficiency of the SE relative to the PTE is neither increasing nor decreasing

function of ∆2. Moreover it depends on the choice of the level of significance. But

from some moderate to large value of ∆2 it approaches to a constant value regardless

of the choice of α.

From the expressions in (6.9) - (6.11) we draw the following conclusions.

i) Under H0 ∆2 = 0, and hence

RE
[
θ̂SE(d) : θ̃

]
=

[
1− 2H−1V K2

ν

]−1
(6.12)

RE
[
θ̂SE(d) : θ̂RE(d)

]
= d2

[
1− 2H−1V K2

ν

]−1
(6.13)

RE
[
θ̂SE(d) : θ̂PTE(d)

]
=

[
1−H−1V (1− d2)G3

] [
1− 2H−1V K2

ν

]−1
(6.14)

where V = H−1x̄2

πSxx
and G3 = G3,v

(
1
3
Fα; 0

)
. The second term of the right hand side

of (6.12) is always positive. So the maximum relative efficiency of the SE relative

to the UE is always greater than 1, and at ∆2 = 0. The relative efficiency of the

SE relative to the RE and PTE depends on d. When d = 0, the minimum relative

efficiency of the SE relative to the RE is 0 at ∆2 = 0. No such minimum or maximum

relative efficiency of the SE relative to the PTE exists at ∆2 = 0. For a larger value

of α, G3,v

(
1
3
Fα; 0

)
is smaller than for a smaller value of α. Therefore, at ∆2 = 0 the

14



relative efficiency of the SE relative to the PTE is higher for larger choice of α, and

vice-versa. If α → 1, G3,v

(
1
3
Fα; 0

)
→ 0, and hence the relative efficiency of the SE

relative to the PTE tends to be that of the SE relative to the UE.
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Figure 4: Graph of relative efficiency of SE relative to UE, RE and PTE against ∆2

However, for a fixed α as d increases, the relative efficiency function also increases.

When there is complete distrust on the null hypothesis the relative efficiency of the

SE relative to all estimators becomes the same for all ∆2 and all α.

ii) If ∆2 moves away from 0, the relative efficiency of the SE relative to the UE

falls sharply; that relative to the RE quickly grows up; and that relative to the PTE

goes up or down depending on 2G3,v

(
1
3
Fα; ∆2

)
>
<
(1 + d)G5,v

(
1
5
Fα; ∆2

)
.

As ∆2 → ∞, RE
[
θ̂SE(d) : θ̃

]
→

{
1 +

(
1 + Sxx

nx̄2

)−1
2
π
K2

ν

}−1

< 1; RE
[
θ̂SE(d) :

θ̂RE(d)
]
→ ∞, except for d = 1; and RE

[
θ̂SE(d) : θ̂PTE(d)

]
approaches to the

constant value
[
1 + 2H−1x̄2K2

ν

πSxx

]−1
which does not depend on d and α.

In general, the relative efficiency of the SE relative to the UE decreases from
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{
1−

(
1 + Sxx

nx̄2

)−1
2
π
K2

ν

}−1

at ∆2 = 0, crosses the 1-line at ∆2 = 2ln2, and it ap-

proaches to a constant value as ∆2 →∞. Therefore, for ∆2 < 2ln2 the SE performs

better than the UE, otherwise the UE performs better than the SE. On the other

hand, RE
[
θ̂SE(d) : θ̂RE(d)

]
increases as ∆2 moves away from 0. It grows up un-

boundedly as ∆2 →∞. The general picture of the relative efficiency of SE compare

to the PTE can be described as follows. The relative efficiency function begins with

the value in the expression of (6.14) at ∆2 = 0 and crosses the 1-line at

∆2 =

2
π
K2

ν

(
1− 2e−

∆2

2

)
− (1− d2)G5,ν

(
1
5
Fα; ∆2

)

σ2
[
2(1− d)G3,ν

(
1
3
Fα; ∆2

)
− (1− d2)G5,ν

(
1
5
Fα; ∆2

)] . (6.15)

Finally, as ∆2 →∞ the relative efficiency function approaches to the constant value[
1 + 2H−1x̄2K2

ν

πSxx

]−1
.

7 Concluding Remarks

Among the four estimators considered in this paper, the UE is the only unbiased

estimator, and it is based only on the sample information. The estimators based

on both the non-sample prior information and sample information are biased. How-

ever, the inclusion of non-sample prior information increases the efficiency of the

estimators. The relative efficiency of the biased estimators depends on the depar-

ture constant ∆2 and the degree of distrust d. From 0 to some moderate value of

∆2, the SE dominates the UE for all values of d. Starting from some moderate

values of ∆2 the SE is dominated by the UE. From 0 to some moderate values of ∆2

the SE is dominated by the RE. But starting from that moderate value of ∆2 the

SE dominates the RE. However, the increasing rate of the relative efficiency of the

SE relative to the RE decreases as the value of the coefficient of distrust increases.

Under the null hypothesis the SE dominates the PTE unless α or d is not too small.

From some small to moderate values of ∆2 the SE dominates the PTE if α is not

too large. Starting from some moderate value of ∆2, SE is dominated by the PTE.

In practice, the non-sample prior information is obtained from expert knowledge or

previous studies, and hence the value of the parameter available from prior informa-

tion is expected to be close to its true value and the degree of distrust on the null

hypothesis is very unlikely to be close to 1. Also, the level of significance is always

preferred to be small. Therefore, under the above circumstances, the shrinkage esti-

mator would be the best choice as an improved estimator of the intercept parameter

among all the estimators considered in this paper.
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