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ABSTRACT
The Fourier spectrum of the γ -Dor variable KIC 5608334 shows remarkable frequency groups
at ∼3, ∼6, ∼9, and 11–12 d−1. We explain the four frequency groups as prograde sectoral
g modes in a rapidly rotating star. Frequencies of intermediate-to-high radial order prograde
sectoral g modes in a rapidly rotating star are proportional to |m| (i.e. ν ∝ |m|) in the corotating
frame as well as in the inertial frame. This property is consistent with the frequency groups
of KIC 5608334 as well as the period versus period-spacing relation present within each
frequency group, if we assume a rotation frequency of 2.2 d−1, and that each frequency group
consists of prograde sectoral g modes of |m| = 1, 2, 3, and 4, respectively. In addition, these
modes naturally satisfy near-resonance conditions ν i ≈ ν j + νk with mi = mj + mk. We even
find exact resonance frequency conditions (within the precise measurement uncertainties) in
many cases, which correspond to combination frequencies.

Key words: asteroseismology – stars: individual: (KIC 5608334) – stars: oscillations – stars:
rotation – stars: variables.

1 IN T RO D U C T I O N

Alan Cousins (1903–2001) remarkably published in this journal
for 77 yr. His first paper, on observations of the light curve of the
Cepheid � Carinae (Cousins 1924), was published in 1924, and his
last, on photometric extinction (Cousins & Caldwell 2001), was
published on the day he died, 2001 May 11 (Kilkenny 2001).

Cousins first became interested in the light variation of γ Doradus
at least as early as the 1960s when Cousins & Warren (1963) re-
ported variability in γ Doradus with a range in photographic mag-
nitude of 0.04 mag; they gave the variability type as ‘I?’, meaning
indeterminate. They noted that some of the observations of the stars
in their paper dated to before 1952. So the original mystery of the
light variability of γ Doradus began in the middle of the last cen-
tury. Stimulated by Cousins’ work, further observations were made
in the late 1960s by Stobie (1971), who noted that γ Doradus has
a period in the range 0.33–1.00 d, and that it might be a β Lyrae
or W Ursa Majoris star with shallow eclipses. Interestingly, from
the modern μmag perspective of the Kepler mission data, the title
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of Stobie’s paper was ‘Microvariability of bright A and F stars’,
where hundredths of a magnitude variation, and mmag precision
were state of the art.

By the 1980s Cousins had found that γ Doradus was at least
doubly periodic (Cousins, Caldwell & Menzies 1989; Cousins 1992;
Cousins 1994), but he was still noting that the ‘cause of the variation
is not known’. He had a fascination with this star, and talked to
his many colleagues about it, including Kurtz and Balona. Kurtz
performed a frequency analysis of Cousins’ data for γ Doradus
in collaboration with him, but made no progress; Balona did the
same and was successful. The big breakthrough came when Balona,
Krisciunas & Cousins (1994) showed that two principal frequencies
in γ Doradus are stable and phase-locked, and they found evidence
of a third frequency. They ruled out star-spots as the source of the
variability, and concluded that ‘this star is the best example of what
appears to be a new class of pulsating F-type variables.’

Thus was born the class of γ Dor stars, which we now know are
multiperiodic g-mode pulsators. Many studies followed over the
next two decades. But those studies were plagued by what Balona
et al. (1994) referred to as an ‘aperiodic component’ to the light
variations. The second breakthrough came with data of unprece-
dented precision and duration with the Kepler space mission. With
those data we now know that the γ Dor stars have many g modes
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of consecutive radial order whose frequencies are so closely spaced
that data spanning at least a few months are needed to resolve them.
With the pulsation frequencies of γ Dor stars typically being in the
0–4 d−1 range, ground-based observations are inadequate to resolve
the daily alias confusion for these stars. It is simply not possible
to come even close to obtaining continuous data for months, and
impossible to obtain continuous data for years from the ground, as
the Kepler mission did from space. Our understanding of the γ Dor
stars is an unintended consequence (benefit!) of a space mission
built for an entirely different purpose – the search for Earth-like
exoplanets (Borucki et al. 2010).

The γ Dor stars are of fundamental importance to our understand-
ing of stellar structure and evolution because the g modes probe the
core conditions of these stars. Since the 1960s g modes have been
sought in the Sun for this purpose, but without success that is univer-
sally accepted (Appourchaux et al. 2010, although see Fossat et al.
2017). For the γ Dor stars there is no doubt: we are probing the core
conditions from just above the convective energy generation zone,
right out to the stellar surface for ‘hybrid’ stars that also show δ Sct
p-mode pulsations, and those hybrids are abundant in the Kepler
data set.

Of particular interest is our new ability to study the internal
rotation of stars in detail during their main-sequence, hydrogen-
burning phase. For some of the many observational studies now
addressing this, see Van Reeth, Tkachenko & Aerts (2016), Murphy
et al. (2016), Schmid et al. (2015), Van Reeth et al. (2015a), Saio
et al. (2015), and Kurtz et al. (2014). For fascinating theoretical
discussions of the diagnostic abilities of the g modes for γ Dor
stars, see Ouazzani et al. (2017) and Bouabid et al. (2013).

We now understand that the observed ‘aperiodicity’ in the light
curves of γ Dor stars is actually closely spaced series of g-mode
frequencies. Nevertheless, problems remain in understanding the
light curves of γ Dor stars, and the related δ Sct stars, as well as
other A stars that do not show any pulsational variability (Murphy
et al. 2015).

Kurtz et al. (2015) provided a unifying explanation for a variety
of light curve shapes among γ Dor, slowly pulsating B (SPB), and
pulsating Be stars in terms of combination frequencies based on
only a few pulsation modes. They particularly addressed the stars
described by McNamara, Jackiewicz & McKeever (2012) as having
frequency groups (fg), and found that combination frequencies of
a few base frequencies in the principal group could explain all of
the peaks in the other frequency groups. Previous attempts had
been made to extract frequencies from the groups and treat them
all as pulsation mode frequencies, but Kurtz et al. (2015) suggested
no need for that. Yet harmonics and combination frequencies arise
from highly non-linear pulsation, and Kurtz et al. (2015) gave no
explanation of why some γ Dor and SPB stars should show such
strong non-linearity, while other stars do not.

In this paper we discuss how rapid rotation can produce fre-
quency groups similar to those discussed in Kurtz et al. (2015)
even for relatively small amplitude pulsators (i.e. with weak non-
linearity), taking the γ Dor star KIC 5608334 as an example. Fig. 1
compares portions of the Kepler light curves of KIC 5608334 and
KIC 8113425. The latter star is one of the γ Dor stars discussed
by Kurtz et al. (2015). Obviously, the amplitude of KIC 8113425
is much larger and the light curve has a strongly non-linear nature
with asymmetric positive and negative excursions, while the light
curve of KIC 5608334 is symmetrical. Still, the amplitude spectrum
of KIC 5608334 shows strong frequency groupings (Fig. 3 below)
similar to those of KIC 8113425 (Kurtz et al. 2015).

Figure 1. A section of the long-cadence light curves of KIC 5608334 (top)
and KIC 8113425 (bottom). The oscillations of KIC 5608334 are linear and
small in amplitude, whereas KIC 8113425 has highly non-linear oscillations
of much larger amplitude.

We suggest that the frequency groups of g modes appear in rapidly
rotating stars, in which the rotational shift of prograde sectoral
modes of consecutive degree (−m = 1, 2, 3, 4, . . . ) generates
mode frequencies that are very close to the harmonics and combi-
nation frequencies of the base mode frequencies. Resonance then
causes the pulsation mode frequencies in the frequency groups to
exactly match the combination frequencies. It is noteworthy that
detailed pulsation models provide a good description of the pulsa-
tion mode frequencies in the frequency groups of the Kepler γ Dor
star KIC 5608334, as we show in this paper.

This hypothesis gives an astrophysical reason why some stars
show frequency groups and others do not, and it is testable by mea-
surement of vsin i in a large ensemble of γ Dor stars, both with and
without frequency groups. Because of the relative faintness of the
Kepler stars, observations to get accurate vsin i are challenging, but
they can be made. The primary goal of this paper is to describe mod-
els for KIC 5608334 for prograde sectoral pulsations with −m = 1,
2, 3, 4, . . . , and to show how they match the observations.

In a non-rotating star, the angular dependence of a non-radial
pulsation mode is designated by integers � and m of a spherical
harmonic Ym

� . The distribution of radial displacement (and varia-
tions of scalar quantities) has no latitudinal nodal line if � = |m|,
these are called sectoral modes, while in the other cases, (� − |m|)
latitudinal nodal lines appear and those are called tesseral modes
(see e.g. Unno et al. 1989; Aerts, Christensen-Dalsgaard & Kurtz
2010). In a rotating star, in particular if the rotation frequency is
larger than the pulsation frequency in the corotating frame, a single
Ym

� cannot be used to describe a pulsation mode because a mix-
ing among different � occurs. Still, to describe the property of the
amplitude distribution on the stellar surface, we use the adjectives
‘sectoral’ and ‘tesseral’ for non-axisymmetric modes without and
with latitudinal nodal lines, respectively. Sometimes, we use in this
paper ‘the first tesseral mode’ to indicate a mode with one latitudinal
nodal line.
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Table 1. Parameters for KIC 5608334; the spectroscopic
parameters are from Niemczura et al. (2015), the luminosity
is calculated from the GAIA DR1 (Gaia Collaboration 2016)
parallax.

Parameter Unit Value

log Teff K 3.839 ± 0.006
Teff K 6900 ± 100
log g cgs 3.9 ± 0.2
vsin i km s−1 110 ± 13
[Fe/H] − 0.05 ± 0.12
log L/L� 0.97 ± 0.11

2 MO D EL

Equilibrium main-sequence models to obtain theoretical pulsation
frequencies were calculated using Modules for Experiments in Stel-
lar evolution (Paxton et al. 2011, 2013, 2015, 2018) in the same way
as our previous works on γ Dor stars (Kurtz et al. 2014; Saio et al.
2015; Murphy et al. 2016). We have adopted a standard chemical
composition of (X, Z) = (0.72, 0.014) with the OPAL opacity tables
(Iglesias & Rogers 1996), and the mixing-length is set to be 1.7Hp,
with Hp being the pressure scale height. The effects of the Coriolis
force on the pulsation frequencies are included non-perturbatively
using the method of Lee & Baraffe (1995), where the effect of
centrifugal deformation is included approximately to the second or-
der of angular rotation frequency. The latter assumption is justified
because g modes propagate in the deep interior so that the effects
of deformation on the g-mode frequencies are small (Ballot et al.
2012). In the method of Lee & Baraffe (1995), to calculate pul-
sation frequencies in a rotating star, eigenfunctions are expanded
into terms proportional to spherical harmonics. We truncated the
expansion at the sixth (±1 depending the convergence of eigen-
functions) term. All the theoretical frequencies used in this paper
were obtained under the adiabatic approximation.

3 K I C 5 6 0 8 3 3 4 – A R A P I D LY ROTAT I N G γ D O R
STAR

KIC 5608334 is a γ Dor variable of spectral type F2 V (Niemczura
et al. 2015). At V = 9.9 mag it is relatively bright compared to
most Kepler γ Dor stars, which allowed Niemczura et al. (2015) to
observe it at high spectral resolution. The spectroscopic parameters
they obtained are listed in Table 1. GAIA DR1 (Gaia Collabora-
tion 2016) gives a parallax of 3.035 ± 0.385 mas. The parallax,
combined with a bolometric correction (Flower 1996), yields the
luminosity of KIC 5608334 listed in Table 1.

The positions of KIC 5608334 in the HR diagram and the log Teff–
log g diagram are shown in Fig. 2 with some evolutionary tracks for
a normal composition (X = 0.72, Z = 0.014), which is consistent
with the spectroscopy. The estimated luminosity is roughly consis-
tent with the spectroscopic surface gravity, log g, indicating a mass
range of 1.5–1.7 M�. To examine the pulsation properties of KIC
5608334, we adopted models in this mass range having effective
temperatures consistent with the spectroscopic range as listed in
Table 1.

Fig. 3 shows the amplitude spectrum of the full 1470-d Ke-
pler light curve of KIC 5608334. We identify four frequency
groups (labelled fg) in the ranges fg1: 2.7–3.2 d−1, fg2: 5.3–6.4 d−1,
fg3: 8.1–9.2 d−1, and fg4: 11.0–12.2 d−1. It is remarkable that fre-
quencies of fg2, fg3, and fg4 are in the ranges, respectively, of twice,
three times, and four times that of fg1. We identify these frequency

Figure 2. Some evolutionary tracks and estimated positions of KIC
5608334 (see Table 1) with error bars in the HR diagram (bottom panel) and
the log Teff–log g diagram (top panel). Effects of rotation are not included
in the evolutionary models. The luminosity of KIC 5608334 was obtained
from the GAIA (DR1) parallax.

groups fg1 . . . fg4 as prograde sectoral g modes of −m = 1, 2,
3, and 4, respectively. (In this paper we adopt the convention that
a negative m corresponds to a prograde mode.) Lower frequency
groups r1 at ∼1 d−1 and r2 at ∼2 d−1 are considered to be r modes,
as discussed in Saio et al. (2018).

Fig. 3 shows the presence of a peak at 2.2397 d−1 (and the har-
monic at 4.479 d−1). We consider this peak the rotation frequency
at a surface spot. The frequency is slightly higher than the rota-
tion frequency 2.20 d−1 determined in Section 3.2 by comparing
the g-mode period spacings of KIC 5608334 with models (where
uniform rotation is assumed). The closeness of the two frequencies
implies that the star rotates almost uniformly, although the slight
difference, if significant, indicates the presence of a slight latitudinal
and/or radial differential rotation.

3.1 Pulsation frequencies

We have downloaded the long cadence SAP (simple aper-
ture photometry) data of KIC 5608334 from the KASOC
(Kepler Asteroseismic Science Operations Center) web site
(http://kasoc.phys.au.dk/index.php) as ascii files. In order to account
for the different zero-points from quarter to quarter we simply di-
vided the fluxes in each quarter by their median and then converted
to parts per million (ppm). Oscillation frequencies of KIC 5608334
were measured from the full 1470-d Kepler light curve by using
two different methods. As a first approach we used the software
PERIOD04 (Lenz & Breger 2005). For a more detailed frequency ex-
traction, however, we employed automated software based on the
classical iterative pre-whitening process, where the highest peak in
the Lomb–Scargle periodogram was identified and then subtracted
from the light curve. The statistical significance of each peak was
assessed by using the false alarm probability (Scargle 1982), which
gives good results in the case of the Kepler data. In addition, the
amplitude of each extracted peak was compared to the value in
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Figure 3. The amplitude spectrum obtained from 1470 d of Kepler long cadence light curves of KIC 5608334 nearly out to the Nyquist frequency for long
cadence data. The two panels have different vertical scales. Four frequency groups are identified. Abbreviating frequency group as fg, we refer to them as fg1,
fg2, fg3, and fg4, as indicated in the top panel. Lower frequency groups designated as r1 and r2 are considered to be r modes, as discussed in Saio et al. (2018).
In this paper we associate the frequency groups with prograde sectoral g modes of azimuthal order −m = 1, 2, 3, and 4, respectively.

the original un-prewhitened data, allowing a maximum deviation
of 25 per cent. This step, which was also used by Van Reeth et al.
(2015b), allowed us to make sure that the peak was not introduced
while subtracting other signals. This software, which is based on
the Timeseries Tools code Handberg (2017), will be presented and
discussed in more detail in an upcoming paper (Antoci et al., in
preparation).

Employing the procedure described above, i.e. keeping the peaks
with an amplitude ratio between the extracted and the original value
in the range 0.75–1.00, we found 66 significant peaks; however, only
36 are above 2 d−1 corresponding to the frequency groups fg1–fg4.
The lower frequency peaks in the groupings r1 and r2 (Fig. 3) are too
closely spaced to be resolved, even with 4.0 yr of Kepler data, so we
disregard these values. To avoid introducing additional signals while
pre-whitening peaks, we filtered the data (simple high- and low-
pass filtering) such that we can extract frequencies for each of the
fg groupings individually. Applying this more elaborate procedure,
we identified a total of 192 peaks satisfying the criteria described
above. Those frequencies are listed in Table A1 in Appendix A.

We searched for combination frequencies in the form
aν i ± bν j ± cνk, using up to three of the four frequencies of the
highest amplitudes (indicated by filled black squares in Fig. 4),
where a, b, c are integers satisfying the conditions, 0 ≤ a, b, c ≤
4 and a + b + c ≤ 9. A peak was identified as a combination fre-
quency if the absolute value of the difference between the predicted
combination frequency and the measured peak was lower than the

resolution, i.e. |νcombination − νobs| < 1/�T, where �T = 1470 d. 1

We found 69 combination frequencies, which are shown in Fig. 4
with different colours depending on the order (i.e. a + b + c). We
discuss, in the latter part of this paper, why eigenfrequencies of a
rapidly rotating star are observed to be close to the combination
frequencies.

3.2 Period spacings of g modes

Amplitude spectra of KIC 5608334 for each frequency group shown
in Fig. 4 indicate that the majority of frequencies are more-or-
less regularly spaced. Using the frequencies indicated by inverted
triangles in Fig. 4, we have calculated period spacings (�P), which
are plotted (crosses) with model predictions for g modes (circles
and dashed lines) in Fig. 5 as a function of period. Within each
frequency group, �P decreases with period, which is a common
property of prograde g modes of a rotating star as discussed in,
e.g. Bouabid et al. (2013), Van Reeth et al. (2016), and Ouazzani
et al. (2017). The gradient is steeper for faster rotation so that we can
determine the rotation frequency by fitting the gradient with models.
We compared the gradients of period spacings of KIC 5608334 with

1 Although frequencies at large amplitude peaks may be measured more
accurately, we adopt 1/�T = 6.8 × 10−4 d−1 as a conservative uncertainty
of frequencies for the low-amplitude pulsator KIC 5608334.
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Figure 4. Amplitude spectra for each frequency group of KIC 5608334. We identify all combination frequencies, using up to three of four parent modes
(indicated by black full squares at tops in the upper left panel); i.e. aνi ± bνj ± cνk with positive integers a, b, and c. Combination frequencies of different
orders are shown by different colours as explained in the legend in the lower right panel. The order refers to the sum of all coefficients; i.e. a + b + c. The
inverted triangles indicate frequencies used to calculate period spacings shown in Fig. 5.

Figure 5. Period spacings of KIC 5608334 (red crosses) are compared with
theoretical predictions from a model of 1.6 M� with a rotation frequency
of 2.20 d−1. The observed first to fourth frequency groups are fitted with
prograde sectoral g modes of −m = 1, 2, 3, and 4 (open circles), respectively.
For each m, g modes with radial orders from 21 to 60 are plotted. The dashed
lines indicate the predicted relation for the first tesseral (� − |m| = 1 in the
non-rotating case) prograde g-mode sequence for each m.

theoretical ones for rotation rates of 2.24 and 2.20 d−1 (uniform
rotation is assumed). Although a peak at 2.24 d−1 appears in Fig.
3, we found that the rotation frequency of 2.20 d−1 agrees with the
period spacings of KIC 5608334 slightly better. Therefore, we have
adopted 2.20 d−1 for the rotation frequency of KIC 5608334. Fig. 5
compares theoretical �P values of prograde sectoral (open circles)
and first tesseral (dashed lines) g modes of −m = 1, 2, 3, and 4
of a 1.6-M� model rotating at a frequency of 2.20 d−1. Prograde

sectoral g modes, rather than tesseral modes, reproduce well the
properties of the �P–period relations of KIC 5608334.

Since the rotation frequency affects not only the gradient of the
�P–period relation, but also the prediction for the period (i.e. fre-
quency) range of each frequency group, the agreement of both
quantities with a single rotation frequency strongly supports our
identification of the frequency groups of KIC 5608334 as prograde
sectoral g modes with different azimuthal orders m. We note that
similar good agreements are obtained for models of 1.5- and 1.7-
M� with similar Teff as long as the rotation frequency 2.20 d−1 is
assumed. While we recognize that many frequencies in higher fre-
quency groups are combinations of the frequencies in fg1 (Fig. 4),
the good agreement of our models of prograde sectoral g modes
with the observed frequency ranges gives an astrophysical basis for
the existence of the g-mode frequency groups in a rapidly rotating
star.

Using the rotation frequency νrot = 2.20 d−1 and identifying the
azimuthal order m for each group of g-mode frequencies of KIC
5608334, we can convert the detected frequencies to those in the
corotating frame by subtracting |m|νrot. We can then compare period
spacings �Pco as a function of period in the corotating frame with
our models. Fig. 6 shows such comparisons with 1.6-M� (left-hand
panel) and 1.5-M� (right-hand panel) models; the former model
is the same as that in Fig. 5. The abscissa in the left column is
period in the corotating frame, Pco, and is |m|Pco in the right-hand
panel. We have adopted models of different masses between the left-
and the right-hand panel to show that the agreement with observed
properties is insensitive to stellar mass, as long as the same rotation
frequency 2.2 d−1 is used. This is also consistent with the findings
of Ouazzani et al. (2017).

The theoretical period spacings in the corotating frame are nearly
constant as a function of Pco, with some wiggles that are caused
by the hydrogen abundance profile just above the convective core
(Miglio et al. 2008). Nearly constant values of �Pco indicate that
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Figure 6. Period spacings of KIC 5608334 converted to the corotating frame assuming a rotation frequency of 2.2 d−1, compared with theoretical values
from 1.6-M� (left-hand panel) and 1.5-M� (right-hand panel) models. (Different masses are used to show that model frequencies are insensitive to adopted
masses.) Blue open circles are from calculations with the TAR, while black filled circles are results of full calculations without using the TAR. The ordinates
of both panels are the same; they show period spacings of g modes in the corotating frame in seconds. The abscissa of the left-hand panel is period in the
corotating frame, Pco, in days, while that in the right-hand panel adopts |m| times Pco to visualize resonance conditions, where the azimuthal orders of observed
frequencies belonging to fg1, fg2, fg3, and fg4 are assumed to be −m = 1, 2, 3, and 4, respectively. Vertical dotted lines in the right-hand panel are drawn
at every 0.1 d (arbitrarily) for visibility of approximate alignments of frequencies. For each azimuthal order m, g modes with radial orders, ng, from 22 to 54
(i.e. left-to-right) are plotted (20 ≤ ng ≤ 56 for the results from the TAR; blue circles). The dashed line in the left-hand panel shows � = 1 periods and period
spacings in non-rotating case. Observational points belonging to different frequency groups of KIC 5608334 are shown by different symbols; i.e. crosses: fg1;
asterisks: fg2; triangles: fg3; and plusses: fg4.

the Coriolis force affects the g modes strongly (Ballot et al. 2012;
Bouabid et al. 2013, Section 4).

The observational data roughly agree with the model predic-
tions with relatively large scatter. The enhancement of the scatter
is inevitable because the quantity subtracted, |m|νrot, from each
frequency in the inertial frame consists of a large fraction, which
enhances the fractional uncertainties. The fact that the observational
�Pco roughly distribute horizontally supports our choice of rotation
frequency, 2.2 d−1 for KIC 5608334. Periods and the period range
for a larger |m| are smaller (left-hand panel of Fig. 6). This ten-
dency is compensated in the right-hand panel by using an abscissa
of |m|Pco, in which prograde sectoral g modes with the same radial
order but different |m| align vertically; we discuss the reason in the
next section.

It is remarkable that the radial orders of g modes correspond-
ing to the observed periods are confined to a range between ∼22
and ∼54, irrespective of the values of |m| (i.e. irrespective of fre-
quency groups). This property is consistent with resonance cou-
plings among modes with different m (discussed in Section 5 be-
low), and also consistent with the result of the non-adiabatic analysis
for non-rotating models of γ Dor stars by Dupret et al. (2005) that,
among g modes of different �, modes with similar ranges of radial
orders are excited. Probably, both effects contribute to the property.

Blue open circles in Fig. 6 show results obtained using the tra-
ditional approximation of rotation (TAR), in which the horizontal
component of the angular velocity of rotation is neglected. The ap-
proximation generally produces accurate results for low-frequency
non-radial pulsations, in which horizontal motions dominate. This
fact is seen in this figure, agreeing in general with the results of full
computations (filled black circles). However, there is an appreciable

difference in period spacings of m = −1 sectoral g modes, where
there is a dip in the full calculations but not in the calculations with
the TAR. That dip seems to be caused by a very weak coupling be-
tween a sectoral mode and a tesseral mode. Such a coupling never
occurs under the TAR. Interestingly, the observed period spacings
seem to suggest the presence of such a dip in the period spacings
for the first group.

The period spacing of � = 1 g modes in the non-rotating model
(horizontal dashed line in Fig. 6) is smaller than that in the corotating
frame of m = −1 sectoral modes in the rotating model. This is
because the effective latitudinal degree of prograde sectoral modes
decreases with rotation. For the same reason, prograde sectoral g
modes of higher |m| have smaller period spacings. Such properties
will be discussed in the next section.

By comparing the period spacings of KIC 5608334 with models,
we determined its rotation frequency to be 2.2 d−1 irrespective to an
assumed mass, while the corresponding equatorial rotation velocity
Veq depends on the radius of a model. At Teff = 6900 K, the 1.5- and
the 1.7-M� models have radii of 1.78 and 2.37 R�, respectively,
which correspond to Veq = 198 and 264 km s−1. From vsin i given
in Table 1, we estimate a 1σ range of inclination of the rotation axis
from 22◦ to 38◦.

4 PRO PERTI ES O F LOW-FREQU ENCY
G - M O D E O S C I L L AT I O N S O F A ROTAT I N G
STAR

In the presence of rotation, the latitudinal degree � cannot be spec-
ified for a pulsation mode, because a pulsational perturbation pro-
portional to a spherical harmonic Ym

� (θ, φ) is not independent of a
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perturbation proportional to Ym
�′ with �′ 
= � due to the effects of the

Coriolis force and centrifugal deformation (e.g. Unno et al. 1989;
Aerts et al. 2010). This complicates significantly the calculation of
pulsation modes in a rotating star, requiring two-dimensional calcu-
lations (e.g. Reese et al. 2009) or expansion of eigenfunctions with
multiple spherical harmonics (Lee & Baraffe 1995).

The TAR is useful, in particular, for understanding properties
of low-frequency pulsations in a rotating star, in which pulsation
frequencies in the corotating frame are comparable to, or lower
than, the rotation frequency. In this approximation, the horizontal
component of angular velocity of rotation (�sin θ , with θ being
co-latitude) is neglected. As Fig. 6 indicates, the TAR is generally a
good approximation for the low-frequency pulsations in a rotating
star. Here, we discuss qualitative properties of such low-frequency
pulsations using this approximation.

In the TAR, a set of equations for non-radial pulsations under the
Cowling approximation (which neglects the Eulerian perturbation
of the gravitational potential) is preserved, except that �(� + 1) is
replaced with λ, the eigenvalue of Laplace’s tidal equation, which
depends on the ratio of the rotation frequency, νrot, to the pulsation
frequency in the corotating frame, νco. We can use the asymptotic
formulae of high-order g modes in non-rotating stars for g modes
in rotating stars if �(� + 1) is replaced with λ. Thus, the frequency
of a high-radial-order g mode in a rotating star can be represented
as (Lee & Saio 1987; Bouabid et al. 2013)

νco ≈
√

λ

2π2ng

∫
N

r
dr ≡

√
λ

ng
ν0, (1)

where N is the Brunt–Väisälä frequency, ng is the radial order of
the g mode, and ν0 is a frequency defined as above. (This equation
is also applicable to r modes, as discussed by Saio et al. 2018.)
Although the apparent form of the equation is very similar to the
non-rotating case, variation of λ as a function of 2νrot/ν

co (= spin
parameter) generates properties substantially different from those
of non-rotating stars.

In a slowly rotating star λ is given as (Berthomieu et al. 1978)

λ ≈ �(� + 1) + m
2νrot

νco
, if 2νrot/ν

co  1, (2)

while if 2νrot/ν
co > 1, the value of λ for g modes becomes drastically

different from �(� + 1):

λ ≈ m2; prograde sectoral g modes

λ ∝ (
2νrot
νco

)2 � m2; other g modes

}
if

2νrot

νco
> 1, (3)

See e.g. Bildsten, Ushomirsky & Cutler (1996); Lee & Saio (1997);
Townsend (2003) and Saio et al. (2017); i.e. λ of prograde sectoral g
modes decreases from �(�+ 1) to m2 with increasing spin parameter,
while λ of retrograde or tesseral g modes increases rapidly and
becomes much larger than m2.

Substituting the above expressions for λ into equation (1), we
obtain

νco ≈ |m|ν0

ng
; prograde sectoral g modes

νco >

√
2νrotν0

ng
; other g modes

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

if
2νrot

νco
> 1. (4)

Inverting the relation for a prograde sectoral g mode leads to a
relation of ng/ν0 ≈ |m|Pco, which explains the vertical alignment
of modes with the same radial order but with different |m| in the
right-hand panel of Fig. 6. We note that for all frequency groups of
KIC 5608334, spin parameters (=2νrot/ν

co) are always larger than

Table 2. Examples of theoretical frequencies (d−1) in the inertial frame for
sectoral g modes of m = −1 (column 2) and twice (column 3) and four
times (column 5) in comparison with corresponding frequencies of m = −2
(column 4), and −4 (column 6), respectively. Although these frequencies
are obtained by full calculations without the TAR, these numbers have the
property represented by equation (7) based on the TAR.

(1) (2) (3) (4) (5) (6)
ng m = −1 2 × (2) m = −2 4 × (2) m = −4

60 2.586 18 5.172 36 5.159 70 10.3447 10.3144
39 2.788 35 5.576 70 5.573 54 11.1534 11.1309
38 2.803 97 5.607 94 5.604 69 11.2159 11.1920
37 2.820 50 5.641 00 5.637 61 11.2820 11.2564
24 3.162 28 6.324 56 6.313 02 12.6491 12.5568

unity. They are 12–4.5 for fg1, 5.2–2.3 for fg2, 3.0–1.8 for fg3, and
2.1–1.3 for fg4.

From equation (4) we can express period spacing of prograde
sectoral modes in the corotating frame as

�P co ≈ 1

|m|ν0
; prograde sectoral g modes, (5)

i.e. �Pco is approximately constant and the value is proportional
to 1/|m|. This is the property of model predictions we see in
Fig. 6, which is roughly supported by the observational data of KIC
5608334. If the modes in KIC 5608334 were tesseral, �Pco would
be much smaller and systematically change as ∝ 1/Pco, which is
not consistent with the observations.

We note here that in the non-rotating case, equation (5) corre-
sponds to the equation �P ≈ [

√
�(� + 1)ν0]−1. Because � = |m|

for sectoral modes in the non-rotating case, non-rotating period
spacings (the horizontal dashed line in the left-hand panel of
Fig. 6) are always smaller than those of prograde sectoral modes,
�Pco, in the rotating case.

4.1 Properties in the inertial (observational) frame

Adopting the convention that a negative m corresponds to a prograde
mode, pulsation frequency in the inertial frame is written as

ν int = νco − mνrot =
√

λ

ng

ν0 − mνrot, (6)

where the last equality applies for g modes. Using the property of
λ in equation (3) we obtain for prograde sectoral g modes

ν int
ng

≈ |m|
(

ν0

ng
+ νrot

)
; prograde sectoral g modes, (7)

if 2νrot > νco. Thus, the frequencies of prograde sectoral g modes
in the inertial frame are proportional to |m|. This property explains
the frequency grouping of KIC 5608334 seen in Fig. 3. To see
how well the relation is satisfied, we list, in Table 2, samples of
prograde sectoral g modes of m = −2 and −4 to compare them with
2 × and 4 × the corresponding m = −1 prograde sectoral g-mode
frequencies obtained without using the TAR, in which the same 1.6-
M� model as in Fig. 5 was adopted. These numbers indicate that
the proportionality relation given in equation (7) is satisfied well in
the model. Thus, the frequency groupings of KIC 5608334 can be
explained by the property of low of frequency prograde sectoral g
modes with different azimuthal order m influenced by rapid rotation
(cf. Monnier et al. 2010 for α Oph).
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Figure 7. Radial part of the displacement (or temperature variation) ampli-
tude across the stellar surface (hemisphere) of selected modes, with θ being
co-latitude (i.e. cos θ = 0 corresponds to the equator). The amplitude of
each mode is normalized so that the maximum is unity. The 1.6-M� model
is used with a rotation frequency of 2.2 d−1. Upper and lower panels are for
prograde and retrograde (in the corotating frame) modes, respectively. The
sectoral prograde modes of m = −1 and −4 (solid lines in the top panel) have
a radial order ng = 35. The odd and even r modes in the bottom panel have
inertial frame frequencies of 1.0 d−1 (ng = 53) and 2.0 d−1 (ng = 35) [Fig.
3; see Saio et al. (2018) for the property of r modes]. The prograde tesseral
g modes in the top panel and a retrograde ‘sectoral’ g mode were obtained
by using the TAR, because without this approximation strong interactions
with other modes prevent us from obtaining a target mode. For these modes
2νrot/ν

co = 6.7 is assumed; the prograde sectoral mode of m = −1 shown
in the top panel has a similar value. Dashed and dash–dotted lines in the
upper panel are the first and the second tesseral modes, respectively, which
correspond to � = 2 and � = 3 at νrot = 0, respectively. Dotted lines in the
top panel are the Legendre functions P 1

1 (cos θ ) and P 4
4 (cos θ ), the amplitude

distributions for � = |m| = 1 and 4 modes in non-rotating stars.

Using equation (7), we can estimate observational period spac-
ings of prograde sectoral g modes as

�P int = 1

ν int
ng+1

− 1

ν int
ng

≈ 1

|m|
ν0

(ν0 + ngνrot)2
, (8)

where ng � 1 is assumed. This indicates that the period spacing
of prograde sectoral g modes in the inertial frame decreases with
radial order (i.e. with increasing period) for a given |m| (i.e. within
a frequency group), while for a given radial order ng the period
spacing decreases with |m|. This explains the properties seen in
Fig. 5.

4.2 Amplitude distribution on the surface

Rotation generally concentrates the pulsation amplitude of a g mode
towards the equator (Fig. 7; see also Fig. A1 for 3D graphics).
The effect is stronger for tesseral modes and retrograde modes.
For retrograde g modes, additional latitudinal nodal lines appear if
2νrot/ν

co > 1. Therefore, a retrograde sectoral g mode of m = �

becomes a tesseral mode by the addition of latitudinal nodal lines
(in both the north and south hemispheres) if 2νrot/ν

co > 1; i.e. no
sectoral retrograde g modes are expected in a rapidly rotating star.

Fig. 7 shows that among g modes, the amplitudes of prograde
sectoral modes are less affected by rotation, thus should have high-
est visibility. The latitudinal distribution of the m = −4 prograde
sectoral modes is less affected by rotation and is comparable to that
of the m = −1 prograde sectoral modes of KIC 5608334, because
νco of the m = −4 prograde sectoral modes are higher by a factor of
four than that of m = −1 prograde sectoral modes. Although the lati-
tudinal distribution is similar, the visibility of m = −4 modes should
be much less than that of m = −1 because of the azimuthal variation
of the amplitude, sin (mφ). According to Daszyńska-Daszkiewicz
et al. (2002) the visibility ratio between � = 4 and � = 1 is ∼0.03,
while the amplitude ratio of the fourth group to the first group of
KIC 5608334 is roughly 0.02, indicating that m = −4 prograde
sectoral modes are excited to intrinsic amplitudes comparable to
m = −1 prograde sectoral modes, and the difference in observed
surface amplitudes is largely geometric in origin. (A similar argu-
ment holds for −m = 2, 3, though those seem to be smaller by
factors of two or three.)

Fig. A2 shows the distribution of temperature variations (colour
coded) and horizontal displacements (arrows) on the surface for
the g-mode pulsation in the middle of each frequency group of
KIC 5608334. Horizontal displacements are mainly azimuthal in
the case of a large spin parameter.

5 T WO - O R T H R E E - M O D E R E S O NA N C E
C O U P L I N G S

A non-linear two- or three-mode coupling among i, j, k modes
(two-mode coupling if j = k) occurs if

mi = mj + mk

and
νco

i = νco
j + νco

k + δν with |δν|  νco
i .

(9)

Here mi and νco
i are the azimuthal order and the linear frequency

in the corotating frame of mode i, respectively. Representing the
pulsation as �[Aaξ a exp(2πiνco

a t)] with a = i, j, k, we obtain an
amplitude equation (cf. Dziembowski 1982)

dAi

dt
= γiAi + iαiAjAke−2πi(δν)t (10)

and two similar equations for dAj/dt and dAk/dt. Here, γ i is the
linear growth rate of the linear pulsation mode i, and αi represents
the strength of the non-linear coupling (the detailed form of coupling
is discussed by, e.g. Dziembowski 1982). If AjAk in the second term
of the right-hand side of equation (10) is roughly constant, and
if the typical value of the second term is much larger than the
linear excitation/damping term represented by the first term, then
Ai is proportional to exp [− 2πi(δν)t]. Then the oscillation with the
combination frequency is realized.

Such ‘frequency lockings’ might explain the fact that many fre-
quencies detected in Kepler light curves of KIC 5608334 coin-
cide (within much better than our conservative uncertainty, 1/�T,
see Fig. 8) with combination frequencies. These combination fre-
quencies correspond to resonance frequencies, because we identify
frequency groups of fg1, . . . , fg4 as prograde sectoral modes of
−m = 1, . . . , 4 in a rapidly rotating star. These identifications are
supported by the period spacings of those groups (Fig. 5). In a forth-
coming paper, we will discuss more about non-linear effects from
a different point of view.

Fig. 8 shows the frequency difference from the nearest combina-
tion frequency (|ν i − ν j − νk|) versus the product of the amplitudes
AjAk for every frequency ν i in the groups fg2, fg3, and fg4. (If mode
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Figure 8. Frequency difference from the nearest combination frequency
(νj + νk or 2νj) for every frequency in fg2 (asterisks), fg3 (triangles),
and fg4 (pluses) of KIC 5608334 versus the product of the amplitudes
for the pair (j, k). The dotted line indicates the level of log10(1/�T) with
�T = 1470 d. Circles in the inset are for the same frequency difference for
linear frequencies of prograde sectoral g modes in the 1.6-M� model of
which parameters are shown in Fig. 5. (The number near the top of each
sequence indicates |m|.)

i belongs to fg2, both j, k should belong to fg1, while if i belongs
to fg3, one of j and k should be from fg1 and the other from fg2,
while if i belongs to fg4, both j, k may be from fg2, or j from fg3
and k from fg1, etc.) Not all, but many frequencies are very close
to combination frequencies, satisfying the three-mode resonance
conditions.

Open circles in the inset of Fig. 8 show deviations from the
nearest combination frequencies among theoretical linear frequen-
cies for prograde sectoral g modes. This represents the property
of prograde sectoral g modes discussed in the previous section;
i.e. they tend to be nearly in resonance with prograde sectoral g
modes of other azimuthal order m. In some cases nearly exact res-
onance occurs among linear theoretical frequencies (without any
non-linear effects), which is consistent with the fact that observed
frequencies are sometimes in nearly exact resonance with relatively
small non-linear effects (i.e. small AjAk). This further supports our
identification of the observed frequency groups of KIC 5608334 as
prograde sectoral g modes.

Although the extent of the frequency pairs of KIC 5608334 above
the dotted line (1/�T) in Fig. 8 is comparable to that of model
(linear) frequency pairs, about 85 per cent of the observational points
(in contrast to 49 per cent of the theoretical pairs) are located below
the dotted line. This again indicates that pulsation frequencies of
KIC 5608334 are modified by non-linear couplings.

6 C O N C L U D I N G R E M A R K S

We have identified the four frequency groups fg1, . . . , fg4 of KIC
5608334 as prograde sectoral g modes with azimuthal orders of 1,
2, 3, and 4 strongly influenced by the Coriolis force. At a rotation
frequency of 2.2 d−1, those intermediate to high radial order (∼20
to ∼60) modes reproduce well the observed frequency range and

�P-period relation of each frequency group of KIC 5608334. A
comparison of the typical amplitude of each group, using the vis-
ibilities for different � modes derived for non-rotating models by
Daszyńska-Daszkiewicz et al. (2002), indicates that modes of dif-
ferent m are excited to comparable intrinsic amplitudes and their
relative observed amplitudes on the stellar surface are determined
by partial (geometric) cancellation.

With the rotation frequency we can convert observed frequen-
cies in each group to frequencies of the corotating frame (νco).
For all frequencies the spin parameters are found to be larger than
unity; i.e. 2νrot/ν

co > 1, indicating the importance of the Corio-
lis force in forming the character of those g modes. Under such
conditions, the frequencies of prograde sectoral modes are approx-
imately proportional to the azimuthal order; i.e. νco ≈ |m|ν0/ng,
which indicates formation of frequency groups in the inertial frame,
|m|(ν0/ng + νrot). Frequency groups of this type also appear in other
rapidly rotating g-mode pulsators, such as Be stars (e.g. Walker et al.
2005; Cameron et al. 2008) and SPB stars in young open clusters
(e.g. Saio et al. 2017). We obtained and discussed for the first time
the period spacings in each frequency group confirming the rota-
tional origin of the frequency groups.

Another conspicuous property of the pulsation frequencies of
KIC 5608334 is the presence of many frequencies that are nearly or
exactly equal to combinations of other frequencies. We discussed
the property in relation to the properties of prograde sectoral g
modes under the dominance of Coriolis force, in which frequen-
cies are proportional to |m| even in the corotating frame. Then,
the condition of combination frequencies becomes equal to the res-
onance condition for a non-linear coupling; νco

i ≈ νco
j + νco

k with
mi = mj + mk. This explains the presence of many combination
frequencies of KIC 5608334.
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A P P E N D I X A : A M P L I T U D E D I S T R I BU T I O N O F
G MO D E S O N T H E ST E L L A R SU R FAC E

The amplitude distribution of a non-radial pulsation mode on the
stellar surface is described by a spherical harmonic Ym

� (θ, φ) in
a non-rotating star. The distribution is modified in a rotating star
because of the effect of the Coriolis force. This effect is significant if
the spin parameter s ≡ 2νrot/ν

co is greater than unity, where νrot and
νco are rotation frequency and the pulsation (g-mode) frequency of a
pulsation mode in the corotating frame, respectively. Fig. A1 shows
some examples, where the angular dependences of g modes are
ordered by m and k (adopting from Lee & Saio 1997); � = |m| + k
at s = 0 [we use in this paper negative m ( < 0) for prograde modes].

Panels (a) and (b) of Fig. A1 are for prograde sectoral modes
at s = 0 and s = 6, respectively. The prograde sectoral modes
remain sectoral even in a rapidly rotating star. However, retrograde
g modes differ significantly, as shown in panels (c) and (d). Although
a retrograde k = 0 mode keeps the sectoral character if s < 1, two
latitudinal nodal lines appear for s > 1 (i.e. no longer sectoral) and
the amplitude become strongly confined to an equatorial zone as
the spin parameter s increases.

Panels (e) and (f) are for a prograde tesseral mode (m = −1,
k = 1) at s = 0 (� = 2) and at s = 3, respectively. Tesseral modes
also get strongly confined to an equatorial zone if s > 1.

Finally, panels (g) and (h) are for a zonal (m = 0) mode of k = 1
at s = 0 (� = 1) and s = 3, respectively. Again, the amplitude of a
zonal mode tends to be concentrated towards the equator.

Thus, in a relatively rapidly rotating star, prograde sectoral modes
(m < 0, k = 0) are most visible among g modes. This explains
why we detect prograde sectoral modes in KIC 5608334 and why
prograde sectoral g modes are predominantly detected in moderately
to rapidly rotating γ Dor stars (e.g. Van Reeth et al. 2016) and SPB
stars (e.g. Pápics et al. 2017).

Fig. A2 shows amplitude distributions of the temperature vari-
ations (or radial displacement; colour coded) and horizontal dis-
placements (arrows) for typical g mode pulsations in the frequency
groups of KIC 5608334 (see Fig. 3). We have identified the groups
fg1, fg2, fg3, and fg4 as prograde sectoral g modes of −m = 1, 2, 3,
and 4, respectively. The spin parameter s adopted for each case in
this figure corresponds to the middle frequency of each frequency
group and the rotation frequency 2.20 d−1. The spin parameters are
largest for g modes in fg1 and smallest for those of fg4, although
they are still larger than unity. As Fig. A2 indicates, the horizontal
displacements are nearly azimuthal in g mode pulsations with large
spin parameters.
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g-mode frequency groups in KIC 5608334 2193

Figure A1. Some of the amplitude distributions of temperature variations (or radial displacements) of m = 0, ±1 g modes on the stellar surface, with and
without rotation. (In this paper, we adopt the convention that m < 0 for prograde and m > 0 for retrograde modes.) An inclination angle of 60◦ is adopted. The
rotation affects the amplitude distribution of a low-frequency mode through the spin parameter, s ≡ 2νrot/ν

co, with νrot and νco being the rotation frequency
and the pulsation frequency in the corotating frame, respectively. The parameter, k (>0 for g modes) (adopted from Lee & Saio 1997), specifies the parity
and the order of latitudinal amplitude distribution. In the non-rotating case the latitudinal degree � is given as � = |m| + k; k = 0 means the first even mode
(symmetric to the equator), while k = 1 the first tesseral (odd) mode. For slow rotation (s < 1), k = 0 modes are sectoral modes (no latitudinal nodal line). If
s > 1, however, retrograde k = 0 modes have two latitudinal nodal lines (one in each hemisphere), while prograde k = 0 modes remain sectoral modes.

Figure A2. Distributions of temperature variations (or radial displacements; colour coded) and horizontal displacements (arrows) predicted for typical g mode
pulsations in the frequency groups of fg1 (m = −1), fg2 (m = −2), fg3 (m = −3), and fg4 (m = −4) of KIC 5608334. The inclination angle is 90◦. The value
of spin parameter (s) adopted for each case corresponds to a middle frequency of each frequency group. Horizontal displacements of g modes with large spin
parameters are predominantly azimuthal.
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Table A1. Frequency list for KIC 5608334.

fi Frequency Amplitude Parent modes
(d−1) (ppm)

ν1 2.862 775 ± 0.000 002 541.9 ± 2.9
ν2 2.882 291 ± 0.000 002 532.1 ± 3.1
ν3 2.795 446 ± 0.000 002 497.2 ± 2.5
ν4 2.925 108 ± 0.000 004 301.3 ± 3.5
ν5 2.781 019 ± 0.000 003 284.6 ± 2.6 3ν1 − ν2 − ν4

ν6 3.001 873 ± 0.000 005 269.7 ± 3.9
ν7 3.179 237 ± 0.000 002 212.4 ± 1.3 −2ν1 − ν3 + 4ν4

ν8 2.974 464 ± 0.000 008 186.6 ± 4.1
ν9 3.099 039 ± 0.000 005 132.6 ± 1.8 2ν2 − 2ν3 + ν4

ν10 2.693 984 ± 0.000 008 121.7 ± 2.5
ν11 2.665 894 ± 0.000 008 117.5 ± 2.6 2ν3 − ν4

ν12 3.064 033 ± 0.000 008 107.2 ± 2.3
ν13 5.720 543 ± 0.000 006 87.0 ± 1.4 ν3 + ν4

ν14 5.764 574 ± 0.000 006 83.4 ± 1.3 2ν2

ν15 5.479 216 ± 0.000 006 74.9 ± 1.2
ν16 5.807 399 ± 0.000 007 73.9 ± 1.3 ν2 + ν4

ν17 5.725 531 ± 0.000 007 73.6 ± 1.3 2ν1

ν18 3.031 610 ± 0.000 017 68.9 ± 3.2
ν19 5.590 923 ± 0.000 007 67.1 ± 1.3 2ν3

ν20 2.734 104 ± 0.000 014 67.0 ± 2.4 ν1 + 3ν2 − 3ν4

ν21 6.061 520 ± 0.000 005 65.4 ± 0.9
ν22 5.619 004 ± 0.000 008 63.0 ± 1.3 3ν1 − 2ν2 + ν3

ν23 5.946 340 ± 0.000 007 60.5 ± 1.2
ν24 5.658 204 ± 0.000 008 60.0 ± 1.3 ν1 + ν3

ν25 2.767 057 ± 0.000 016 58.7 ± 2.5 −3ν1 + 2ν2 + 2ν3

ν26 5.505199 ± 0.000 008 53.8 ± 1.2 2ν2 + 2ν3 − 2ν4

ν27 5.999 424 ± 0.000 008 52.2 ± 1.1
ν28 2.674 685 ± 0.000 019 51.1 ± 2.6
ν29 5.893 861 ± 0.000 011 41.9 ± 1.3 2ν2 − ν3 + ν4

ν30 6.191 502 ± 0.000 007 41.1 ± 0.7
ν31 2.642 377 ± 0.000 024 41.0 ± 2.7
ν32 2.714 778 ± 0.000 024 39.5 ± 2.5 2ν1 + 2ν2 − 3ν4

ν33 5.895 022 ± 0.000 012 38.6 ± 1.3
ν34 5.556 988 ± 0.000 013 35.4 ± 1.3
ν35 12.085 640 ± 0.000 005 34.3 ± 0.5
ν36 2.656 498 ± 0.000 030 33.5 ± 2.7
ν37 5.850 234 ± 0.000 015 33.2 ± 1.3 2ν4

ν38 6.267 179 ± 0.000 007 32.8 ± 0.6
ν39 2.902 992 ± 0.000 042 28.3 ± 3.2
ν40 5.529 417 ± 0.000 017 27.7 ± 1.2
ν41 2.733 045 ± 0.000 033 27.2 ± 2.4 ν1 + ν3 − ν4

ν42 5.856 770 ± 0.000 018 26.8 ± 1.3
ν43 6.058 380 ± 0.000 013 26.7 ± 0.9
ν44 5.663 315 ± 0.000 018 26.0 ± 1.3 3ν1 − ν4

ν45 5.762 114 ± 0.000 019 25.7 ± 1.3
ν46 5.899 607 ± 0.000 018 25.6 ± 1.3 2ν1 + 2ν2 − 2ν3

ν47 5.528 646 ± 0.000 018 25.4 ± 1.2 ν1 + 2ν3 − ν4

ν48 5.651 492 ± 0.000 019 25.3 ± 1.3
ν49 6.003 772 ± 0.000 016 25.1 ± 1.1
ν50 5.685 564 ± 0.000 020 24.1 ± 1.3
ν51 5.677 776 ± 0.000 021 23.4 ± 1.3 ν2 + ν3

ν52 5.769 912 ± 0.000 021 22.7 ± 1.3
ν53 5.797 322 ± 0.000 022 22.5 ± 1.3
ν54 5.649 452 ± 0.000 023 21.6 ± 1.3 −3ν1 + 3ν2 + 2ν3

ν55 2.598 874 ± 0.000 048 21.1 ± 2.7 −ν1 + 3ν3 − ν4

ν56 5.433 314 ± 0.000 023 20.2 ± 1.2
ν57 2.616 321 ± 0.000 051 20.2 ± 2.8
ν58 5.845 043 ± 0.000 024 20.1 ± 1.3 −2ν1 + ν3 + 3ν4

ν59 5.690 009 ± 0.000 024 19.4 ± 1.3
ν60 2.574 995 ± 0.000 053 18.9 ± 2.7
ν61 5.587 489 ± 0.000 025 18.7 ± 1.2
ν62 5.801 623 ± 0.000 027 18.5 ± 1.3

Table A1 – continued

νi Frequency Amplitude parent modes
[d−1] [ppm]

ν63 2.633 054 ± 0.000 060 17.3 ± 2.7 4ν1 + ν2 − 4ν4

ν64 5.503 826 ± 0.000 026 17.0 ± 1.2 −ν2 + 3ν3

ν65 5.622 639 ± 0.000 029 17.0 ± 1.3
ν66 3.000 129 ± 0.000 088 16.9 ± 4.0
ν67 5.558 977 ± 0.000 028 16.7 ± 1.3
ν68 11.864 608 ± 0.000 012 16.4 ± 0.5
ν69 8.473 207 ± 0.000 015 16.3 ± 0.6 ν2 + 2ν3

ν70 5.561 736 ± 0.000 029 16.1 ± 1.3
ν71 5.616 327 ± 0.000 032 15.5 ± 1.3 ν1 + 4ν2 − 3ν4

ν72 5.846 586 ± 0.000 031 15.4 ± 1.3 −2ν1 + 3ν2 + ν4

ν73 5.745 129 ± 0.000 037 14.0 ± 1.4 ν1 + ν2

ν74 5.974 663 ± 0.000 028 13.9 ± 1.1 −2ν1 + 4ν4

ν75 5.282 056 ± 0.000 030 13.8 ± 1.1
ν76 5.803 584 ± 0.000 038 13.1 ± 1.3 −2ν1 + 4ν2

ν77 5.456 832 ± 0.000 034 12.9 ± 1.2 −2ν1 + 4ν3

ν78 5.643 731 ± 0.000 039 12.7 ± 1.3 4ν1 − ν2 − ν4

ν79 5.409 264 ± 0.000 036 12.2 ± 1.2
ν80 5.315 772 ± 0.000 036 12.0 ± 1.2
ν81 8.834 344 ± 0.000 019 11.7 ± 0.6
ν82 5.349 422 ± 0.000 039 11.4 ± 1.2
ν83 8.521 015 ± 0.000 022 11.4 ± 0.7 2ν1 + ν3

ν84 5.562 584 ± 0.000 043 11.1 ± 1.3 −3ν1 + 2ν2 + 3ν3

ν85 11.355 527 ± 0.000 019 10.8 ± 0.5 2ν2 + 2ν3

ν86 5.268 977 ± 0.000 039 10.5 ± 1.1 ν1 + 4ν3 − 3ν4

ν87 8.334 188 ± 0.000 022 10.3 ± 0.6
ν88 8.909 514 ± 0.000 021 10.1 ± 0.6 2ν1 − 2ν3 + 3ν4

ν89 5.960 207 ± 0.000 041 10.1 ± 1.1
ν90 5.461 304 ± 0.000 044 10.0 ± 1.2 3ν3 − ν4

ν91 5.721 355 ± 0.000 052 9.9 ± 1.4 3ν2 − ν4

ν92 6.278 255 ± 0.000 024 9.8 ± 0.6
ν93 5.389 924 ± 0.000 047 9.6 ± 1.2
ν94 5.369 354 ± 0.000 045 9.5 ± 1.1
ν95 5.437 901 ± 0.000 050 9.1 ± 1.2
ν96 8.990 661 ± 0.000 024 8.8 ± 0.6
ν97 8.766 174 ± 0.000 024 8.8 ± 0.6
ν98 8.424 134 ± 0.000 026 8.5 ± 0.6
ν99 8.636 562 ± 0.000 027 8.4 ± 0.6
ν100 11.286 926 ± 0.000 025 8.3 ± 0.6
ν101 12.086 311 ± 0.000 024 7.7 ± 0.5
ν102 8.1448 70 ± 0.000 030 7.7 ± 0.6
ν103 8.764 023 ± 0.000 028 7.5 ± 0.6
ν104 8.906 329 ± 0.000 030 7.2 ± 0.6 3ν2 − 2ν3 + 2ν4

ν105 8.762 505 ± 0.000 029 7.2 ± 0.6 3ν1 + 2ν2 − 2ν3

ν106 8.583 393 ± 0.000 035 6.9 ± 0.7 ν1 + ν3 + ν4

ν107 11.768 250 ± 0.000 031 6.6 ± 0.6 ν1 − ν3 + 4ν4

ν108 11.971 333 ± 0.000 032 6.4 ± 0.5
ν109 8.990 056 ± 0.000 033 6.3 ± 0.6
ν110 8.333 354 ± 0.000 035 6.3 ± 0.6
ν111 8.430 330 ± 0.000 037 6.1 ± 0.6 2ν2 + 2ν3 − ν4

ν112 11.225 740 ± 0.000 035 6.0 ± 0.6 2ν2 + 3ν3 − ν4

ν113 11.513 384 ± 0.000 037 6.0 ± 0.6 3ν1 + ν4

ν114 11.427 834 ± 0.000 035 5.8 ± 0.5 3ν1 + 2ν2 − ν4

ν115 8.526 019 ± 0.000 044 5.8 ± 0.7 4ν1 − ν4

ν116 11.671 535 ± 0.000 037 5.7 ± 0.6
ν117 8.637 887 ± 0.000 041 5.5 ± 0.6
ν118 8.700 036 ± 0.000 039 5.4 ± 0.6
ν119 8.377 842 ± 0.000 042 5.3 ± 0.6
ν120 8.986 568 ± 0.000 042 5.2 ± 0.6
ν121 11.429 624 ± 0.000 040 5.2 ± 0.5
ν122 11.361 886 ± 0.000 039 5.1 ± 0.5
ν123 9.0771 37 ± 0.000 043 5.0 ± 0.6
ν124 11.052 332 ± 0.000 042 5.0 ± 0.6
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g-mode frequency groups in KIC 5608334 2195

Table A1 – continued

νi Frequency Amplitude parent modes
[d−1] [ppm]

ν125 11.433 447 ± 0.000 041 5.0 ± 0.5
ν126 11.766 748 ± 0.000 041 4.9 ± 0.5
ν127 8.481 080 ± 0.000 050 4.9 ± 0.7
ν128 8.837 499 ± 0.000 045 4.8 ± 0.6 −ν1 + 4ν4

ν129 11.587 226 ± 0.000 043 4.8 ± 0.6
ν130 11.167 284 ± 0.000 043 4.7 ± 0.5
ν131 8.474 172 ± 0.000 051 4.7 ± 0.6 4ν2 + ν3 − 2ν4

ν132 9.083 654 ± 0.000 046 4.6 ± 0.6
ν133 11.289 021 ± 0.000 046 4.5 ± 0.6
ν134 8.481 808 ± 0.000 055 4.5 ± 0.7 4ν1 − 2ν2 + ν3

ν135 8.251 661 ± 0.000 050 4.5 ± 0.6
ν136 8.646 842 ± 0.000 052 4.3 ± 0.6 3ν2

ν137 11.227 152 ± 0.000 050 4.3 ± 0.6
ν138 8.632 684 ± 0.000 054 4.2 ± 0.6
ν139 11.769 328 ± 0.000 049 4.2 ± 0.6
ν140 8.425 461 ± 0.000 056 4.0 ± 0.6 −2ν1 + 2ν2 + 3ν3

ν141 8.379 683 ± 0.000 055 3.9 ± 0.6
ν142 8.381 844 ± 0.000 056 3.9 ± 0.6 −2ν1 + 4ν3 + ν4

ν143 8.054 455 ± 0.000 066 3.7 ± 0.7
ν144 8.291 565 ± 0.000 060 3.7 ± 0.6
ν145 11.163 591 ± 0.000 055 3.7 ± 0.5
ν146 11.001 182 ± 0.000 057 3.7 ± 0.6
ν147 8.292 629 ± 0.000 061 3.7 ± 0.6
ν148 8.833 616 ± 0.000 059 3.7 ± 0.6 −3ν1 + 3ν2 + 3ν4

ν149 11.772 323 ± 0.000 057 3.6 ± 0.6 3ν1 − 2ν3 + 3ν4

ν150 11.216 446 ± 0.000 057 3.6 ± 0.5
ν151 11.759 458 ± 0.000 057 3.6 ± 0.5
ν152 12.205 213 ± 0.000 052 3.5 ± 0.5
ν153 8.588 264 ± 0.000 068 3.5 ± 0.6 3ν1

ν154 11.107 640 ± 0.000 057 3.5 ± 0.5
ν155 8.838 954 ± 0.000 062 3.5 ± 0.6
ν156 11.509 859 ± 0.000 064 3.4 ± 0.6 ν1 + 3ν2

ν157 8.842 500 ± 0.000 064 3.4 ± 0.6 ν1 − ν3 + 3ν4

ν158 8.698 089 ± 0.000 062 3.4 ± 0.6
ν159 11.872 966 ± 0.000 061 3.3 ± 0.5
ν160 8.342 010 ± 0.000 067 3.3 ± 0.6 −2ν2 + 4ν3 + ν4

Table A1 – continued

νi Frequency Amplitude parent modes
[d−1] [ppm]

ν161 11.506 292 ± 0.000 065 3.3 ± 0.6
ν162 11.050 652 ± 0.000 065 3.2 ± 0.6
ν163 8.213 138 ± 0.000 071 3.2 ± 0.6
ν164 11.500 441 ± 0.000 067 3.2 ± 0.6
ν165 8.255 114 ± 0.000 069 3.2 ± 0.6
ν166 8.959 990 ± 0.000 070 3.2 ± 0.6
ν167 11.106 039 ± 0.000 064 3.1 ± 0.5
ν168 11.676 005 ± 0.000 068 3.1 ± 0.6
ν169 11.056 776 ± 0.000 069 3.0 ± 0.5 2ν1 + 4ν3 − 2ν4

ν170 8.118 941 ± 0.000 082 3.0 ± 0.7
ν171 8.689 643 ± 0.000 072 3.0 ± 0.6 2ν2 + ν4

ν172 11.158 671 ± 0.000 069 2.9 ± 0.5
ν173 8.296 201 ± 0.000 076 2.9 ± 0.6
ν174 8.856 920 ± 0.000 075 2.9 ± 0.6 −2ν1 + ν2 + 4ν4

ν175 8.650 534 ± 0.000 075 2.9 ± 0.6 2ν1 + ν4

ν176 11.588 657 ± 0.000 071 2.9 ± 0.6
ν177 8.113 250 ± 0.000 085 2.9 ± 0.6
ν178 8.148 755 ± 0.000 083 2.8 ± 0.6
ν179 11.697 220 ± 0.000 076 2.8 ± 0.6 −2ν1 + 3ν2 + 3ν4

ν180 9.073 512 ± 0.000 076 2.8 ± 0.6
ν181 10.856 372 ± 0.000 074 2.8 ± 0.5
ν182 10.905 030 ± 0.000 074 2.8 ± 0.6
ν183 11.502 347 ± 0.000 077 2.8 ± 0.6
ν184 11.046784 ± 0.000 076 2.7 ± 0.5
ν185 11.763 508 ± 0.000 076 2.7 ± 0.5
ν186 10.903 098 ± 0.000 077 2.7 ± 0.6
ν187 11.863 159 ± 0.000 078 2.6 ± 0.5
ν188 11.511 758 ± 0.000 083 2.6 ± 0.6
ν189 11.108 837 ± 0.000 077 2.6 ± 0.5
ν190 11.498 292 ± 0.000 085 2.5 ± 0.6
ν191 10.770 712 ± 0.000 085 2.5 ± 0.6
ν192 11.306 584 ± 0.000 083 2.5 ± 0.5 −2ν1 + 4ν3 + 2ν4
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