American Geophysical Union Western Pacific Geophysics Meeting, Beijing, China, 24-27 July.

Sensitivity study of the role of vegetation in Miocene climate change

John Y. You¹, Dietmar Muller¹, Matthew Huber², Bette Otto-Bliesner³, Chris Poulsen⁴, Maria Sdrolias¹ and Joachim Ribbe⁵

¹University of Sydney Institute of Marine Science (USIMS), Building H11, University of Sydney, NSW 2006, Australia

²Earth and Atmospheric Sciences, Purdue University, West Lafayette, Indiana, USA

³Climate Change Research, National Center for Atmospheric Research, Boulder, Colorado, USA

⁴Department of Geological Sciences, University of Michigan, 425 East university Avenue, Ann Arbor, MI 48109-1063, USA

⁵Department of Biological and Physical Sciences, University of Southern Queensland, Toowoomba, Queensland 4350, Australia

Abstract

The Miocene Climate Optimum (MCO) at 15 ma is a geologically recent warming event with a temperature of $3^{\circ}-5^{\circ}$ C higher than today but with atmospheric CO₂ only about half its present value. Study of the MCO has implications for present day climate research to elucidate factors other than CO₂ which may contribute to current global warming. Here we attempt to study the role of vegetation which can potentially contribute about 2°C warming to the MCO. We develop a novel methodology to merge oceanic palaeo-bathymetry grids with continental palaeo-topography grids to produce Miocene boundary condition for palaeoclimate modelling and apply updated NCAR coupled climate models, CCSM3 and CAM3.1. In this presentation, we show recent results of our model simulations inferred from modern conditions and proxies.