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ABSTRACT

In today’s software engineering, iterations, affordable en masse,

form an important part of just about any system. However, not all

computing resources are cheap to consume. In High-Performance

(HPC) and Quantum Computing (QC), executions can consume

considerable amounts of energy and time, which is reserved and

used even if the very first steps in the process fail. This means that

developers must assume a different attitude towards programming,

and aim at error-free software before its execution. This is com-

monly facilitated using simulators, which are commonplace for

both HPC and QC. However the fashion developers advance from

one tool to another is ad-hoc, with no established software engi-

neering guidelines, and the final step from simulators to HPC/QC

is still a leap of faith, comparable to releasing software.

In this paper, we propose a vision where developers can iter-

ate in an agile fashion when developing quantum software. The

iterations are defined such that when the solution is still vague in

the beginning, computations are interactive and provide instant

feedback, thus supporting conceptualization of the software and

experimenting with new ideas. When the solution becomes more

precise, more expensive computations such as quantum algorithm

and hyperparameter optimization are executed in batches.
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1 INTRODUCTION

The field of Quantum Computing (QC) has lately received growing

research, industry, and policy interest to an ever-increasing extent.

The disruptive solutions empowered with QC have opened the way

for business development in various areas, such as cybersecurity,

financial services, and aerospace. On the other hand, the aspect of

development to achieve cost-effective and reliable quantum soft-

ware applications has been slow. Solving this problem is critical to

enabling QC to live up to its promising potential.

The word quantum in Quantum Computing implies quantum

mechanics that the system uses to compute the output. In physics,

quantum is the smallest unit of any physical entity, generally refer-

ring to atomic or subatomic particles, e.g., electrons, neutrons, and

photons. QC is a fast-growing research field expected to bring revo-

lution in various industrial areas [30]. QC uses quantum mechanics

concepts to process the information and complete specific tasks

much faster than classical computers. Quantum physics characteris-

tics such as superposition, entanglement, and quantum interference

are applied for computing purposes. Different studies have been

published focusing on developing quantum algorithms [7, 12, 20].

Quantum computers outperform in two different ways as compared

to classical computers:
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• the problem needs large amounts of parallel computing, e.g.

big data analysis [23, 30], data security [30], encryption [21],

and machine learning [3];

• the problem requires precise and effective computation in

natural science e.g. physics [4], material science ([11], and

chemistry [18].

Analogically, these resemble the fashion of how GPUs and other

special computing units accelerate computations. However, there is

one extra twist in QC: computational results are typically statistical,

and several executions are typically needed. Moreover, to make mat-

ters worse, the results are flaky because the same input can produce

different outputs, some of which are true results and some false

positives and false negatives. Hence, running them takes time and

interpreting the results typically requires additional computations

using classical software [24]. Moreover, many conventional tools

such as debuggers and step-by-step execution render useless in QC

development due to the statistical nature of quantum technologies.

This paper presents a vision for embracing iterations when de-

veloping QS. However, unlike present-day iterations, QS iterations

are of increasing complexity, starting with the developer work-

station, continuing in the cloud, running simulations with High-

Performance Computing (HPC), and finally reaching the Quantum

Computer. The vision is aligned with the Academy of Finland’s re-

cently accepted research proposal Developer Experience in Iterative

Quantum Software Engineering (DEQSE, 2022-2026), where such a

development approach will be experimented.

2 BACKGROUND AND MOTIVATION

Because of the flaky characteristics of QC, software developers need

novel techniques, tools, processes, and methods that explicitly focus

on developing software systems based on quantum mechanics. In

particular, designing a quantum software algorithm is challenging

because of fundamental quantum mechanics characteristics, includ-

ing superposition and entanglement. New principles and method-

ologies for quantum software design are strongly demanded as the

design is the most critical phase of developing the QS systems [30].

Following the conventional wisdom in software programming,

which started from hardware-focused, hard-wired techniques in the

1950s and then evolved into today’s agile, iterative development,

Quantum Software Engineering (QSE) should eventually become

agile, iterative, and incremental [19, 22].

However, conventional tools and methods may need to be exam-

ined to ensure that they meet the unique characteristics of quan-

tum software [30]. Therefore, software developers face significant

challenges when coding quantum programs due to switching to

an entirely different programming mindset with counter-intuitive

quantum principles [21]. While producing the actual code remains

broadly similar to recent programming languages and libraries,

testing and debugging require reconsideration, as discussed below.

Testing quantum programs requires addressing the following

aspects:

• Defining and checking test oracles, since the state of a quan-

tum program can be in superposition and reading the precise

state in superposition is a challenge, and

• Efficient quantum test data generation, since potential val-

ues of quantum variables will be exponentially higher than

classical variables.

Defects identified during the testing phase must be located, iso-

lated, and patched; thus, debugging is needed. Developing effective

debugging solutions must overcome the following three challenges

[13]:

• When observations or simulations are available, quantum

states are generally high dimensional and difficult to inter-

pret, limiting their usefulness in debugging

• No evidence or guide exists for where and what to check

when debugging quantum programs.

• Examining values of quantum variables in superposition is

hard.

While one cannot redefine how actual quantum computers work,

the situation can be considerably eased by offering tools and tech-

niques for experimentation early on and, in general, agile devel-

opment of quantum programs. Moreover, such tools enable an

approach where the role of quantum computations focuses on the

essentials, whereas any boilerplate part of programs is dealt with

classical software.

For classical software, many problems related to the development,

testing and debugging are dealt with by iterative development. This

has beenmanifested for the last 20 years ś ever since the rise of agile

methods, development cycles have become shorter and shorter, up

to the point where several releases are made per day [8]. Indeed,

agile, iterative development has numerous positive outcomes for

developers. Instead of waiting for weeks or months for bug reports

from acceptance testing, they get feedback in a matter of seconds

or minutes when a project is finally completed. This supports their

flow state, which is an essential ingredient in modern-day software

development [16]. Adopting an iterative approach for developing

a QS system is the best choice in the present scenario [22]. We do

not need to wait until the QSE techniques get stable or refined but

develop them in parallel with the QSE evolution [22].

To summarize, iterations help find the bugs and other problems as

early as possible because, at that point, the developers can fix them

with straightforward actions. Moreover, since computing resources

are generally cheap, iterations are affordable en masse. However,

not all computing resources are reasonably cheap, as in HPC and

QC, and executions can consume considerable energy and time.

This means developers must assume a different attitude towards

programming and aim at error-free software before its execution.

This is commonly done using simulators, which are commonplace

for both HPC and QC. However, the final step from simulators to

HPC/QC is still a leap of faith, comparable to releasing software,

which at that point is expected to be error-free.

3 THE VISION: IDE FOR A QUANTUM

SOFTWARE DEVELOPER

Based on QC characteristics, our vision is to enable iterative devel-

opment of quantum programs, with decreasing degree of interac-

tivity and increasing degree of quantum-related infrastructure in

the process: At the early stage of development, the developer uses a

simulator to get interactive feedback instantly, which enables rapid

REPL (Read-Eval-Print Loop [27]) cycles early on, similarly to the
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Figure 1: Cycles and infrastructure for interactive and itera-

tive development of quantum programs.

design of classical software. Then, as the program evolves, new

infrastructure will be made available to enable the design and opti-

mization of the quantum parts of the software. Moreover, one of the

challenges pointed out by developers is that nowadays, the current

IDE support is inadequate for quantum programming, hindering the

development tasks [6]. This is an important step in programming

in the quantum context because every qubit matters. In contrast,

in classical computing, Moore’s law has eliminated size-related

problems from an average developer [30]. Finally, when everything

is verified using HPC, an accurate QC is involved, using the most

appropriate quantum algorithm and hyperparameters that guide its

execution. In other words, the development starts with a simple im-

plementation that can be run on a single computer, then advances

to more complex systems using cloud and HPC, and finally reaches

a true quantum computer.

The research will focus on understanding the quantum software

development using four iterative cycles (Figure 1) inspired from

[10], covering the following steps:

• Cycle 1: Concept development and definition using the de-

veloper’s computer. The techniques we applied include soft-

ware prototyping [5] and end-user programming [14]. Tool

support such as wizards and help menus that help an inexpe-

rienced developer forwardwill be added so that the developer

needs not to worry about boiler-plate code. As executions

happen on a workstation, development is interactive.

• Cycle 2: Quantum architecture and algorithm optimiza-

tion in a cloud environment. The techniques in this phase

include adaptive mutation in genetic algorithms [17] and

model/program transformations [29] to test different con-

figurations and create some level of flakiness. Both fully

automated and developer-supported tools will be considered

and experimented with. The goal is to support both the quan-

tum program and related infrastructure development. Our

goal is to use Techila Distributed Computing Engine1 for

parallelizing the executions, resulting in near real-time in-

teractive development without the complexity of traditional

high-performance computing.

1http://www.techilatechnologies.com/

• Cycle 3: Computation validation and hyperparameter opti-

mization in the HPC environment. Here, we rely on using

existing techniques but adding a monitoring and rollback op-

tion to them to cancel executions as soon as it is clear that the

simulation fails. The purpose is to enable faster recovery in

case of errors. Here, we rely on existing resources simply be-

cause running applications typically becomes batch-oriented

instead of interactive in HPC.

• Cycle 4: Live QC, using a real quantum computer.

Within each of these levels, iterations of different natures are

available; in a personal computer, iterative work is typically rapid,

but programsmust be simple. In an actual QC, iterative development

is next to impossible, but the full power of QC is available. In the

intermediate levels, it is an open problem how iterations should be

used for the best possible developer experience.

4 IMPLEMENTATION CONSIDERATIONS AND

DISCUSSION

The bulk of the technical work needed for reaching the vision is

composing classical software, including designing and implement-

ing interfaces, tools, testware, and monitoring systems, such as

dashboards. We plan to implement an Eclipse plugin that, on the

one hand, provides a programming interface to the developers and,

on the other hand, provides a connection to simulators and QC. The

implementation will be based on an existing plugin PyDev2, and it

will be extended with features that connect it to different simulators,

HPC and QC. To simplify using various infrastructures, we plan to

implement a deployment pipeline and a monitoring dashboard to

support the development experience similar to modern-day contin-

uous software engineering facilities [9]. As the baseline, we will

use QisKit3 [28]. This pipeline will collect data from the develop-

ment process, allowing us to analyze how developers behave while

developing quantum programs.

As for designing quantum programs, our intuition is that pro-

gramming a quantum computer is similar to algorithm design in

general. Much of the learning from this field can be reused in

the context of QC. However, some of the tasks in QC fall beyond

algorithm design, including, in particular, the design and imple-

mentation of the subsystems that deal with statistical and flaky

outcomes and validating the results. Hence, while it is known that

heterogeneity is harmful to algorithm design in general [2], we

expect that aspect of the work will require significant attention

simply because it is expected that several different designs for QC

will be proposed.

A feasible baseline design would be that we need an equivalent

of Hardware Abstraction Layer (HAL), which we call Quantum

Abstraction Layer (QAL), which will form the core of the interac-

tive executions. However, as designing such QAL would require

significant investment in design, we are initially taking a shortcut

and relying on results presented already at [10, 26]. The approach

relies on making quantum software accessible in a fashion where

API gateways are used to interact with quantum computers. These

gateways are similar in nature to any other gateway used on the

Web, thus letting the developers enter the familiar territory in terms

2https://www.pydev.org/
3https://qiskit.org/
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of infrastructure, with quantum computers being the backend only,

using real-time containers as the underlying technology [25]. This

also allows distribution to the cloud on a large scale. Moreover,

different simulators can be embedded in containers as needed, fol-

lowing the observations of [1, 15].

Finally, the bulk of the technical work needed for reaching the

vision is composing classical software, including designing and im-

plementing interfaces, tools, testware, and monitoring systems (e.g.,

dashboards). In addition, the infrastructure includes data collection

features that allow tracking of how developers use it to understand.

Once we reach the level of a prototype implementation, we can

start observing which resources the developers address during the

development and deployment of quantum software and refine and

redesign some of them based on developer feedback. In the long run,

the goal is to shape the practice of quantum software engineering

so that general guideline can be established.

5 CONCLUSIONS

The advantages of the iterative software development to mitigate

risks and uncertainties have been widely acknowledged in the

software engineering literature. Iterative development helps in

spotting potential defects early in the process.

In this vision paper, we propose helping developers to iterate

in the development of HPC and QC software. The iterations are

defined such that in the beginning, when the solution is still vague,

computations are interactive and provide instant feedback. When

the solution becomes more precise, more expensive computations,

executed in batches, are needed. Finally, when everything is verified

using HPC, a real QC is involved, at a point when the algorithm and

its hyperparameters are as precise as possible. It is acknowledged

that to some extent, quantum programming resembles classical

algorithmic design, but here also related infrastructure for inter-

preting and validating the results is being built in parallel as part

of the effort.

Once our implementation advances, we plan to study the devel-

oper experience across all the phases to understand the applicability

of the model. In the long run, we aim at consolidating guidelines for

concrete development of quantum software in an iterative fashion,

with iterations having different flavor at different points of the

development.
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