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ABSTRACT

We revise soliton and lump solutions described by the cylindrical Kadomtsev–Petviashvili (cKP) equation and construct new exact solu-
tions relevant to physical observation. In the first part of this study, we consider basically axisymmetric waves described by the cylindrical
Kortweg–de Vries equation and analyze approximate and exact solutions to this equation. Then, we consider the stability of the axisymmet-
ric solitons with respect to the azimuthal perturbations and suggest a criterion of soliton instability. The results of our numerical modeling
confirm the suggested criterion and reveal lump emergence in the course of the development of the modulation instability of ring solitons
in the unstable case. In the next part of this study, which will follow shortly, we will present exact solutions to the cKP equation describing
weakly nonlinear waves in media with positive dispersion subject to the modulation instability of solitons with respect to small azimuthal
perturbations.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0175696

Nonlinear waves in cylindrical geometry are a subject of inter-
est in physics and mathematics due to their applied importance
in the description of natural phenomena and their laboratory
analogs, as well as due to the unusual structure of governing
model equations and their solutions. The governing equations
for weakly nonlinear waves in dispersive media, viz., the cylin-
drical Korteweg–de Vries (cKdV) equation and the cylindri-
cal Kadomtsev–Petviashvili (cKP) equation (alias the Johnson
equation), were derived by various authors since 1959. Particu-
larly, approximate and even exact solutions have been obtained;
however, there are some misinterpretations of solutions in phys-
ical variables that have not been critically assessed so far. In
this study, which consists of two parts, we revise solitary-type
solutions described by the cKdV and cKP equations and con-
struct new exact solutions relevant to physical observations. In
the first part of this study, we consider basically axisymmetric

waves described by the cKdV equation and analyze approximate
and exact solutions of this equation. Then, we consider the sta-
bility of the axisymmetric solitons with respect to the azimuthal
perturbations and suggest a criterion of soliton instability. The
results of our numerical modeling confirm the suggested crite-
rion and reveal lump emergence in the course of the development
of the modulation instability of ring solitons in the unstable
case. In the next part of this study, which will follow shortly,
we will present exact solutions to the cKP1 equation describ-
ing weakly nonlinear waves in media with positive dispersion.
Solitary waves with circular fronts in such media are subject to
modulation instability with respect to small azimuthal perturba-
tions. We will study the development of instability, the emergence
of lumps (stable two-dimensional solitary waves), as well as inter-
actions of periodic lump chains with each other and with ring
solitons.
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I. INTRODUCTION

Cylindrical and quasi-cylindrical waves often appear in media
with small nonlinearity and weak dispersion; see, for example, satel-
lite images of internal waves generated by tides in the Mediterranean
Sea near Gibraltar1 and images of internal waves in the Cod Cape
Bay, USA.2 Such waves can be described by the cylindrical ver-
sion of the Kadomtsev–Petviashvili (cKP) equation, known also
as the Johnson equation. This equation in physical coordinates
reads as
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where u(t, r, ϕ) is a wave perturbation that depends on time t and
two spatial coordinates in the cylindrical coordinate frame (r, ϕ),
c is the speed of long linear waves, and α and β are the coeffi-
cient of nonlinearity and dispersion, respectively, which depend on
parameters of a particular physical problem. The equation similar
to Eq. (1.1) was derived for the first time for surface water waves
in a shallow basin by Johnson3 (see also Refs. 4–6 and 31), and
then, for internal waves by Lipovskii,7 and for plasma waves by
Peng et al.8 In the Appendix, we briefly reproduce the derivation
of this equation for a general case when long nonlinear waves
are described by the two-dimensional Boussinesq equation. In the
derivation of Eq. (1.1), it was assumed that the wavefront is far from
the center of the coordinate frame so that the last term in brackets is
of the same magnitude of smallness as the nonlinear and dispersive
terms. It was also assumed that the variation of a wavefront along
the azimuthal variable ϕ is smooth so that the characteristic length
of variation along ϕ is much greater than the length of a wavefront
along r.

Note that the coefficient c > 0 is the speed of long waves of
infinitesimal amplitude; the coefficient α can be of either sign; its
sign only controls the polarity of a wave but does not have any
influence on the wave shape or wave stability with respect to the
azimuthal perturbations. In contrast to that, the sign of the coeffi-
cient β plays an important role both in the view of the wave shape
and its stability. If we have an exact solution ue(r, ϕ, t) to Eq. (1.1)
with β > 0 describing the outgoing ring wave, then the same solu-
tion but with the inverse polarity −ue(r, ϕ, t) can be obtained for
an incoming wave with β < 0 and vice versa. Indeed, if we replace
β → −β , c → −c, and u → −u, we obtain almost the same
equation (1.1) but with the opposite sign of the coefficients in front
of the second term and in front of the term on the right-hand side.
Such an equation describes an incoming wave. However, the rear
part of a nonsymmetric outgoing wave becomes under the trans-
formation of the frontal part of an incoming wave. In addition to
that, circular waves in media with the “anomalous dispersion,” i.e.,
with β < 0, are unstable with respect to the azimuthal perturbations,
whereas, in media with the “normal dispersion,” i.e., with β > 0,
they are stable. This issue is discussed below in detail.

To construct solutions to the cKP equation, it is convenient to
reduce it to the widely used dimensionless “standard form” (see, for
example, Ref. 9),
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Here, the parameter σ 2 = ±1 determines the type of the cKP
equation; its sign is the same as the sign of the dispersion parameter
β ; therefore, βσ 2 > 0. The case with σ 2 = −1 pertains to the cKP1
equation, which is applicable, in particular, to waves in a magnetized
plasma,10,11 waves in solids and on elastic plates,12 oceanic inter-
nal waves in shear flows,13,14 shallow-water waves with vertical odd
viscosity,15 etc., whereas the case with σ 2 = 1 pertains to the cKP2
equation that describes, in particular, the surface or internal waves in
shallow water16 (see also the Appendix), waves in pair-ion-electron
plasma.17 Such a classification based on the parameter σ 2 is very sim-
ilar to the classification of the conventional quasi-one-dimensional
KP equation (see, for example, Refs. 18 and 19).

If function U does not depend on θ , then Eq. (1.2) reduces to
the cylindrical Korteweg–de Vries (cKdV) equation, and the latter
reduces to the plane KdV equation if a wavefront is straight. (Note
that the cKdV equation was derived for the first time for surface
water waves by Iordansky;20 then, it was re-derived independently
for water waves by A. A. Lugovtsov and B. A. Lugovtsov;21 and
then it was derived for plasma waves by Maxon and Viecelli;22 see
also Refs. 3, 7, 23, 52, 56, 58, and 59.) All four equations (KdV,
cKdV, KP, and cKP) are completely integrable (there is also a rel-
ative elliptic KP equation, which is completely integrable too24).
The representation of all these equations, except the classical KdV
equation, in terms of Lax pairs of operators was established by
Dryuma.25–27 Various links between four relative equations were
found by various authors3,4,21,28–30 and summarized in Ref. 32 (see
the diagram in Fig. 1). One-way arrows stand for that all solutions
of one-dimensional equations KdV and cKdV can be transformed
into some particular solutions of two-dimensional equations cKP
and KP, respectively, by means of the relevant transformation. Two-
way arrows stand for that there is one-to-one conformity between
solutions of the corresponding equations, for example, between the
KdV and cKdV or KP and cKP.

Using the links between these equations, one can formally
derive solutions of the cKP equation from the other three equations,
but not all of these solutions can be of physical meaning. New solu-
tions to the cKP equation from the solutions of the KP equation were
formally generated by many authors.9,17,33–36 Some other formal solu-
tions to the cKP equation were constructed by different methods in
Refs. 8 and 37–39. We call these solutions formal because they do
not satisfy the periodicity condition on the azimuthal variable θ and
do not conserve the energy flux. In this and subsequent papers, we
will derive several classes of exact solutions to the cKP equation with
different parameters σ 2 = ±1 and discuss their relevance to physical
phenomena.

Before we proceed further, it is necessary to mention two
conserved quantities, which are of physical importance. Note that
function U(r, θ , τ) must be periodic on the azimuthal variable θ

together with its derivatives with respect to θ ; then, Eq. (1.2) can be
integrated once over a period of θ ; and then, it can be integrated once
again over time t from minus to plus infinity under the assumption
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FIG. 1. The diagram that shows links between four relative equations.32One-way
arrows stand for that all solutions of one-dimensional equations KdV and cKdV
can be transformed into some particular solutions of two-dimensional equations
KP and cKP, respectively, by means of the relevant transformation, but not vice
versa. Two-way arrows stand for that there is one-to-one conformity between solu-
tions of the corresponding equations. Dashed arrows show that all solutions of
one-dimensional equations KdV and cKdV are, certainly, particular solutions of
their two-dimensional counterparts, KP and cKP, respectively.

that function U(r, θ , τ) vanishes together with all its derivatives with
respect to τ when τ → ±∞. This gives a quantity I1 (see below),
which can be interpreted as the “mass flux” of a pulse-type wave
perturbation. Another quantity, I2, that can be interpreted as the
“energy flux,” can be derived if we preliminary multiply Eq. (1.2)
by U and then integrate it over a period of θ and over τ as above. As
a result of that, we obtain conserved quantities,

I1 =
∫ +∞

−∞

∫ 2

0

U(r, θ , τ)
√

r dθ dτ ,

I2 =
1

2

∫ +∞
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∫ 2

0

U2(r, θ , τ) r dθ dτ , (1.4)

where 2 = 2π
√

6c (2/βc)1/3 is a period of a function U [see
Eq. (1.3)]. Physically reasonable solutions vanishing at plus and
minus infinity on τ must meet these requirements. For periodic in
time solutions, the outer integrals must be evaluated over one period
on τ .

In the conclusion of this section, we will demonstrate that for-
mal solutions of the cKP equation obtained from the KdV equation
by the transformation of variables are physically irrelevant. As has
been shown in Ref. 3, the cKP equation (1.2) can be reduced to the
dimensionless “timelike KdV” (tKdV) equation,

∂U

∂r
+ 6U

∂U

∂τ ′ +
∂3U

∂τ ′3 = 0, (1.5)

with the help of the transformation

r = r, τ ′ = τ −
r θ 2

12σ 2
. (1.6)

Using this transformation, one can formally obtain a wide fam-
ily of “exact solutions” from the tKdV equation. Let us consider, in
particular, a soliton solution to the tKdV equation (1.5),

U(τ , r) = A sech2 1
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2
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, V =

1

2A
. (1.7)

Note that in this form, the soliton speed dependence on the ampli-
tude looks unusual as it is inversely proportional to the amplitude A
so that a soliton of a smaller amplitude moves faster than a soliton of
a bigger amplitude within the framework of the tKdv equation (1.5).
However, in physical variables, the dimensional soliton speed Vs is
determined by the formula

Vs =
c

1 − (1/Vc)(βc/2)1/3
=

c

1 − (2A/c)(βc/2)1/3

≈ c
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1 + 2
A

c
(βc/2)1/3

]

.

The last approximate equality is valid for solitons of relatively small
amplitudes A. Bearing in mind the link between the dimensional
As and nondimensional A amplitudes as per Eq. (1.3), we obtain
the usual relationship between the soliton amplitude and velocity:
Vs ≈ c(1 + αAs/3).

Solution (1.7) under the transformation (1.6) provides the
solution to the cKP equation (1.2),

U(τ , r, θ) = Asech2

{

√

A

2

[
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(
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12σ 2

)

r

]

}

. (1.8)

If we fix the argument of this solution setting τ −
(

2A + θ 2/12σ 2
)

r
= τ0 then, we obtain the equation describing front propagation in
the polar coordinates:

r(τ , θ) =
τ − τ0

2A + θ 2/12σ 2
. (1.9)

As follows from this formula, the front size linearly increases with
time. Figure 2 illustrates front shapes in the polar coordinates for
−π ≤ θ ≤ π for σ 2 = 1 [frame (a)] and σ 2 = −1 [frames (b) and
(c)] at three different time moments. The solution is valid for r � 1;
therefore, the black circles in the center show the domains of the
radius r = 10 where the solution is invalid.

The main drawbacks of such solutions are (i) their fronts are
either not smooth and contain cusps at θ = ±π , as shown in frames
(a) and (b), or they go to infinity and are not periodic on θ , as
shown in frame (c); (ii) the soliton amplitude does not decrease with
time and distance as should be expected for cylindrically diverg-
ing waves; therefore, mass and energy fluxes (1.4) do not conserve
(this is the consequence of non-smoothness of the solution); and (iii)
soliton fronts are shown for the specifically chosen angular interval
−π ≤ θ ≤ π , whereas beyond this interval, fronts become multi-
valued. Thus, one can conclude that solutions that are formally
derived through the transformation from the tKdV soliton, appar-
ently, are not physically acceptable but can be considered curious
mathematical constructions.

Similarly, one can see that the solutions to the cKP equation
derived from the conventional KP equation9,17,33–36 are also physi-
cally unacceptable. The link between solutions of the cKP equation
(1.2) and the conventional KP equation in the form

∂

∂x
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∂t
+ 6U

∂U
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+
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∂x3

)

+ 3σ 2 ∂2U
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= 0, (1.10)
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FIG. 2. Soliton fronts as per Eq. (1.8) at particular times. The parameters are σ 2 = 1, A = 2 in frame (a); σ 2 = −1, A = 2 in frame (b); and σ = −1, A = 0.2 in frame
(c). Black circles in the center show the domain where Eq. (1.2) is invalid.

where x and y are Cartesian coordinates, is given by the
transformation36

U(x, y, t) → U(r, ϕ, τ), x = τ −
r θ 2

12σ 2
, y = r θ , t = r.

(1.11)

Here, U(x, y, t) is a solution of the KP equations (1.10), and U(r, ϕ, τ)

is the corresponding solution to the cKP equation (1.2). Such a
transformation provides solutions, which are either non-smooth
or discontinuous, or multivalued. In Secs. II and III and the next
part of this study, we will present physically acceptable solutions
constructed directly for the cKP or cKdV equations not using the
transformation techniques.

II. RING SOLITONS IN THE CKDV AND CKP

EQUATIONS

As a first step, let us consider axis-symmetric solutions to the
cKP equation (1.2) when the function U does not depend on θ . In
this case, Eq. (1.2) reduces to the cKdV equation, and its exact solu-
tions were obtained in Refs. 40–42 (their asymptotic solutions were
studied in Refs. 43 and 44). Solutions can be expressed through the
Hirota transform45 in terms of the auxiliary function 0,

U(r, τ) = 2
∂2

∂τ 2
ln 0. (2.1)

The simplest “one-soliton solution” is

0 = 1 +
q

(12r)1/3

{

z(r, τ)W2(z) −
[

W′(z)
]2
}

, (2.2)

where q is an arbitrary parameter, W(z) is an Airy function either of
the first kind or of the second kind, and z(r, τ) = (τ − τ0)/ (12r)1/3.
The symbol prime stands for differentiation with respect to the
argument of a function W. Note that in terms of the function
0(r, τ), solution (2.2) is the typical self-similar solution on the con-
stant pedestal. However, in the variable U(r, τ), the corresponding

solution is more complicated, and it is neither self-similar nor a
traveling-wave solution,

U(r, τ) =
2

(12r)2/3

[

(12r)1/3 + qF(z)
]

qF′′(z) − q2 [F′(z)]2

[

(12r)1/3 + qF(z)
]2

, (2.3)

where F(z) = z(r, τ)W2(z) − [W′(z)]2. A genuine self-similar solu-
tion in terms of a function U(r, τ) can be obtained from Eq. (2.3) if
we set |q| → ∞. Then, we obtain46

U(r, τ) =
2

(12r)2/3

F F′′ − (F′)
2

F2
. (2.4)

Such a solution with the Airy function of the first kind, W(z)
≡ Ai(z), was considered by Johnson3 in application to a water-wave
problem. The shapes of the self-similar solutions with the Airy func-
tions of the first kind, Ai(z), and the second kind, Bi(z), are shown
in Fig. 3. The solution shown in Fig. 3(b) is, obviously, singular at
r = 0. [In this figure and all subsequent ones, we show U(t, r, ϕ)

= α u(t, r, ϕ)/6.]
In general, a self-similar solution to the cKdV equation can

be derived directly from the cKdV equation if we seek a solution
of Eq. (1.2) in the form U(r, τ) = rαS(ξ), where ξ = rβτ γ (such
an approach was used in Ref. 10 for the KdV equation). Substitut-
ing this form of the solution in Eq. (1.2), we obtain after simple
manipulation that function S(ξ) must satisfy the ODE,

S′′′ + 6SS′ −
1

3
ξS′ −

1

6
S = 0, (2.5)

provided that α = −2/3, β = −1/3, γ = 1. This agrees with the
solution (2.4) if we set U(r, ξ) = 2S(ξ)/ (12r)2/3.

The order of the ODE (2.5) can be reduced by multiplication
by S and integration with respect to ξ subject to zero boundary
condition at plus and minus infinity; this gives6

SS′′ −
1

2

(

S′)2 + 2S3 −
1

6
ξS2 = 0. (2.6)
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FIG. 3. Self-similar solutions to Eq. (1.1) as functions of the normalized time ct in
terms of the Airy functions of the first kind Ai(z) [panel (a)] and second kind, Bi(z)
[panel (b), r0 = 306]. In panel (a), the parameters are r0 = 280, c = 1, α = 1,
and β = 2 (σ = 1). In panel (b), the parameters are r0 = 306, c = 1, α = −1,
and β = −2 (σ = i).

Then, this equation can be reduced to the second Peinlevé
transcendent47,48 through the substitution S = υ2,

υ ′′ −
1

12
ξυ + υ3 = 0 (2.7)

(further details can be found in Ref. 6). A self-similar solution to the
cKdV equation was also obtained differently in Ref. 63.

In what follows, we will focus on solitary-type solutions with
circular fronts (ring solitons). The shape of a single ring soliton
depends on the choice of the Airy function W in Eq. (2.2), as well
as on the parameters q and σ in Eq. (1.2). Below, we present the
analysis of solutions for both kinds of Airy functions.

A. Ring solitons described by the Airy function of the

first kind

Consider the first solution (2.3) with the Airy function of the
first kind Ai(z) dubbed the Ai-soliton. To get a solution that resem-
bles a classical KdV soliton, it is necessary to choose a very big on
absolute value but negative parameter q. In the original variables,
solution (2.3) depends on r and z(r, t), where

z(r, t) = σ c

(

2

|β|c

)1/3
r − ct

(12r)1/3
. (2.8)

FIG. 4. The Ai-soliton with q = −1030 in the normalized variables. Panel (a)
shows the dependence of U on the normalized time ct at the fixed distance
r0 = 75 (red line). Panel (b) shows the dependence of U on distance r at the
fixed time ct0 = 125. Other parameters are c = 1, α = 1, β = 2, and σ = 1.
The blue line in panel (a) shows the shape of a plane KdV soliton of the same
amplitude [solution (1.7) to Eq. (1.5)]. The insertion shows the magnified portion
of the plot depicted in panel (a).

Figure 4 shows one of such solutions in the case of the “normal
dispersion” when β > 0 (σ = 1) and q = −1030. In panel (a), the
solution is shown by the red line as a function of normalized time for
a fixed distance r0 = 75. In Fig. 4(b), the same solution is shown as a
function of distance for the fixed normalized time ct0 = 125. For the
comparison, we show also by the blue line in panel (a) the shape of a
plane KdV soliton of the same amplitude [solution (1.7) to Eq. (1.5)].
As one can see, the difference between these solutions is only in the
tail part. The insertion in panel (a) shows the magnified portion of
the plot depicted in panel (a). Note that if the nonlinear coefficient
α is negative, then the plots in Fig. 4 are mirror-symmetric with
respect to the horizontal axes.

The Ai-soliton depicted in Fig. 4 represents an outgoing wave;
i.e., it travels to the right along the r axis when time increases. In the
vicinity of zero, the solution becomes oscillating with increasing fre-
quency and amplitude. However, both the cKdV and cKP equations
are inapplicable in the vicinity of r = 0; therefore, this part of the
solution is out of physical meaning and should be ignored.

In the case of the “abnormal dispersion” when β < 0 (σ = i)
in Eq. (1.1), a solution based on the Airy function of the first kind,
Ai(z), looks qualitatively similar but in the reverse order in time and
in space so that the oscillatory wavetrain arrives first and the pulse
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FIG. 5. The same as in Fig. 4 but with different parameters (α = −1,
β = −2, σ = i). Panel (a): solution as a function of time ct − 100 at a fixed
distance r0 = 75; panel (b) – solution as a function of distance r at a fixed time
ct0 = 50.

follows it. The polarity of the pulse is positive for the negative coeffi-
cient α. An example is shown in Fig. 5. The solution describes a wave
traveling to the right; i.e., it represents an outgoing perturbation.

In Fig. 6, we show solutions (2.3) based on the Ai-function with
the different parameter q. When q → −∞, the solution becomes
indeed similar to a KdV soliton in its leading part [see Fig. 6(a)]. The
leading pulse is accompanied by a small-amplitude trailing wave.
However, when the parameter q increases (decreases on the abso-
lute value), the amplitude of the oscillatory tail becomes comparable
with the amplitude of the leading pulse and even exceeds it [see, for
instance, Fig. 6(d)]. For any positive parameter q > 0, the solution
is singular.

B. Ring solitons described by the Airy function of the

second kind

Consider now a solution based on the Airy function of the sec-
ond kind Bi(z). A solution with a solitary wave in the leading part
(dubbed the Bi-soliton) now exists in the case of “abnormal disper-
sion” when β < 0 (σ = i). In the original variables, solution (2.3)
depends on r and z, but now,

z(r, t) = c

(

2

|β|c

)1/3
ct − r

(12r)1/3
. (2.9)

A solitary-type solution can be obtained if we set a very small and
positive parameter q � 1. Figure 7 shows one of such solutions with

FIG. 6. Exact solutions to the cKdV equation (1.1) based on the Ai-function in the
normalized variable U [see (1.3)] as functions of ct at a fixed distance r0 = 250.
(a) q = −1030, (b) q = −1010, (c) q = −105, and (d) q = −10. Other param-
eters were are c = 1, α = 1, β = 2, and σ = 1. Note that the vertical and
horizontal scales are different in different frames.

q = 10−30 as a function of time for the fixed distance r0 = 75 [red
line in panel (a)] and as a function of distance for the fixed time
ct0 = 125 [panel (b)]. For the comparison, we show also in panel
(a) a shape of a plane KdV soliton of the same amplitude (blue
line). As one can see, the difference between the Bi-soliton and the
KdV soliton is again only in the tail part, but the pulse tail now
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FIG. 7. The Bi-soliton with q = 10−30 in the normalized variables at the fixed
distance r0 = 75 [red line in panel (a)] and as a function of distance r at the fixed
time ct0 = 225 [panel (b)]. Other parameters are c = 1, α = −1, and β = −2
(σ = i). A meaningless part of the solution near r = 0 was removed. The blue
line in panel (a) shows the shape of a plane KdV soliton of the same amplitude.

decreases monotonically without oscillations. The solution describ-
ing the Bi-soliton becomes singular near the center where r = 0, but,
as aforementioned, the cKdV and cKP equations are inapplicable in
the vicinity of the center; therefore, this part of the solution is out of
physical meaning; it was removed from Fig. 7(b). However, a solu-
tion based on the Bi Airy function has another singularity at a very
big distance in front of the leading pulse. The position of the singu-
larity quickly goes to infinity in terms of r (or to minus infinity in
terms of t) when q → 0. Therefore, such a solution with extremely
small q as shown, for example, in Fig. 7 could also be acceptable,
in principle, for the interpretation of physical and numerical exper-
iments given that both singularities, at r = 0 and r ≫ 1, are out
of the physical meaning and can be ignored. For negative q, the
solution has a singularity instead of a pulse at some finite distance.
The Bi-soliton depicted in Fig. 7 represents an outgoing wave; i.e., it
travels to the right along the r axis when time increases.

In Fig. 8, we show solutions (2.3) based on the Bi-function
with the different parameter q. When q → 0+, the solution becomes
indeed similar to a KdV soliton in its leading part [see Fig. 8(a)].
The leading pulse is accompanied by a small-amplitude smoothly
decreasing tail of the same polarity as the pulse. However, when the
parameter q increases, the amplitude of the tail becomes notable. For
the relatively big q, an oscillatory train appears in front of the pulse

FIG. 8. Exact solutions to the cKdV equation (1.1) based on the Bi-function in the
normalized variable U [see (1.3)] as functions of ct at a fixed distance r0 = 75. (a)
q = 10−30, (b) q = 10−3, (c) q = 2, and (d) q = 4. Other parameters are c = 1,
α = −1, β = −2, and σ = i. The vertical blue line in frame (d) shows a position
of a singularity; on other frames, a position of a singularity is too far on the left.
Note that the vertical and horizontal scales are different in different frames.

[see Figs. 8(c) and 8(d)]. The amplitude of oscillations increases at
negative t and ends up at the point of singularity, which is not visible
in Fig. 8(c) but quite visible in Fig. 8(d). For any negative parameter
q < 0, the solution is singular.

Chaos 34, 013138 (2024); doi: 10.1063/5.0175696 34, 013138-7

Published under an exclusive license by AIP Publishing

 25 January 2024 23:09:18

https://pubs.aip.org/aip/cha


Chaos ARTICLE pubs.aip.org/aip/cha

In the case of the “normal dispersion” when β > 0 (σ = 1) in
Eq. (1.1), a Bi-soliton looks qualitatively similar but in the reverse
order in time so that its long “tail” arrives first, and the pulse follows
it when the wave propagates to the right (outgoing circular wave).
The polarity of the pulse is positive for the negative coefficient α

and vice versa.
The structure of solutions with the positive and negative β is

quite understandable from the physical point of view. Indeed, in the
normal dispersion case, the bigger the wavelength, the greater the
wave speed; therefore, the “tail” having a much greater characteris-
tic length than the pulse must propagate in front of it. In the case of
abnormal dispersion, the situation is reversed. The bigger the wave-
length, the smaller the wave speed; therefore, the long-wave “tail”
must propagate behind the pulse. The same qualitative explanation
is applicable to the structure of Ai-solitons.

C. Comparison of analytical and numerical solutions

for ring waves in the cKdV equation

To investigate the realizability of a solitary-type solution, we
undertook direct numerical simulations of ring waves with initial
perturbation in the form of the KdV soliton. For such a perturba-
tion, an approximate solution can be constructed by the asymptotic
method (see, e.g., Ref. 49 and references therein). In the leading
order of the asymptotic theory, the solution is a KdV soliton with
slowly varying parameters in space,

U(r, τ) = A(r)sech2 τ −
∫

dr/V(r)

T(r)
. (2.10)

The dependence of soliton amplitude on r can be found from
the equation of energy flux conservation [see the quantity I2 in
Eq. (1.4)]. Substituting there solution (2.10) and bearing in mind the
relationship between T and A, we readily derive

A(r) = A0

(

r

r0

)−2/3

, T(r) = T0

(

r

r0

)1/3

,

(2.11)

V(r) =
1

2A(r)
=

1

2A0

(

r

r0

)2/3

.

These dependences of parameter variations in nonlinear circular
waves were obtained by means of approximate methods in several
papers.50–55 They are in perfect agreement with the exact solutions
presented above for the Ai- and Bi-solitons,40–42 as well as with the
experimental and numerical data.22,54,60–63 In Fig. 9, we show the
result of the direct numerical modeling of the evolution of the initial
KdV soliton with the amplitude A0 = 0.3 within the cKdV equation
(1.1). The “initial condition” was actually set at the finite distance
from the center at r0 = 200 as a function of time (it was rather a
boundary condition).

A few important features of the result obtained can be noted.

• First, the shape of the leading pulse is indistinguishable from the
shape of the KdV soliton of the same local amplitude and is well
described by the asymptotic theory with the adiabatic variation of
parameters as per Eq. (2.11).

• Second, in the course of pulse propagation, a long tail emerges
behind it; its shape is shown in the insertion to Fig. 9 (see also

FIG. 9. The result of the numerical solution of the cKdV equation (1.1) with the
“initial condition” in the form of the KdV soliton with the amplitude A0 = 0.3 at
r0 = 200 as a function of time. Insertion shows a zoomed fragment of the solution
demonstrating the tail structure behind the leading pulse.

Fig. 1 in Ref. 55 and Fig. 4 in Ref. 64). The tail shape can be
described in the next order of the asymptotic theory; this has been
done by Johnson64 who derived the analytical expression for the
tail both in the near-field zone (the negative polarity shelf) and
the far-field zone (quasi-sinusoidal wavetrain). The shelf ampli-
tude decays with the distance in the same manner as the leading
pulse amplitude, i.e., as r−2/3 (Refs. 5 and 64). As one can see, the
tail shape is very similar to the tail behind the Ai-soliton shown in
Fig. 4(a).

• In the numerical study, we never observed the formation of a
solitary-type solution with a shape similar to the shape of Bi-
soliton with a long monotonically decaying tail as shown in Fig. 7.
Apparently, only solutions similar to Ai-solitons can be formed
in the course of the evolution of pulse-type circular initial per-
turbations. In relation to this, we note that Johnson64 mentioned
that the choice of the Bi-function in place of the Ai-function (and
even a linear combination of Ai- and Bi-functions) does not lead
to a proper solution of the cKdV equation due to the inevitable
singularity in the Bi-function. Mathematically, this is true, but a
singularity can be at such a big distance from the leading pulse
that physically, it can be treated as existing at infinity.

• Solution (2.10) with adiabatically varying parameters (2.11) does
not conserve the “mass flux” of a soliton Is, whereas the total
“mass flux” of the solution I1 (1.4) is surely conserved. The “mass
flux” associated with only soliton according to the adiabatic solu-
tion (2.10) increases with the distance as I1sol ∼ r1/6. This means
that in the course of pulse propagation, the negative polarity tail
is generated in the form of a shelf that carries a negative “mass
flux” Ish ∼ −r1/6.5,64 The shelf amplitude decreases r−2/3, and its
width increases as r5/6. However, the analysis of mass conserva-
tion within the primitive set of hydrodynamic equations shows
that the total mass and, therefore, a genuine mass flux must be
equal to zero.5,21,53,64 This is not the case for the cKdV model in
which the total “mass flux” is constant but not necessarily zero.
Nevertheless, for the exact solution of the cKdV equation based
on the Ai-function, the “mass flux” is identically zero,64 whereas
for the solution based on the Bi-function, the “mass flux” is unde-
termined given that the Bi-soliton formally has a singularity far
from its head.
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FIG. 10. (a) Time dependence of the combined Ai–Bi-soliton at r0 = 408. (b)
Time dependence of the combined Ai–Bi-soliton at r = 724. Numerical data were
obtained for the following parameters: α = 1, β = 2, c = 1, and A0 = 0.3642.

For the sake of curiosity, we considered also the evolution of
a combined Ai–Bi soliton. To this end, we prepared for the numer-
ical study a pulse-type initial condition the left part of which was
an Ai-soliton with the parameter q1 = −1030 up to the maximal
value shown in Fig. 4(a), and the right part was a Bi-soliton with
the parameter q2 = 0.503 × 10−12 commencing from the maximum
and then exponentially decaying. With such parameters q, both
maximum values were the same; the initial condition is shown in
Fig. 10(a). Thus, the initial condition consisted of two exact solu-
tions smoothly matched at the maximum. The artificially generated
pulse profile exactly coincided with the profile of a KdV soliton with
the same amplitude.

However, a numerical solution of the cKdV equation with such
an initial condition was different from the solution of a KdV soliton.
Initially, the pulse decay was very weak, and only asymptotically, at
a big distance, its decay was similar to the decay of a KdV soliton
or Ai- and Bi-solitons, A(r) ∼ r−2/3—see Fig. 11. At this asymptotic
stage, the solution was qualitatively similar to the Ai-soliton. A long
negative polarity tail was formed behind the leading pulse followed
by small-amplitude oscillations in the far zone as shown in Fig. 10(b)
(cf. Figs. 4 and 9).

Moreover, when the combined initial pulse was multiplied by a
factor of 3, it disintegrates onto two pulses in the course of propaga-
tion. Each of these pulses further evolved into KdV-type (or Ai-type)

FIG. 11. The dependence of the normalized amplitude of the combined Ai–Bi
soliton on the distance (line 1). Line 2 shows the asymptotic dependence
A(r) ∼ r−2/3. Numerical data were obtained for the following parameters:α = 1,
β = 2, c = 1, A0 = 0.3642, and r0 = 408.

solitons followed by negative polarity tails with oscillations in the far
zone.

D. Interactions of cylindrical solitons in the cKdV

equation

The Ai- and Bi-solitons can be considered counterparts of
plane KdV solitons in the cylindrical geometry. As has been men-
tioned above, the cKdV equation is completely integrable; it pos-
sesses N-soliton solutions and an infinite number of conserved
quantities; the first two of them are presented in Eq. (1.4), and others
can be found, for example, in Ref. 42. Here, we will illustrate inter-
actions of Ai- and Bi-solitons on the basis of two-soliton solutions
derived by Nakamura and Chen.42

The “two-soliton solution” in terms of the function 0(r, τ) [see
Eq. (2.2)] can be presented in the form42

0(r, τ) = 1 + ε(a11 + a22) + ε2

∣

∣

∣

∣

a11 a12

a21 a22

∣

∣

∣

∣

=
∣

∣

∣

∣

1 + εa11 εa12

εa21 1 + εa22

∣

∣

∣

∣

, (2.12)

where the quantities aij are defined by the following expressions:

aij =
ρi ρj

(12r)1/3

wi(zi) w′
j(zj) − w′

i(z) wj(zj)

zi − zj

, i 6= j, (2.13)

aii =
ρ2

i

(12r)1/3

{

(zi) w2
i (zi) −

[

w′
i(zi)

]2
}

, i = j, (2.14)

where zi = (τ − τi) /(12r)1/3, i, j = 1, 2, and wi(z) are either Airy
functions of the first kind Ai(z) or Airy functions of the second
kind Bi(z). The solution with the Bi-functions has been consid-
ered in Ref. 49 where they were treated (apparently, mistakenly) as
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FIG. 12. Left column: Exchange type of soliton interaction with the following parameters: ε = 1, ρ1 = −1010, ρ2 = −1020, τ1 = 24, and τ2 = −120. (a) t = 100, (b)
t = 125, (c) t = 666, and (d) t = 2500. Right column: Overtaking type of soliton interaction with the following parameters: ε = 1, ρ1 = −105, ρ2 = −1040, τ1 = 24, and
τ2 = −360. (a) t = 250, (b) t = 350, (c) t = 406, and (d) t = 650. Note that the vertical and horizontal scales are different in different frames.

the most relevant to the interpretation of physical and numerical
experiments. Now, we consider that, namely, solutions based on the
Ai-functions play such a role.

Similar to the classic KdV case, the character of the interac-
tion of two Ai-solitons depends on their amplitudes. In the left
column of Fig. 12, we illustrate the exchange type of soliton inter-
action when they do not completely overlap so that there is energy
transformation from one of them into another one and in the right
column—the overtaking type of interaction when they completely
overlap at a certain time moment. Such interactions are well-known
for the KdV65 and some other equations. We did not study the
details of a two-soliton interaction in the cylindrical case; this can
be done elsewhere. Note that in the plane KdV case, there are two
critical values of the soliton amplitude ratio. If the amplitude ratio
A1/A2 < (3 +

√
5)/2 ≈ 2.62, the exchange-type interaction occurs,

whereas, in the case of A1/A2 > 3, the overtaking-type interaction

occurs. A more complicated interaction occurs in the intermediate
case, (3 +

√
5)/2 < A1/A2 < 3. The details can be found in Ref. 65.

The N-soliton solution was also found by Nakamura and
Chen.42 The initial pulse fission onto a number of Ai-solitons can
occur in the cylindrical case like in the plane case; some examples
are presented in Ref. 49.

III. STABILITY OF RING WAVES AND LUMP CREATION

Ring solitons considered in Sec. II can be subject to instability
with respect to angular perturbation. By analogy with the plane case,
intuitively, it is clear that instability can occur in media with positive
dispersion when the coefficient β in Eq. (1.1) is negative.18,66–69 How-
ever, the rigorous study of azimuthal instability of Ai-solitons has
not been performed thus far. Krechetnikov6 investigated the stabil-
ity of a self-similar solution with respect to azimuthal perturbations
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FIG. 13. Schematic illustration of different scenarios of modulation instability
of a ring soliton with respect to azimuthal perturbations. Numbers 1, 2, and 3
correspond to the scenario number described in the text.

and confirmed that stability indeed occurs in media with negative
dispersion, β > 0, but in media with positive dispersion, β < 0, the
instability can occur under certain conditions and manifests in a
complicated way. Here, we present first qualitative thoughts on the
azimuthal instability of solitons, and then, we will demonstrate the
development of instability through numerical modeling and some
analytical solutions. To this end, we recall the condition of trans-
verse instability of plane KdV solitons within the framework of the
standard KP1 equation (1.10).

A. Qualitative description of azimuthal instability of

cylindrical solitons in the cKP1 equation

According to well-known results,66,67,69 the instability of a KdV
soliton of the amplitude A modulated in the lateral direction,
U = Asech2

[

(x − 2At)
√

A/2
]

, occurs if the wavelength of a sinu-
soidal perturbation of a soliton front along the perpendicular y-axis

is big enough, i.e., 3 > 3c ≡ 4π/
(

A
√

3
)

. However, in the cylin-
drical case, a wavelength of an azimuthal perturbation is restricted
by the circular front circumference. Assuming that a ring outgoing
soliton is perturbed by a small-amplitude sinusoidal wave of an nth
mode, we obtain that in the course of propagation, the wavelength
of the perturbation increases as 3(t) = 2πr(t)/n. In the mean-
time, the critical wavelength also increases with time because the
soliton amplitude decreases with r(t) as A ∼ r−2/3 [see Eq. (2.11)];
therefore,

3c =
4π

A(r)
√

3
=

4π
√

3

3A(r0)

(

r(t)

r0

)2/3

. (3.1)

Thus, instability can occur when

r(t) >
1

r2
0

(

2n
√

3

3A0

)3

. (3.2)

If at the beginning r0 > 2n
√

3/ (3A0), then the instability immedi-
ately starts to develop but, perhaps, not at the maximal rate. The
maximum growth rate of instability γmax occurs for the perturbation

of the optimal wavelength 3opt, where66–69

γmax =
2
√

6A3/2

9
=

2
√

6r0A
3/2
0

9r
,

3opt(t) =
2π

√
3

A(t)
=

2π
√

3

A0

(

r

r0

)2/3

. (3.3)

Therefore, we can describe qualitatively possible scenarios of
the development of modulation instability of circular solitons in
media with positive dispersion.

1. If the wavelength of azimuthal modulation of a soliton front
is greater than the optimal value 3opt, then the modulation
increases but with a gradually decreasing growth rate because
the wavelength of azimuthal modulation on a soliton front
permanently increases due to the cylindrical divergence.

2. If the wavelength of azimuthal modulation is slightly greater
than the critical value 3c, then a growth rate of instabil-
ity increases, attains its maximal value γmax, and then slowly
decreases up to zero.

3. If the wavelength of azimuthal modulation is less than the crit-
ical value 3c, then the modulation decreases first, but then, it
starts to grow when the wavelength 3 exceeds 3c. After that,
the scenario of item 2 is realized.

This scenario is schematically shown in Fig. 13 where the red
line shows a qualitative dependence of the modulation growth as
a function of the wavelength of azimuthal perturbation. Points 3c

and 3opt move to the right as the soliton ring radius r increases,
3c ∼ 3opt ∼ r2/3. However, a wavelength 3 of any perturbation
increases faster with the radius, 3 ∼ r. Therefore, the wavelength
of a perturbation overtakes the 3opt so that its growth rate grad-
ually decreases especially since the maximum of the growth-rate
curve also decreases γmax ∼ 1/r as per Eq. (3.3). Even if the wave-
length of an azimuthal perturbation is less than the critical one, 3c

(see line 3 in Fig. 13), there is still a chance to overtake the critical
point 3c before the perturbation completely disappears. Then, the
perturbation will start growing.

Thus, according to this analysis, the outgoing ring solitons are
stable if β > 0. This pertains both to Ai- and Bi-solitons, the exam-
ples of which are shown in Figs. 4(b) and 7(b), respectively. In the
case of β < 0, ring solitons are unstable with respect to azimuthal
perturbations; one such unstable solitons is shown in Fig. 5(b).
Below, we illustrate the aforementioned scenarios of instability by
means of numerical modeling.

B. Numerical modeling of azimuthal instability of

cylindrical solitons in the cKP1 equation

The qualitative thoughts presented in Sec. III A agree well with
the results of direct numerical modeling of azimuthal instability of
ring Ai-solitons in the cKP1 equation (1.1) with β < 0. The initial
ring Ai-soliton with the radius r0 = 30 and amplitude A0 = 0.5129
was slightly modulated on amplitude by a sinusoidal perturbation
of mode 2 (the mode number is the number of wavelengths in the
azimuthal direction) and the relative amplitude of modulation of 5%
as shown in Fig. 14(a).
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FIG. 14. Development of the modulation instability from the ring Ai-soliton with a
small sinusoidal perturbation of soliton amplitude of mode 2. Frame (a) t = 140
and frame (b) t = 240. The central part in each frame where the cKP equation
(1.2) is invalid has been deleted. The plot was generated with the following
parameters: c = 1, α = −1, β = −2, and σ = i.

With this perturbation, 3c = 14.15 according to Eq. (3.1) and
3opt = 21.22 according to Eq. (3.3), whereas the wavelength of the
perturbation is half of the circumference for the mode 2, 3 = πr0

= 94.2 > 3c. In the process of evolution, the modulation increased,
as was expected, and lump-type patterns commenced formation
[see Fig. 14(b)]. However, because the wavelength of the modu-
lation 3 is more than four times greater than the optimal, the
growth rate of the perturbation is too small and becomes smaller and
smaller when the radius of the ring wave increases. Therefore, in our
numerical modeling due to restricted computer resources, we could
see only the initial stage of development of very weak modulation
instability.

The development of the modulation instability becomes more
favorable for mode 4. In this case with the same initial ampli-
tude, radius of the ring soliton, and 5% modulation, we have the
wavelength of the perturbation of a quarter of the circumference,
3 = πr0/2 = 47.1, which is only about two times greater than
3opt = 21.22. Now, the growth rate is sufficient for the formation
of four lumps for a relatively short time as shown in Fig. 15. Such
instability was observed for any type of initial soliton with a circular
front.

FIG. 15. Development of the modulation instability from the ring Ai-soliton with a
small sinusoidal perturbation of soliton amplitude of mode 4. Frame (a) t = 120,
frame (b) t = 170, and frame (c) t = 200. The central part in each frame where
the cKP equation (1.2) is invalid has been deleted. The plot was generated with
the following parameters: c = 1, α = −1, β = −2, and σ = i.

In general, one can say that in the process of disintegration of
an outgoing ring soliton, we observe the creation of lump chains
with a different number of lumps on a circle front. The distance
between lumps increases in the course of propagation, which makes
such lump chains unstable with respect to azimuthal perturbation
and creation of new chains and so on; a similar phenomenon is
known for the quasi-plane case within the framework of the KP1
equation.70 In the next paper, we will study analytically the interac-
tions of circular solitons with lump chains as well as the normal and
anomalous interactions of lump chains with each other.

IV. DISCUSSION AND CONCLUSION

In this paper, we presented a revised study of ring solitary waves
described by the cylindrical Korteweg–de Vries equation. It was
shown that the cKdV equation has two types of exact solutions that
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can be expressed through the Airy functions of the first kind, Ai(z),
and the second kind, Bi(z). Both these solutions look like KdV soli-
tons and possess soliton properties (they can evolutionary emerge
from initial pulses of specific shapes, re-emerge after interactions
with each other, and others). Despite these solutions having singu-
larities at r = 0, their leading parts that are far from the center can be
relevant for the comparison with experimental and numerical data
(note that the cKdV equation per se is valid only at a big distance
from the center). However, a soliton solution described by the Bi(z)-
function has an additional singularity far from the pulse maximum.
Such a singularity can be very far, practically, at infinity if the soliton
is well-pronounced. Meanwhile, our numerical study shows that in
the process of evolution of an arbitrary pulse-type perturbation, the
formation of a solution that resembles the Ai-soliton occurs. Such
a formation was observed for several different pulses, but we never
observed a formation of the Bi-type solitons.

Ring solutions studied in the paper can be subject to lateral
modulation instability with respect to the azimuthal perturbations.
Such instability can occur in media with positive dispersion. We
presented a qualitative description of the instability and estimated
parameters of the growth rate and range of instability. Our numeri-
cal modeling within the cKP equation demonstrates an agreement
with the qualitative estimates. The development of modulation
instability leads to the formation of lumps; more precisely, lump
chains containing several lumps on a circular front. In the second
part of this study, we will focus on lump dynamics, normal and
anomalous interactions of lump chains, and other issues related to
lumps and circular solitons.
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APPENDIX: DERIVATION OF THE CKP EQUATION

Here, we present the derivation of the cylindrical KP equation
from the model two-dimensional Boussinesq equation,

∂2u

∂t2
− c21

(

u + αu2
)

− β12u = 0, (A1)

where u is the wave perturbation, c is the speed of long linear waves,
α and β are the coefficients of nonlinearity and dispersion, respec-
tively, and 1 is the two-dimensional Laplace operator in the polar
coordinates.

Let us re-write this equation in the extended form,

∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2

∂2u

∂ϕ2
−

1

c2

∂2u

∂t2
= −α

(

∂2u2

∂r2
+

1

r

∂u2

∂r
+

1

r2

∂2u2

∂ϕ2

)

−
β

c2
12u = 0. (A2)

We will consider a wave process on a big distance from the geo-
metric center of the coordinate origin, assuming that r � 3, where
3 is the characteristic width (wavelength) of a wave. We also assume
that the effects of nonlinearity and dispersion are small. Formally,
we assume that |α| � 1 and |β| � 1. Then, we remove to the right-
hand side all higher-order terms leaving on the left-hand side the
zero-order terms,

∂2u

∂r2
−

1

c2

∂2u

∂t2
≈ −

1

r

∂u

∂r
−

1

r2

∂2u

∂ϕ2
− α

∂2u2

∂r2
−

β

c2

∂4u

∂r4
. (A3)

In this equation, higher-order terms were omitted. The first two
terms on the right-hand side are small in comparison with the
terms on the left-hand side because of the geometric factors 1/r
and 1/r2. The smallness of the nonlinear and dispersive terms on
the right-hand side can be confirmed in a similar way. In particu-
lar, the estimation of the nonlinear term presumes that |α|A2/32

� A/32, where A is the characteristic wave amplitude. This leads
to the condition |α|A � 1. The similar estimation of the disper-
sive term gives |β|A/c234 � A/32, which leads to the condition
32 � |β/c2|. Therefore, the wave amplitude must be relatively
small, and the wavelength must be large. The terms omitted in
Eq. (A3) contain additional small parameters related to the geomet-
rical factor.

The wave operator on the left-hand side can be factorized,
(

∂

∂r
−

1

c

∂

∂t

)(

∂

∂r
+

1

c

∂

∂t

)

u = −
1

r

∂u

∂r
−

1

r2

∂2u

∂ϕ2
− α

∂2u2

∂r2

−
β

c2

∂4u

∂r4
. (A4)

In the zero approximation, when the higher-order terms on
the right-hand side are neglected, Eq. (A4) describes, in general,
two oppositely propagating waves obeying simple wave equations.
One of them describes a diverging wave, ∂u/∂r + (1/c)(∂u/∂t) = 0,
and another one—a converging wave, ∂u/∂r − (1/c)(∂u/∂t) = 0.
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Let us consider a diverging wave; for such a wave, we have in
the zero approximation the relationship between the derivatives
∂/∂r = −(1/c)(∂/∂t); this relationship can be used in the higher-
order terms. Replacing then spatial derivatives with the temporal
derivatives on the right-hand side of Eq. (A4), we obtain the cKP
equation in the form

∂

∂t

(

∂u

∂r
+

1

c

∂u

∂t
+

u

2r
−

αu

c

∂u

∂t
−

β

2c5

∂3u

∂t3

)

=
c

2r2

∂2u

∂ϕ2
. (A5)

For long weakly nonlinear surface waves on water of the depth
h, the coefficients are (see, for example, Refs. 16 and 71)

c =
√

gh, α =
3

2h
, β =

c2h2

3
, (A6)

c =

√

g
δρ

ρ

h1h2

h1 + h2

, α =
3

2

h1 − h2

h1h2

, β =
c2h1h2

3
, (A7)

where h1, h2 are the thicknesses of the upper and lower layers,
respectively, ρ is the average water density in both layers, δρ is
the difference between the densities of the layers, and g is the
acceleration due to gravity.

Note also that the alternative heuristic cKdV-type equation was
suggested in Ref. 57, but its merit is doubtful.
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