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Abstract: Pacific Island countries are vulnerable to the impacts of climate change, which include the
risks of increased ocean temperatures, sea level rise and coastal wetland loss. The destruction of
wetlands leads not only to a loss of carbon sequestration but also triggers the release of already se-
questered carbon, in turn exacerbating global warming. These climate change effects are interrelated,
and small island nations continuously need to develop adaptive and mitigative strategies to deal with
them. However, accurate and reliable research is needed to know the extent of the climate change
effects with future predictions. Hence, this study develops a new hybrid Convolutional Neural
Network (CNN) Multi-Layer Bidirectional Long Short-Term Memory (BiLSTM) deep learning model
with Multivariate Variational Mode Decomposition (MVMD) to predict the sea level for study sites in
the Solomon Islands and Federated States of Micronesia (FSM). Three other artificial intelligence (AI)
models (Random Forest (FR), multilinear regression (MLR) and multi-layer perceptron (MLP) are
used to benchmark the CNN-BiLSTM model. In addition to this, remotely sensed satellite Landsat
imagery data are also used to assess and predict coastal wetland changes using a Random Forest (RF)
classification model in the two small Pacific Island states. The CNN-BiLSTM model was found to
provide the most accurate predictions (with a correlation coefficient of >0.99), and similarly a high
level of accuracy (>0.98) was achieved using a Random Forest (RF) model to detect wetlands in both
study sites. The mean sea levels were found to have risen 6.0 ± 2.1 mm/year in the Solomon Islands
and 7.2 ± 2.2 mm/year in the FSM over the past two decades. Coastal wetlands in general were
found to have decreased in total area for both study sites. The Solomon Islands recorded a greater
decline in coastal wetland between 2009 and 2022.

Keywords: bidirectional long short-term memory (BiLSTM); convolutional neural network (CNN);
deep learning (DL); machine learning (ML); mean sea level (MSL); multi-layer perceptron (MLP);
multilinear regression (MLR); random forest (RF)

1. Introduction

Small island developing states (SIDS), including those in the Pacific, are disproportion-
ally threatened by climate change [1]. Pacific Island countries and territories, including the
Federated States of Micronesia (FSM) and the Solomon Islands, depicted in Figure 1, are
often described as being on the “frontline”, with increases in global average temperature
predicted to not only increase the intensity and frequency of disaster events [2] but to
lead to sea level rise. This, in turn, will exacerbate coastal erosion [3], impacting valuable
ecosystems, including wetlands. Recent developments in both Earth observation methods,
including the satellite and geodetic data obtained via remote sensing (RS), and artificial
intelligence (AI) have increased opportunities for not only rapid, accurate assessment of
sea level, coastlines and vegetation but also for researchers to make predictions about how
they will change, allowing communities and policymakers to better respond to climate
threats.
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Figure 1. Study region. The red circles show the islands of the two countries under study. Source:
Pacific Sea Level Monitoring Project (http://www.bom.gov.au/pacific/projects/pslm/index.shtml,
accessed on 15 May 2023, modified to show details of FSM).

Globally, sea level rise (SLR) is caused by a combination of the thermal expansion of
ocean waters and freshwater input from melting glaciers and ice sheets, increasing the
total volume of water in the sea [4]. At a regional level, ocean currents, wind and pressure
changes can contribute to SLR [5]. While international climate negotiations often focus on
air temperature thresholds [6], even a 1.5 ◦C target is predicted to result in significant SLR.

Between 1901 and 1990, the global mean SLR was 1.35 mm/year, faster than any century
in at least 3000 years [7]; between 1993 and 2018, this rate accelerated to 3.25 mm/year, and
it is projected to rise further. Yet, SLR varies greatly based on geography. Church et al. [8]
highlight the variability in sea levels between 1993 and 2001, with large rises across the
western Pacific and eastern Indian Oceans and drops in the eastern Pacific and western
Indian Oceans. In the western Pacific nations of Micronesia and the Solomon Islands,
Klein [9] reports that SLR of up to 12 mm/year, more than triple the global average, has
occurred since the early 1990s. As a result, small island nations are predicted to suffer
wetland degradation, increased flooding and saltwater intrusion as a result of SLR [10].
Mangrove wetlands are known as both a “bioshield” protecting coastlines and reefs and
one of the Pacific’s most vital “blue carbon” sinks.

While some research has been undertaken in both the FSM and Solomon Islands,
there has been relatively little scholarly attention paid to these islands in comparison
with areas of Melanesia, such as Fiji [11]. The need for additional study is evident given
the unclear relationships between complex climate variables and the conflicting accounts
and predictions of ecosystem loss. Projections for the Solomon Islands’ mangroves, for
example, range from no change [12] to a loss of 68% [10]. Remote sensing technologies,
including satellite and Tide Gauge (TG) observations, with the application of new AI
approaches to predict sea levels in these areas, provide an important opportunity to
accurately assess and predict the interlinked challenges facing not only Pacific Island
nations but the entire world. In response to these needs, this study employs new data-driven
hybrid AI model(s) to provide predictions of the sea level in the FSM and the Solomon
Islands using geodetic data. Hence, a new hybrid CNN-BiLSTM deep learning model is
developed with a Multivariate Variational Mode Decomposition (MVMD) technique for
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the prediction of sea levels. Furthermore, it will utilise Landsat satellite imagery to detect
coastal wetland changes in the FSM and the Solomon Islands.

Convolutional Neural Networks (CNNs) have been successfully combined with TG
data to predict sea levels in other South Pacific islands [13], as well as worldwide sea level
surges [14]. Bidirectional Long Short-Term Memory (BiLSTM) deep learning methods have
also shown high levels of accuracy in predicting the sea level in Kiribati and Tuvalu [15] and
wave height in Australia [16], with the BiLSTM model’s wave predictions outperforming all
other models, including BiLSTM, EEMD-SVR and SVR alone. Hybrid CNN-LSTM methods
have been employed to predict phenomena as diverse as flooding [17] and air quality [18].
As Sharma et al. note, CNNs employ efficient multistage architecture via convolution, yet
additional improvements can be achieved using a secondary LSTM-based deep learning
architecture, the LSTM helping to vanish gradient issues and explore sequential data using
unique gates. As a result, the amalgamation of CNNs with LSTM-based architecture is an
active area of research.

2. Materials and Methods

The tide gauge (TG) and climate data were obtained from the BOM’s Pacific Sea Level
and Geodetic Monitoring (PSLGM) project (http://www.bom.gov.au/pacific/projects/
pslm/index.shtml, accessed on 19 March 2023), as shown in Table 1.

Table 1. The geographical details of the study site locations in the Pacific Ocean.

State Tide Gauge Location Geographical Location

FSM Pohnpei 6◦50′59.99′′N and 158◦12′60.00′′E

Solomon Islands (SI) Honiara 9◦25′59.99′′S and 159◦56′60.00′′E

The PSLGM includes a network of geodetic monitoring stations implemented and
maintained by Geoscience Australia, providing Global Navigation Satellite System (GNSS)
measurements, which permit the absolute determination of the vertical height of the gauges
measuring the sea level. In addition to sea level data (meters above TG zero), the PSLGM
also provides measurements of climate variables, including water and air temperatures (in
degrees Celsius), barometric pressure (in hPa), residual and adjusted residual sea levels (in
meters), wind direction (in Degrees True), as well as wind gust and speed (in m/s).

The locations described in Table 1 were used to define areas of interest using National
Aeronautics and Space Administration (NASA) Landsat mission (https://landsat.gsfc.
nasa.gov/data/, accessed on 19 March 2023) and the Global Mangrove Watch (https:
//www.globalmangrovewatch.org/, accessed on accessed on 19 March 2023) satellite
images.

2.1. Data Preprocessing, Partitioning and Normalisation

Missing or erroneous values in the PSLGM dataset are set to a value of −9999, which
must either be removed or replaced via interpretation before analysis can take place.
Any month with more than 1000 missing values (i.e., >15% of the total data points) was
excluded from the analysis. Then, the remaining data were checked to ensure no more than
a maximum of 72 missing consecutive hourly values (i.e., three days) in any given column.
Finally, interpolation was conducted using the popular Pandas Linear method in Python.

Lags are an important aspect of time-series data modelling [19]. To determine signif-
icant lags, the Auto-Correlation Function (ACF) and Partial Auto-Correlation Function
(PACF) were computed, which take into account seasonal and cyclic trends and residuals
to find correlations [20]. Figure 2 shows the results of this analysis for the FSM.

http://www.bom.gov.au/pacific/projects/pslm/index.shtml
http://www.bom.gov.au/pacific/projects/pslm/index.shtml
https://landsat.gsfc.nasa.gov/data/
https://landsat.gsfc.nasa.gov/data/
https://www.globalmangrovewatch.org/
https://www.globalmangrovewatch.org/
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Figure 3. FSM sea level signal and decomposed IMFs of 40 data points. 

Figure 2. ACF and PACF of FSM sea level showing 20 lags at 95% confidence interval.

Signal decomposition is the extraction and separation of signal components into
their intrinsic mode functions (IMFs) [21]. Multivariate Variational Mode Decomposition
(MVMD) was used, which has the ability to simultaneously capture the non-stationary
and non-linearity of a multichannel signal to overcome mode-mixing issues [22]. This
procedure helps extract hidden features from the sea level time-series signal and facilitate
effective AI model learning from these input variables for accuracy in forecasting. Figure 3
shows the sea level signal decomposition using MVMD for the FSM.
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The corrected oceanic dataset containing the input and target variables was then
partitioned into training, validation and testing, as shown in Table 2.
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Table 2. Oceanic data partition into training, validation and testing for modelling.

Partition Training Validation Testing

SI Oceanic Dataset September 1994–December 2011 December 2014–May 2017 June 2017–February 2023
FSM Oceanic Dataset December 2001–October 2014 November 2014–June 2018 July 2018–February 2023

Periods for which data were missing are omitted from the partitions, as described
above. Note that the TG record for the Solomon Islands location is longer (starting in 1994)
than for the FSM facility, as the TG at this location was only installed in 2001.

Figure 4 shows the correlation of the Solomons Islands’ sea level with its predictor
inputs. Similar analysis was undertaken for the FSM.
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Figure 4. Solomon Islands correlation matrix showing the correlation between the sea level and
all predictor variables. The dark green areas show a strong correlation, yellow areas show weaker
correlation and white cells show negative correlation. (t − 1), (t − 2), (t − 3)—are lags for 1, 2 and
3 years, respectively. M1, M2 amd M3 are IMF1, IM2 and IM3, respectively.

The final step of data preprocessing is normalisation using the equation:

xnormalised data value =
xactual data value − xminimum of data values

xmaximum of data values − xminimum of data values
(1)

This scaling process helps reduce the time taken in the learning stage of data modelling
by avoiding the computation of large values [23]. Once modelling is complete, the values
are converted back into their original form using the equation below:

xactual data value = xnormalised data values(xmax − xmin) + xmin (2)

where x is the input data value, xmin is the overall minimum and xmax is the overall
maximum value.

2.2. Sea Level Prediction

Machine Learning (ML), a subset of AI in which computer systems learn automatically
with experience rather than being explicitly programmed, is commonly used in the analysis
of ocean data, where traditional methods have many shortcomings [24]. Deep learning
(DL) may be defined as a subset of ML and refers to techniques which layer algorithms
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and computing units or “neurons” into artificial networks designed to mimic the brain.
Researchers have predominantly used Artificial Neural Networks (ANNs), followed by
Support Vector Machines (SVMs), to predict flooding and the use of mangroves for risk
mitigation [25], particularly in conjunction with satellite data [26].

In the present study, four models were tested.

2.2.1. Multilinear Regression

Multiple linear regression or multilinear regression (MLR) can estimate the relationship
between two or more explanatory variables and one response variable. An MLR model is a
supervised learning algorithm which can be used, for example, to predict sea level given
multiple input variables.

The formula for MLR is:

y = β0 + β1X1 + β2X2 + · · ·+ βnXn + ϵ (3)

where y is the predicted or expected value of the response or dependent variable, β0 is the
y-intercept (i.e., the value of y when all other parameters are set to 0), β1 through βn are the
regression coefficients of the explanatory or independent variables X1 through Xn (i.e., the
effect that increasing the value of the independent variable has on the predicted y value)
and ϵ is the model error (i.e., how much variation exists in the estimate of y).

2.2.2. Random Forest Model

A Random Forest (RF) model utilises a combination of tree predictors, where each
tree depends on the values of a random vector sampled independently with the same
distribution [27]. The algorithm applies the bootstrapping aggregation to tree-based
learners [28]. These bootstrap samples of the training sets are selected repeatedly, and
Gini impurity fits tb trees in these samples. Then, the equation below is used to calculate
the predicted values for unseen complexes:

y =
1
B

B

∑
b=1

tb(x) (4)

where B is the number of times the bootstrapping aggregation or “bagging” is performed,
and x is the input variable.

2.2.3. Multi-Layer Perceptron

A Multi-Layer Perceptron (MLP) is a supervised ML algorithm [29], one of the simplest
ANNs, in which the node’s connections do not form a loop, i.e., the flow of information
is unidirectional [30]. MLPs are some of the most widely used ML algorithms, capable
of robust and efficient flood prediction [25]. While a single-layer perceptron consists of a
single-layer output node directly connected to the input by a series of weights, a multi-layer
perceptron is an interconnected network with multiple hidden layers [31]. In the hidden
layers, the input data undergo a series of weighted sums, and after calculating the weighted
summation of each hidden neuron, the result is applied to an activation function, f, and the
result of this function is again weighted and summed to obtain the output [24]:

yi = f

(
n

∑
j=1

xj·wij

)
(5)

where xj is the input vector from the previous layer, and wij is the weight vector, generating
the scalar product xj·wij [32].
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2.2.4. Bidirectional Long Short-Term Memory

A Bidirectional Long Short-Term Memory (BiLSTM) model architecture consists of
two long short-term memory (LSTM) networks. Long short-term memory (LSTM) neural
networks are another type of ANN [30], which selectively memorise input [24].

LSTM networks comprise three layers: input, one or more hidden layer(s) and an
output layer (similar to an MLP), with the neuron number in the input/output layer
equivalent to the amount of feature space [33]. The memory cell(s) within the hidden layer
have three gates: forget, input and output, and at every time step t, each gate is presented
with the input xt and the output of the memory cells at the previous time step, xt−1.

At each time step, the cell state st and output ht are calculated. The gates act as filters,
with the forget gate deciding which particular is detached from the cell state, the input
gate specifying which information supplements the cell state and the output gate deciding
which data from the cell state are used as output [33]. Finally, the sigmoid function scales
all values from 0 (forget completely) to 1 (remember completely):

f1 = sigmoid
(

W f ,xXt + W f ,Xt−1 + b f

)
(6)

The second step is determined by the LSTM layer, which adds information to the
network’s cell states, by computing candidate values for st and activation values it :

st = tanh(Ws,x xt + Ws,hht−1 + bs) it = sigmoid(Wi,x xt + Wi,hht−1 + bi) (7)

The third step involves the design of new cell states st based on the results of the
previous steps, with ◦ representing the Hadamard product:

st = ft ◦ st−1 + it ◦ St (8)

The final step is the calculation of the output, ht, using the following two equations:

Ot = sigmoid(W0,xXt + W0,h,ht−1 + b0)ht = Ot ◦ tanh(st) (9)

LSTM neural networks have a strong learning and predictive ability for time-series
data such as sea surface temperature [24] and saltwater intrusion [34].

2.3. Model Evaluation

Following Raj [15], five statistical metrics were used to evaluate the performance of
the models described above.

The first three equations are efficiency metrics, used to measure the accuracy of
the models. The correlation coefficient r determines the relationship between two vari-
ables, indicating the strength of association, e.g., between the observed and predicted
SLR. Willmott’s Index of Agreement d indicates the ratio of the mean of square error and
potential error, detecting proportional differences between the observed and predicted
values. Legates and McCabe’s Index LM is a more advanced index utilising the adjustment
of comparisons in the evaluation of Willmott’s Index.

1. Correlation coefficient (r)

r =

[
∑n

i=1 (DOi − MDO)(DSi − MDS)

∑n
i=1 (DOi − MDO)2∑n

i=1(DSi − MDS)2

]2

2. Willmott’s Index of Agreement (d)

d = 1 −
[

∑n
i=1(DOi − DSi)

2

∑n
i=1( |DSi − MDO|+ DOi − MDS|)2

]
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3. Legates and McCabe’s Index (LM)

LM = 1 −
[

∑n
i=1|(DSi − DOi)|

∑n
i=1|DOi − MDS|

]
, 0 ≤ L ≤ 1

The error metrics used for evaluation are the root mean square error (RMSE) and mean
absolute error (MAE). The RMSE is the square root of the mean square error and measures
the average difference in error between the predicted and observed values [35]. The MAE
is the mean of the absolute errors between the predicted and observed values [36].

4. Root mean square error (RMSE)

RMSE =

√
1
n

n

∑
i=1

(DSi − DOi)
2

5. Mean absolute error (MAE)

MAE =
1
n∑n

i=1|(DSi − DOi)|

2.4. Wetland and Mangrove Detection

A Random Forest model using satellite data was also used for the detection of wetlands,
with the Landsat data for supervised classification obtained from Surface Reflectance Tier 1
of the USGS Landsat 7 and 8 image classification dataset, at a 30 m digital elevation and
with images selected based on the lowest prevalence of cloud cover.

Spectral indices were computed for the wetland mapping, including the Normalised
Difference Mangrove Index (NDMI) [37], Modified Normalised Water Index (MNWI) [38],
Simple Ratio Vegetation Index [39], Green Chlorophyll Vegetation Index (GCVI) [40] and
normalised difference vegetation index (NDVI).

The NDVI is a simple graphical indicator of whether an area under observation
contains live green vegetation [41]. It is often used as a proxy for vegetation productivity,
and therefore overall health [42] and growth [43], and is calculated as follows:

NDVI =
NIR − RED
NIR + RED

(10)

where NIR represents near-infrared and RED represents red wavelengths [44]. These bands
contrast the absorption of chlorophyll pigment at the red end against the reflectance of
mesophyll at the NIR end [41]. Healthy vegetation tends to absorb most of the light at the
red end of the spectrum and reflect a large portion of the NIR light, while unhealthy or
sparse vegetation will reflect more red light and less NIR light [45].

NDVI values can range between −1 and +1, with positive values representing vegeta-
tion of varying health and negative values representing other land use/land cover (LULC)
classes [46]. A total of 330 samples were taken for the Solomon Islands and 340 for the
FSM. These samples were then split into training (80%) and testing (20%) sets. The model
used 200 trees and 5 randomly selected predictors per split. Each stratified point was
checked with ground-based images, as shown in Figure 5, to evaluate the label for correct
classification of the coastal wetland.
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Figure 5. (Left): FSM stratified random points from classification with labels of 1 (coastal wetland)
and 0 (non-coastal wetland). (Right): Google satellite image added below the points for calculation
of accuracy.

Following evaluation, the class accuracy plugin in QGIS was used to compute the
accuracy and the Kappa value for both study areas, using Equation (11) below. Figure 6
shows a close-up view of the stratified points:

K =
Observed Agreement − Expected Agreement

1 − Expected Agreement
(11)
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3. Results
3.1. Model Performance Metrics for Sea Level Prediction Using Machine Learning

To examine how accurately the four models under investigation were able to predict
the sea levels in both the Solomon Islands and FSM, as outlined in the first research question,
this section presents the results relating to the efficiency and error metrics outlined in
Section 2 above. Table 3 displays the model performance metrics for the Solomon Islands,
with the CNN-BiLSTM model (in bold) achieving a superior performance across all metrics.
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Higher values indicate a superior performance on the efficiency measures (r, d, LM), and
lower values indicate a superior performance on the error metrics (RMSE, MAE). The RF
and MLP models were similar in terms of both efficiency and error, while the MLR model
performed the worst across all measures.

Table 3. Model performance metrics for Solomon Islands.

Model r d LM RMSE MAE
MLR 0.9155 0.9068 0.6128 0.0886 0.0696

RF 0.9912 0.9911 0.8775 0.0296 0.022

MLP 0.9913 0.9911 0.8803 0.0294 0.0215

CNN-BiLSTM 0.9989 0.9987 0.9532 0.0113 0.0084

Table 4 shows the model performance metrics for the FSM, with the CNN-BiLSTM
model once again achieving a superior performance across all metrics. The RF and MLP
models were again similar in terms of both efficiency and error, while the MLR model
performed the worst across all measures once more.

Table 4. Model performance metrics for FSM.

Model r d LM RMSE MAE
MLR 0.9499 0.9355 0.654 0.1044 0.0821

RF 0.9507 0.9408 0.6816 0.0982 0.0756

MLP 0.9898 0.9885 0.8682 0.0425 0.0313

CNN-BiLSTM 0.9909 0.9891 0.8723 0.0415 0.0303

Scatterplots of the forecasted (MSLfor) versus observed (MSLobs) mean sea levels for
the two study sites using the four models provide a visual comparison. Each scatterplot
shows the coefficient of determination (r2) with the goodness of fit between the predicted
and the observed MSL and a least-square fitting line with the corresponding equation:

y = mx + c (12)

where y represents MSLfor, m is the gradient, x represents MSLobs and c is the y-intercept.
Figures 7 and 8 show that the CNN-BiLSTM model displayed a significant performance

with a higher r2 value than the MLP, the RF model and especially the MLR model for both
the Solomon Islands and FSM, though the forecasting using the CNN-BiLSTM model for the
Solomons TG station performed slightly better than for the FSM station. The magnitudes
registered using this model for both stations were the closest to unity, which in pairs

(
m
∣∣r2)

are 0.988|0.9979 for the Solomon Islands, followed by 0.9856|0.9818 for the FSM.
The MLP model also performed well for both study sites, though particularly for the

Solomon Islands. Additionally, the y-intercepts were found to be closer to the ideal value
of zero for the MLP and CNN-BiLSTM models (0.0049 and 0.0012 for the Solomon Islands
and the FSM, respectively, with the CNN-BiLSTM and 0.0044 and 0.0079 with the MLP).

Histograms are another effective graphical method of indicating the predictive per-
formance of models, showing the frequency of prediction error (PE) and its distribution
within the partitioned “bins”. Figure 9 depicts histograms of the absolute PE of each model
for both the Solomon Islands and FSM.
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Figure 9. Histograms of absolute prediction errors for both islands according to AI model.

As can be seen in Figure 9, the CNN-BiLSTM model achieved a lower absolute predic-
tion error than any other model for the Solomon Islands and performed comparably with
the MLP model for the FSM. In addition, the CNN-BiLSTM model achieved the highest
accuracy in terms of r2 according to the scatterplots analysed in Figures 7 and 8, and outper-
formed the three other models examined according to all five efficiency and error metrics
presented in Tables 3 and 4. The CNN-BiLSTM model thus represents the optimal model
for predicting sea levels in the current comparison, and these predictions will be discussed
in Section 4, following the presentation of the wetland classification results below.

3.2. Classification of Wetlands

To evaluate the use of RS and ML for the detection of coastal vegetation changes in the
Solomon Islands and the FSM, areas likely to be wetlands were identified from satellite im-
ages, as described in Section 2. Figure 10 depicts the wetland extraction results for the FSM
study location of Pohnpei, the largest island in the group, and the site of the Micronesian
TG station. The satellite images for the study sites are obtained from the Landsat 7 and 8
Surface Reflectance Tier 1 collection. The images are at a resolution of 30 m. The Landsat
data include a “pixel_qa” band, which can be used to create a function for masking clouds.
Spectral indices are added for the wetland mapping, which includes the normalised differ-
ence vegetation index (NDVI), Normalised Difference Moisture Index (NDMI), Modified
Normalised Difference Water Index (MNDWI) and green chlorophyll vegetation index
(GCVI). The image is then reduced using the median function and geometry clipped to the
area of interest. The bands of interest are selected, and samples are created for classification
using the Random Forest model. Figures 10 and 11 show the extraction results.
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Figure 11 similarly depicts the wetland extraction for the Solomon Islands study
location of Guadalcanal, the largest island in the group and the site of the TG station.

A comparison of the coastal wetland extent detected in each study area in 2009 and
2022 is shown in Table 5. A greater decline is seen for Guadalcanal in the Solomon Islands.
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Table 5 shows the accuracy of these classifications, with the model achieving an accuracy of
0.98387 for the Solomon Islands and 0.99231 for the FSM.

Table 5. Wetland classification details using Random Forest model for Solomon Islands and FSM.

Study Area Samples Taken Training Testing Overall Accuracy Percentage Accuracy Kappa
Guadalcanal, SI 330 264 66 0.9834 98.34% 0.92

Pohnpei, FSM 340 272 68 0.9923 99.23% 0.94

According to the results presented in Table 5, the method employed proved highly
accurate in identifying wetland areas on the island of Guadalcanal in the Solomons, and
in particular, on Pohnpei in the FSM, with Kappa values of 0.92 and 0.94, respectively.
The findings of this classification in relation to wetland change as outlined in the second
research question will be discussed in Section 4 below, following the discussion of SLR.

4. Discussion
4.1. Prediction of Sea Level Trends

Based on the results presented in Section 3.1 above, Figure 12 shows the annual mean
sea level trends for the Solomon Islands study site and the FSM study site, superimposed
with the linear annual sea level mean (in red) and the optimal CNN-BiLSTM model (in
orange). The annual rate of rise at the Solomon Islands study site of Honiara, Guadalcanal,
was 0.0063 m/year (6.3 mm/year) between 1994 and 2022, and at the FSM study site of
Pohnpei, it was 0.0072 m/year (7.2 mm/year) between 2001 and 2022. As can be seen from
the orange lines in Figure 12, the CNN-BiLSTM model approximates the observed MSL, as
outlined in Section 3.1, particularly for the Solomon Islands study site.

The rates of 6.3 and 7.2 mm/year may appear low in comparison with the ranges
of 7–10 and up to 12 mm/year in Micronesia and the Solomon Islands quoted in the
literature and media accounts. However, most of the existing research agrees that the
long-term trends of SLR in the Solomons have averaged 7 mm/year, sometimes reaching
10–11 mm/year (±3 mm/year). Within this context, the results of the present study agree
well with the observations of previous studies.

With the benefit of more than two decades of data, the present study demonstrates
that the overall rate of rise at this location is less extreme than the 21.4 mm/year calculated
during the early 2000s, based on less than five years’ data. However, just because the SLR
at Pohnpei is not three times higher than anywhere else in the PSLGM network does not
imply that it is significant. The SLR near Honiara over the same period as that measured
for Pohnpei in the FSM (2001–2022) was 6.0 mm/year, compared to Pohnpei’s 7.2 mm/year.
Overall, the rates of rise for both the FSM and Solomon Islands found in the present study
are well above the average rate of global SLR, which, according to NASA satellite data
(https://sealevel.nasa.gov/faq/8/is-the-rate-of-sea-level-rise-increasing/, accessed on
19 March 2023), has taken place at 3.4 mm/year since 1993.

https://sealevel.nasa.gov/faq/8/is-the-rate-of-sea-level-rise-increasing/
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4.2. Detection of Wetland Change

The mean NDVI for the Solomon Islands study region of Guadalcanal and the FSM
study region of Pohnpei is shown in Figure 13. Decreases in the NDVI indicate a decrease
in biomass [41].

Figure 13 shows that overall, the mean NDVI in the FSM is higher than in the Solomon
Islands, ranging between around 0.4 and 0.8, in comparison with a range of 0.3 to 0.7
in the Solomon Islands. This may indicate healthier and/or denser coverage in the FSM.
However, there is a slight decrease for the trend in NDVI values in Pohnpei. Areas classified
as wetland in the satellite images from 2009 and 2022, using the RF method evaluated in
Section 3.2 above, were used to detect the changes in total wetland areas (in hectares) for
both Guadalcanal and Pohnpei. The detected change in the coastal wetland areas over this
period is displayed in Table 6 below. The area detected as wetlands declined over the past
decade on both islands, with an apparent loss of 5599 ha on Guadalcanal in the Solomon
Islands and 1410 ha on Pohnpei in the FSM.
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Table 6. Wetland change detection from 2009 to 2022 for both study areas.

Study Area Wetland Classified Image 2009 Area 2022 Area Detected Decline in Coastal
Wetland Area from 2009 to 2022

Guadalcanal, SI 12,161.14 ha 6562.11 ha 5599.03 ha

Pohnpei, FSM 7371.14 ha 5960.59 ha 1410.55 ha

While the coastal wetland includes many types of vegetation, mangroves are an
important feature and play a significant role in the coastal ecosystem. The darker orange
patches in Figures 10 and 11 are more likely to be mangrove vegetation. The statistics
obtained via the GMW dataset, presented in Appendix A, provide insight into the vitality
of mangroves specifically at both the national and island levels. In the FSM, 9084 ha
(or 90.84 km2) of mangroves was detected using GMW in 1996, declining to 8794 ha (or
87.94 km2) by 2020. In the Solomon Islands, 52,731 ha (or 527.31 km2) of mangroves was
detected using the 1996 satellite images, declining to 52,651 ha (or 526.51 km2) in 2020. The
area detected as mangrove habitat on Pohnpei, the FSM, was 5696 ha in 1996, declining to
5373 ha in 2020, representing a loss of 296 ha. The linear coverage of Pohnpei’s coastline
also showed a decline. In 1996, the GMW dataset indicates that 204.95 km of the island’s
coast was covered in mangroves, a linear coverage of 85.46%. By 2020, this figure had
decreased to 202.51 km, or 84.44%. It is important to note, however, that none of these
losses have been linear.

The FSM, and Pohnpei in particular, recorded decreases in its total mangrove habitat
between 1996 and 2009, followed by a significant rise in 2010, and then a period of relative
stability at approximately 1996 levels. The two most recent years of data available suggest
that mangrove habitats may again be decreasing, almost reaching their lowest point on
record once more. These findings may be compared to a recent study of Pohnpei by
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Woltz et al. [47], which included a field survey. According to Woltz et al., Pohnpei had
6377 ha of mangrove in 1983, and the total gain over the 35 years to 2018 was 49 ha, the
result of 16 ha lost, and a 65 ha gain in other locations. Mangroves cover all sides of
Pohnpei’s coasts but appear most concentrated on the leeward (west–southwest) side,
which appears consistent with the areas detected as likely to be mangroves in the present
study (as shown in Figures 10 and 11) using the Landsat images.

The mangrove habitats of Guadalcanal, the Solomon Islands, detected using GMW
represented 1167 ha in 1996, while in 2020, only 1105 ha was detected, representing a loss
of 62 ha. The linear coverage of Guadalcanal’s coastline between 1996 and 2020 appears
remarkably stable, ranging between 16.02% and 16.31%. The most recent estimates of
mangrove habitats for both the FSM and Solomon Islands identified in the literature were
produced by Jia et al. [48], who made use of 10 m resolution imagery from Sentinel-2.
Significantly, their estimates are also the most different from any previous study. While the
paper does not provide individual country breakdowns, these figures were obtained from
the supplementary data, wherein it is stated that the total mangrove area for the FSM was
56.54 km2 and 332.68 km2 for the Solomon Islands. Both figures are substantially lower than
the 87.94 km2 and 526.51 km2 areas identified to be mangroves in the FSM and Solomon
Islands using the GMW data in the present study. Given that higher-resolution images
should prove helpful in detecting smaller mangrove patches, the lower area detected by Jia
et al. may appear surprising. However, the authors note that GMW v3.0 uses GMW v2.5 as
a baseline, detecting changes using L-band SAR, which has difficulty discerning mangrove
forests from other woody wetlands. Accordingly, Jia et al. speculate that some of the
lowland wet forests adjacent to the mangrove swamps may be misclassified as mangroves
in the GMW data, highlighting the need for validation via field survey data.

5. Conclusions

This study utilised data-driven AI models to predict the sea level using a range of
climate input variables. It successfully used TG data to predict the sea level in the Solomon
Islands and FSM from 1994 to 2022. The geodetic variables of water, air temperature,
barometric pressure, wind direction, gust and speed were used to train the AI models. The
hybrid CNN-BiLSTM model provided the most accurate sea level prediction for both study
sites. The mean sea level was used to provide an annual trend analysis, which revealed
a projected increase for both locations above the global trends. The mean sea levels were
found to have risen 6.0 mm/year over the last two decades in the Solomon Islands (a slight
decrease compared to the 6.3 ± 2.1 mm/year rate of rise since 1994) and 7.2 ± 2.2 mm/year
in the FSM. The SLR in both locations appears significantly higher than the global averages.

The identification of wetlands in general in small island nations such as the FSM and
Solomon Islands can be difficult, with challenges including the availability of cloud-free
scenes and the detection of small, yet ecologically significant, patches of vegetation. The
detection of coastal vegetation changes was carried out using data from Landsat satellite
images and an RF model to examine the coastal wetlands on Guadalcanal and Pohnpei
and data from GMW to examine mangrove trends in the Solomon Islands and FSM more
broadly. A high level of accuracy (>0.98) was achieved using the RF model at both study
sites. The coastal wetlands in general were found to have decreased in extent. Analysis of
vegetation health is of particular importance in the Solomon Islands given the detrimental
effects of logging observed by Minter and van der Ploeg [49]. The mean NDVI in the
Pohnpei region in the FSM (ranging between 0.4 and 0.8) was found to be higher than in
the Guadalcanal region in the Solomon Islands (ranging between 0.3 and 0.7), consistent
with the other results of the present study. Apparent losses in wetlands were recorded in
both study areas using the Landsat satellite imagery analysis, while such decreases may be
associated with logging and other climate change effects, including a rising sea level.

The findings of the present study demonstrate the importance of long-term monitoring
and the importance of taking the length of records into account. Shorter records are
more susceptible to extremes and may mask the true effects of SLR. As PSGLM records
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continue to lengthen, future research will be able to make more accurate observations (and
hence, predictions) of the MSL. While the wetland detection using satellite imagery and RF
classification utilised in the present study achieved high levels of accuracy, comparable with
or exceeding previous studies, more research is required in this area, including fieldwork,
which can provide ground truth data.
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Appendix A

Table A1. Annual mean sea level (MSL), calculated from PSLGM data, and mangrove area and
coverage in the Solomon Islands and Federated States of Micronesia, sourced from GMW.

Solomon Islands Federated States of Micronesia

Annual MSL
(m above TG

Zero)

Total
(Guadalcanal)

Mangrove Area
(km2)

National
(Guadalcanal)

Coastline
Coverage (km)

Annual MSL
(m above TG

Zero)

Total (Pohnpei)
Mangrove Area

(km2)

National
(Pohnpei)
Coastline

Coverage (km)

1994 0.5403

1995 0.6377

1996 0.7129 527.31 (11.67) 4371.56 (84.44) 90.84 (56.69) 402.71 (204.95)

1997 0.5650

1998 0.4962

1999 0.7309

2000 0.7589

2001 0.7112 0.5900

2002 0.6356 0.7131

2003 0.6563 0.7199

2004 0.6528 0.7279

2005 0.6710 0.7345

2006 0.7204 0.7266

2007 0.7151 529.25 (11.63) 4359.06 (84.25) 0.8220 88.18 (54.61) 399.6 (203.11)

2008 0.7307 530.04 (11.62) 4357.74 (84.95) 0.8012 88.01 (54.61) 399.05 (203.11)

2009 0.7253 530.84 (11.71) 4352.74 (84.91) 0.7616 87.91 (54.51) 397.65 (202.36)

2010 0.6684 528.98 (11.77) 4348.12 (84.82) 0.8169 90.17 (56.56) 400.91 (204.86)

2011 0.8024 0.8455

2012 0.7783 0.8585

2013 0.7337 0.8251
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Table A1. Cont.

Solomon Islands Federated States of Micronesia

Annual MSL
(m above TG

Zero)

Total
(Guadalcanal)

Mangrove Area
(km2)

National
(Guadalcanal)

Coastline
Coverage (km)

Annual MSL
(m above TG

Zero)

Total (Pohnpei)
Mangrove Area

(km2)

National
(Pohnpei)
Coastline

Coverage (km)

2014 0.7191 0.7431

2015 0.6536 525.48 4339.18 (84.85) 0.5936 90.69 402.17 (204.86)

2016 0.6164 523.58 4337.32 (84.91) 0.8090 90.69 402.17 (204.86)

2017 0.7517 522.21 4330.31 (84.91) 0.8387 90.69 402.17 (204.86)

2018 0.7663 524.71 4332 (84.88) 0.7727 90.69 402.17 (204.86)

2019 0.7022 527.5 4343.49 (84.25) 0.7961 88.18 398.59 (202.39)

2020 0.7582 526.51 4346.61 (83.44) 0.8447 87.94 398.49 (202.51)

2021 0.8429 0.8619

2022 0.8950 0.9093
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