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Abstract: Whereas monthly and annual nighttime light (NTL) composite datasets are being
increasingly used to estimate socioeconomic status, use of the National Polar-orbiting Partnership
Visible Infrared Imaging Radiometer Suite (NPP-VIIRS) Day/Night Band (DNB) daily data has
been limited for detecting and assessing the impact of short-term disastrous events. This study
explores the application of daily NPP-VIIRS DNB data in assessing the impact of three types of
natural disasters: earthquakes, floods, and storms. Daily DNB images one month prior to and 10 days
after a disastrous event were collected and a Percent of Normal Light (PNL) image was produced as
the ratio of the mean DNB radiance of the pre- and post-disaster images. Areas with a PNL value
lower than one were considered as being affected by the event. The results were compared with the
damaged proxy map and the flood proxy map generated using synthetic aperture radar data as well
as the reported power outage rates. Our analyses show that overall NPP-VIIRS DNB daily data are
useful for detecting damages and power outages caused by earthquake, storm, and flood events.
Cloud coverage was identified as a major limitation in using the DNB daily data; rescue activities,
traffic, and socioeconomic status of the areas also affect the use of DNB daily data in assessing the
impact of natural disasters. Our findings offer new insight into the use of the daily DNB data and
provide a practical guide for researchers and practitioners who may consider using such data in
different situations or regions.

Keywords: NPP-VIIRS; Day/Night Band (DNB) daily data; nighttime light; natural disaster;
earthquake; storm; flood

1. Introduction

After a severe natural disaster, quick and effective assessment of the affected areas is vital for
post-disaster response and rescue. Traditional methods of disaster assessment largely rely on field
survey data [1,2]. However, obtaining survey data is time-consuming and particularly difficult in
isolated areas. Remote sensing data offer near real-time and large-scale information about the land
surface and have been used widely in disaster assessment. Compared with optical and radar remote
sensing data that are mainly used to identify ground deformation or structural damages due to natural
disasters [3–6], nighttime light (NTL) remote sensing data can directly reflect human activities because
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artificial lights from cities, towns, industrial sites, fishing boats, and other human activities are recorded
at night [7,8]. A natural disaster may damage buildings and infrastructure, cause power outages, and
reduce human activities, all of which can cause changes in light, which serves as a basis for assessing
the impact of natural disasters using NTL data.

There are two commonly used NTL data sources: Defense Meteorological Satellite Program’s
Operational Line Scan System (DMSP-OLS) and Visible Infrared Imaging Radiometer Suite (VIIRS)
Day-Night Band (DNB) onboard the Suomi National Polar-orbiting Partnership (S-NPP) satellite.
DMSP-OLS has been acquiring nighttime light imagery since the early 1970s. However, its limitations
include coarse radiometric accuracy, low spatial resolution, lack of onboard calibration, and limited
dynamic range [9]. The new generation of NPP-VIIRS DNB data provides unprecedented nighttime
light observation capability that overcomes some of the limitations in DMSP-OLS images [10].
NPP-VIIRS DNB has a higher radiometric accuracy with onboard calibration and has a specified
dynamic range of approximately seven orders of magnitude, from 3 × 10−9 W·cm−2·sr−1 to
0.02 W·cm−2·sr−1, which ensures the ability to detect extremely low-level light [11]. NPP-VIIRS
DNB data provide global coverage with a 12-h revisit time (at about 1:30 a.m. and 1:30 p.m. local time)
and with a spatial resolution of about 750 m throughout the scan.

The yearly or monthly composite NTL data are being increasingly used as an indicator to estimate
various socioeconomic indicators such as gross domestic product (GDP) [12–14], population [15,16],
poverty [17,18], electric power consumption [19–21], carbon dioxide (CO2) emissions [22,23], and
others [24–27], as well as to evaluate military conflicts [28–30] and to extract urban built-up areas [31,32].
However, the composite NTL data are not suitable for immediate assessment of disasters due to their
low temporal resolution. The application of the DMSP-OLS daily images to assessing disasters is
limited by the cost of the data and its internal limitations [33]. The NPP-VIIRS DNB daily data are
available free of charge, which enables its use in disaster assessment. Daily NTL data from both
NPP-VIIRS DNB and DMSP-OLS have been used to detect power outages due to storms and to
assess the damage by earthquakes. For example, Elvidge et al. [34] overlaid the daily NTL image
after Hurricane Fran with the reference data of stable lights from DMSP-OLS data to form a color
composite image and visually identify areas with power outages; Molthan et al. [35] produced a
false-color composite image of pre- and post-hurricane nighttime light from daily NPP-VIIRS DNB
data to detect changes in light and identify areas with possible power outages. Cole et al. [36]
differentiated the pre- and post-hurricane nighttime light imagery based on the NPP-VIIRS DNB to
produce a Percent of Normal Light (PNL) image and developed a neural network model to detect
power outages. Cao et al. [37] used a time-series mean NPP-VIIRS DNB radiance to estimate the light
outage and Wang et al. [38] used the National Aeronautics and Space Administration (NASA) Black
Marble nighttime light data (a type of high-quality NTL data derived from NPP-VIIRS DNB) and
PNL to assess disaster-related power outages. Similarly, Kohiyama et al. [39] and Hayashi et al. [40]
used the histogram of the digital number (DN) difference between the pre- and post-earthquake
DMSP-OLS images to identify damaged areas. Fan et al. [41] used NPP-VIIRS Nearly Constant
Contrast (NCC) nighttime light, derived from NPP-VIIRS DNB data, to detect damage after three
earthquakes. NTL daily data have also been used to detect holiday events and wars. For instance,
Roman et al. [42] used time series data of the total lighting electricity usage (TLEU), estimated from
daily NPP-VIIRS DNB, for several cities in the Southern United States, Northern Mexico, and the
Middle East to detect the energy usage during the Christmas–New Year period and the Holy Month
of Ramadan. Agnew et al. [43] compared four DMSP-OLS nighttime light images in Baghdad before
and after the U.S. military ‘surge’, to assess the extent to which nighttime lights changed after the war.
The most commonly used methods to detect NTL changes include pixel-based pre- and post-event
image comparison [34–36,38–41,43], and region-based time series analyses [37–39,42].

Several studies used NTL daily data to assess the impact of disasters. However, few research
articles have compared the use of such data across different types of disasters. Given the distinct
characteristics of each type of natural disaster that would differently affect NTL, it is necessary to
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evaluate the usefulness and limitations of this source of data when assessing the impact of different
types of natural disasters. It is also necessary to understand the difference between the use of NTL
and radar data in this context, given that NTL data detect human lights whereas radar data detect
ground deformation.

This paper analyses the usefulness and limitations of using NPP-VIIRS DNB daily observations
when assessing the impact of several types of natural disasters, including earthquakes, storms, and
floods. We aimed to provide a practical guide for researchers and practitioners who may consider
using these data sources in different situations or regions. Specifically, we generate a PNL image to
present the DNB change before and after a disaster, evaluate the change in space, and explore possible
reasons for the change. By examining the usefulness and limitations of the data when assessing the
impact of each type of disaster, their implications are evaluated and discussed. We also evaluate and
compare the differences between using DNB and radar data in detecting the effects of natural disasters.
The remainder of this study is organized as follows. Section 2 describes the selection of the three types
of disastrous events as well as data and methods used in this study. Sections 3 and 4 present the results
and discussion, respectively. Conclusions are summarized in Section 5.

2. Materials and Methods

2.1. Event Selection

According to the Emergency Events Database (EM-DAT) launched by the Centre for Research
on the Epidemiology of Disasters (CRED) of the U.S., the top 10 types of major natural hazards in
the world ranked by the number of deaths since 1900 are: drought, epidemic, floods, earthquakes,
storms, extreme temperature, volcanic activity, landslides, fog, and wildfire [44]. In this study, we
selected three major disaster types: floods, earthquakes, and storms. We did not attempt to assess
other types of disasters because droughts, epidemics, extreme temperatures, and fogs are not likely to
directly cause NTL reduction; volcanic activity and wildfire are accompanied by serious smoke; and
landslides typically happen in undeveloped mountainous areas with little light. For each of the three
types of disasters, we selected two typical disastrous events that had significant impacts on people.
The study areas contained the most affected areas in these disasters. As the daily NPP-VIIRS DNB
data have only been available since 18 July 2012, we selected disasters after this date. Table 1 lists the
basic information of the disaster events that were selected and Figure 1 illustrates the locations and
land cover categories of each study area.

Table 1. The selected disaster events and study area.

Disaster Type Event Time Study Area

Earthquake

Gorkha Nepal
Earthquake

25 April 2015
06:11 a.m. (UTC)

Kathmandu and the surrounding area
(Area size: 48 km × 57 km), Nepal

Central Italy
Earthquake

24 August 2016
01:36 a.m. (UTC)

Accumoli, Amatrice, Norcia, and
Arquata Del Tronto, Italy

Storm

Hurricane Maria 20 September 2017
10:15 a.m. (UTC) Puerto Rico, U.S.

Tropical Cyclone
Hudhud

12 October 2014
04:30 p.m. (UTC) Visakhapatnam, India

Flood

Louisiana Flood 11 August 2016–16
August 2016

East Baton Rouge Parish and Livingston
Parish, U.S.

Yulin Flood 25 July 2017–26 July
2017 Suide, China
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Figure 1. The location and land cover categories from the National Geomatics Center of China of
each study site of the six disaster events: (a) Gorkha Nepal Earthquake, (b) Central Italy Earthquake,
(c) Hurricane Maria, (d) Tropical Cyclone Hudhud, (e) Louisiana Flood, and (f) Yulin Flood.

The Gorkha Nepal Earthquake in 2015 had a magnitude of 7.8 and caused 8790 deaths and
22,300 injuries in Nepal [45]. The epicenter was in Barpak, Gorkha district (Figure 1a) and it had a
depth of 15 km [2]. The study area contains Kathmandu (the capital of Nepal), Bhaktapur, and parts
of Nuwakot, Sindhupalchok, Kavrepalanchok, Lalitpur, Makwanpur, and Dhading. The earthquake
caused 1222 deaths in Kathmandu, 333 deaths in Bhaktapur, and a large number of houses in the areas
to collapse [45].

The Central Italy Earthquake in 2016 was a 6.2 magnitude earthquake that hit central Italy.
Although it had a lower magnitude than the Gorkha Nepal Earthquake, it had a shallower epicenter
depth of 4.4 km causing more violent ground shaking. The study area contains the four worst-affected
counties in Central Italy: Accumoli (epicenter), Amatrice, Norcia, and Arquata Del Tronto. According to
the news report [46], 80% of the old town center in Amatrice was destroyed and almost every building
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was cracked. As of 26 August 2016, the earthquake had caused 297 deaths with 234 in Amatrice, 11 in
Accumoli, and 49 in Arquata del Tronto [47].

Hurricane Maria was the strongest storm that attained landfall in Puerto Rico in the past 85 years.
It hit Puerto Rico as a Category 4 hurricane with a maximum sustained wind of 249 km/h, resulting in
catastrophic damage and a large scale power outage across the whole island [48]. More than 3 million
people were affected by the event [49]. As of 21 September 2017, 100% of the island was without power,
and only 20% of these areas were reconnected with power one month after the hurricane [50].

Tropical Cyclone Hudhud was a Category 4 storm with a maximum sustained wind speed
of 217 km/h that made landfall at Visakhapatnam [51]. A maximum storm surge of 1.4 m above
astronomical tide was reported [52]. The sustained winds and storm surge broke electric poles
throughout almost the entire city and destroyed some switching stations, resulting in a lengthy power
outage in most parts of Visakhapatnam [53].

Louisiana Flood was caused by upper-level low-pressure weather that brought heavy rainfall of
50 to 80 cm to Southeast Louisiana and Southwest Mississippi from 11 to 13 August 2016. This deluge
caused rivers to overflow and resulted in catastrophic flooding and affected large portions of the highly
populated East Baton Rouge, Livingston, Ascension, and Tangipahoa Parishes [54]. On the night of the
15 August, about 14,300 Entergy (an electric distribution utility company in Louisiana) customers in
East Baton Rouge Parish and Livingston Parish were out of power [55]. In addition, 75% of the homes
in Livingston Parish were reported as a ‘total loss’ [56].

For the Yulin Flood, from 6:00 p.m. on 25 July to 6:00 a.m. on 26 July 2017, a heavy rain event hit
Yulin City in Shaanxi Province, China. The induced flood inundation of 12 counties included Suide,
which was reported as one of the most affected counties. The maximum precipitation in Suide was
103.4 mm [57]. According to the report by the China National Commission for Disaster Reduction, in
Suide County alone, the flood had caused 6 deaths, 86 injuries, 194 households to experience house
collapse, 61 bridges to collapse, and 213 roads to be damaged [58].

2.2. Data

Two types of NPP-VIIRS data were utilized for this study: the DNB Sensor Data Record (SDR) and
the Cloud Cover Layer (CCL) Environmental Data Record (EDR). The DNB SDR provides radiance
and the corresponding geolocation data (including longitude, latitude, height, and lunar zenith angle).
The DNB radiance was used to quantify light emission from artificial light. The geolocation data
were used for lunar radiance removal and edge-of-swath pixel discarding in the data preprocessing
process. CCL data provided information on cloud cover fraction and were used to filter out the
DNB contaminated by cloud. These NPP-VIIRS data were retrieved from the National Oceanic
and Atmospheric Administration (NOAA)’s Comprehensive Large Array-data Stewardship System
(CLASS) [59].

The Moderate Resolution Imaging Spectroradiometer (MODIS) Terre V005 500 m Surface
Reflectance product (MCD09A1) was used as auxiliary data to quantify the reflected lunar radiance
observed by the DNB sensor. MODIS data are available through the EARTHDATA website powered
by the Earth Observing System Data and Information System (EOSDIS) [60].

The Damage Proxy Maps (DPMs) and Flood Proxy Maps (FPMs) produced under the NASA
Advanced Rapid Imaging and Analysis (ARIA) Project [61] were used for validation and for
comparison with the affected area detected by NTL. The DPM was generated using an algorithm that
detects damage by comparing deformation of land structures using pre- and post-disaster X-band
interferometric synthetic aperture radar (SAR) data from the Italian Space Agency’s COSMO-SkyMed
(CSK) satellite constellation. It has a resolution of about 30 m. The FPM was derived from ALOS-2
ScanSAR data and has a resolution of about 50 m.

We used building range maps from Open Street Map (OSM) [62] to extract building footprints.
Land Cover Maps for each event site, at a 30-m resolution for 2010, acquired from the National
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Geomatics Center of China [63], were also used to represent surface coverage type. Administrative
boundary data were obtained from the Global Administrative Areas (GADM) database [64].

2.3. Methods

We first processed the raw images to remove lunar radiance, cloud, and edge-of-swath pixels.
PNL images were then generated from the processed images to detect areas that had been affected by
the disastrous events.

2.3.1. Data Preprocessing

NPP-VIIRS DNB captures light from city lights, fishing boats, fire, gas flares, lighting, auroras,
volcanic magma, as well as reflected moonlight from clouds, snow cover, and the ground [10]. The data
quality is affected by stray light and the position of the pixels in the swath [65]. To correctly detect
human-related light changes after natural disasters, preprocessing work was required. For our selected
case study events, we performed lunar radiance removal, cloud clearing, and edge-of-swath pixel
removal as the other conditions such as fishing boats, gas flares, lighting, auroras, volcanic magma,
and stray light were not in effect. Figure 2a shows a DNB image free from the impact of these factors.
Figure 2b–e shows DNB images affected by moonlight, cloud, moonlight and cloud, and at the edge of
the swath, respectively. The methods we applied to achieve this are described below.
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Figure 2. National Polar-orbiting Partnership Visible Infrared Imaging Radiometer Suite (NPP-VIIRS)
Day/Night Band (DNB) images under different conditions: (a) no moonlight or cloud, (b) moonlit,
(c) cloudy, (d) moonlit and cloudy, and (e) edge-of-swath.

For cloud-free observations, DNB nighttime imagery is a composition of light emissions and the
reflected moonlight from cloud tops and land surfaces [36,37,66]. The DNB can capture moonlight
when the moon is above the horizon at the satellite overpass time for about 15 days in a lunar cycle
(about 29.5 days) [8]. The DNB radiance of a place under full moon conditions could be three times
larger than the radiance under a noon moon condition [67]. Therefore, the lunar radiance should be
removed to determine the true light radiance.
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The amount of moonlight reflected from the earth’s surface depends on the lunar phase (ranging
from new to full moon), elevation, azimuth, and the surface reflectance. Cao [37] introduced a method
to compute the lunar radiance observed by DNB sensors with the assistance of a Top of Atmosphere
(TOA) spectral lunar irradiance model (MT2009) developed by Miller and Turner [68]. We adapted this
method by using 8-day MODIS surface reflectance instead of TOA reflectance to quantify the lunar
radiance contribution to produce the lunar-corrected nighttime light data.

To compute the lunar radiance (Lm), as observed by the DNB sensor, we used:

Lm = Em
π ρ cos(θm) (1)

where θm is the lunar zenith angle provided by NPP-VIIRS DNB SDR, Em is the downwelling TOA
sensor response function-weighted lunar irradiance derived from the MT2009 model, and ρ is the band
averaged surface reflectance and is estimated using Band 1, 2, and 4 channels of MOD09A1. The true
light radiance is the initial DNB radiance subtracting the lunar radiance Lm.

Clouds have a complex effect on DNB images according to the opacity of the cloud and the
intensity of the moonlight. In no-lunar-illumination conditions, clouds can block the city light below
them and blur the surrounding lights (Figure 2c). However, in high-lunar illumination conditions,
clouds not only dim the city light but also reflect moonlight (Figure 2d). The Summed Cloud Cover
(SCC) from the NPP-VIIRS CCL data have been proven to have good ability to detect clouds [69].
SCC is the cloud fraction summed over all layers and has a range from 0 to 1. A pixel with an SCC
equal to 0 indicates that the pixel is clear of cloud. A strict criterion for SCC values smaller than 0.01
was used to identify and exclude the cloud-contaminated pixels.

The DNB covers the earth with a swath width of 3044 km. To achieve a near-constant 742 m
sample, the swath was aggregated into 32 zones on each side of the nadir via a scan-angle-dependent
aggregation strategy [70]. The last four aggregation zones (zone 29–32) at the edge of the scan have a
visible increase in noise [36] (Figure 2e), so that pixels in these zones were discarded.

A manual process was conducted to visually assess the image of each date in order to identify and
exclude images that may have obvious problems, such as being affected by heavy aerosol or clouds
that may not be detected using the SCC measure.

2.3.2. PNL Image

The NPP-VIIRS DNB data one month prior to and 10 days after the natural disaster (excluding
images with poor data quality) were averaged to create pre- and post-disaster composite datasets,
respectively. This method was necessary for two reasons. Firstly, most missing data caused by clouds
could be removed by averaging the images over the selected period. Secondly, the intensity of city
lights observed by satellites can fluctuate due to many factors such as atmospheric scattering and
absorption [39] and differences in scan angle [65]. By averaging the data, these fluctuations could be
smoothed and the data would reflect the real light. We chose a relatively longer pre-disaster period
(one month) to smooth the normal time fluctuations and reflect the real light during normal conditions.
A shorter 10-day post-disaster period was chosen, as this is the critical period that reflects the changing
conditions before recovery work occurs. Seasonal effects of NTL data caused by changes in NDVI,
snow, and albedo [71] were negligible due to the minimal change in these factors during this short
time period. A PNL image was used to compare the DNB images pre- and post-disasters. PNL was
calculated for each pixel by dividing the post-disaster composite data by the pre-disaster composite
data. This approach follows previous work by Cole et al. in assessing power outages [36], which is
calculated as:

PNL = 100 ×
(

Radpost
Radpre

)
(2)

where Radpost is the post-disaster composite DNB radiance and Radpre is the pre-disaster composite
DNB radiance. PNL can reflect changes of lights before and after the disaster, where a PNL > 1 means
more light after the disaster, PNL < 1 means less light after the disaster, and PNL = 1 means no changes.
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The areas where PNL < 1 were viewed as the disaster-affected areas. However, when the Radpre

and/or Radpost values are very small, any small change in DNB radiance due to background noises
in an areas [10] can result in an extremely high or low PNL value using Equation (2), which would
be unacceptable. To avoid this situation, we reset all Radpre and Radpost values to 0.3 nW·cm−2·sr−1

when the actual value was lower than this threshold. This threshold was chosen empirically, whereas
either lower or higher than this threshold resulted in large anomalies in the PNL.

2.3.3. Statistical Significance

The Mann-Whitney U-test was used to test the statistical significance of the DNB changes at
the pixel level. The Mann-Whitney U-test is a nonparametric test that tests for differences between
two independent groups with no specific distribution [72]. As the DNB values of the study areas
were not normally distributed, the Mann-Whitney U-test was suitable for comparisons between them.
The Mann-Whitney U-test has been used to compare the nighttime light before and after a war [43].
The null hypothesis (H0) stipulates that the two groups of data are homogeneous and have the same
distribution, whereas the alternative hypothesis (H1) stipulates that the distributions of the two groups
are different [72]. This study tested the statistical significance of DNB changes using a 95% confidence
interval. So, if the p-value was smaller than 0.05, the H0 was rejected, meaning that the difference
between the pre-and post-disaster DNB images was statistically significant.

3. Results

3.1. Earthquakes

The first earthquake we analyzed was the Gorkha Nepal Earthquake. Table 2 lists the dates and
cloud coverages of pre-and post-earthquake DNB images that were used to compute the average
composite DNB images pre- and post-earthquake (Figure 3a,b). Figure 3c shows the PNL image.
Green indicates areas with a PNL less than one, and these were considered to be zones damaged by the
earthquake. Both the extent and intensity of the light in most areas were reduced after the earthquake,
with only a few exceptions. The size of the areas that became darker after the earthquake was calculated
to be 447.2 km2 and the size of those that became brighter was calculated to be 145.1 km2. Using the
Mann-Whitney U-test, the DNB changes post-earthquake were statistically significant at p < 0.001.

Table 2. The dates and cloud coverages of pre- and post-earthquake Day/Night Band (DNB) images of
the Gorkha Nepal Earthquake in 2015.

Pre-Earthquake Post-Earthquake
Date 7April 8 April 9 April 18 April 21 April 23 April 26 April 2 May 4 May 5 May

Days Before (After)
the Disaster 18 17 16 7 4 2 1 7 9 10

Cloud Coverage (%) 0.1 0.0 0.0 0.7 0.6 2.5 17.1 1.1 1.1 0.1
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Figure 3. (a) The pre- and (b) post-earthquake averaging composite DNB images, (c) Percent of
Normal Light (PNL) image, (d) Damage Proxy Map (DPM) image combined with PNL image, (e) Bing
satellite map, and (f) Open Street Map (OSM) building map combined with PNL image of the Gorkha
Nepal Earthquake.

We compared the results to DPMs generated using SAR data from CSK. Figure 3d shows the PNL
image overlaid by the damaged areas (marked as black pixels) from DPM. The damaged areas in the
PNL and DPM images concur with each other in the particular area of central Kathmandu. However,
the damaged areas in DPM image are denser in regions A and B where there is no noticeable change
in NTL (Figure 3d). By comparing Figure 3d with the Bing satellite map (Figure 3e), we found that
region A is a mountainous area and that there is a river in region B. The mountain deformation and
river changes created by the earthquake were detected by the SAR data. By comparing the PNL and
DPM images with the building map derived from the OSM (Figure 3f), we found that many of the
damaged areas detected by radar data were located in areas with no buildings or low building density,
whereas damaged areas derived from the NTL were almost all located in central Kathmandu with
high building density.

To assess the accuracy of using NTL to detect the damage due to earthquakes, we reduced the
resolution of the DPM from 30 m to 750 m to match the resolution of the PNL image for comparison.
A confusion matrix was constructed (Table 3) that shows an overall accuracy of 75.5%. A True Positive
Rate (TPR) of 35.9%, and a False Positive Rate (FPR) of 8.9% indicate that 35.9% of the damaged
areas and 8.9% of the undamaged areas were detected as damaged areas. Given that the proportion
of the undamaged area was much larger than that of the damaged area, we further calculated the
standard Kappa (Kstandard) as well as Kappa for location (Klocation) and quantity (Kquantity) using
Pontius’ approach [73]. Klocation was calculated by dividing the success due to the model’s ability to
specify location by the maximum possible success due to a model’s ability to specify location perfectly
given a fixed quantity of each class, which measures the locational agreement between two maps.
Kquantity was calculated by dividing the success due to the model’s ability to specify quantity by the
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maximum possible success due to a model’s ability to specify quantity perfectly given a fixed Klocation,
which measures the agreement in the quantity of the two maps. Kappa values range from −1 (no
agreement) to 1 (perfect agreement), where positive values show a greater agreement than usual.
A Kstandard of 0.31 indicates that the damaged areas detected by NTL and DPM have fair agreement
overall. A Klocation of 0.46 and a Kquantity of 0.82 indicate that the PNL has a moderate ability to specify
the location of damage and a good ability to specify the quantity of damage, respectively.

Table 3. The confusion matrices and accuracy for using nighttime light (NTL) images to detect areas of
damage after earthquake events.

Earthquake Event Actual (DPM)
Predicted (NTL)

Accuracy
Damaged Undamaged Total

Gorkha Nepal Earthquake

Damaged 488 871 1359 Overall accuracy = 75.5%
TPR = 35.9%
FPR = 8.9%

Kstandard = 0.31
Kquantity = 0.82
Klocation = 0.46

(35.9%) (64.1%)
Undamaged 307 3150 3457

(8.9%) (91.1%)
Total 795 4021

Central Italy Earthquake

Damaged 5 35 40 Overall accuracy = 90.2%
TRP = 12.5%
FPR = 9.0%

Kstandard = 0.01
Kquantity = 0.84
Klocation = 0.04

(12.5%) (87.5%)
Undamaged 322 3298 3620

(8.9%) (91.1%)
Total 327 3333

We noticed that a large proportion of the damaged area became brighter after the earthquake and
the brighter areas were mostly located in central Kathmandu (Figure 3f). This was probably due to
rescue and recovery activities. According to the Ministry of Home Affairs (MoHA) of Nepal, over
130,000 staff from the Nepal Army, Nepal Police, Armed Police Force, as well as 4000 government
and private health workers participated in the rescue activities [45]. Rescue and recovery activities
from badly damaged buildings, repairing damaged infrastructure, and building temporary houses for
displaced people would require a large number of emergency lights [74], resulting in the brighter color
on the image. Figure 3f shows that the darker areas were mainly located in suburban or rural areas,
whereas brighter areas were mainly located at the urban center, indicating that the urban center may
have received more relief than the suburban and rural areas.

Assessment of the Central Italy Earthquake in 2016 was based on DNB images listed in Table 4.
Figure 4a–c shows the pre- and post-earthquake DNB and PNL images for the four counties in
Italy. The difference between the pre- and post-earthquake DNB images was statistically significant
(Mann-Whitney U-test, p < 0.001).

Table 4. The dates and cloud coverages of pre- and post-earthquake DNB images of the Central
Italy Earthquake.

Pre-Earthquake Post-Earthquake
Date 4 August 5 August 8 August 9 August 11 August 12 August 13 August 14 August 15 August 26 August 27 August 28 August 30 August
Days

Before
(After)

the
Disaster

20 19 16 15 13 12 11 10 9 2 3 4 6

Cloud
Coverage

(%)
5.5 4.6 4.0 12.3 0.0 0.0 2.1 15.6 21.9 4.0 16.1 0.0 0.0
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(d) DPM image, (e) DPM image combined with PNL image,; and (f) DPM image compared with OSM
building map of the Central Italy Earthquake.

Unlike the Gorkha Nepal Earthquake and other previous studies [39,40], the area of brighter pixels
(900.6 km2) was far larger than that of darker pixels (183.9 km2). The average DNB radiance increased
after the earthquake from 0.54 nW·cm−2·sr−1 to 0.76 nW·cm−2·sr−1, which could be attributed to
rescue and recovery activities. Comparing the PNL image with the DPM (Figure 4d,e) produced by
ARIA using CSK SAR data, most damaged areas were brighter after the earthquake. By comparing the
DPM image with the building map (Figure 4f), we found that most damaged areas detected by DPM
were districts where buildings were present, except for the mountainous region A where there were no
buildings but land deformation occurred. The overall accuracy was high (90.2%), whereas the TRP
was only 12.5% and the standard Kappa was extremely low (0.01) (Table 3, Row 2), indicating that it
was not possible to use PNL to detect damaged areas. The overall accuracy was high simply because
the undamaged area was much larger than the damaged area.

The difference in light change patterns between the Gorkha Nepal Earthquake and the Central Italy
earthquake is possibly attributable to their different population, building, and economic conditions.
In Italy, these small towns were quiet and peaceful with few people or nighttime activities. When the
earthquake occurred, rescue teams entered the affected areas with emergency lights [75,76], resulting
in the town being even brighter than during normal time. However, in Nepal, the population of the
study area was 380 times larger than that of the study area in Italy, the number of buildings was
18 times larger, and the average number of people per building was 20 times larger (Table 5). After the
earthquake, the number of damaged buildings was so large that the rescue teams could not reach
every building in time. Thus, the rescue lights were not able to complement the decreased light caused
by earthquakes.
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Table 5. The building numbers and population in the study areas of the two earthquake events.

Study Area Number of Buildings 1 Total Population 2 Average Number of
People Per Building

Kathmandu and the
surrounding area, Nepal 220,451 3,566,322 16.2

Four counties in Italy 12,234 9371 0.8
1 The number of buildings was calculated from the OSM building map in the study areas. 2 The total population
was extracted from the Gridded Population of the World (GPW) dataset, v4. (http://sedac.ciesin.columbia.edu/
data/collection/gpw-v4).

3.2. Storms

For Hurricane Maria, we used seven DNB images prior to the storm and five images after the
storm (Table 6) to compute the average composite DNB images pre- and post-storm. Hurricane Maria
occurred during the rainy season during very high average cloud coverage of 85.0% within the first
10 days after the hurricane. As such, we were unable to use NTL these days. Given that 84% of the
island was still without power 20 days after the hurricane [50], we averaged the DNB for 20 days after
the hurricane as the post-storm data. Figure 5a–c show the pre- and post-storm averaging composite
DNB images and the PNL image. Most areas of the island were darker after the hurricane, with only a
few exceptions. The size of the darker areas was calculated to be 9581.6 km2 and the brighter areas
were only 53.4 km2. The DNB changes post-earthquake were statistically significant (Mann-Whitney
U-test, p < 0.001).
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building map of Hurricane Maria.

http://sedac.ciesin.columbia.edu/data/collection/gpw-v4
http://sedac.ciesin.columbia.edu/data/collection/gpw-v4


Remote Sens. 2018, 10, 1526 13 of 25

Table 6. The dates and cloud coverages of pre- and post-storm DNB images of Hurricane Maria.

Pre-Storm Post-Storm
Date 22 August 23 August 24 August 28 August 30 August 1 September 18 September 27 September 28 September 29 September 7 October 8 October
Days

Before
(After)

the
Disaster

29 28 27 23 21 19 2 7 8 9 17 18

Cloud
Coverage

(%)
15.2 8.1 11.4 11.1 19.9 19.7 20.3 41.2 71.8 48.2 70.8 34.4

By comparing the PNL image (Figure 5c) with the damaged areas from DPM (Figure 5d) produced
by ARIA using CSK SAR data, we found that the damaged areas in DPM were sporadic and the extent
of the damaged area was lesser than that of the darker area detected by NTL. By overlaying the
DPM map with the building map (Figure 5f), we calculated that only 1.6% of the total building areas
were affected by Hurricane Maria. This proportion of building damage was significantly less than
the proportion of darker pixels (99.4%), indicating that the building damage was not reflected by
NTL in this case. This could possibly be attributed to the large-scale power outages resulting in the
darkening of both damaged and non-damaged buildings, as well as areas where no buildings were
present (Figure 5e). We used the power outage data from the Hurricanes Event Summary Reports
published by the U.S. Office of Cybersecurity, Energy Security, and Emergency Response (CESER) to
verify the use of PNL to track power outages and recovery trends [50]. These reports provide data
about the percent of customers without power (Pnopower) for 45 days in Puerto Rico for the period
from 20 September to 6 November 2017 and from 3 January to 4 April 2018. Using a piecewise linear
interpolation, we estimated the Pnopower for the other days during this period except for the period
from 7 November 2017 to 2 January 2018 where no data were available for this period. We composited
the DNB data every 10 days after the storm (except for the period where no Pnopower data were
available), then selected the composite images not affected by clouds to calculate the PNL value for the
whole island by dividing the mean post-storm DNB radiance by the mean pre-storm DNB radiance
(Table 7). The Pnopower values for the selected days were averaged and used as validation data (Table 7).
The average DNB radiance and PNL value for the composite image increased as the Pnopower decreased.
A linear regression analysis showed that the correlation coefficient (R2) between PNL and Pnopower

was 0.94 (Figure 6).
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Table 7. The PNL and the percent of customers without power (Pnopower) values of Puerto Rico after
Hurricane Maria.

Date Range Dates of Available Image Average DNB
nW·cm−2·sr−1 PNL Pnopower

Before Storm 20 August –20 September
22 August–24 August, 28 August,

30 August, 1 September,
18 September

4.52 0.0% 0.0%

After Storm

21 September –10 October 27 September –29 September,
7 October, 8 October 0.77 17.1% 94.3%

11 October –20 October 13 October, 15 October, 18 October,
19 October 1.31 29.0% 84.5%

21 October –30 October 22 October –27 October 1.57 34.8% 77.7%

31 October –9 November 31 October, 1 November,
3 November, 4 November 1.58 34.9% 63.1%

03 January –12 January 3 January, 4 January, 10 January 3.20 70.7% 41.7%

13 January –22 January 13 January –15 January,
18 January, 21 January, 22 January 3.16 69.9% 36.0%

23 January –1 February 4 February, 9 February,
10 February, 11 February 3.70 81.9% 26.9%

22 February –3 March 22 February –24 February,
27 February, 3 March 3.24 71.6% 13.2%

4 March –13 March 4 March, 7 March, 11 March,
12 March, 13 March 4.09 90.4% 11.0%

14 March –23 March 14 March, 15 March, 17 March,
19 March, 20 March 3.76 83.2% 7.6%

24 March –2 April 24 March, 28 March 4.32 95.5% 5.8%

The second storm event we assessed was Cyclone Hudhud in Visakhapatnam, India. The dates
of the pre-storm DNB images are listed in Table 8. Because the cloud cover was always high during
that period, the 8-day MODIS reflectance data were affected by the cloud and did not reflect the true
surface reflectance. Therefore, we removed the lunar contaminated DNB images (3 and 8 October).
Figure 7 shows the pre- and post-storm averaging composite DNB images and the PNL image.
Using the Mann-Whitney U-test, the difference between the pre-and post-earthquake DNB images
was statistically significant at p < 0.001.

Table 8. The dates and cloud coverages of pre- and post-storm DNB images of the Cyclone Hudhud.

Pre-Storm Post-Storm
Date 27 September 28 September 29 September 14 October 15 October 16 October 19 October

Days Before (After)
the Disaster 15 14 13 2 3 4 7

Cloud Coverage (%) 15.6 6.6 0.0 19.8 4.9 8.6 1.2

A visual observation of the images showed that the scope and intensity of light reduced
substantially after the cyclone. A pixel-by-pixel comparison showed that 695.3 km2 of the area became
darker, 11.8 km2 became brighter, and 3.9 km2 remained unchanged after the cyclone. The average
radiance of the pre- and post-storm DNB were 7.8 nW·cm−2·sr−1 and 2.4 nW·cm−2·sr−1, respectively.
The PNL for the whole study area was 30.8%. To test whether the linear regression model derived
from the example of Hurricane Maria (Figure 6) could be used to estimate the power outage in other
cases, we applied the model to Cyclone Hudhud. The Pnopower after Cyclone Hudhud was estimated
to be 77.6%, which was in good agreement with the reported 20% or so power supply restoration work
that was completed (that is, 80% of the power supply was not restored) by 16 October [77].
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However, there were also some places showing an increase in light after the cyclone. We identified
these locations as Points of Interest (POIs) in the Bing high-resolution satellite map (Figure 7c, P1–P5).
P1 to P4 are industrial sites (Power Grid, Thermal Power Plant, Petro Chemicals Limited, and Container
Terminal), so the increase in light is attributable to the increased production of support power
restoration. However, we did not note any abnormality at P5, so we can only suspect this may
have been related to fire or some transient lighting for facility repairs.
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3.3. Floods

For the Louisiana flood in the U.S., because the cloud cover was heavy every day of the 10 days
following the flood, the available images during that period could not cover the whole study area.
Therefore, we chose the first three images covered the whole study area as the post-flood images
(Table 9). Figure 8a–c show pre- and post-flood averaging composite DNB images and the PNL image.
Figure 9d shows the Flood Proxy Map produced by ARIA on 18 August. The patterns of pre- and
post-flood images were almost the same through visual analysis. The mean radiances of pre- and
post-flood image were 7.87 nW·cm−2·sr−1 and 7.79 nW·cm−2·sr−1, respectively. The brighter pixels
and darker pixels were intertwined, with an area size of 2004.2 km2 and 1891.7 km2, respectively.
The p-value of the Mann-Whitney U-test was 0.514, which indicated that the difference between the
pre-and post-flood DNB images was not statistically significant at a 95% confidence interval. This is
probably because the images used were captured 10 days after the flood and, in most areas, the power
supply had been restored by then [78]. Furthermore, by comparing the FPM with the NTL map, we
observed that the flood water was mainly located in areas with dim light. The light changes caused by
the flood damage may not have been noticeable enough to be captured by NTL. Therefore, the NTL
data were not useful in this case.Remote Sens. 2018, 10, x FOR PEER REVIEW  17 of 25 
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Table 9. The dates and cloud coverages of pre- and post-flood DNB images of the Louisiana Flood.

Pre-Flood Post-Flood
Date 12 July 13 July 19 July 22 July 1 August 2 August 4 August 21 August 22 August 24 August

Days Before
(After) the

Disaster
30 29 23 20 10 9 7 10 11 13

Cloud Coverage
(%) 0.0 0.0 9.0 0.0 19.9 0.0 5.6 22.7 21.3 0.0

For the Yulin flood in the Suide district in China, the dates and cloud coverages of pre- and
post-flood DNB images are shown in Table 10. Pre- and post-flood averaging composite DNB images
and the PNL image are shown in Figure 9a–c, respectively. The difference between the pre-and
post-flood DNB images was statistically significant (Mann-Whitney U-test, p < 0.001).

Table 10. The dates and cloud coverages of pre- and post-flood DNB images of the Yulin Flood.

Pre-Flood Post-Flood
Date 27 June 29 June 1 July 17 July 30 July 31 July 2 August

Days Before (After)
the Disaster 29 27 24 8 4 5 7

Cloud Coverage (%) 12.7 0.0 1.2 0.7 0.0 0.5 0.0Remote Sens. 2018, 10, x FOR PEER REVIEW  18 of 25 
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Figure 9. (a) The pre- and (b) post-flood averaging composite DNB images, and (c) the PNL image of
the Yulin Flood.

Comparing the PNL image with the land cover map (Figure 1f), most of the urban areas became
darker, which was consistent with the news report that the main county had undergone a large area of
power outage [79]. It was reported that 194 houses collapsed during the flood [58]. As the number
of housing collapses was relatively small, the main explanation for the light decrease could be due
to power outages. Apart from the darker areas, there were still some pixels that became brighter,
most of which were located along highways (Figure 9c of the highways). As all of the highways were
seriously damaged by the flood [57], the brighter areas are probably attributable to the presence of
rescue vehicles at night and the road repair work.

3.4. Impact of Clouds on Assessing Natural Disasters

Floods and storms are often accompanied by clouds that seriously affect the amount of data
available. Figure 10 displays the percentage of cloud coverage for the 10 days from the beginning of
the disastrous events that we analyzed. The percentage of cloud coverage was generally higher after
storms and floods. For instance, the average cloud coverage rate for 10 days after Hurricane Maria in
Puerto Rico was 85.0%. Under such high cloud coverage, the nighttime light changes could not be
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detected by DNB. Subsequently, the usefulness of DNB in assessing the impact of this type of natural
disaster would be limited.
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4. Discussion

A natural disaster may cause damage to buildings and infrastructure, power outages, and impact
human activities. All of these are expressed as a reduction in light intensity and can be identified
in DNB images. Although the causes of light reduction cannot be revealed by DNB, which tend to
differ for different types of disasters in different regions, our analyses showed that NPP-VIIRS DNB
daily data can be used to assess the impact of various natural disasters, including earthquakes, storms,
and floods. However, there are limitations due to the cloud coverage and influences by other human
activities. Table 11 summarizes the applications of and major challenges encountered when using this
type of data.

Earthquakes are one of the most destructive hazards that can cause large-scale building collapse
and power outages. The overall accuracy, TRP, FPR and standard Kappa of using NTL to detect
damage due to earthquakes were estimated to be 75.5%, 35.9%, 8.9%, and 0.31, respectively, in the
Gorkha Nepal Earthquake. Previous research [41] used VIIRS NCC nighttime light to detect damage
caused by three earthquakes with estimated overall accuracies of 75.0%, 68.4%, and 14.9%. Our result
concurs with the highest accuracy of these three cases. According to the confusion matrices in their
study, the standard Kappas would be close to 0, which is lower than our results. The TPRs would
be 100%, 76.5%, and 14.9%, two of which would be higher than our results. The accuracy of using
NTL to estimate the damage caused by earthquakes is not high due to a number of reasons, including
the light from rescue activities that seriously affect the accuracy, and power outages that resulted in
darkness from undamaged buildings as well. The situation is different under storm and flood events.
For floods, variables that can influence building damage include the nature of the flood (such as water
level, flood duration, and flow velocity) and the building properties (such as building structure and
building quality) [80]. In urban areas where building structures are generally strong, floods would
only destroy individual buildings along rivers. This is similar to storms during which only small
numbers of individual buildings of poor quality are affected. Therefore, a decrease in the light in urban
areas after floods or storms is likely due to power outages rather than building collapse. In the case of
Hurricane Maria, we found a linear relationship between PNL and the power outage rate with an R2 of
0.94. The linear regression model was further tested by applying it to the example of Cyclone Hudhud.
The result showed that the estimated power outage rate was in good agreement with the reported
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power outage rate. Previous research [37] used DNB data to detect power outages after Hurricane
Sandy and found that the light outage percentages (defined as LODNB = (1 − Radpost/Radpre)) were in
good agreement with the reported power outage rates, which further confirms the linear relationship
between PNL and power outage rate. DNB would be more applicable in urban and developed rural
areas that have a relatively high normal nighttime light intensity. In mountainous areas or small
villages where residential properties are sparsely distributed and infrastructure and business are
undeveloped, there is not much light at night even during normal times. The changes in light after
disasters would be too small to be detected by satellite. For example, landslides are severe disasters
that can cause large areas with buildings to be submerged. The 2017 Mocoa Colombia landslide buried
large portions of Mocoa in several feet of mud and caused 329 deaths, 332 injuries, and 70 missing
people [81]. However, the average DNB values before and after the landslide were both less than
0.2 nW·cm−2·sr−1, which was almost no difference. As the DNB of an area with no light could be
larger than 0.5 nW·cm−2·sr−1 [67], these DNB data cannot be used to assess the impact of landslides.

Table 11. The applications and challenges of using DNB daily observations in disaster assessments.

Disaster Type Event Application Validation Data Validation Results Challenges

Earthquake

Gorkha
Nepal
Earthquake

Identify
damaged areas DPM

Overall accuracy = 75.5%
TPR = 35.9%
FPR = 8.9%
Kstandard = 0.31
Kquantity = 0.82
Klocation = 0.46

Rescue and repair
activities
produced extra
lights

Central Italy
Earthquake None DPM

Overall accuracy = 90.2%
TPR = 12.5%
FPR = 9.0%
Kstandard = 0.01
Kquantity = 0.84
Klocation = 0.04

Rescue and repair
activities
produced extra
lights

Storm

Hurricane
Maria

Detect power
outages

DPM, and
Pnopower
published by
CESER in the U.S.

Strong correlation
between the PNL and
Pnopower (R2 = 0.94)

Cloud

Tropical
Cyclone
Hudhud

Detect power
outages

Power outage
rate in news
reports

The estimated Pnopower of
77.6% was in good
agreement with the report
that 80% of the power
supply was not restored.

Cloud

Flood

Louisiana
Flood None FPM and news

reports

Mann-Whitney U-test
indicates that the
difference between pre-
and post-flood images is
not statistically significant

Cloud

Yulin Flood Detect power
outages None None

Increased rescue
vehicles and
repair activities
brought extra
lights

When faced with the same types of disasters, the changing pattern of NTL would be different
due to the different socioeconomic statuses of the region. Take earthquakes as an example: for densely
populated central urban areas, the normal NTL radiance value is very high. When an earthquake causes
housing collapses and infrastructure damage, the light loss always becomes obvious. Under these
circumstances, the impact of rescue lights is relatively minimal and NTL can be used to detect the
affected area [39]. In contrast, the normal NTL for a sparsely populated village is low and rescue
lights can be brighter than the normal NTL. Therefore, rescue lights would greatly affect the detection
of damage.
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By comparing the differences between NTL changes and the DPMs from the SAR data in the
Gorkha Nepal Earthquake, Central Italy Earthquake, and Hurricane Maria, we noticed that the NTL
satellite data directly recorded the light created by humans, whereas SAR data only reflect physical
damage to the land surface. Therefore, the detected damage using SAR data may also include
mountain deformations and other natural landform changes; the data do not directly reflect the impact
on humans. NTL can directly reflect how humans are affected by natural disasters. However, the
effect detected by NTL is complex and can include building damage, power outages, as well as human
activities after the disaster, such as rescue work and changes to the number of vehicles on the road.
The light sources cannot be distinguished by NTL itself. Therefore, using NTL to detect damage or
power outages would be affected by other human activities like rescue activities and changes in traffic.

The major limitation of using DNB to assess the impact by natural disasters is cloud cover.
Disasters like floods and storms are always accompanied by heavy rainfall and massive cloud coverage.
Generally, the most serious power outages occurred immediately after the disaster. It is difficult to
detect short-term light outages if the lost power is recovered a few days after the disaster because of
heavy cloud coverage.

There are also some uncertainties when using the DNB data to assess the impact of natural
disasters. Firstly, water brought by storms and floods can lead to changes in surface reflectance [82],
which causes the surface to reflect less light. Secondly, the DNB data do not apply atmospheric
corrections. The atmosphere, especially aerosol, has a scattering effect on NTL and can blur the
artificial light [69]. Such limitations need to be fully assessed and considered when using NTL data.

5. Conclusions

The availability of the NPP-VIIRS DNB daily data enabled the use nighttime light data for
short-term disaster assessments. This study explored the ability to use DNB daily data by assessing
three types of natural disasters including earthquakes, storms, and floods. A series of preprocessing
procedures were used to ensure the high data quality and that the PNL images were generated to
reflect DNB changes following six typical disaster events. The results showed that the overall accuracy
and standard Kappa of using PNL to detect the damage after the Gorkha Nepal Earthquake were 75.5%
and 0.31, respectively. However, it was not possible to use PNL to detect the damage after the Central
Italy Earthquake because many areas became brighter. This differs from previous research [39,40].
During the power restoration period after Hurricane Maria, the PNL value was significantly correlated
with the power outage rate (R2 = 0.94), indicating that NTL can be used to track power recovery
trends. In the Cyclone Hudhud event, the Pnopower estimated by PNL was in good agreement with the
reported power outage, which is consistent with the work by Cao et al. [37]. In the flood events, power
outages were detected by NTL after the Yulin Flood, but were not be detected after the Louisiana
Flood because of the long cloudy days. The usefulness of NTL and SAR data in analyzing the impact
of earthquakes and storms was compared. NTL can directly reflect human activities but cannot
distinguish the causes of light reduction. SAR can detect building damage but also reflects natural land
deformation. The major limitation of using DNB to assess damage after earthquakes is the presence of
rescue activities, which are also related to the socioeconomic situation of the region. For the assessment
of disasters accompanied by precipitation such as storms and floods, the presence of cloud is the major
challenge that needs to be overcome.

This study has some limitations. In the absence of accurate survey data for building damage
and power outages, we used DMPs from SAR data and power outage rates from local news reports
as alternatives to validate the results. However, there are limitations and noise in these data, which
lead to errors in the validation accuracy. Further validation of the assessments can be achieved as
more accurate data on building damage and power outages become available. Given that the NTL
and SAR data reflect different aspects of the impacts of natural disasters on humans, the combined
use of these two data sources may improve the accuracy of damage detection and the assessment
after natural disasters, which can be explored in future work. NASA has published the Black Marble
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NTL daily data that offer cloud-free, atmospheric-, terrain-, vegetation-, snow-, lunar-, and stray
light-corrected VIIRS DNB radiance [83]. Future work can evaluate the usefulness of this product to
assess different disasters.
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