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Abstract
Spectroradiometry, radiometry, and dosimetry are employed for the measurement 
of ultraviolet radiation (UVR) irradiance and non- ionizing exposure. Different 
types of UVR dosimeter have been developed for measuring personal and envi-
ronmental UVR exposures since film dosimetry was pioneered in the 1970s. An 
important type of dosimeter is the thin film variant, which contains materials that 
undergo changes in optical absorbance when exposed to UVR. These changes can 
be measured at a specific wavelength using a spectrophotometer. Thin film dosim-
eters allow UVR exposure measurements on humans at various body sites during 
daily activities, as well as on plants, animals, and any sites of interest when utilized 
in a field environment. This review examines the properties and applications of 
five types of thin film UVR dosimeter that have different dynamic exposure limits 
and spectral responses. Polysulphone, with a spectral response approximating the 
human erythema action spectrum, was one of the first materials employed in thin 
film form for the measurement of UVR exposures up to 1 day, and up to 6 days 
with an extended dynamic range filter. Polyphenylene oxide has been character-
ized and employed for personal UVR exposure measurements up to approximately 
four summer days and has also been used for long- term underwater UVR expo-
sures. Phenothiazine and 8- methoxypsoralen have been reported as suitable for 
the measurement of longer wavelength UVA exposures. Finally, polyvinyl chlo-
ride with an extended dynamic exposure range of over 3 weeks has been shown to 
have predominantly a spectral response in the UVB and extending up to 340 nm.
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INTRODUCTION

The measurement of ultraviolet radiation (UVR) irradi-
ance and exposure can be conducted using spectroradiom-
etry, radiometry, or dosimetry.1 Dosimetry is an essential 
tool for the characterization of UVR exposures in situ and 
when calibrated locally to a radiometer or spectroradiom-
eter and is applicable across a range of environments. The 
small size and light weight of thin film dosimeters allow 
for the measurement of UVR exposure on humans across 
various anatomical locations during daily activities, to 
leaves on plants, on animals and on any sites of interest 
when applied to field studies.2 The types of UVR dosime-
ters for use in human exposure studies can be categorized 
as chemical,3 biological,4 electronic,5,6 and with related 
smart phone applications.3 The dosimeters considered 
in this review are thin film chemical dosimeters, which 
undergo photodegradation upon exposure to UVR and 
measure cumulative UVR exposure across a desired wave-
length range.7 Quantification of the photodegradation for 
each type of dosimeter is by measuring the pre-  and post- 
exposure optical absorbance using a spectrophotometer at 
the wavelength where there is the largest change in opti-
cal absorbance (ΔA).8

A photodegrading material is suitable for use as a UVR 
dosimeter, if it can be produced in a consistent manner 
with a reproducible thickness, followed by standardized 
measurement of the optical absorbance pre-  and post- 
exposure. A commonly used technique for producing a 
thin film of photodegrading material involves casting a 
thin polymer sheet of film by spreading the relevant solu-
tion of photo- active material, mixed within a solvent, on 
a uniformly flat A4 glass block or blank. The solution is 
spread using a motor driven blade set at the appropriate 
height above the glass to produce a thin film of the re-
quired thickness once the solvent evaporates.9 The optical 
absorbance measurement when the film is dry and assem-
bled into a dosimeter frame is standardized by placing 
each dosimeter in a fixed holder so that the spectropho-
tometer beam measures the optical absorbances at the 
same location on the dosimeter. Errors in the measure-
ment can be reduced by measuring and averaging the op-
tical absorbance at four locations over the surface of the 
dosimeter.2,10

UVR dosimeters need to be characterized for their dark 
reaction, cosine response, reproducibility, temperature 
independence, dose response, and spectral response.11,12 
The dose response requires exposing a set of dosimeters 
on a horizontal plane while measuring the respective 
UVR exposures with a calibrated radiometer or spectro-
radiometer.12 Calibrating the ΔA response of each film 
batch for the local conditions and season ensures the ac-
curacy of the dosimeters.13 Consequently, calibration is an 

essential component of thin film dosimetry to measure 
UVR exposure.

The history of the development and characterization of 
polysulphone UVR dosimetry has been detailed.11 The use 
of film dosimeters for the measurement of personal UVR 
exposures during nonoccupational settings14 and recent 
comparisons between different types of wearable UVR 
sensors including film dosimeters have been reviewed.3,15 
Studies have demonstrated the versatility of UV dosim-
eters to research that looks at spatial and orientation 
variations.16–18

This article extends previous work to review the prop-
erties and applications of five types of thin film UVR 
dosimeter. These dosimeters offer a range of dynamic 
responses and spectral responses for UVR exposure mea-
surements to individuals, as well as to plants and vari-
ous sites of interest in a field environment. The thin film 
dosimeters reviewed in the next five sections are poly-
sulphone, polyphenylene oxide (PPO), phenothiazine, 
8- methoxypsoralen (8MOP), and polyvinyl chloride 
(PVC). These five types have commonalities in their fab-
rication, calibration, and processing. The first section on 
polysulphone is lengthier than the next four as polysul-
phone dosimeters have been more widely employed than 
the other types.

POLYSULPHONE

Polysulphone has a spectral response up to 340 nm that 
approximates the human erythema action spectrum19 
(Figure  1). The application of polysulphone to measure 
UVR exposure was first reported in 1976.20 It has been 
used in numerous studies to quantify personal UVR ex-
posures, calibrated to the human erythema action spec-
trum for various human anatomical sites measured across 

F I G U R E  1  Comparison of the erythema action spectrum19 and 
the polysulphone spectral response.12
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a range of activities.2,21 Additionally, polysulphone has 
been employed on manikins to quantify the anatomical 
distribution of UVR exposure22 and has also been cali-
brated to different biologically effective responses. The 
action spectrum for pre- vitamin D3 is predominantly at 
wavelengths shorter than 330 nm.23 This has allowed cali-
bration of polysulphone to measure pre- vitamin D3 effec-
tive UVR exposures in addition to the human erythema 
response.24 Additionally, a thin film of polysulphone has 
been layered on a thin film of nalidixic acid25 to produce 
a combined spectral response26 that approximates the ac-
tion spectrum for the plant growth inhibition in higher 
plants.27 An advantage of using polysulphone dosimeters 
for UVR exposure measurements compared to biological- 
based or electronic dosimeters is that the low cost and 
unobtrusiveness of the dosimeter allows for multiple 
measurements to be made, providing a comprehensive 
analysis of different exposure sites and for multiple occu-
pational observations.11

Polysulphone dosimeters are typically calibrated on a 
horizontal surface to measure the UVR at various orien-
tations. Research has shown that calibrations conducted 
on a horizontal plane are applicable for measurements 
taken at incident angles between the sun and the dosim-
eter surface of up to 70°,18 particularly for surfaces with-
out very high albedo. The steps involved in the calibration 
and determination of UVR exposures with polysulphone 
dosimeters are shown in Figure 2. The coefficient of vari-
ation in the evaluation of the UVR exposure is reported 
as 10% for a ΔA up to 0.3 and increases for a ΔA above 
0.3.8 The following in this section outlines 11 application 
areas.

Applications—Outdoor activities

Exposure to UVR may occur during sporting or leisure 
activities as well as outdoor occupational activities. Early 
studies utilizing polysulphone dosimeters include expo-
sures received by:

1. Participants engaged in outdoor leisure activities28,29;
2. Cyclists30;
3. Sunbathers31;
4. Individuals in urban canyons32;
5. Australian adults undertaking normal daily 

activities33–35;
6. Ski instructors and skiers.16,36

Polysulphone dosimeters have also been deployed for 
determination of exposure to the eyes37–39 and on a mani-
kin head to determine facial UVR exposure for a range of 
solar positions and elevations.40,41 One advantage of using 

a thin film dosimeter is that they can readily be adhered 
to exposed skin surfaces using tape. They are often used 
to determine exposure ratios expressing relative body site 
exposure with respect to the maximum available ambient 
UVR. These measures are used to differentiate between 
different body sites, different activities, and exposures re-
ceived during different times of the day or season42 and 
are useful for expressing comparative exposure risks.

Applications—Miniaturized dosimeters

The flexibility of polysulphone film allows manufacture 
of dosimeters small enough to adhere to the fine scale to-
pography of the human face. Polysulphone film attached 
to lightweight flexible frames measuring 10 mm × 15 mm 
with the polysulphone covering a 6 mm diameter aperture 
was utilized.43 This miniaturization allowed for the place-
ment of up to 709 dosimeters on individual facial locations 
on a human size manikin head form. When calibrated, 
exposures of the miniaturized polysulphone dosimeters 
were evaluated relative to the local ambient UVR in three 
solar zenith angle (SZA) ranges from zero to eighty de-
grees. Evaluation of the UVR exposure received over a full 
day, a week, or longer periods was derived by multiplying 

F I G U R E  2  The steps involved in the determination of UVR 
exposures with polysulphone dosimeters. The same principle 
applies to the use of other thin film dosimeters.
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individual facial site exposure ratios (for a respective SZA) 
by the ambient exposure received on a horizontal plane. 
This enabled the evaluation of detailed facial exposures by 
utilizing calibrated UVR radiometers deployed for ongo-
ing measurement at an existing monitoring site or mod-
eled directly using ambient UVR exposure algorithms.

Miniaturized polysulphone dosimeters have been uti-
lized for the evaluation of UVB (280–320 nm) exposures 
to plants.44 The small size and light weight (0.03 g) ensure 
that there is minimal disruption to the plant leaves en-
abling determination of the cumulative UVB exposures to 
the plant accounting for cloud cover, shading, leaf inclina-
tion, and orientation and atmospheric conditions.

Applications—Workers

In addition to environmental and individual factors, oc-
cupational factors are an important and relevant factor for 
determining an individual's UVR exposure.45 Researchers 
have utilized polysulphone dosimeters to evaluate the UVR 
exposures to outdoor workers such as those in building and 
construction,46,47 lifeguards and farm workers,48 swimming 
pool staff,49 and workers in agriculture,50–53 due to the risks 
of cumulative UVR exposure.50,54–58 Artificial sources such 
as arc welders59 and phototherapy cabins60 also contribute 
to UVR exposure. Researchers have used polysulphone 
dosimeters to measure the cumulative UVR exposure of 
indoor workers such as schoolteachers,57,61,62 office work-
ers,63 indoor home workers,64 pregnant women,65 and pilots 
on flight decks.66 Further studies have included investiga-
tions on the influence of vitamin D supplementation and 
sunlight on women in Brazil and England,67 on seasonal 
variations of 25(OH)D in women,68 on UVR exposures and 
25(OH)D concentration in south Asian adults compared to 
white adults in England,69 on serum 25(OH)D concentra-
tions of office workers and environmental UVR exposure,70 
and the UVR from office lighting.71

UVR exposure measurements to workers have shown 
that the daily occupational limit of 30 J/m2, based on the 
International Commission on Non- Ionizing Radiation 
Protection action spectrum,72,73 or approximately 1.0–
1.3 Standard Erythema Dose (SED),19 is frequently ex-
ceeded.45,47,50,54–58,62,74 Examples include Antarctic 
resupply personnel receiving up to 18 SED,58 Antarctic 
expedition workers receiving daily exposures ranging 
from 3 SED to 43 SED,75 and utility workers in Canada 
receiving up to 6.1 SED56 during their normal occupa-
tional duties. Some jobs classified as traditionally indoors, 
such as school teaching62 can experience UVR exposures 
comparable to outdoor occupations such as gardeners.57 
Measurements with polysulphone dosimeters61–63,76 
showed that schoolteachers often approach or exceed the 

UVR exposure limits due to intermittent exposures during 
their normal duties which include outdoor yard and activ-
ity supervision duties.

Applications—Children

The UVR exposures received during childhood are an 
important component of the cumulative UVR exposure 
received during a lifetime. Polysulphone dosimeters 
have been employed in several investigations focusing 
on UVR exposures to children and adolescents, along 
with the influencing factors. Examples include meas-
urement of UVR exposure to primary school children 
in Sweden,77 early childhood centers,78 preschools,79,80 
and a childcare center.81 Others are a total of 180 chil-
dren from a primary school and secondary school in 
three areas in England,82 children in three age groups 
in South Africa,83 children from primary schools in 
Queensland, Australia,84 UVR exposures and the use of 
shade by children in Perth primary schools,85,86 UVR ex-
posures to facial sites of 45 high school children playing 
sport,87 children at a day camp in Massachusetts,88,89 93 
adolescent child and mother pairs at two locations in 
China,90 and 1 and 2 1/2- year- old children.91,92 UVR ex-
posures quantified with polysulphone dosimeters have 
been compared to data collected through questionnaires 
on 125 adolescent schoolchildren, with reasonable 
agreement between the two datasets.93 Further research 
evaluated the cumulative UVR exposure to individuals 
up to 20 years of age using a model and measured UVR 
exposures.94

Applications—Hair and beards

The protection from UVR by head hair and beards and 
mustaches has been investigated with polysulphone do-
simeters.95,96 The dosimeters were deployed on life- size 
manikin heads at multiple sites under wigs and beards 
and mustaches made from human hair. Dosimeters were 
also deployed on a manikin head with no head hair or fa-
cial hair to calculate the protection provided.

Applications—Clothing

The standard for the evaluation and classification of the 
ultraviolet protection factor (UPF) of clothing employs 
laboratory measurement.97 This provides consistent 
evaluation and classification and is the most practicable 
and efficient technique for large numbers of measure-
ments.98 The in vivo measurements of the UPF are useful 
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in practical life- like cases.98 The in vivo methodology em-
ploys either the determination of the minimum erythemal 
dose (MED) through clothing on human skin or the use of 
dosimeters.99

Life- size manikins have been used in a photother-
apy cabinet for in vivo research of the UPF with poly-
sulphone dosimeters under various T- shirts at 10 sites 
on a manikin and another set adjacent to these, on the 
surface of the T- shirts.100 In sunlight, dosimeters have 
been placed under clothing on both life- sized manikins 
and on humans. A wet and a dry, black and white, sum-
mer garment was tested with polysulphone dosimeters 
on human volunteers while swimming and jogging. 
Manikins have been used to test the reduction of UVR 
exposures by stockings.101 Simulated wear in the field 
with two commonly available black and white dry knit 
fabrics, both wet and dry, provided results indicating 
that the main influences on erythemal UVR transmis-
sion102 and pre- vitamin D3 UVR103 were fabric type and 
fit. Color and wetness were found to have a lesser influ-
ence compared to fabric type and fit. These simulated 
wear measurements have the advantage of accounting 
for the stretch and wetness of the garment while it is 
being worn.

Polysulphone dosimeters attached to head forms fit-
ted with different hat styles provided the UVR protection 
due to hat type. The hat styles studied included small 
and broad brimmed hats, baseball caps, broad brimmed 
“bucket hats,” and legionnaires hats.104–106

Applications—Aquatic environments

The polysulphone thin film does not undergo a chemi-
cal reaction when immersed in water and is less expen-
sive than any electronic meter or electronic dosimeter 
that can be submerged in water. The dosimeter was suc-
cessfully employed underwater at a tropical latitude.107 
Subsequently, polysulphone has been used to study UVR 
exposures of swimmers,108 triathletes109 and snorkelers.110 
The film is calibrated either underwater or on the water-
line and simultaneously, a radiometer measures the cu-
mulative UVR exposure to generate an underwater dose 
response calibration curve.110

Applications—Trees

The use of tree shade is an important component of UVR 
minimization strategies. Polysulphone dosimeters have 
been employed to quantify the UVR protection of tree 
shade by deployment on a horizontal plane in full sun and 
on eight upright manikin body sites in the shade of a gum 

tree (Eucalyptus sp.) and a she- oak (Casuarina sp.).111 
Protection factors of 2–6 and 3–20 compared to a hori-
zontal plane in full sun for the gum tree and the she- oak, 
respectively, were determined for cumulative exposures 
between 9:00 and 15:00 Australian Eastern Standard Time 
(AEST). Follow- up research employed polysulphone do-
simeters to measure the erythema UVR exposure distribu-
tion to body sites of an upright manikin in the shade of 
Australian gum trees,112,113 enabling the determination of 
the UVR exposures in the shade of these trees over sum-
mer112 and over an entire year.113 Research employing 
polysulphone dosimeters exposed for 1 hour either side 
of solar noon on a horizontal and a vertical plane in the 
shade of six common trees planted in Australian urban 
environments found protection factors of 5–10 compared 
to full sun on a horizontal plane.114

Applications—Albedo effects

UVR reflected from natural and constructed surfaces can 
have a significant impact on an individual's UVR expo-
sure. Albedo is the reflectance of isotropic irradiance from 
predominantly natural surfaces and is typically consid-
ered in most ambient UVR measurements. Reflectance 
from built environment materials tends to be anisotropic 
reflected irradiance and can enhance or decrease the total 
irradiance to a localized area. UVR dosimeters provide a 
means of measuring the impact of localized reflective sur-
faces on the UVR exposure an individual experiences near 
built surfaces.

Previous research115,116 employed manikins with 
14 mm × 20 mm polysulphone dosimeters attached to spe-
cific body sites on manikins and placed in the set positions 
of proximity to a reflective surface and a non- reflective 
surface and an open area unobstructed by a nearby sur-
face. These studies demonstrated that anatomical sites 
normally considered to be shaded from ambient UVR ex-
posure were significantly influenced by added reflected 
UVR irradiance. For example, a polysulphone dosime-
ter attached to a manikin's chin close to zinc aluminum 
coated steel sheeting underwent significant increases in 
UVR exposure in certain seasons.116 In autumn, charac-
terized by a high SZA (but not necessarily high ambient 
UVR irradiance), the increase in the expected exposure on 
the chin was 150% higher to that on a manikin not located 
near a structure. A repeat of the research during spring 
(smaller SZA but higher ambient UVR irradiance) indi-
cated only a 20% higher UVR exposure.

The addition of a second reflective surface normal to 
the first surface (creating a corner) can reduce the effect 
of reflectance on ambient UVR exposure,117 despite the 
original increase in UVR exposure measured from a single 
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wall.116 The inclination of the surface relative to the sun- 
normal plane118 and the surface smoothness of the mate-
rial119 both influence the effect of reflectivity on the UVR 
exposure in localized environments.

Similar techniques using polysulphone dosimeters 
have been utilized to evaluate the influence of solar UVR 
reflectivity from solar photovoltaic panels on UVR expo-
sure to the technicians maintaining and installing these 
panels.120 The photovoltaic cells generally absorb dis-
persed radiation in the UVR waveband; however, direct 
UVR reflectance from these surfaces may increase an 
individual's exposure by as much as 50% under specific 
conditions.

Applications—Shade structures

The use of shade is an important strategy in the minimi-
zation of UVR exposures. Polysulphone dosimeters were 
employed to evaluate the protection provided by various 
shade structures with dosimeters placed in the shade of 
the structure and in full sun, either on a horizontal plane 
or on a manikin. The UVR protection has been evaluated 
for a shade cloth structure to 10 anatomical sites,121 for 
five types of umbrellas,122 for 29 shade structures in 10 
New Zealand schools in the school lunch break123 and for 
a manikin head form under a shade structure in the form 
of a gazebo with a metal roof in a public park.124 At swim-
ming pools, the protection provided by the shade struc-
tures has been evaluated between 1.00 and 2.00 pm local 
time with polysulphone dosimeters placed both horizon-
tally on a kickboard floating in the approximate center of 
the pool and on a child sized manikin approximately in 
the pool center.125

Applications—Extension of dynamic range

Polysulphone has a dynamic range approximately equiva-
lent to a single day of UVR exposure in temperate environ-
ments, requiring the dosimeters to be replaced each day. 
A thin mesh over the dosimeter material has extended the 
dynamic range of polysulphone to allow measurements 
over a longer period.12 Additionally, a neutral density fil-
ter fabricated from exposed black and white photographic 
film has extended the dynamic range to 3 to 6 days in sub-
tropical Australia.126

PHENOTHIAZINE

The UVA (320–400 nm) wavelengths have been reported 
as a potential carcinogen in human skin127 and also 

contribute to premature photoaging.128 Typically, the 
UVA irradiance is higher by a factor of approximately 20 
for clear skies and SZA below 50°, and higher by a fac-
tor of over 60 for SZA exceeding 80°.129 Additionally, UVA 
penetrates deeper into human skin130 and is transmitted 
through untinted window glass.131 Population studies aim-
ing to characterize UVA exposures during normal daily 
activities require a UVA waveband sensitive dosimeter.

A dosimeter based on the chemical phenothiazine that 
reacts to both UVA and UVB wavelengths was developed 
and used for measurements of personal exposures,132 expo-
sures in two photochemotheraphy units,133 and indoor ex-
posures in museums.134 Application of Mylar film (Cadillac 
Plastics, Australia) approximately 0.13 mm thick, which 
has a transmission predominantly in the UVA on top of a 
30 to 40 micron film of phenothiazine,135,136 results in a do-
simeter sensitive to the UVA with a dynamic range of 3–4 h 
at a subtropical latitude. The ΔA of this UVA dosimeter is 
measured at 370 nm, with calibration under the same con-
ditions in which it will be utilized. The phenothiazine do-
simeter does not undergo a dark reaction. Additionally, its 
cosine response is within 10% up to 70°, and its operational 
temperature range extends up to 50°C while maintaining a 
12% error tolerance associated with the dosimeter.136

POLYPHENYLENE OXIDE (PPO)

Initial research described how polyphenylene oxide film 
can be employed in air to evaluate UVR exposures over 
prolonged time intervals,137–139 followed by quantification 
of the dosimeter properties.140 This research reported a dy-
namic range up to 4 days in summer at a subtropical site.

Testing conducted on the characteristics of the PPO 
UVR dosimeters underwater141 indicated that the un-
certainty of PPO film underwater measurements could 
vary from ±15% to an upper limit of ±20%. Further re-
search142–144 detailed a series of underwater calibrations 
in stagnant water, free- flowing water, and sea water 
using PPO dosimeters exposed over a year. The calibra-
tions performed in air were not suitable for underwater 
measurements, and the SZA had a pronounced influence 
on the shape and distribution of underwater calibra-
tion data. Calibrations conducted in one type of water 
at various depths could be applicable to another type of 
water and provided that the different water types have 
similar levels of turbidity and dissolved organic mat-
ter (DOM) content. The PPO dosimeter was applied for 
long- term measurements in three aquatic environments 
(a dam, creek and an ocean simulator).142–144 The data 
enabled calculation of an underwater UVR attenuation 
coefficient (Kd) of sea water in each season. These values 
were comparable to Kd values calculated from calibrated 
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spectrometer data; however, caution is required when 
the PPO dosimeter is deployed in water bodies with high 
turbidity and high DOM levels, as significant deposits 
of inorganic/organic matter on the PPO film may neg-
atively interfere with its structural integrity and post- 
exposure optical properties.

In- air measurements made with the PPO dosimeter 
over an entire year at a subtropical Australian location145 
reported that the in- air PPO dose response is sensi-
tive to variations in SZA and atmospheric ozone levels. 
Additionally, PPO dosimeters have been employed to 
evaluate the UVB exposures to both sides of plant leaves.44 
An inexpensive polyethylene neutral density filter (NDF) 
applied to the top of a PPO dosimeter can extend the dy-
namic range by up to 5 days before reaching saturation.143 
The usefulness and versatility of PPO dosimeters have 
been extended by producing miniaturized dosimeters with 
similar properties compared to larger PPO dosimeters.146 
Miniaturized PPO dosimeters have been used to measure 
ICNIRP73 weighted UVR exposures to teachers over a 5- 
week time interval. Further research147 conducted simul-
taneous calibrations of the PPO dosimeter to the erythema 
and vitamin D3 effective UVR, enabling its use as a dual- 
application dosimeter.

8-METHOXYPSORALEN (8MOP)

Diffey & Davis148 identified 8- methoxypsoralen as a po-
tential UVA dosimeter. Subsequently, a miniaturized 
UVA dosimeter using 8MOP with a 0.13 mm thick Mylar 
sheet to filter out UVB has been fully characterized and 
calibrated to quantify seasonal UVA exposure, with meas-
urement of the ΔA at 305 nm.149

A combined dosimeter badge, consisting of a minia-
turized PPO dosimeter and a miniaturized 8MOP UVA 
dosimeter,150 was worn by volunteers to record simulta-
neously personal UVA, erythemal UVR, and vitamin D3 
effective UVR exposures of indoor workers. The measure-
ments were conducted over a minimum of 1 week during 
each season over a period of 1 year showing that there are 
changes with season in the relative proportions of each 
waveband.150

POLYVINYL CHLORIDE (PVC)

The potential application of unstabilized PVC as a UVR 
dosimeter with sensitivity in the UVR and a linear in-
crease in the infrared absorbance at 1730 cm−1 resulting 
from up to approximately 14 MJ/m2 total solar radiation 
was reported.151,152 A long- term UVR dosimeter with sol-
vent cast PVC has been introduced,153 with its properties 

fully characterized154 employing the UVR induced change 
in the 1064 cm−1 peak intensity. The dosimeter exhibits 
its highest response at 290 nm, declining exponentially 
across the UVB band, independently of temperature and 
exposure dose.155 The dosimeter can measure up to 900 
SED, equivalent to around 3 weeks of exposure in summer 
at subtropical locations.154

The PVC dosimeter was used to assess erythemal UVR 
exposure at specific anatomical sites on rotating upper- 
body manikins over a 12- day period. The exposures closely 
matched those obtained concurrently with three sets of 
PPO dosimeters.154 The PVC dosimeter, calibrated to the 
plant damage action spectra, measured UVR exposures on 
plant canopies for over a month.156 The extended dynamic 
range of the PVC dosimeter is an advantage, making do-
simeter replacement unnecessary for extended exposures 
of up to 3 weeks. Studies of long- term personal exposure 
behavior may be well suited to thin film dosimeters with 
long dynamic ranges such as PVC. This remains an ave-
nue for future research, with the main features of PVC 
and the other four types of thin film dosimeters in this 
review summarized in Table 1 to assist researchers con-
templating their use.

CONCLUSION

Thin film dosimeters provide a means of measuring cu-
mulative UVR exposures at sites that are inaccessible to 
bulkier and heavier radiometers or spectroradiometers. 
Calibrating them in the local environment where they will 
be employed allows for accurate exposure measurements. 
Additionally, the exposure can be assessed relative to am-
bient exposure by comparing the dosimeter's absorbance 
change to that of a dosimeter placed on a horizontal plane 
in full sun. Thin film UVR dosimetry has the advantages 
over electronic dosimeters of low cost and the unobtru-
siveness of the film badges, allowing for high volume of 
measurements over multiple sites across various envi-
ronments and research applications. The disadvantage 
is the lack of time resolution that electronic dosimeters 
provide. They also require access to a spectrophotometer 
for measurement of the absorbances and to a radiometer 
or spectroradiometer for calibration. Nevertheless, they 
provide site measurements of cumulative exposure which 
are required in numerous applications. The research ap-
plications reviewed in this paper were possible due to the 
specific characteristics of chemical film dosimeters.

Polysulphone dosimeters have been extensively used 
across diverse environments. They can be seasonally 
calibrated and employed for use at all latitudes and al-
titudes. Other thin film UVR dosimeters that have been 
employed are polyphenylene oxide, phenothiazine, 
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8- methoxypsoralen, and polyvinyl chloride. These five 
types of dosimeters have been fabricated at the University 
of Southern Queensland, Australia. These respond to var-
ious wavebands and have different dynamic ranges. The 
versatility of these films has yet to be fully realized, given 
the relatively low number of studies conducted using 
them compared to polysulphone. Thin film dosimeters 
with appropriate spectral responses and dynamic ranges 
are versatile tools that can be employed in further research 
investigating cumulative UVR exposure, as well as UVR 
exposures relative to a horizontal plane to multiple ana-
tomical sites during daily activities of population groups. 
Furthermore, they are valuable tools for environmental 
studies involving plants, underwater studies, and further 
examination of the UVR environment.
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