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ABSTRACT Although the number of cloud projects has dramatically increased over the last few years,
ensuring the availability and security of project data, services, and resources is still a crucial and challenging
research issue. Distributed denial of service (DDoS) attacks are the secondmost prevalent cybercrime attacks
after information theft. DDoS TCP flood attacks can exhaust the cloud’s resources, consume most of its
bandwidth, and damage an entire cloud project within a short period of time. The timely detection and
prevention of such attacks in cloud projects are therefore vital, especially for eHealth clouds. In this paper,
we present a new classifier system for detecting and preventing DDoS TCP flood attacks (CS_DDoS) in
public clouds. The proposed CS_DDoS system offers a solution to securing stored records by classifying
the incoming packets and making a decision based on the classification results. During the detection phase,
the CS_DDOS identifies and determines whether a packet is normal or originates from an attacker. During
the prevention phase, packets, which are classified asmalicious, will be denied to access the cloud service and
the source IP will be blacklisted. The performance of the CS_DDoS system is compared using the different
classifiers of the least squares support vector machine (LS-SVM), naïve Bayes, K-nearest, and multilayer
perceptron. The results show that CS_DDoS yields the best performance when the LS-SVM classifier is
adopted. It can detect DDoS TCP flood attacks with about 97% accuracy and with a Kappa coefficient of
0.89 when under attack from a single source, and 94% accuracy with a Kappa coefficient of 0.9 when under
attack from multiple attackers. Finally, the results are discussed in terms of accuracy and time complexity,
and validated using a K-fold cross-validation model.

INDEX TERMS Classification, cloud computing, DDoS attacks, LS-SVM.

I. INTRODUCTION
Distributed denial of service (DDoS) TCP flood attacks are
DoS attacks in which attackers flood a victim machine with
packets in order to exhaust its resources or consume band-
width [1]. As the attack may be distributed over multiple
machines, it will be very hard to differentiate authentic users
from attackers. In fact, a DDoS flood attack is not only a
widespread attack; it is the second most common cybercrime
attack to cause financial losses [2] according to the United
States Federal Bureau of Investigation (FBI).

The use of cloud computing is quickly increasing in many
sectors, and especially in the health sector, as a result of
its vital features, such as availability and on-demand ser-
vices [3]. Most people think of cloud computing as virtual
network which can offer flexible and accessible on-demand
services [4]. However, the author in [5] pointed out that cloud

computing involves much more than this, which has led
researchers to re-consider its security more seriously. In addi-
tion, as mentioned in an electronic cybercrime study pub-
lished by KPMG in collaboration with eCrime Congress in
2009, most of the cloud’s virtual clients are under threat, and
these threats increase as time passes [6].

There are many procedures [7] which can be adopted
to mitigate the DDoS flood attacks, such as classifications
[8], [9], encryption techniques [10]–[12]. As DDoS flood
attacks can be implemented in many forms, the form of these
attacks cannot be foreseen. Therefore, our new proposed
classifier system for the detection and prevention of DDoS
TCP flood attacks (CS_DDoS) is classification based, and
can identify these attacks data regardless of the form in which
they arrive at the cloud system. Classification can be defined
as a common procedure for classifying, distinguishing and
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differentiating multiple objects. Different classifiers, such
as least squares support vector machine (LS-SVM), naïve
Bayes, K-nearest and multilayer perceptron [13], [14] are
used in this study to perform the classification process.

This paper is organized as follows: in Section 2, we review
related work, and Section 3 introduces the simulation plat-
form, with and without DDoS TCP flood attacks. Section 4
presents our proposed CS_DDoS system, and its performance
is evaluated and validated in Section 5. Finally, we conclude
this study and discuss future work in Section 6.

II. RELATED WORK
Many detection and prevention methods for mitigating DDoS
flood attacks have been reported in the last few years [15].

The rank correlation-based detection (RCD) scheme was
proposed by Wei et al. in [16]. The authors of the RCD
claimed that their scheme could distinguish whether the
incoming requests were from genuine users or from attackers.
In [17], the ALPi algorithm was introduced, which decreased
difficulties in packet flows and improved functionality by
extending the concept of packet scoring. The ALPi therefore
raises the detection accuracy percentage and attack recogni-
tion. Another DDoS attack prevention architecture, known as
secure overlay services (SOS), was presented in [18]. The
SOS architecture is a combination of three parts: secure over-
lay tunneling, routing via consistent hashing, and filtering.
The authors claimed that the SOS can successfully decrease
the probability of these attacks using filtering close to the
secure edge and randomness close to the front edge.

Moreover, Wang and Reiter proposed the web refer-
ral architecture for privileged service (WRAPS) [19]. The
WRAPS adopted the structure of a web graph to resist DDoS
flood attacks, and requires authentic users to be authenti-
cated using a referral hyperlink from a trusted site. Another
approach was introduced to detect application DoS attacks on
backend servers called the group testing-based approach [20].
The authors extended the existing group testing approach
by reallocating users’ requests to several servers. Markov
Chain probability theory was adopted by Salah et al. when
proposing an analytical queuing approach which examines
the performance of firewalls under DDoS attacks [21].

In addition, Dou et al. [22] presented a confidence-based
filtering (CBF) scheme for cloud projects. In the CBF, packets
of information from authentic users is gathered during non-
attack periods to extract features, which can generate an infor-
mation profile of these non-attack periods. With this profile,
the CBF scheme will be endorsed using a packet-scoring
calculation during attacks to make a decision on whether to
remove these packets or not. Another approach to detecting
flood attacks, the fast lightweight detection approach, was
presented by Yu et al. [23]. This approach utilized SNMP-
MIB (simple network management protocol-management
information base) statistical data as an alternative to raw
data, as well as a SVM classifier for attack classification.
Lee et al. [24] introduced a practical DDoS detection scheme
based on DDoS architecture. In this scheme, they selected

variables based on particular features that were extracted
from a DDoS architecture. A cloud trace back (CTB) method
was proposed in [25]. The authors of the CTB claimed that
their method could identify the sources of the attacks. They
also proposed a cloud Protector (CP), which made use of a
back-propagation classifier in order to detect such attacks.

Furthermore, a new framework was presented by
Lu et al. in [26]. This framework was able to effectively
identify compromised packets. It analyzed these packets at
the router end using a perimeter-based DDoS prevention
system.Wang et al. introduced a graphics-based DDoS attack
prevention and detection scheme, which was able to work
with the data shift issue [7]. This scheme works by preven-
tion, using network monitoring and a precise response with
an elastic control structure. In [27], an adaptive selective veri-
fication (ASV) system was proposed. The ASV does not rely
on network assumptions, and utilizes bandwidth efficiently.
Another approach was presented based on five features (aver-
age number of packets per flow, percentage of correlative
flow, one-direction generating speed, ports generating speed,
and percentage of abnormal packets) combined with a Bloom
filter [28]. In this approach, only users on the whitelist are
allowed to reach their destinations; this whitelist is generated
to include legitimate users only. However, this approach was
implemented on the switches side (i.e. in hardware), which
makes any future amendments or updates challenging [29].

While many mechanisms have been proposed to detect and
prevent DDoSflood attacks, most of these do not provide high
accuracy and are not efficient or fast detection and prevention
techniques [30]. Furthermore, many of the DDoS attack pro-
tection mechanisms described here face scalability issues due
to the fact that networks are becoming larger and faster; in
addition, industrial deployment needs to be considered [17].

Therefore, cloud computing needs an efficient DDoS mit-
igation approach that can offer fast and accurate detec-
tion while remaining scalable. The proposed CS_DDoS was
designed with all of these factors in mind.

III. DDoS TCP FLOOD ATTACKS
DDoS attacks can be established in two different ways: either
directly and/or indirectly [31], [32]. Direct attacks target a
weakness in the system of the victim machines and damage
the machines directly. On the other hand, indirect attacks
do not target victim machines directly; they prey on other
elements with which the victim machines are associated and
hinder their work [33]. In the following discussion, the TCP
flood attack is used; this is an indirect attack, as it consumes
most of the network’s resources, meaning that they are not
readily available to other users.

A TCP flood attack was carried out using software on a
virtual cloud network; Wireshark Network Analyzer 2.0.0
[34] was used to capture and analyze traffic both before and
during the attack.

A. BEFORE THE ATTACK
The network was simulated as shown in Figure 1.

VOLUME 5, 2017 6037



A. Sahi et al.: Efficient DDoS TCP Flood Attack Detection and Prevention System in a Cloud Environment

FIGURE 1. Test network architecture.

Firstly, using TCP Ping, we sent 50 TCP test probes (pings)
to a server (server machine 10.25.129.5:80). The reply took
1.3 ms on average, as shown below:
Ping statistics for 10.25.129.5:80
50 probes sent.

Approximate trip times in milliseconds:
Minimum = 0.25 ms, Maximum = 26.065 ms,

Average = 1.323 ms

The TCP protocol uses several flags to manage the state of
a connection in the packet header [35]. We focused on two of
these, which are used in establishing TCP connections:

• SYN (Synchronize) which represents the initiation of a
connection; and

• ACK (Acknowledge) which represents data received.

We monitored the traffic of the 50 probes at the server
machine using Wireshark, by capturing the packets that were
associated with the server using the filter ‘‘ip.addr = =

10.25.129.5’’. As the traffic was normal, the server machine
replied to all requested packets according to the TCP proto-
col, as shown in Figure 2 (a and b).

In addition, the I/O graph was stable. All packets were
answered and almost no TCP errors occurred. Note that the
number of requesting packets was approximately less than 10
per second, as shown in Figure 3.

B. DURING THE ATTACK
An attack was launched using a software program which
performed a DDoS TCP flood attack on a particular server.
Once the DDoS TCP flood attack commenced on the victim
machine in the cloud, the arriving packets were much more
numerous than the server could handle. Consequently, the
server could not respond to all the requesting packets from
either normal users or the attackers. Note that 10.25.129.5
was the IP address of the victim server and 10.31.133.235was
the IP address of the attacker. The first request packet from

the attacker was successful, as it was treated like a normal
requesting packet. The subsequent ones were not successful,
as the server was too busy and could not respond. A screen
shot of the packet capture is shown in Figure 4 (a and b).

Finally, we sent 50 TCP test probes within a few seconds
to the victim machine during the attack period to test the
connection. The reply time was 9.6 ms on average, which
differs considerably from the first test as shown below:
Ping statistics for 10.25.129.5:80
50 probes sent.

Approximate trip times in milliseconds:
Minimum = 0.181 ms, Maximum = 152.341 ms,

Average = 9.586 ms

To sum up, the DDoS TCP flood attack can affect the
cloud server’s performance within a short time, slowing down
the response, and can even stop the service completely. TCP
errors will also be increased, as shown in Figure 5. Therefore,
an efficient and effective detection and prevention technique
is required.

IV. THE PROPOSED CS_DDoS SYSTEM
In this section we present the proposed CS_DDoS system,
which can prevent DDoS TCP flood attacks. Firstly, it was
assumed that the IP addresses of the attackers are not spoofed.
Examples of how to prevent IP spoofing can be found in [36].
Our proposed system includes two sub-systems: the detection
sub-system and prevention sub-system, as shown in Figure 6.

A. DETECTION PHASE
During the detection phase, the detection sub-system collects
the incoming packets within a time frame, for example 60 sec-
onds. The collected packets are subjected to a blacklist check
to test whether their sources are blacklisted as attackers of
the cloud system. If the packet source is listed in the attacker
blacklist, the detection system will send the packets directly
to the prevention sub-system without further processing.
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FIGURE 2. Captured packets and TCP flags (normal). (a) Captured packets. (b) TCP flags.

If the packet source is not blacklisted, the incoming packet
will be passed to the classifier to decide whether the packets
are normal (originating from a client) or abnormal (origi-
nating from an attacker). A packet is considered to be an
attacking one if the source requests connections to the same
destination more frequently than an assumed threshold. The
threshold can be manually adjusted by the system adminis-
trator to cater for the varying requirements of a particular
network. If a packet is considered to be normal, the detec-
tion system will send it to its destination (the cloud service
provider). Otherwise, the detection sub-system will send the
packet to the prevention sub-system.

Four different classifiers are used in the detection sub-
system for the classification operation. The classifiers used
are explained and evaluated in Section 5.

B. PREVENTION PHASE
When the packets reach the prevention system, they are con-
sidered to be attacking packets by the detection sub-system.
The prevention sub-system first alerts the system adminis-
trator of the attacks. Then, the prevention sub-system will
add the attacking source address to the attacker blacklist used

FIGURE 3. The I/O graph (no TCP errors).

by the detection sub-system, if it is not already on the list.
Finally, the attacking packet will be dropped. The overall
architecture of the CS_DDoS system is shown in Figure 6.

Algorithm 1 is used to determine whether these packets
are normal or abnormal by counting the number of requests
for a connection from an IP address and checking whether it
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FIGURE 4. Captured packets and TCP flags (abnormal). (a) Captured packets. (b) TCP flags.

FIGURE 5. The I/O graph (with TCP errors).

exceeds a predefined threshold within a certain time frame.
This algorithm is applied to the training data used for each
classifier. As a result, each classifier used will predict the
behavior of the attackers according to Algorithm 1.

Algorithm 1 Pre-Processing
1: Load data
2: For I=1: n
3: P=data (I, 2)
4: P2= (I, 1)
5: For J=1: n
6: N=find (data (J, 1) ==P2) & (data (J, 2) ==P)
7: If N>=K
8: New_data (I, 1) =data (I, 1)
9: New_data (I, 2) =−1
10: Else
11: New_data (I, 1) =data (I, 1)
12: New_data (I, 2) =1
13: End

where:
n is the number of packets
P is the destination IP address
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FIGURE 6. The overall architecture of the proposed CS_DDoS system.

P2 is the source IP address
N is the number of packets from the same source to the

same destination within 60 seconds
K is the threshold for a packet to be considered an attacking

packet
−1 indicates abnormal packets (blacklist array)
1 indicates normal packets
New_data () is a new entry list with tag ‘‘1’’ or ‘‘−1’’
The proposed CS_DDoS system can be implemented in

three possible scenarios. The first scenario is a normal service
request packet. The requested service will be delivered as
usual. The next scenario is when the source IP address is
not blacklisted but the number of service requesting packets
exceeds a predefined threshold within a certain time frame.
The packet in this scenario will be considered a DDoS attack
packet. The source address will be blacklisted and the packet
will be dropped. The last scenario is when the source address
of a packet is blacklisted and the packet is dropped without
any further processing.

The three scenarios are illustrated using Quick Sequence
Diagram Editor 4.2 [37]. The code used is shown

in Table 11. The resulting sequence diagrams are shown in
Figure 7 (a, b and c).

In case of flash crowd scenario, all packets must wait in a
queue to be served sequentially.

The proposed CS_DDoS system can be used in any type
of cloud, such as eHealth clouds, to ensure the security
and availability of health records against DDoS TCP flood
attacks.

V. EXPERIMENTAL RESULTS
A. CLASSIFICATION ALGORITHMS
In this section, we briefly explain the four commonly used
classification algorithms used in our experiments. The clas-
sification algorithms are as follows:

1) LS-SVM
The LS-SVM is a powerful classifier in the field of pattern
recognition for the detection of abnormalities from signals,
images and time series signals. The LS-SVM is an effi-
cient method of classifying two different sets of observations
into their relevant classes. It is capable of handling high
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FIGURE 7. CS_DDoS possible scenarios. (a) First scenario (normal packets). (b) Second scenario (store abnormal packets
in the blacklist). (c) Third scenario (abnormal packets already in the blacklist).

dimensional and non-linear data. In this work, the LS-SVM
is employed to detect illegal activities in a network. The
parameters of the LS-SVM are set during the training session
to obtain a high proportion of detected results [38].

2) Naïve Bayes
Naïve Bayes is a frequently used classifier and has a straight-
forward approach based on the application of Bayes’ the-
orem [39]. It is a simple approach which relies on proba-
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TABLE 1. Classification performance measurements (n=1000 and K=100).

TABLE 2. Classification performance measurements (n=2000 and K=200).

TABLE 3. Classification performance measurements (n=5000 and K=300).

TABLE 4. Classification performance measurements (n=6000 and K=400).

bilistic knowledge to accurately predict test instances. This
algorithm assumes that predictive attributes are conditionally
independent and that there are no hidden attributes which
can affect the prediction process [39]. The naïve Bayes
classifier uses small training sets to provide relatively good
performance, which generally overcomes any overtraining
issues.

3) K-NEAREST
K-nearest is one of the most straightforward learning algo-
rithms. In this algorithm, the similarity function relies on
distance measurements to compute the similarity between
training members [40]. The value of k is adjusted during the
training session to assign each instance during training to the
correct class. The k-nearest classifier is very sensitive to data
size and dimensionality, and this affects the feature space
and homogeneous areas, which represent the distribution of
various classes [41].

4) MULTILAYER PERCEPTRON
The multilayer perceptron is a particular type of neural
network-based classifier [42], [43]. This classifier employs
a multilayer feed-forward neural network with one or more
layers of nodes between the inputs and output layers. These

nodes at different layers are interconnected through weighted
networks. Using different training algorithms, the parameters
(weights) of the networks are optimized. In this classifier, the
data are transferred from input to output. Each feature is used
as an input in the multilayer perceptron, and the outputs are
the class categories. The multilayer perceptron may be linear,
when it is used with a single layer of nodes. It can also be a
nonlinear perceptron, when it is applied using multiple layers
of nodes with several hidden layers [40].

B. PERFORMANCE EVALUATION AND VALIDATION
In this section, the performance of the CS_DDoS system
is evaluated and validated using classification performance
measurements and K-fold cross-validation.

1) PERFORMANCE EVALUATION
In this section, the performance of the CS_DDoS method is
evaluated using the four classifiers of the LS-SVM, naïve
Bayes, k-nearest, and multilayer perceptron. Various training
data sizes (window sizes) and thresholds are used in the
experiments. Algorithm 1 is applied to the training data for
all the classifiers.

The CS_DDoS system was evaluated in terms of accu-
racy, sensitivity (detection rate) and specificity (false alarm
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TABLE 5. Classification performance average.

TABLE 6. Classification performance measurements (n=6000 and K=400).

TABLE 7. Classification performance measurements (n=6000 and K=400).

TABLE 8. Classification performance measurements (n=6000 and K=400).

TABLE 9. Classification performance measurements (n=6000 and K=400).

TABLE 10. Classification performance average.

rate), as well as the descriptive statistic Kappa coefficient.
Kappa coefficients are procedures used to connect between
categorical variables, and are frequently used as consistency
or legitimacy coefficients [44].

The accuracy represents the rate of correctly identi-
fied results over the entire data used by the CS_DDoS.
or true negatives (TN), while incorrectly identified results

are false positives (FP) and false negatives (FN). The
accuracy of the CS_DDoS system is measured by
Equation (1).

• True positives (TP): correctly identified abnormal pack-
ets in this research.

• False positives (FP): incorrectly identified abnormal
packets.
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FIGURE 8. Detection accuracy for multiple attacks.

FIGURE 9. Complexity times.

• True negatives (TN): correctly identified normal
packets.

• False negatives (FN): incorrectly identified normal
packets.

CS_DDoSAccuracy =
TP+ TN

TP+ FP+ TN + FN
× 100%

(1)

The sensitivity represents the rate of correctly identified
abnormal packets over the entire range of positive results
obtained by the CS_DDoS. The sensitivity of the CS_DDoS
system is measured by Equation (2).

CS_DDoSSensitivity =
TP

TP+ FN
× 100% (2)

The specificity represents the rate of incorrectly identified
abnormal packets over the entire range of negative results
produced by the CS_DDoS.

The specificity of the CS_DDoS system is measured by
Equation (3).

CS_DDoSSpecificity =
FP

FP+ TN
× 100% (3)

The proposed CS_DDoS system is evaluated under both
single source and multiple source attack environments, as
described below.

FIGURE 10. Six-fold cross-validation diagram.

a: EVALUATION UNDER SINGLE SOURCE ATTACK
Four test data sizes (n) of 1000, 2000, 5000 and 6000 packets
were randomly selected, and four thresholds (K) of 100, 200,
300 and 400 requests. Algorithm 1 was applied to the data
according to the window size, n, and was tested according to
the threshold K. We have two features fed to each classifier;
these two features are the source IP address and the destina-
tion IP address. Each classifier was used to classify the data
using the four windows and four thresholds. The results are
shown in Tables 1-5:

Tables 1 to 4 show the classification performances of
the proposed CS_DDoS system with different data sizes
and thresholds. The performance measurements are accuracy
(correctly detected data over the entire dataset), sensitivity
(correctly detected attacks, detection rate), specificity (incor-
rectly detected attacks, false alarm rate), and Kappa coeffi-
cient (stability rate).

According to Tables 1 to 4, the results of each classifier
were not significantly affected by the window sizes and
thresholds, since there are only small differences between the
tables. Tables 1 to 4 are summarized in Table 5.

From Table 5, it can be seen that the LS-SVM classifier
has the highest average percentage accuracy (97%) and the
highest Kappa coefficient (0.89). Conversely, the k-nearest
classifier achieved the lowest accuracy percentage of about
81%, and the multilayer perceptron classifier had the low-
est Kappa coefficient 0.69. Overall, the proposed CS_DDoS
system ismore effective and stable in resisting a single-source
attack when adopting the LS-SVM classifier regardless of the
window size and threshold.

b: EVALUATION UNDER MULTIPLE-SOURCE ATTACKS
To evaluate the performance under attacks from multiple
sources, the same four window sizes were used (1000, 2000,
5000 and 6000) and the same four thresholds (100, 200,
300 and 400). Algorithm 1 was also used. The results are
shown in Tables 6–10: Tables 6–9 show the results of the
classification accuracy of the proposed CS_DDoS system
when under multiple DDoS attacks. Tables 6–9 also show that
the results of each classifier were not significantly affected
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TABLE 11. Sequence diagram generation codes implemented using quick sequence diagram editor 4.2.

by the window size and the threshold. LS-SVMwas again the
best performing classifier with percentage accuracy of around
94%, and a Kappa coefficient of about 0.9. Tables 6-9 are
summarized in Table 10.

Overall, the proposed CS_DDoS system is also
effective and stable in resisting both multiple-source and
single-source attacks when using the LS-SVM classifier,
regardless of the window size and threshold. Therefore,
the proposed CS_DDoS system can be implemented in a
large-scale cloud project, such as a health cloud, as well as
in smaller projects such as a private cloud for a medium-
sized company. CS_DDoS can prevent DDoS attacks with
a 94% accuracy and is highly stable (Kappa coefficient 0.9).
CS_DDoS outperforms previous approaches, since either the
percentage accuracy of previous approaches is lower than
those achieved by CS_DDoS, for example 91% in [45], or
are without Kappa coefficient stability measurements for
example in [46].

In addition, the false alarm rate (specificity) of the bench-
mark algorithms are 69.57% on average [47]. Thus, we can
claim that our proposed CS_DDoS system is more effective.

To shed more light on the performance evaluation of the
proposed CS_DDoS system, the simulation was repeated
with various numbers of attackers (source IP) under similar
conditions and the performance measurements were calcu-
lated.

Figure 8 shows the performance of CS_DDoS with an
increasing number of attackers. There are slight fluctuations

in the performance measurements of all four classifiers,
although LS-SVM was still the best performer of the four.

In addition, the process complexity times of the four clas-
sification algorithms is shown in Figure 9. While LS-SVM is
only the second least time-consuming, the fastest classifier, k-
nearest, has lower performance measurements and a smaller
Kappa coefficient compared to LS-SVM. It can therefore
be considered that the LS-SVM is the most efficient and
effective classifier for use in the CS_DDoS system to resist
DDoS TCP flood attacks.

2) K-FOLD CROSS-VALIDATION
K-fold cross-validation is a validation model for measuring
how the outcomes of a numerical examination will simplify
to an independent dataset. Generally, it is utilized to validate
the estimation of performance accuracy in practice for a
predictive model [48-51].

K-fold cross-validation was used to carry out a perfor-
mance comparison of the four predictivemodeling algorithms
used in CS_DDoS: LS-SVM, naïve Bayes, k-nearest, and
multilayer perceptron. These four algorithms were compared
in terms of their prediction results.

The dataset was divided into six equal-sized chunks, k=6.
As a validation for model testing, one of the six chunks
was retained, and the remainder (five chunks) were used as
training data. Then, the process of the six-cross model was
repeated six times, so that each of the six chunks were used
as validation data for each model. The results are shown in
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Figure 10. We can see that the values of all folds are almost
the same, which means that each fold has approximately the
same rate for each of the four classification algorithms. Thus,
we can claim that the classification results are stable and
accurate, since each algorithm gives almost the same results
for each fold.

VI. CONCLUSION
The use of cloud computing in many sectors is becoming
widespread, as this helps to improve the system in many
respects. However, this cloud project is vulnerable to certain
types of attacks, such as DDoS TCP flood attacks. There-
fore, we propose a new approach called CS_DDoS for the
detection and prevention of DDoS TCP flood attacks. The
system is based on classification to ensure the security and
availability of stored data, especially important for eHealth
records for emergency cases. In this approach, the incoming
packets are classified to determine the behavior of the source
within a time frame, in order to discover whether the sources
are associated with a genuine client or an attacker. The results
show that using LS-SVM the CS_DDoS system can identify
the attacks accurately. The system has an accuracy of about
97 percent with a Kappa coefficient of about 0.89 when
under single attack; it is 94 percent accurate with a Kappa
coefficient of about 0.9 when under multiple attacks. The
performance is validated usingK-fold validation and is shown
to be stable and accurate. Thus, the proposed approach can
efficiently improve the security of records, reduce bandwidth
consumption and mitigate the exhaustion of resources. In the
future, we aim to extend CS_DDoS to overcome the problem
of DDoS using spoofed IP addresses as well as to improve
the proposed work to identify the attackers even when they
satisfy the threshold value.
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