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Abstract: Many important engineering problems have multiple-scalat®ns.
Thermal conductivity of composite materials, flow in porenedia, and turbulent
transport in high Reynolds number flows are examples of yps.t Direct nu-
merical simulations for these problems typically requixer&mely large amounts
of CPU time and computer memory, which may be too expensivienpossible
on the present supercomputers. In this paper, we develoghadnder computa-
tional method, based on multiscale basis function appreachintegrated radial-
basis-function (IRBF) approximant, for the solution of tiedale elliptic problems
with reduced computational cost. Unlike other methods dhasemultiscale basis
function approach, sets of basis and correction functi@ne are obtained through
C?-continuous IRBF element formulations. High accuracy affidiency of this
method are demonstrated by several one- and two-dimeh&raaples.

Keywords: integrated radial basis functions, multiscale elliptiolgems, Carte-
sian grid, control volume method, multiscale method.

1 Introduction

In composite materials, the presence of particles/fibrélsa@mesin gives rise to the
multiscale fluctuations in the thermal or electrical corttity. In porous media,
formation properties, e.g. permeability, have a very higlgrde of spatial vari-
ability. These effects are typically captured at scales &na too fine for direct
numerical simulation. To enable the solution of these mls, a number of ad-
vanced numerical methods have been developed. Exampladértiose based on
the homogenisation theory (e.g. Dykaar and Kitanidis (3p9#%scaling methods
(e.g. McCarthy (1995)) and multiscale methods (e.g. Hou\&nd(1997)). The
homogenisation-theory-based methods have been sudgesgiplied for the pre-
diction of effective properties and statistical corralatlengths for multicomponent
random media. However, restrictive assumptions on theamedch as scale sepa-
ration and periodicity, limit their range of applicationufthermore, when dealing
with problems having many separate scales, they becomeexppnsive because
their computational cost increases exponentially withribenber of scales. For
upscaling methods, their design principle is based on simpysical and/or math-
ematical motivations. A heterogeneous medium is replaged homogeneous
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medium characterised by equivalent properties, and ceaede equations are pre-
scribed in explicit form. Although upscaling techniques affective, most of their
applications have been reported for the case of periodictstres. As opposed to
upscaling, multiscale methods consider the full problerthwhe original resolu-
tion. The coarse scale equations are formed and solved iuaif\erwhere one
constructs the basis functions from the leading order h@megus elliptic equa-
tion in coarse scale elements. The idea of using the nompoiial multiscale
approximation space rather than the standard piecewigaguial space was first
introduced by Babuska, Caloz, and Osborn (1994) for onesdgional problems
and by Hou and Wu (1997); Hou, Wu, and Cai (1999) for two-disi@mal el-
liptic problems. These methods have the ability to capteaueately the effects
of fine scale variations without the need for using global fimeshes. Multiscale
methods can be categorised into multiscale finite-elemethods (MFEM) (e.qg.
Allaire and Brizzi (2005); Hou (2005)), mixed MFEM (e.g. Awms, Kippe, and
Lie (2005); Arbogast (2002)) and multiscale finite-volumethods (MFVM) (e.g.
Chu, Efendiev, Ginting, and Hou (2008); Jenny, Lee, and Tegti¢2003)). Typ-
ically, there are two different meshes used: a fine mesh fopeing locally the
basis function space, and a coarse mesh for computing gldhal solution of an
elliptic partial differential equation (PDE). The multéde bases are independent
of each other and their constructions can thus be conduntedrallel. In solv-
ing the elliptic PDE, one may only need to employ a mesh thddys computing
resources can efficiently and effectively handle. For teales periodic structures,
Hou, Wu, and Cai (1999) have proved that the MFEM indeed agessto the cor-
rect solution independent of the small scale in the homagéion limit. Multiscale
techniques require the solutions of elliptic PDEs which agkieved by means of
discretisation schemes.

Radial-basis-function networks (RBFNs) are known as a pfulvool for the ap-
proximation of scattered data. Their application to theusoh of PDES has re-
ceived a great deal of attention over the last 20 years (eagstfauer (2007) and
references therein). It is easy to implement RBF collocatitethods and such
methods can give a high order convergence solution. RBEebagproximants can
be constructed through a conventional differentiatiorcpss, e.g. Kansa (1990), or
an integration process (IRBF), e.g. Mai-Duy and Tran-C&@(, 2003). The lat-
ter (a smoothing operator) has several advantages oveotiner, including (i) to
avoid the reduction in convergence rate caused by diffizxt@ort and (i) to improve
the numerical stability of a discrete solution. A numberRBF approaches, based
on local approximations (Mai-Duy and Tran-Cong, 2009), domtecompositions
(Mai-Duy and Tran-Cong, 2008) and preconditioning schefis-Duy and Tran-
Cong, 2010), have been presented towards the solutiorgefkarale problems. Re-
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cently, a local high order approximant based on 2-node IRBFRents (a smallest
IRBF set ever used for constructing approximants) has begpoped by An-\o,
Mai-Duy, and Tran-Cong (2010, 2011a). It was shown that dREB¥F elements
(IRBFEs) lead to &£2-continuous solution rather than the usG&continuous so-
lution. IRBFEs have been successfully incorporated inéostlibregion-collocation
(An-Vo, Mai-Duy, and Tran-Cong, 2011b) and point-collaoat(An-Vo, Mai-Duy,
and Tran-Cong, 2011b; An-Vo, Mai-Duy, Tran, and Tran-CoR@13) formula-
tion for simulating highly nonlinear flows accurately anéeefively. We also use
IRBFEs to model strain localisation in (An-Vo, Mai-Duy, Traand Tran-Cong,
2012).

This paper is concerned with the incorporation of IRBFESs sultoregion colloca-

tion (i.e. control-volume (CV) formulation) into the nomignomial approximation

space approach for solving one- and two-dimensional nealéselliptic problems.

Unlike other multiscale CV methods in the literature, sdtbasis and correction
functions in the present RBF-based multiscale CV methodohtained through

highly accurateC?-continuous IRBFE-CV formulations. As a result, not onlg th
field variable but also its first derivatives are reconstdatlirectly with high ac-

curacy. This is an important issue since the first derivata@ntain information of

great practical interest, such as the stress distributimhleat flux in composite
materials or the flow velocity field in porous media.

The remainder of the paper is organised as follows. SectuefiBes the problem.
Section 3 and 4 briefly review the multiscale finite elemert famite volume meth-
ods, respectively, for the problem. The proposed methodssribed in Section 5
and numerical results are discussed in Section 6. Sectiondudes the paper.

2 Problem definition
We consider the following multiscale elliptic problem
~0-(AOu)=f in Q, 1)

with appropriate boundary conditionk.is a complex multiscale coefficient tensor;
f a given function. Assume that the finest scald iis represented bg.

3 Multiscale finite-element methods (MFEM)

Conventional discretisation techniques using piecewidgnomial approximation
spaces can be applied to solve (1). However, it would reghigemesh sizéx be
much smaller than the finest scale, hex €. In contrast, the multiscale computa-
tional framework which was firstly proposed by Hou and Wu @®@%ou, Wu, and
Cai (1999) uses a coarse grid of size € and basis functions which aim to adapt to
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the small-scale features of the oscillatory coefficiensted ). The formulation of
Hou and Wu (1997); Hou, Wu, and Cai (1999), namely the mualtestinite element
method (MFEM), is based on a finite element framework whetbk tee local and
global problems are solved by a linear finite element meth&dM). The MFEM
is highly efficient and capable of capturing the large scalet®n without resolv-
ing all the small scale details. For the case of two-scalegkr structures, it has
been proved in Hou, Wu, and Cai (1999) that the MFEM indeed@&ges to the
correct solution independent of the small scale in the ha@nisation limit. How-
ever, for general cases e.g. non-periodic and random-sudiéa, the convergence
of MFEM is not always guaranteed. In addition, there is anregap between the
MFEM solution and a corresponding fine scale referenceisalufThis error gap
typically comes from two sources: (i) reduced problem baupdonditions for
solving basis functions which is empirical even though aereampling technique
has been proposed (Hou and Wu, 1997); and (ii) local homagenelliptic prob-
lems for basis functions. Due to the latter the basis funstio not involve effects
of the right hand side field. The right hand side, in a manner similar to that in
the MSFV method (discussed next), is only considered in tbleayj coarse mesh
system.

4 Multiscale finite volume (MSFV) method

Based on the multiscale basis function approach (Hou, Wd,Gad, 1999; Hou
and Wu, 1997), Jenny, Lee, and Tchelepi (2003) and Chu, Efen@inting, and
Hou (2008) proposed the MSFV method for elliptic problemsubsurface flow
simulation. Equation (1) governs the pressure figltb

—0-(AOp)=f in Q, )

with the boundary condition8lp-n = q and p(x) = g on dQ; and dQ,, respec-
tively. Note thatdQ = dQ1 U dQ; is the whole boundary of the domafnd and
n is the outward unit vector normal #@Q. The mobility tensod (permeability,
K, divided by the fluid viscosityu) is positive definite and the right-hand sifle
g, andg are specified fields. The permeability heterogeneity is aidan factor
in dictating the flow behavior in natural porous formatiofi$ie heterogeneity of
K is usually represented as a complex multiscale functiompats. Resolving the
spatial correlation structures and capturing the vaitgbdf permeability requires
highly detailed description.

The MSFV method aims to efficiently compute the approximatat®n of prob-

lem (2) for highly heterogeneous coefficienand source terni. The method can
be explained as a cell-centered finite-volume method (Jdresy, and Tchelepi,
2003) or a vertex-centered finite-volume method (Chu, E&ndsinting, and
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Hou, 2008). We present the latter here. A Cartesian gritl afN is employed
to represent the problem domatn (solid lines in Fig. 1), from which (I =
(N —2) x (N — 2)) non-overlapping control volumeRy associated with interior
grid pointsxk (k € [1,1]) are formed. This set of control volumes constitutes a grid
which is referred to as the coarse grid (dashed black lin€sgn1). In addition,
let Q be a collection of) cellsQ' (I € [1,J],J = (N—1) x (N — 1)) defined by the
original N x N Cartesian grid (solid lines in Fig. 1). This setbtells is referred
to as the dual coarse grid. Note that these two grids can bé caarser than the
underlying fine grid (dashed green lines in Fig. 1 whereirhahal cellQ' is dis-
cretised by a local fine grid af x n) on which the mobility field is represented. On
each dual cel)', we seek the approximate soluti@rof p in the form

4
dwﬁzzd¢ (3)

wherepl and¢ are the pressure value at and the basis function associétethe
nodex, respectively, of the dual coarse cell.

Unlike conventional discretisation methods, these basistions{¢ };* , are gen-
erated from solving the following leading order homogerseelliptic equations on
the dual coarse cefd',

0-(AO¢)=0 in Q". (4)

Boundary conditions for (4) are derived from the requiretrthat ¢ (x'j) = §j
(i,j € [1,4]) and (4) be well-posed problems. Jenny, Lee, and Tchel€@3)2
employed the proposition in (Hou, Wu, and Cai, 1999) by smvieduced local
one-dimensional problems to specify the boundary conuftior (4). The elliptic
problems (4) iQ" with such boundary conditions can be solved by any apprpria
numerical method. In order to obtain a solution that depdindarly on the nodal
pressuresp} as in (3), we solve four elliptic problems, one for each ngutaksure.

To derive a linear system for the nodal pressure vapyese substitute expressions
(3) for pin the four dual cells associated withinto equation (2) and integrate over
Q. which leads to

4 9 |
—/ka-(mﬁ)dcz:—/gkm-(AD(IZiqupi))dQ: ﬁkfdQ, (5)

where the indicebandi refer to local dual cells and local nodal points, respebtjve
associated withxx andxx = X; as shown in Fig. 2. Note that in the summation
52 . ¢ pi the index of the basis functiongf only takes on the four values relevant
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to Q' (i.e. qq' = 0 otherwise). Applying the Gauss theorem to equation (5¢, on
obtains

ulofggen) g - 1

(6)

whereny is the outward unit vector normal #Q,. Equations (6) at a nodal point
Xk (k € [1,1]) can be written in matrix form as

Aipi = bx (7)
for the nodal pressure valugg with
i |
A=y [ (-A0d) mr ®)
and
b= [ fdQ. 9)
o))

We can reconstruct the fine scale pressplren each dual coarse ced' with Pk
and the approximation (3). Implementing the reconstructio the whole problem
domainQ one obtains the fine scale presspravhich is an approximation of the
pressure fielg.

Although the MSFV approach strongly resembles the mulésiaite element
method by Hou, Wu, and Cai (1999), i.e. the construction efitasis functions is
almost identical, the MSFV is a finite-volume method and leetmnservative. In
some applications such as single and multiphase flows thrpogous media one
is also interested in accurately representing the smaleseelocity field. Chen
and Hou (2002) provide clear evidences that a locally caasige fine scale ve-
locity field is a necessary requirement for accurate mogdaedirfluid transport. To
construct the fine scale flow field, a straightforward way widug to use the basis
functions in (3), but then the reconstructed fine scale vigidield is in general dis-
continuous at the interfaces of the dual cells. Therefagel errors can occur in
the divergence field, and local mass balance is violatechyJére, and Tchelepi
(2003) describe how to reconstruct a conservative fine seddeity field through
the obtained pressure fiefid The reader is referred to this work for more details.

The efficiency of the MSFV method for large scale problems esifrom the fact
that fine scale details are captured through solving loadlpms (4) on small dual
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cells for basis functions. This step is a preprocessing atehas to be done once
only. Furthermore, the construction of the fine scale basistfons is independent
from cell to cell and therefore perfectly suited for paratiemputation.

The MSFV method was firstly used for solving single-phase flolhvomogeneous
and heterogenous permeability fields in (Jenny, Lee, an@l&ph 2003). Jenny,
Lee, and Tchelepi (2004) and Jenny, Lee, and Tchelepi (20606hded the method
to time dependent problems in incompressible two-phasesflehere the explicit
and implicit time integrations were presented respegtivélunati and Jenny re-
laxed the incompressible constraint in (Lunati and Jen@62a) and compressible
multiphase flow models were solved. It is important to notg tintil this stage of
development the MSFV method basically was not designedite stliptic prob-
lems with complex source terms and not appropriate to a¢cmurgravity and
capillary pressure effects. The reason is that the basidifurs and their linear
combinations are solutions of local homogenous elliptigbfgms (4). The right
hand side of the governing equation (2) is only taken int@antin the coarse grid
linear system (7). This led to the idea of introducing caicecfunctions in (Lunati
and Jenny, 2006b, 2008). Unlike basis functi«#‘n,scorrection functionsp'C are the
solutions of local elliptic problems on the dual cells wittetright hand sidd, i.e.

O-(AOp,) =f in Q. (10)

At the grid nodesx, which belong toQ', we imposep.(xx) = 0. The boundary
conditions of (10) on the edge segments of the dual cell casbtsned in a man-
ner similar to those in (4), i.e. by solving reduced local-divaensional problems.
It has been shown for a wide range of challenging test casashbse reduced
problem boundary conditions provide a good localisaticsuagption. There exist
scenarios, however, which demonstrate some limitatiorieesfe boundary condi-
tions. Specifically, the MSFV solution with correction fiionis and global fine
scale reference solutignx (ps is an approximation op on the global fine grid) are
identical only if the basis and correction functions hapfecapture the exact fine
scale pressure solution on the interfaces of the dual coalls, i.e.

4 ~
pr = )3 P +p on 9Q'. (11)
1=

It is desirable to approach boundary conditions for lockbtd problems via (11)
instead of the reduced problem boundary conditions. HggbaBonfigli, Hesse,
and Jenny (2008) made it possible through an iterative fnariebased on a two-
grid algorithm. At a stem with an initial pressure fiel@™, they perform several
smoothing steps on the global fine grid to obtain a temporafgrence solution
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ﬁé”). This smoothed pressure field yields the boundary valuesrméction func-

tions on each dual cell through (11) wiﬂ’; replaced b)@é”), i.e.

4 ~
p= R -3 Aid onag (12)
=

where the boundary values of the basis functighen the dual cells are still ob-
tained from the reduced problem boundary conditions. Thentary conditions
(12) serve to solve the local problems (10) on the dual ceflghe correction func-
tions at stem. Then the nodal pressurgg are obtained through the solution of a
coarse grid system (Hajibeygi, Bonfigli, Hesse, and Jen@98Rand a new pres-
sure fieldp(™Y is constructed via

4 ~
P =3 e e in Q. (13)
i=

Again, we smoottp(™1 to yield a new smoothed fieIﬁé””) and repeat the it-
eration until convergence. It was shown by a series of exesnjpl (Hajibeyqi,
Bonfigli, Hesse, and Jenny, 2008) that this iterative MSASFV) method con-
verges to the fine scale reference solugmn

The IMSFV method relatively maintains the efficiency of MSR\éthod and has
the possibility to approach the accuracy of corresponding $icale solver. This
method has been successfully applied to incompressibligb@yagi, Bonfigli, Hesse,
and Jenny, 2008) and compressible (Hajibeygi and Jenny)2a@aQltiphase flow
in porous media. Recently, it is used adaptively (Hajibeymil Jenny, 2011) and
extended to simulate multiphase flow in fractured porousian@dajibeygi, Kar-
vounis, and Jenny, 2011).

5 Proposed RBF-based multiscale control-volume method

In this work we are interested in a one-parametgf@rm of the multiscale elliptic
problem (1), i.e.

—0- (@ (x)0u(x)) = f(x) in Q (14)

with the boundary conditionSu-n =bandu(x) =gondQ; anddQy, respectively.
Note thatdQ = dQ1 U JdQ, andn is the outward unit vector normal @Q. af is
the coefficient tensor which is positive-definite with uppad lower bounds and
involving a small scale, and f,b andg are specified fields. This elliptic problem
usually arises in modeling composite materials and poraediarflows. In the case
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of heat conduction in composite materialsanda represent the temperature and
thermal conductivity, respectively. In the case of flows arqus mediay is the
pressure and is the mobility field.

For the reasons mentioned above, the MFEM is an efficienteddth capture the
large scale solution but cannot produce the fine scale refersolution. In ad-
dition, the method used in MFEM to determine the basis fonstiand solve the
global coarse mesh problem is a linear finite element fortiula Note that there
is an attempt to use a high-order method, e.g. the Chebygeairal method, to
determine the basis functions in Hou and Wu (1997); Hou, Wid, @ai (1999).

They found that the accuracy of the final results is relagiviebensitive to the
accuracy of the basis functions. On the other hand, as tescebove, though
possessing conservative property the MSFV method straeglymble the MFEM
and hence also cannot produce the fine scale referenceosoliri contrast to the
MFEM and the MSFV method, the IMSFV method (Hajibeygi, Bolifiglesse,

and Jenny, 2008) can produce the reference solution efficiddowever, a low

order smoother has been used which results in a low-orderawcrelative to the
exact solution. Moreover, like the MSFV method the iIMSFV hoet requires a
further reconstruction step to obtain a continuous veydi@d for the solution of

transport equations. Itis pointed out in (Chen and Hou, 26t this is a compul-
sory step to accurately solve the flow-transport-relatquiegtions, e.g. the single
and multiphase flows through porous media.

It is desirable to develop a multiscale computational framé which can pro-
duce the fine scale reference solution of elliptic probled) (4ith high efficiency
and accuracy. In the following, we propose a high-order enraive multiscale
computational framework based on 2-node IRBFESs for solyid. Unlike other
multiscale computational frameworks, the proposed metlamdproduce fine scale
reference solutions efficiently with high accuracy. Funthere, iterative solutions
which converge t&€2-continuous reference solutions are obtained in 2D proslem
As a result, intrinsically continuous velocity fields areaganteed automatically in
flow-transport-related applications without the need foe@nstruction step. Be-
cause of fundamental differences, the proposed methodf@ant 2D problems is
presented independently, following a brief review of the4mode integrated-RBF
elements in our discretisation scheme based on Cartesas gr

5.1 Two-nodeintegrated-RBF elements (IRBFES)

Assume that a Cartesian grid is used to discretise a red@ngomainQ. As a

result, a set of nodal points includes interior grid nodes lesundary nodes which
are defined as the intersection of the grid lines and the kaiexd Over straight-
line segments between two adjacent nodal points, 1D-IRBFs (Mai-Duy and
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Tanner (2007)) are utilised to represent the variation efftbld variable and its
derivatives, forming 2-node IRBFESs. It can be seen thakethee two types of el-
ements, namely interior and semi-interior elements. Aeriat element is formed
using two adjacent interior nodes while a semi-interionedat is generated by an
interior node and a boundary node (Fig. 3).

5.1.1 Interior elements

1D-IRBF expressions for interior elements are of similanfs. Consider an inte-
rior elementy) € [n1,n32], and its two nodes are locally named as 1 and 2 ¢(qt)
be a function andp, d@1/dn, @ anddg/dn be the values ofp anddg/dn at
the two nodes, respectively (Fig. 4(a)). The 2-node IRBREEB®E approximates
the second-order derivative gfn) using two multiquadric (MQ) functions whose
centres are located g andn;

92
32 () =W/ (1 )2+ @ vy (0 =)+ = wal? () + wal? (),

(15)

whereli(z)(n) conveniently denotes the M@y, and g are the associated weight
and MQ-width at node(i € {1,2}). We simply takes; = Bh, whereh is a grid size
andp is a factor.

First-order derivative of and the functionp are approximated by integrating (15)
with respect to

0
a—‘,fm) —wil V() +wal Y (n) +Cy, (16)
o(n) = w1l (n) +waly? () +Cin +Cy, (17)

whereli(l)(r]) = fli(z)(n)dn, Ii(o)(r]) = fli(l)(n)dn, andC; andC; are the con-
stants of integration. By collocating (17) and (16patandn, the relation between
the physical space and the RBF coefficient space is obtained

0} 19 1) m 1 W

e 2m) 1Y) nz 1| | we 8
a || Py 1 0| C | 4o
ggz %1)(01) %l)(nl) s

an L7 (n2) 1,7(n2) 1 0 QZ—/

X W

) 7

where is the nodal-value vector# the conversion matrix, and the coefficient
vector. It is noted that not only the nodal valuesgbut also ofd@/dn are incor-
porated into the conversion system and this imposition iedo an exact manner
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owing to the presence of integration constants. Solving yie3ds
Ww=.7"1o. (19)
Substitution of (19) into (17), (16) and (15) leads to
o(m) = 17 ()17 (n).n.1] 72, (20)
7} r PPN
5o m =115 m).1.0] 7o, (21)
0? r 1~
sz (m = 1717 0).0.0] 7 (22)
They can be rewritten in the form
17} 17}
D) = G(M) -+ 212 93() 1+ Bal) 5 (23)
o9, 0¢i(n)  0¢2(n)  9¢3(n)d@  I¢a(n) 0@
0’9 0°¢1(n) , 9%¢a(n) , 9%¢3(n) 0@  0°¢a(n) 9

Where{dJi(n)}f‘:l is the set of basis functions in the physical space. Thesesxp
sions allow one to compute the values@fdp/dn, andd?@/dn? at any pointn

in [n1,n2] in terms of four nodal unknowns, i.e. the values of the fieldakde and
its first-order derivatives at the two extremes (also grimh{®) of the element.

For convenience, in the casemf= x, we denote

vi = % (%), 27)
(= % (X2) (28)
and in the case af =,

J = (Zz—le (Y1), (30)
o8 o

where i€ {1,2,34}.
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5.1.2 Semi-interior elements

As mentioned earlier, a semi-interior element is defineddaytodes: an interior
node and a boundary node. The subscripts 1 and 2 are nowedplath b (for a
boundary node) angd (for an interior grid node), respectively (Fig. 4(b)). Assel
that the value ofp is given atn,. The conversion system can be formed as

% Iy (M) 167 (o) Mo 1) [ 7

G| =| 1,0y 1g'ng) ng 1 || & | (32)
9% (1) (1) L

an lpb'(ng) lg”'(ng) 1 O C
which leads to

oy

o(n) = ¢1(N) @+ d2(N) @y + ¢3(n)%, (33)
Jdo . 9d¢i(n) d¢2(n) d¢3(n) 0gy

oM =" Bt 5 BT 5" G (34)
% 0%p1(n) | 0%pa(n) | 9%p3(n) dgy
a—nz(n)— an? B+ an? @+ anZz an’ (35)

It can be seen that the conversion matrix in (32) is undegrdehed and its in-
verse can be obtained using the SVD technique (pseudosiovgr Owing to the
facts that point collocation is used and the RBF conversi@trimis not over-
determined, the boundary conditigp is imposed in an exact manner in the sense
that the error is due to the numerical inversion only andgl@no intrinsic approx-
imation errors such as those associated with “unconsttaineundary conditions
imposed by certain finite element methods (Burnett, 198@). Neumann bound-
ary conditions such as given surface traction or boundaggqure, other types of
semi-interior elements have been proposed in (An-Vo, May;and Tran-Cong,
2011a) to which the reader is referred for details.

5.2 Proposed method for 1D problems
In a 1D domain, problem (14) reduces to
d /[ _¢,.dux)\
"o <a (X)W> = f(x), xe Q, (36)

wherea®(x) is a single variable function involving a small scale partene. The
problem domain is represented using a sdt ofodal points, called a global coarse
scale grid. This grid is used to obtain the coarse scaleisnlof problem (36). On
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each interval or coarse cdll', Q' = [x_1,%] with i € [2,N] andl € [1,N —1], an
approximation to the field variableis sought in the form

u'(x) = @y (})ui—1 + @ (Ui + Ue(X), (37)

wherex e Q', ui_1 = u(x_1), U = u(x), @_,(x) and¢ (x) are the basis functions
associated with the nodas 1 andx; respectively on the coarse céll, andul(x)
is the correction function associated with the coarse@ell

We employ subregion collocation to discretise (36). Eaatexpwith i € [2,N — 1]
is surrounded by a control volum@;, Q; = [%_1/2,X1/2] as shown in Fig. 5.
Integrating (36) over a control volunt;, one has

du du Xi+1/2
a (Xi+l/2)&(xi+l/2) - ag(xifl/z)&(xifl/Z) + fdx=0. (38)
Xi—1/2

Taking (37) into account, one can express first derivatiug88) in terms of nodal
values ofu. Unlike traditional discretisation methods, the basiscfions ¢f ()
andgq' (x) on a coarse celd! are not analytic functions (e.g. not polynomials), but
local numerical solutions to the following differentialegion

d [ .dg\ _
a((a &>_o (39)

with ke {i—1,i} andx e Q. Boundary conditions for (39) are specified using the
condition g (x;) = &; with j € {i —1,i}. Likewise, the correction functio,(x)
is a numerical solution to the following differential ecoat

d [ _cdub)
~dx <a &) =1 (40)

with homogeneous boundary conditianﬁxj) =0, je{i—1,i}. Unlike (39) the
right hand sidef of the governing equation (36) is involved in (40). Equation
(39) needs to be solved twice while equation (40) needs tmled once for the
determination of the two basis functions and the corredtioation respectively on
each coarse cell. A coarse c@ll is discretised by a set afpoints, called local fine
scale grid. Such a grid is used to capture the fine scale steuctformation of the
solution. Let{ni =X%_1,N2,...,Nn = X} be a set of nodes of the local fine scale
grid. Similar to a coarse scale node, each fine scale ngdeith me [2,n— 1] is
surrounded by a local control volun&y, Om = [Mm-1/2, Mm+1/2)- Integrating (39)
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and (40) oveQp, one has respectively

dg d
a£(’7m+1/2)d—(?(( (Mme1/2) — ae(nm—l/Z)d_(ff((nm—l/Z) =0, (41)
dul; dul; Mm1/2
a*(Nms1/2)— I “(Mme1/2) — @ (Mm-1/2) I € (Nm-1/2) + : fdn =0. (42)
m-1/2

We propose to approximate the first-order derivatives in &4l (42) by a 2-node
IRBFE scheme, i.e. equation (24). Assuming that 1 and nm.1 are interior

fine scale nodes, we can form two interior 2-node IRBFEggti.e. elements
[Nm-1,Nm] @and[Nm, Nm+1], to the left and right side ofjy, respectively. Applying
(24) with notation (26) to the elemefiiy_1, Nm|, One has

d dg d

d—%(nm—lﬁ) = G (Nm-1) + K@ (Nm) + usﬁ(nm-l) + m%(nm), (43)
dul. | dul. dul, 4
™ —2(Nm-1/2) = MUe(Nm-1) + HoU(Nm) + Pz =2 an < (Nm-1) + Ha—— an < (Nm)- (44)

Similarly, to the elemeni)m, Nm+1], one has

d dg dg
% 372) = 1) + o)+ 1 )+ e g (). (45)
dul dul dul
%(nmﬂ/z) H1UG(Nm) + H2Ug(Mme1) + Ua dl’; (Nm) + Ha dl’; (Nm2)- (46)

Note that (43)-(46) will be slightly different at the coarsall boundaries (also the
coarse scale nodes) where (34) for semi-interior elemenised instead of (24).
Substituting (43) and (45) into (41) yields

a£('7m+1/2)112(ﬁ|<(f7m+1) + [as(”mﬂ/z)lll - af(nmfl/z)uz] fﬂi(nm)

d |
- a£(’7m-1/2)#1‘ﬂ'<(’7m71) + a£(’7m+1/2)#4%(’7m+1)
dg dg
(8 (a2~ o320 G (1) — @ (2l g (1hm-1) =0,
47)

It can be seen from (47) that there are two unknowns, nagély,) and dg /dn (nm),
associated with each nodal poimtg (m € [2,n—1]). Collection of (47) at all nodal

points leads to a system of- 2 equations for % (n— 2) unknowns. For the alge-
braic system to be solvable one more equation needs to bd atidach and every
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nodal pointsnm, which is here achieved by imposi@f-continuous condition at
Nm, 1.€.

2 g
[W(nm)} a [W(nm)} 2 (48)
where(.), indicates that the computation @f is based on the element to the left
of N, i.e. elementnm_1,Nm|, and similarly subscripR denotes the right element
[Nm, Nm+1]. The left and the right of equation (48) are obtained via eggion (25),
noting (28) and (27) respectively, yielding
dg dg
4@(Nm-1) + L@ (Nm) + 53—%(f7m71) + 54%

dn (Nm) =

| |

V161 + Va2 + Vo o () + v S (). (49)
Collection of equations (47) and (49) at each and every fiakeswodes), (m e
[2,n —1]) with the associated boundary conditions leads to two Bystef 2x
(n—2) equations for 2« (n— 2) unknowns. These two systems are solved for
the two basis functions of2'. Unlike other conventional discretisation techniques,
both the field variable and its first-derivative are constden the present proposed
technique, resulting@2-continuous solutions for the basis functions.

Similarly, at each fine scale nodg,, substituting (44) and (46) into (42) and im-
posing C?-continuous condition af), lead to two equations for two unknowns
associated wity,. Collection of these equations at all fine scale nodes with th
homogeneous boundary conditions results in a systemxafi2- 1) equations for

2 x (n— 1) unknowns. This system is solved for the correction functipassoci-
ated with the coarse cefl'.

The set of basis and correction functions of the whole dor&asused to represent
the first derivatives in (38) in terms of coarse scale nodhlesy; (i € [2,N — 1]).
Collection of equation (38) at all coarse scale nodes withabsociated boundary
conditions lead to a coarse scale systerilef 2 equations folN — 2 coarse scale
nodal values ofu. Consequently, the complete solution of problem (36) is-con
structed on each and every coarse lvia (37). It can be seen that the presently
proposed multiscale method is conservative for both loedlgiobal problems.

5.3 Proposed method for 2D problems

We consider the coefficient tensat in the following form

(%" v ) >
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whereaf(x) and b®(y) are oscillatory functions involving a small scade It is
noted that the periodicity and scale separation assungptiba’ (x) andb®(y) are
not necessary here. The two-dimensional equation (14)hego

Here we are considering a particular class (51) of the gépevalem (14) for the
convenience of presenting the main features of the propostidod. Extension of
the proposed method to the general problem whéiis a full tensor requires con-
sideration of a mixed derivative term and will be reportedumup-coming work.
Nevertheless, the multiscale problem (51) does have irapbédpplication in, e.g.
two-dimensional semi-conductor quantum devices whehairetis a specific direc-
tion oscillation of the coefficients at each location in spaad time. The readers
are referred to (Wang and Shu, 2009) for the application o slevice models in
one-dimension.

A Cartesian grid system is employed to represent the prodlEmainQ in a man-
ner similar to that in the MSFV method (e.g. Fig. 1). Integmai(51) over a control
volume Qi and then applying the Green’s theorem in plane, one has

Al o]
ou

Ju
[ aEm M /bf dx = Acfi. (52
/mk ()5 dy+ - (y)ay Acti, (52)

whereAy is the area of), and

1
fk = — fdQ. 53
<= 2 Ja. (53)

Approximating the line integrals in (52) by the midpointeubne obtains

~|(F005) - (#00%) |- | (v ) - (%) |se=Adk

(54)

whereAy andAy are the coarse grid spacingxrandy direction respectively; and
the subscripte,w,n and s are used to indicate that the flux is estimated at the
intersections of the dual grid lines with the east, westtmand south faces of the
control volumeQy, respectively (Fig. 2).
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To estimate the first-order derivativesioin (54) we consider the dual coarse cells
Q' in a 2D computational domain as shown in Fig. 1. We seek theoappation
for the field variableu on eachQ' in the form

U (x) = i @ (U + U (x), (55)

whereg (x) is the basis function associated with a coarse scale el € [1,4]

is the local index of the four nodes of a coarse €Bllu; = u(x;), anduk(x) is the
correction function associated with a coarse €Ell As explained earlier via (4)
and (10), these basis functions and correction functiosiargarly local numerical
solutions of problem (51) of' without and with right-hand side, respectively, i.e.

0 (¢, 0u\ 0 (. . 0u\
~ (a (X)W> ~ 3y <b (y)d—y> = f(xy). (57)

Boundary conditions for (56) are

| ~

dd_x (a%x)%—?() =0 on dQ}, (58)
! _

% (b%y)i—‘?/) =0 on 9Qy, (59)

and for (57) are

0 (¢, 0u\ 9 (.  Ous ~
ax <a (X)W> = % <a (x)W on 20Q,, (60)
9 (e 0% _ 9 (e OU 5

wheredﬁ'X anddﬁ'y denote thex- andy-segments, respectively, of the boundary of
a dual cellQ' andu is a reference solution on the global fine scale grid. A method
to create a fine scale reference solutiprwill be presented in the following section.
At the dual-grid nodes; which belong td', @l (x;) = &j; (j € [1,4]) andul,(x;) =0.
Note that outside' the @ andug are set to zero. In the present approach, a
C?-continuous IRBFE based control volume method (An-Vo, Daly, and Tran-
Cong, 2011a) is used to solve the local problems (56) andwii)the associated
boundary conditions for the basis functions and corredtimctions respectively.
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The first-order derivatives af in (54) can now be estimated by using expressions
(55) for u' in the four dual coarse cells associated with a grid nodéFig. 2).
Specifically, we use local indices of(l € [1,4]) andi (i € [1,9]) for local dual
coarse cells and local coarse nodes, respectively, atsstaidth X, andxy = x1
(Fig. 2) to obtain

p) 3
(62)
1 4
( )W ()t 2 )0 +‘;—”X<m>—d—"’3 () ww—‘if(Xw)“H%W
(63)
3 4
(z_;) - % (Vo) U+ % (Vo) U7+ ‘;—“y (Vo) = % (V) U+ % () U7+ (Z—uy On),
(64)
1 2
(65)

We substitute (62)-(65) into (54) to obtain the discretisgdation at a coarse node
Xk. Collection of the discretised equations at all coarse sddads to a linear
system to be solved for the coarse scale nodal valuek € [1,N —2 x N —2].
Consequently, the solution farin each dual coarse ce' is reconstructed via
ux and the approximation (55). By implementing the reconsibacon the whole
problem domair, the global solution fou is obtained.

It should be noted that the current computational frameviark depends strongly
on the boundary conditions of local problems for the deteatidn of the correction
functions, i.e. (60) and (61), which unfortunately requarpriori knowledge ofi;.
To obtain the fine scale reference solutinnone typically has to directly resolve
all the small scale features of a multiscale problem. In tilewing section, we
avoid this costly and even impossible task by proposing a@wative fine scale
solver based on 2-node IRBFEs.

5.3.1 Fine scale &continuous conservative solver

Consider problem (51) on a global fine scale grid. Each finkestade, similar
to a coarse scale node, is surrounded by a control volumegrhting (51) over
the control volumeQp of a fine scale interior grid node (Fig. 6) by a similar
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procedure in obtaining (54), one has

B Kaﬁ(@%)e_ (as(x)%>w] &= Kbg(y)Z—;>n— <b£(y)g—;>j & =Apfp,

(66)

whered, anddy are fine grid spacing irandy direction respectively; the subscripts
e,w, n andsare now used to indicate that the flux is estimated at thesat&ions of
the fine grid lines with the east, west, north and south faédéiseocontrol volume
Qp, respectively (Fig. 6); anép is the area of2p and fp = A—lprP fdQ. Unlike
(62)-(65), the fluxes are presently computed via 2-node IBBéefined over line
segments betwedn and its neighbouring grid nodek (W,N andS). There are 4
IRBFESs associated with a control volurfd®. Assuming thaPE, W P are interior
elements and making use of (24), noting (26), one obtaingdlinx thex-direction
as

ou\ dup Jug . . .
<&>e—UlUP+U2UE+HS o THa with x; =Xp and X = Xe, (67)

<%>W = M1l + oUp + ue,%—ti(N + m% with X, =xw and X, =xp.  (68)

Expressions for the flux at the faces- y, andy = ys are of similar forms obtained
by usingPN andSP, assumed as interior elements, and making use of (24),ghotin
(29),

Ju dup Juy .
B pry —_— I— h = =
<3y>n O1Up + Bouy + 65 ay + 64 dy with y1 =yp and y» =y, (69)
au Jus Jup .
— ) =6 6 — 46— with y; = dyo =vyp. 70
<0y>s 1Us+ Boup + 63 dy + 64 dy with y; =ys and y> = yp (70)

(67)-(70) may change IPE, WP, PN, and SP are semi-interior elements where
(34) is used instead of (24).

Substituting (67)-(70) into (66), one has

P
Uy Us 2w 9
G¥ | up | +GV | up | +DM | e | 4D l?a_uyp = Apfp, (71)
Ug UN IUg dun
X ay
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where
—[ —a O @ (xe)pr—a ()2 & (Xe)p2 | 3y, (72)
—[ —b*(ys)Br b¥( yn)el—bf(ys)ez b (yn)62 ] o, (73)
— [ —af(Xw)Hz & (Xe)Us—af (Xw)Hs & (Xe)Ha |0y, (74)
—[ —b*(ys)6s b*(yn)B3 —b*(ys)0s b*(¥n)6a ] O« (75)

It can be seen from (71), there are three unknowns, nameBup /dx anddup/dy,
at a grid nodeP. To solve (71), two additional equations are needed andsée@vi
here by enforcing?-continuity condition aP in x- andy-directions, i.e.

2 2
J Up _ J Up 7 (76)
o0 ), 0% ) g

2 2
fd Up _ J Up 7 (77)
9y g oy )1
where(.), indicates that the computation ©jf is based on the element to the left of
P, i.e. elemenW P, and similarly subscript® B, T denote the right{PE), bottom

(SP) and top(PN) elements. Making use of (25) with noting (27) and (28) for)(76
and (30) and (31) for (77), one has

Jdu Jdup Jdu
Q1uw + Qoup + Zs— + Z4—P = V1Up + VoUE + ng— + Vs de (78)
du du Jup Ju
&1Us+ &oup + &3 ; + 54 P — 91Up+ oy + Sz dy P+ 194a—yN- (79)
In compact forms, (78) and (79) can be rewritten as
T
C¥luy wp ue w %e 2e] —o (80)
T
cb { Us Up Uy D % %N] —0, (81)
with
CH=[8 L-vi —Vvo &3 L—vs —va ), (82)
CV=[& &-91 92 & &—93 ). (83)

Collection of equations (71), (78) and (79) at all interiadal points of the global
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fine grid leads to a global fine scale system,

u

[ G gl pH py } ux | =R, (84)
Uy

C[x][ u ]: , 85

" (85)

c [ JJ ] —0, (86)
y

whereG*l, DI*) andC[* result from the assembly &!*/, DI*) andCl*! respectively;
u,uy anduy are global vectors of values ofat all nodal points and itg- andy-
partial derivatives at interior grid nodes; aRdcollects the right hand side of (71),
which results from the application of (71) at fine scale iistegrid nodes.

Instead of directly solving the large fine scale system (88)-for the fine scale
reference solutionis, we propose a line-relaxation (LR) scheme to smooth a tem-
porarily guessed approximate fine grid solution. Assumiragu® and ug) are a
temporarily guessed solution, an iterative strategy in $tages for smoothing is
proposed as

GX + diagGY) DN u Y2
o L]

. ul’
{ R—[ GY _ diagG¥) DY | [ uy} } )
0

GY + diagG¥) DU u 1t
T ]

u y+1/2
{R[emqudm o ][ ] } )
0

where[ u uy uy ]”is the approximate solution after thyesmoothing step and
[u uy ]°=[u® ul ] diagGX)is the diagonal o6X. Owing to the fact that
2-node IRBFE flux approximation is used, the linear systam@T7) and (88) are
very sparse. Moreover, these systems can be further siiridependent linear
systems for each grid line, which is an important propertytti@ implementation
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of massively parallel computation. Note that the pre€2atontinuous IRBFE-LR
solver is convergent, but for large problem the rate is exélg slow. In our frame-
work, however, only a few LR-steps are required to smootheimporarily guessed
approximate solution. The smoothed fine grid solution themesto estimate tem-
porary boundary conditions for correction functions vi@)(&nd (61) instead of the
fine scale reference solutian. To ensure that these temporary boundary condi-
tions approach the conditions (60) and (61) an iterativeréhlym is used. Such an
algorithm is presented next.

5.3.2 lterative algorithm

We present here an iterative algorithm to improve the Isedlboundary conditions
of the correction functions. Such boundary conditions dalepend onis. Instead
of requirements (60) and (61), we employ an iterative imprognt

() ()

0 ([ ¢ 0u\ 0 (.  0us ~

ax <a (X) X ) = 9% (a (x) o | ©on 0Q,, (89)
9 o\ 9 ouy) ~

— | bE(y) = | = = | b aQl, vl € [1,J]. 90
The superscripft) denotes an iterative step and

® . ® ®
(g g = ([ ) o1

is a smoothed fine scale approximate solution, wBésdhe propose@2-continuous
IRBFE-LR smoothing operator, i.e. (87) and (88),the number of smoothing
steps, and
t ou®  au®
K

is the temporary solution which is constructed on each doaise cel' as

t 1
Z%u : (92)
ol 4o gt
x a(ﬂ R (3)
du'(t) 4 ‘?‘HI dul 1)
— = vl € [1,J]. (94)
ay & oy ' dy

Note that the correction functlom‘b ) are obtamed based on local boundary
conditions (89) and (90) Wlths replaced b)us . A pseudocode of the iterative
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algorithm is given below.

(1) Initialise [ ut=0) =0 L I=0) ]

(2) VI, Vi: compute basis functions (,q', equations (56) with boundary conditions
(58), (59) by a C?-continuous IRBFE-CV method (An-Vo, Mai-Duy, and Tran-
Cong, 2011a)

(3) for t =1 to number of iterations {

(3i) { uétfl) u)(fsfl) us(,t;l) } — [ ut=1) u)((tfl) u§/tfl) ]
(3ii) fori=1to ns {
{ Ugt_l) u>(<ts_l) U£/ts_l) }:S([ ugt_l) u)(}s_l) u£,ts_l) D smooth-

ing step
}
(3iii) VI: compute correction functions U~ ; based on ud Y, equations
(57) with boundary conditions (89) and (90) by a C?-continuous IRBFE-CV
method (An-Vo, Mai-Duy, and Tran-Cong, 2011a)
3iv) Calculate right hand side of the coarse grid discretised system
3v) Solve coarse system

3VI) Reconstruct |: u(t) u)((t) u(t> ], equations (92)-(94)

(t-1)

y
3vii) Calculate convergence measures (CMs) through

(
(
(
(
_JuY—ur |
L
| u! —uy, Il2
o Iz
VL A

1.

CM(u)

CM(uy) =

[ty 12

First, the fine scale field is initialised to zero. Then, allisdunctions are computed
and the right-hand side of equation (51) is integrated oaehecoarse volume.
These steps have to be performed only once and are followttehyain iteration
loop. At the beginning of each iterations smoothing steps are applied and the
smoothed fine scale field is employed to compute the corredtinctions. The
right hand side of the coarse linear system for coarse nalaes also includes
induced terms from these correction functions. At the endaafh iteration, the
coarse system is solved and a new fine scale field is recotestruc
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5.3.3 Deferred correction of coarse grid fluxes

In the coarse grid flux expressions, namely (62)-(65), taezeequired first-derivative
values of basis functions and correction functions at thrgrobvolume faces. The
former needs to be computed only once at the preprocessigg sind be fixed
throughout the iteration loop. The latter, however, nedotapdated at each itera-
tion via the numerical differentiation of correction fuiwets. This differentiation is
usually resulted in a considerable numerical error. Herprepose a deferred cor-
rection strategy to obtain the coarse grid fluxes accuratélyout the need of the
numerical differentiation of correction functions. Caesi an east control volume
face at an iteration leve] instead of using (62) we compute the flux value as

)-8

® (tfl)—@ () % ) (t-1)
15) ox X (Xe) Ug +Afe = (Xe) u; + (Xe) Us +Afe ’

OX
(95)

WhereAfét_l) is the correction term a which is a known value derived from the

smoothed fine scale field, i.e.

ou\tY 79 . 0 _
Afd Y = ( ) ( B (o 1)+—(p52(xe)u§.f ”)

1704 dx
au\ Y acpf (1) arpg D
“(5). ~(Froo ) ©

Since the propose@?-continuous fine scale solver is used the smoothed fine scale
field includes not only the field variable but also its firsttizrderivatives. As

a result, the valuédu/dx)g‘l) is explicitly given without the need of numerical
differentiation. The flux values at other control-volumeda can be computed in a
similar manner. It can be seen that via this correctionessathe coarse grid fluxes
are matched with the fine scale smoothed field.

6 Numerical results

The proposed method is verified by solving several problem@ne and two di-
mension. We refer to the size of a coarse gridNas 1D problems andN x N in

2D problems and the size of a fine grid on a coarse cefl @sdn x nin 1D and

2D respectively. The fine grid on a coarse cell also refewestthe local fine grid.
The fine grid on the whole problem domain is called the globad firid. In 2D
problems, the smoothing system is constructed on the gfotgagrid. The coarse
grid spacing is denoted &swhich is also the size of a coarse cell in this study. The
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local fine grids on the coarse cells are mappefDia] in 1D problems ando0, 1]?
in 2D problems and the grid spacing is denoteth.as

In each problem, two grid refinement strategies are employéa first strategy,
Strategy 1, keeps the coarse grid fixed while refining thd fooagrids. In contrast,
the second strategy, Strategy 2, keeps the local fine gridd fishile refining the
coarse grid. The numerical results are compared with thiosened by the MFEM
(Hou, Wu, and Cai, 1999).

The factor of the MQ-width is chosen @s= 15 throughout the computation. We
assess the numerical performance of the proposed metrmgythtwo measures:
(i) the relative discreté, error defined as

\/le <0’i - ai(e)>2
Ne(a) = (@7)
s <O’i(e)>2

whereM is the number of test points, denotes the field variableand its deriva-
tives and (ii) the convergence ratgsvith respect to the two grid refinement strate-
gies defined via the error norm behavio@¢h?) and O(HY) for the Strategy 1
and 2 respectively. The convergence rates are calculatd2osuccessive grids
(point-wise rate) and also over the whole set of grids useeréae rate).

6.1 One-dimensional examples
6.1.1 Examplel
Consider a model 1D problem (36) with

1
2+ x+sin(2mx/g)’

at(x) f=x Q=][0,1], (98)

and homogeneous Dirichlet boundary conditiof8) = u(1) = 0.

The problem domain is discretised using a series of unifovarse elements and
the shape functions and correction functions that caphedihe scale physics in
the coarse elements are numerically obtained byZdtzontinuous IRBFE-Control
Volume (IRBFE-CV) method. Figure 7 shows the basis fun&iand correction
function associated with a typical coarse element. Unlikeventional basis func-
tions, the present basis functions are highly oscillatorgesthey adapt to the small
scale information within each element (Figure 7(a)). Theewion function is also
highly oscillatory and its scale is small as shown in Figut®.7Figure 8 displays
the convergence behaviour of a numerical shape functiontgpieal coarse ele-
ment obtained by our IRBFE-CVM and the linear FEM. IRBFE-C\dNd linear
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FEM give convergence rates of 4.0267 and 2.0253 respectitalan be seen that
the use of high order approximants in the form of IRBFEs thelp$icapture the
fine scale physics and hence produce highly accurate sodutio

The coarse scale solution at the coarse grid points is autdiy a conservative
CV method where the fluxes are estimated by the obtained sdrapeorrection
functions. In order to have a good consistent measure ofracguerror norms
in all cases are computed using the same 10,001 test poimewine fine scale
solution is recovered via (37). Table 1 presents convemydrahaviour associ-
ated with Strategy 1 where a fixed coarse scale grid of 10 elesrand a series
of 21,41,...,181 local fine grids are used. The present method convergas-mo
tonically while MFEM does not converge. It was pointed ouf(liou and Wu,
1997; Hou, Wu, and Cai, 1999) that the accuracy of the shapetifuns does not
have much effect on the overall accuracy of MFEM. The preapptoach achieves
convergence rates of®&l, 316, and 209 for the field variable, its first, and sec-
ond derivatives respectively. In comparison to multisaiseontinuous Galerkin
method proposed by Wang, Guzman, and Shu (2011), in terms efror, the
present method yields two orders of magnitude improvenmrthe field variable
and one order of magnitude improvement for the first dexeally using a local
fine grid ofn = 181. Note that exact shape functions have been used in (Wang,
Guzman, and Shu, 2011). Table 2 presents convergence behagsociated with
Strategy 2 where a fixed local fine grid of 27 nodes and a sefi#8,80,...,100
uniform coarse elements (i.e. ,P1,...,101 nodes) are used. Both the present
method and the MFEM converge well with refinement of the coansds. The
present approach achieves convergence rate9)8f 351, and 147 for the field
variable, its first, and second derivatives respectivelylerthe MFEM achieves a
value of 161 for the field variable. These results show superior pevémce of the
present approach indicated by (i) high rates of convergaatenly for the field
variable but also for the first and second derivatives; (iyking for both grid re-
finement strategies. One can thus either keep fine scale mweceaale grid fixed
and obtain convergence by refining the other scale grid.

Figures 9 displays the recovered fine scale results for thek fagiable u(x) and
its first derivative by the present method, MFEM and exaaitgm. It can be seen
that the present method has captured the exact solution battgr than MFEM. In
addition, the present method can produce approximatioemfatives up to second
order as shown in Figure 10.

6.1.2 Example 2

In this example, we consider a model 1D problem with highlgiliztory solution at
both macro- and micro-scales. The multiscale problem @8pecifically defined
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1

= f= in(1 Q=101
2+ X+ sin(10mx/e) 300sir(107x), [0,1], (99)

and homogeneous Dirichlet boundary conditiof8) = u(1) = 0.

Similar to example 1, two strategies of grid refinement anglémented here. Ta-
ble 3 presents the convergence behaviour associated wéte®t 1 where a fixed
coarse scale grid of 50 elements and a series gfR21 .,281 local fine grids are
used. Present method converges monotonically as in theof@s@mple 1. The
convergence rates are93, 324, and 213 for the field variable, its first, and second
derivatives respectively. Table 4 presents convergenbaviieur associated with
Strategy 2 where fixed local fine grids of 101 nodes and a sefi&g, 20,...,100
uniform coarse elements (i.e. 21 ...,101 nodes) are used. The present method
converges well with refinement of the coarse grids. The agevese rates are 3L,
2.55, and 149 for the field variable, its first, and second derivativespestively.

Figure 11 displays the recovered fine scale solution for #ld fiariableu(x), its
first, and second derivatives by the present method and thet eplution. The
solutions by the present method are in excellent agreemigmtive exact solution.

6.2 Two-dimensional examples

We demonstrate that the proposed iterative algorithm fopgiblems converges
to the fine scale reference solution. In the following distus, by “smoother” we
mean one iteration of the fine scale solver. By “the presenthot® we mean a
two-grid method where the smoother is invoked for only a fgales within the it-
erative algorithm. Computational efficiency of the presasthod is assessed via a
convergence acceleration in comparison with the fine scéers The acceleration
is estimated by comparing the computational time to acheesertain convergence
measureCM).

6.2.1 Example 1l

We consider a special case of equation (51) wftfx) = b*(y) = 1 as follows.

d%u 9%
it

a2 T gy = ~2T cosmx)cos(my), (100)
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on a square domain9 x,y < 1 with boundary conditions:

u = cogmy) for x=0,0<y<1;
u= —cogTy) for x=10<y<1;
u = coqTx) for y=0,0<x<1;
U= —coyTx) for y=10<x<1l

The exact solution to this problem can be verified to be
u'® (x,y) = cos(rx) cog(ty). (101)

It can be seen that the basis functions on each coarse csihgpéy those of a lin-

ear 2D rectangular element in FEM and the MFEM is identicah&oconventional
FEM. We also utilise these exact basis functions in the ptasethod. The correc-
tion functions are numerically obtained via @#-continuous CVM (An-Vo, Mai-

Duy, and Tran-Cong, 2011a) with the iteratively improveditaeary conditions.
Figure 12 shows a typical set of converged correction fonstion the problem
domain.

Iterative convergence: Figure 13 displays the convergence to the reference so-
lution as a function of iterations and smoothing steps (feraiion), ns, for two
grid systems. The first grid system includes a coarse grid fN =5x 5 and
local fine grids on each coarse cellsrok n =81 x 81. The other grid system
includes a coarse grid ™ x N = 33x 33 and local fine grids afix n=11x 11.
Note that these two grid systems have the same size in ternig aflobal fine
grid of 321x 321. It can be seen that for both grid systems the smoothéeys st
have a significant effect on the convergence behavioursedsngns helps reduce
the iterations. In addition, the present method convergelseven with only one
smoothing step. This robustness is very useful for largke gpablems where one
smoothing step could require a significant computationatlloThe convergence
behaviours of the first derivatives are similar to those effteld variable. Compar-
ing between the two grid systems (with the same smoothingatipa), the use of a
larger coarse grid helps reduce the iterations remark&blyinstance witng = 4,
the first grid system (smaller coarse grid) requires aboQti@dations to converge
to the reference solution while the other grid system (laagarse grid) requires
only about 20 iterations.

Grid refinement convergence: Two grid refinement strategies are presented in
Table 5. In Strategy 1, a fixed coarse gridbk N =5 x 5 is used while the local
fine grids on coarse celtsx nare refined in a series of X111, 21x 21,...,91x 91.

In contrast, Strategy 2 utilises a series of refined coaiige gfN x N =5x 5,9 x
9,...,37x 37 while keeping the size of local fine grids on coarse cellsdfias
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nxn=11x11. The present method converges well with both grid refimeme
strategies while the MFEM does not converge with Stratedydte that exact basis
functions are employed in both MFEM and the present methde: cbnvergence
rates of the present method ar®@ and 194 for the field variable and its first
derivatives respectively in Strategy 1. A high convergerate of 401 for the field
variable is obtained with Strategy 2 where the convergeat® of the MFEM is
2.00.

Solution accuracy: Table 5 also presents the error norm of the present method
in comparison with those of MFEM. Very high levels of accyrare obtained
in the present method. With a small grid system, idx N =5x5 andn x
n=11x 11, the error is 3 x 10~° and with a relatively larger grid system, i.e.
N x N =37x 37 andn x n=11x 11, the error is £3x 10~°. Compared to the
errors of the MFEM, with the same grid systems, the presaotseare 3 and 5
orders of magnitude better respectively.

6.2.2 Example 2

Consider a multiscale elliptic problem on a domgir= [—1, 1] governed by

J (., .0u 0 [ ¢,,0u\
S (2 050) - 55 (05 ) =xf0) + 300 (102)
with homogeneous Dirichlet boundary condition, where

1 1
€(v) — by = — — 103
= e PO Syrsny (103)

andu®(x) is the exact solution of the one-dimensional probledta® (x)du/dx) /dx =
x with a8 (x) as in (103) (note thatf (x) = a®(x)). The exact solution of (102) has
the form

u(xy) = uE(x)u(y). (104)

Both the basis and correction functions are numericallgiokt by ouC2-continuous
CVM (An-Vo, Mai-Duy, and Tran-Cong, 2011a) in the presenttimoel. The basis
functions in MFEM are obtained by a linear FEM. Figure 14 sbdypical basis
and correction functions in the present method for two casemall scale param-
eter, i.e.e = 0.1 ande = 0.01. Typical sets of correction functions on the problem
domain for these two values of small scale parameter aréaglisgh by contour plots

in Figure 15.

Iterative convergence:Figures 16 and 17 display the convergence to the reference
solution of the present method in casegef 0.1 ande = 0.01 respectively. Two
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grid systems are employed to study the effect of smoothiggsst on the conver-
gence behaviours in each casecofalues. As in example 1, the smoothing steps
have a significant effect on the convergence behaviours archwreduce the num-
ber of iterations by increasing. With the same smoothing systems, i.e. 24241
in the case of = 0.1 in Figure 16 and 70% 701 in the case of = 0.01 in Figure
17, the use of larger coarse grids reduces the iterationarkatoly. Computational
efficiency is assessed in Figure 18 where the convergenewibelins of the present
method (s = 1) and the fine scale solver (FSS) are presented. It can bésEiA
ure 18(a) that the FSS requires about:310* cycles to converge t6M = 108

in the case of grid 1. By using the smoothing system of gridd \aith a coarse
grid of 5x 5 the present method convergeil = 108 after about 330 iterations
(Figure 18(b)). The number of iterations can reduce to abhdwrhen a coarse grid
of 25x 25 is used as shown in Figure 16(b). By using thisx2® coarse grid,
the computational time of each iteration is measured to.bé $on average which
include the time of a smoothing cycle, for obtaining cori@ttffunctions, and for
solving the coarse grid system. The computational time ahaathing cycle is
measured to be.d1 s. It can be seen that the time of a smoothing cycle donsinate
the time of an iteration. The present method hence has thentpalt of roughly
1000 times more efficient than the FSS. Furthermore, whemearedse the size
of the global fine grid to grid 2 and grid 3, the number of cyaéshe smoother
increases very fast compared to that of the present methigdré=18(a)).

Grid refinement convergence:The two grid refinement strategies foe= 0.1 and

€ = 0.01 are presented in Tables 6 and 7 respectively. ~or0.1, Strategy 1
uses a fixed coarse grid of55 and a series of refined local fine grids of 41
1121x21...,91x91. Strategy 2 uses fixed local fine grids of411 and a
series of refined coarse grids 0k%,9x 9,...,37x 37. The convergence rates of
the present method areZd and 305 for the field variable and its first derivatives
respectively in Strategy 1. It can be seen that MFEM doesatarge in Strategy
1. In Strategy 2, the convergence rates of the present metieo838 and 140 for
the field variable and its first derivative respectively. MEFEonverges at the rate
of 1.95 for the field variable.

Fore = 0.01, Strategy 1 uses a fixed coarse grid o111 and a series of refined
local fine grids of 11x 11,21 x 21,...,71x 71. Strategy 2 uses a fixed local fine
grid of 11x 11 and a series of refined coarse grids ok11l1,21x 21,...,71x 71.
The convergence rates of the present method 4r& 894 and 395 for u, du/dx
anddu/dy respectively in Strategy 1. These rates are especially dogipared to
the rate of QL3 for the field variable in MFEM. In Strategy 2, the convergenates
of the present method arel2, 360 and 359 foru, du/dx anddu/dy respectively
while MFEM gives a rate of 20 for the field variable.
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Solution accuracy: Tables 6 and 7 also present thgerror norm fore = 0.1 and

€ = 0.01 respectively. Foe = 0.1 and Strategy 1 (Table 6), the present method
achieves the errors of @ x 10~ and 167 x 107 for the field variable and its
first derivatives respectively by using a grid systemNof N =5x 5 andnx n=
91x 91. The error for the field variable is 7 orders of magnitudiebecompared

to that of MFEM by using the same grid system. In Strategy € pttesent method
achieves the errors of@ x 10~ and 384 x 10° for the field variable and its first
derivatives respectively by using a grid systemNok N = 37 x 37 andn x n =
11x 11. The error for the field variable is 5 orders of magnitudenecompared

to that of MFEM by using the same grid system.

For e = 0.01 and Strategy 1 (Table 7), the present method achievesrihrs ef
5.73x 107% and 117 x 10~° for the field variable and its first derivatives respec-
tively by using a grid system dfl x N =11x 11 andnx n=71x 71. The error
for the field variable is 4 orders of magnitude better comgppéoehat of MFEM by
using the same grid system. In Strategy 2, the present mettiudves the errors
0f 9.05x 1077, 2.31x 10~° and 232 x 10~° for u, du/dx anddu/dy respectively
by using a grid system dfif x N =71x 71 andnx n=11x 11. The error for the
field variable is more than 3 orders of magnitude better coetptn that of MFEM
by using the same grid system.

Figure 19 displays the contour plots of the solutions olethiny MFEM, present
method and the exact one for= 0.1 ande = 0.01. The present result is obtained
with N x N =5x5nx n= 31x 31 while the MFEM result is obtained with x
N=11x11lnxn=31x 31. It can be seen that the solutions of the present method
are in excellent agreement with the exact solution.

7 Concluding remarks

A high-order RBF-based multiscale control-volume methad heen successfully
developed for 1D and 2D multiscale elliptic problems. Toeassthe performance
of the methods, we use two grid refinement strategies, nafidlyed coarse grid
and various local fine grids, and (ii) fixed local fine grid aratious coarse grids.
Unlike MFEM, the proposed methods work well for both gridmefnent strategies.
High rates of convergence and levels of accuracy are olotaifitde method for
2D problems is proposed with an iterative algorithm whiclipheovercome the
limitation of MFEM where artificial localised boundary catidns are employed. It
has been demonstrated numerically that the proposedivteedgorithm converges
to C2-continuous solutions. This feature is very useful esplgcia subsurface
flow simulations where the velocity field has to be continuaci®ss the coarse cell
interfaces to ensure a conservative flow field. The scatgldld high efficiency
of the proposed algorithm has been confirmed against therpaathce of the fine
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scale solver.

Acknowledgement: D.-A. An-Vo would like to thank USQ, FOES and CESRC
for a PhD scholarship. This work was supported by the AuatidResearch Coun-
cil.

References

Aarnes, J.; Kippe, V.; Lie, K.-A. (2005):  Mixed multiscale finite elements
and streamline methods for reservoir simulation of largengedels. Advances in
Water Resourcesol. 28, pp. 257-271.

Allaire, G.; Brizzi, R. (2005): A multiscale finite element method for numerical
homogenization.Multiscale Modeling & Simulationvol. 43, pp. 790-812.

An-Vo, D.-A.; Mai-Duy, N.; Tran, C.-D.; Tran-Cong, T. (2012): Modeling
strain localisation in a segmented bar byC&continuous two-node integrated-
RBF element formulation.Boundary Element and Other Mesh Reduction Method
XXXIV, vol. 53, pp. 3-13.

An-Vo, D.-A.; Mai-Duy, N.; Tran, C.-D.; Tran-Cong, T. (2013): ADI method
based orC?-continuous two-node integrated-RBF elements for visdlmwes. Ap-
plied Mathematical Modellingvol. 37, pp. 5184-5203.

An-Vo, D.-A.; Mai-Duy, N.; Tran-Cong, T. (2010): Simulation of Newtonian-
fluid flows with C2-continuous two-node integrated-RBF elementsStructural
Longevity vol. 4(1), pp. 39-45.

An-Vo, D.-A.; Mai-Duy, N.; Tran-Cong, T. (2011): AC?-continuous control-
volume technique based on Cartesian grids and two-nodgratézl-RBF elements
for second-order elliptic problems.CMES: Computer Modeling in Engineering
and Sciencesvol. 72 (4), pp. 299-334.

An-\o, D.-A.; Mai-Duy, N.; Tran-Cong, T. (2011): High-order upwind methods
based orC2-continuous two-node integrated elements for viscous flo@8/1ES:
Computer Modeling in Engineering and Sciences. 80 (2), pp. 141-177.

Arbogast, T. (2002): Implementation of a locally conservative numedrszdgrid
upscaling scheme for two-phase Darcy flolomputational Geosciencegol. 6,
pp. 453-481.

Babuska, I.; Caloz, G.; Osborn, J.(1994):  Special finite element methods
for a class of second order elliptic problems with rough fioeihts. SIAM J. on
Numerical Analysisvol. 31, pp. 945-981.



Manuscript submitted to CMES

33

Burnett, D. S. (1987):  Finite element analysis from concepts to applications
Addison-Wesley Publishing company.

Chen, Z.; Hou, T. Y. (2002): A mixed multiscale finite element method for
elliptic problems with oscillating coefficientsMathematics of Computatiowol.
72 (242), pp. 541-576.

Chu, J.; Efendiev, Y.; Ginting, V.; Hou, T. (2008): Flow based oversampling
technique for multiscale finite element method#&dvances in Water Resources
vol. 31, pp. 599-608.

Dykaar, B. B.; Kitanidis, P. K. (1992): Determination of the effective hydraulic
conductivity for heterogeneous porous media using a nwalespectral approach
1. method. Water Resources Researeol. 28, pp. 1155-1166.

Fasshauer, G.(2007): Meshfree Approximation Methods With Matla/orld
Scientific Publishers: Singapore.

Hajibeygi, H.; Bonfigli, G.; Hesse, M. A.; Jenny, P.(2008): Iterative multiscale
finite-volume method. Journal of Computational Physicwvol. 227, pp. 8604—
8621.

Hajibeyqi, H.; Jenny, P.(2009): Multiscale finite-volume method for parabolic
problems arising from compressible multiphase flow in perowedia. Journal of
Computational Physi¢cyol. 228(14), pp. 5129-5147.

Hajibeyqi, H.; Jenny, P. (2011): Adaptive iterative multiscale finite volume
method. Journal of Computational Physicgol. 230(3), pp. 628-643.

Hajibeygi, H.; Karvounis, D.; Jenny, P. (2011): A hierarchical fracture
model for the iterative multiscale finite volume methodburnal of Computaional
Physics vol. 230(24), pp. 8729-8743.

Hou, T. Y. (2005): Multiscale modelling and computation of fluid flownt. J.
for Numerical Methods in Fluidsrol. 47, pp. 707-719.

Hou, T. Y.; Wu, X.-H. (1997). A multiscale finite element method for elliptic
problems in composite materials and porous medi#ournal of Computational
Physicsvol. 134, pp. 169-189.

Hou, T.Y.; Wu, X.-H.; Cai, Z. (1999): Convergence of a multiscale finite element
method for elliptic problems with rapidly oscillating cdiefents. Mathematics of
Computationvol. 68 (227), pp. 913-943.



Manuscript submitted to CMES

34

Jenny, P.; Lee, S. H.; Tchelepi, H. A(2003): Multi-scale finite-volume method
for elliptic problems in subsurface flow simulationJournal of Computational
Physicsvol. 187, pp. 47-67.

Jenny, P.; Lee, S. H.; Tchelepi, H. A(2004): Adaptive multiscale finite-volume
method for multiphase flow and transport in porous medidultiscale Modelling
and Simulationvol. 3 (1), pp. 50-64.

Jenny, P.; Lee, S. H.; Tchelepi, H. A(2006): Adaptive fully implicit multi-scale
finite-volume method for multi-phase flow and transport iteh@genous porous
media. Journal of Computational Physicgol. 217(2), pp. 627-641.

Kansa, E. (1990): Multiquadrics-a scattered data approximatioreswdh with
applications to computational fluid-dynamics-IComputers & Mathematics with
Applications vol. 19, pp. 147-161.

Lunati, I.; Jenny, P. (2006): Multiscale finite-volume method for compressible
multiphase flow in porous medialournal of Computational Physicgol. 216, pp.
616—-636.

Lunati, I.; Jenny, P. (2006): The multiscale finite-volume method - a flexible tool
to model physically complex flow in porous median: Proceeding of European
Conference of Mathematics of Oil Recovery X

Lunati, I.; Jenny, P. (2008): Multiscale finite-volume method for density-drive
flow in porous media.Computational Geosciencesl. 12, pp. 337-350.

Mai-Duy, N.; Tanner, R. I. (2007): A collocation method based on one-
dimensional RBF interpolation scheme for solving PDEgernational Journal of
Numerical Methods for Heat & Fluid Floywol. 17(2), pp. 165-186.

Mai-Duy, N.; Tran-Cong, T. (2001): Numerical solution of differential eugations
using multiquadric radial basis function networksleural Networksvol. 14, pp.
185-199.

Mai-Duy, N.; Tran-Cong, T. (2003): Approximation of function and its deriva-
tives using radial basis function network method#pplied Mathematical Mod-
elling, vol. 27, pp. 197-220.

Mai-Duy, N.; Tran-Cong, T. (2008): A multidomain integrated-radial-basis-
function collocation method for elliptic problemdNumerical Methods for Partial
Differential Equationsvol. 24, pp. 1301-1320.



Manuscript submitted to CMES

35

Mai-Duy, N.; Tran-Cong, T. (2009): A Cartesian-grid discretisation scheme
based on local integrated RBFNs for two-dimensional éfliptoblems. CMES:
Computer Modeling in Engineering & Sciencesl. 51, pp. 213-238.

Mai-Duy, N.; Tran-Cong, T. (2010): A numerical study of 2D integrated RBFNs
incorporating Cartesian grids for solving 2D elliptic @ifeéntial problemsNumer-
ical Methods for Partial Differential Equationsol. 26 (6), pp. 1443-1462.

McCarthy, J. (1995): Comparison of fast algorithms for estimating lasgale
permeabilities of heterogeneous medidransport in Porous Mediavol. 19, pp.
123-137.

Wang, W.; Guzman, J.; Shu, C.-W.(2011):  The multiscale discontinuous
Galerkin method for solving a class of second order elliptiablems with rough
coefficients. International Journal of Numerical Analysis and Modelingl. 8 (1),
pp. 28-47.

Wang, W.; Shu, C.-W.(2009): The WKB local discontinuous Galerkin method
for the simulation of Schrodinger equation in a resonanhéling diode. Journal
of Scientific Computingvol. 40, pp. 360-374.



Manuscript submitted to CMES

36

Table 1: One-dimensional examplegl= 0.01, Strategy 1L, errors of the field variable, its first and second derivatives

is noted that the set of test nodes containg00Q uniformly distributed points. LCR stands for local cergence rate and
[*] is Wang, Guzman, and Shu (2011).

e=001,N=11
MFEM Present method

Local fine grid ) Ne(u) LCR Ne(u) LCR Ne(du/dx) LCR Ne(d?u/dx?) LCR
21 1.30E-02 - 4.10E-03 - 1.16E-01 - 5.37E-01 -
41 1.22E-02 0.09 3.60E-04 3.51 2.44E-02 2.25 2.19E-01 1.29
61 1.21E-02 0.02 6.76E-05 4.12 5.80E-03 3.54 8.21E-02 2.42
81 1.21E-02 0.00 2.11E-05 4.05 2.13E-03 3.48 4.14E-02 2.38
101 1.21E-02 0.00 8.63E-06 4.01 9.90E-04 3.43 2.50E-02 2.26
121 1.21E-02 0.00 4.18E-06 3.98 5.34E-04  3.39 1.62E-02 2.38
141 1.21E-02 0.00 2.28E-06 3.93 3.18E-04 3.36 1.16E-02 2.17
161 1.21E-02 0.00 1.35E-06 3.92 2.04E-04 3.32 8.47E-03 2.36
181 1.21E-02 0.00 8.53E-07 3.90 1.39E-04 3.26 6.56E-03 2.17

O(ho'03) O(h?"gl) O(h3'16) O(hZ.OQ)
Wang et al. ) [] 1.03E-03 4.73E-02
Wang et al. &) [] 1.16E-05 1.01E-03




Table 2: One-dimensional exampleel= 0.01, Strategy 2L, errors of the field variable, its first and second derivatives

is noted that the set of test nodes contain®0@ uniformly distributed points. LCR stands for local cergence rate

e=0.01,n=27
MFEM Present method
Coarse grid ) Ne(u) LCR Neu) LCR Ne(du/dx) LCR Ne(d?u/dx?) LCR
11 1.25E-2 - 2.06E-3 - 1.09E-1 - 5.90E-1 -
21 2.63E-3 2.25 8.91E-5 453 1.26E-2 3.11 1.49E-1 1.99
31 1.66E-3 1.14 3.52E-4 -3.39 5.97E-3 1.84 1.09E-1 0.77
41 9.63E-4 1.89 1.98E-4 2.00 1.65E-3 4.47 3.64E-2 3.80
51 7.36E-4 1.20 3.93E-6 17.57 7.79E-4 3.37 2.32E-2 2.02
61 3.71E-4 3.76 2.40E-5 -9.92 1.43E-3 -3.33 5.26E-2 -4.49
71 2.74E-4 1.98 1.43E-5 3.36 9.88E-4 2.40 4.38E-2 1.18
81 2.12E-4 1.93 8.44E-6 3.94 8.42E-4 1.20 3.96E-2 0.76
91 1.83E-4 1.22 6.86E-6 1.76 6.13E-4 2.70 3.44E-2 1.19
101 9.12E-4 -15.24 2.53E-7 31.31 1.01E-4 17.12 5.82E-3 616.8
O(H 1.61) O(H3'03) O(H2'51) O(H 1447)

LE

SIIND 01 paniwgns 1duosnuely
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Table 3: One-dimensional example&= 0.01, Strategy 11, errors of the field
variable, its first and second derivatives by the presenhadetlt is noted that the
set of test nodes contains 1001 uniformly distributed points. LCR stands for
local convergence rate.

£=0.01,N=51

Local fine grid () Nelu) LCR Nedu/dx) LCR Ne(d?u/dx?) LCR

21 2.59E-2 - 1.18E-1 - 5.33E-1 -

41 2.19E-3 3.56 2.45E-2 2.27 2.16E-1 1.30
61 4.02E-4 4.18 5.77E-3 3.57 8.07E-2 2.43
81 1.25E-4 4.06 2.10E-3 3.51 4.07E-2 2.38
101 5.11E-5 4.01 9.69E-4 3.47 2.42E-2 2.33
121 249E-5 3.94 5.19E-4 3.42 1.59E-2 2.30
141 1.36E-5 3.92 3.07E-4 3.41 1.12E-2 2.27
161 8.09E-6 3.89 1.96E-4 3.36 8.32E-3 2.23
181 5.14E-6 3.85 1.32E-4 3.36 6.44E-3 2.17
201 3.43E-6 3.84 9.30E-5 3.32 5.23E-3 1.98
241 1.72E-6 3.79 5.11E-5 3.28 3.46E-3 2.27
281 9.62E-7 3.77 3.11E-5 3.22 2.50E-3 2.11

O(h3'91) O(h3'24) O(h2.13)
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Table 4: One-dimensional example&= 0.01, Strategy 21, errors of the field
variable, its first and second derivatives by the presenhadetlt is noted that the
set of test nodes contains 1001 uniformly distributed points. LCR stands for
local convergence rate.

£=001,n=101

Coarse grid ) Nelu) LCR Nedu/dx) LCR Ne(d?u/dx?) LCR
11 3.66E-2 - 7.81E-2 - 3.53E-1 -
21 1.35E-3 4.76 1.83E-2 2.09 1.66E-1 1.09
31 5.86E-3 -3.62 6.85E-3 2.42 7.72E-2 1.89
41 1.18E-3 557 2.58E-3 3.39 3.82E-2 2.45
51 5.11E-5 14.07 9.69E-4 4.39 2.42E-2 2.05
61 1.72E-4 -6.66 1.29E-3 -1.57 3.60E-2 -2.18
71 1.13E-4 2.73 9.39E-4 2.06 3.06E-2 1.05
81 5.82E-5 4.97 7.20E-4 1.99 2.66E-2 1.05
91 2.71E-5 6.49 4.08E-4 4.82 1.74E-2 3.60
101 7.86E-7 33.60 1.20E-4 11.62 6.16E-3 9.86

O(H 3.71) O(H 2.55) O(H 1.49)
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Table 5: Two-dimensional example L3 errors of the field variable, its first and second derivatiMeSR stands for local

convergence rate.

Strategy INxN=5x5

MFEM Present method
Fine scale gridr{ x n) Neu) LCR Ne(u) LCR Ne(du/dx) LCR Ne(du/dy) LCR
11x 11 5.54E-2 - 1.73E-5 - 5.48E-5 - 5.49E-5 -
21x21 5.54E-2 0.00 4. 76E-6 1.86 1.47E-5 1.90 1.46E-5 1.91
31x 31 5.54E-2 0.00 2.21E-6 1.89 6.68E-6 1.94 6.68E-6 1.94
41x 41 5.54E-2 0.00 1.28E-6 1.91 3.81E-6 1.95 3.81E-6 1.95
51x 51 5.54E-2 0.00 8.30E-7 1.93 2.46E-6 1.96 2.46E-6 1.96
61x 61 5.54E-2 0.00 5.83E-7 1.94 1.72E-6 1.97 1.72E-6 1.97
71x 71 5.54E-2 0.00 4.32E-7 194 1.27E-6 1.97 1.27E-6 1.97
81x 81 5.54E-2 0.00 3.33E-7 1.95 9.75E-7 1.97 9.75E-7 1.97
91x 91 5.54E-2 0.00 2.65E-7 1.94 7.75E-7 1.96 7.75E-7 1.96
O(hO.OO) O(hl.QO) O(h1'94) O(h1'94)
Coarse gridl x N) Strategy 2nxn=11x 11

5x5 5.54E-2 - 1.73E-5 - 5.48E-5 - 5.49E-5 -

9x9 1.40E-2 1.99 1.09E-6 3.99 6.99E-6 2.97 6.99E-6 2.97
13x 13 6.23E-3 2.00 2.09E-7 4.07 2.31E-6 2.73 2.31E-6 2.73
17x 17 3.51E-3 2.00 6.54E-8 4.04 1.33E-6 1.92 1.33E-6 1.92
21x 21 2.25E-3 2.00 2.67E-8 4.01 1.03E-6 1.15 1.03E-6 1.15
25x%x 25 1.56E-3 2.00 1.29E-8 3.99 8.85E-7 0.83 8.85E-7 0.83
29x 29 1.15E-3 2.00 7.04E-9 3.93 7.86E-7 0.77 7.86E-7 0.77
33x 33 8.78E-4 2.00 4.17E-9 3.92 7.04E-7 0.83 7.04E-7 0.83
37x 37 6.94E-4 2.00 2.63E-9 3.91 6.33E-7 0.90 6.33E-7 0.90

O(H 2.00) O(H 4.01) O(H 1.97) O(H 1.97)




Table 6: Two-dimensional example 2= 0.1: L, errors of the field variable, its first and second derivativgsR stands for

local convergence rate.

Strategy INXN=5x5

MFEM Present method
Local fine grid (1 x n) Ne(u) LCR Ne(u) LCR Ne(du/dx) LCR Neldu/dy) LCR
11x 11 4.13E-1 - 5.01E-5 - 1.49E-4 - 1.49E-4 -
21x21 4.14E-1 0.00 3.55E-6 3.82 1.14E-5 3.71 1.13E-5 3.72
31x 31 4.15E-1 0.00 8.51E-7 3.52 2.95E-6 3.33 2.95E-6 3.31
41x 41 4.15E-1 0.00 3.37E-7 3.22 1.26E-6 2.96 1.26E-6 2.96
51x 51 4.15E-1 0.00 1.75E-7 294 6.86E-7 2.72 6.86E-7 2.72
61x 61 4.15E-1 0.00 1.07E-7 2.70 4.33E-7 2.52 4.33E-7 2.52
71x71 4.15E-1 0.00 7.15E-8 2.62 2.99E-7 2.40 2.99E-7 2.40
81x81 4.15E-1 0.00 5.15E-8 2.46 2.19E-7 2.33 2.19E-7 2.33
91x91 4.15E-1 0.00 3.90E-8 2.36 1.68E-7 2.25 1.68E-7 2.25
O(hO.OO) O(h3‘24) O(h3‘05) O(h3‘05)
Coarse gridl x N) Strategy 2nxn=11x11

5x5 4.13E-1 - 5.01E-5 - 1.49E-4 - 1.49E-4 -

9%x9 1.15E-1 1.84 3.99E-6 3.65 1.06E-5 3.81 1.06E-5 3.81
13x 13 5.19E-2 1.96 7.26E-7 4.20 7.30E-6 0.92 7.29E-6 0.92
17x 17 2.94E-2 1.98 2.52E-7 3.68 6.38E-6 0.47 6.38E-6 0.46
21x21 1.89E-2 1.98 1.21E-7 3.29 5.76E-6 0.46 5.76E-6 0.46
25x 25 1.31E-2 2.01 7.03E-8 2.98 5.22E-6 0.54 5.22E-6 0.54
29x 29 9.64E-3 1.99 6.49E-8 0.52 4.72E-6 0.65 4.71E-6 0.67
33x 33 7.39E-3 1.99 5.00E-8 1.95 4.26E-6 0.77 4.25E-6 0.77
37x 37 5.84E-3 2.00 2.66E-8 5.36 3.84E-6 0.88 3.84E-6 0.86

O(H 1.95) O(H3'38) O(H 1.40) O(H 1.40)
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Table 7. Two-dimensional example 2= 0.01: L, errors of the field variable, its first and second derivatiMegSR stands

for local convergence rate.

Strategy INXxN=11x11

MFEM Present method
Local fine grid (1 x n) Neu) LCR Ne(u) LCR Ne(du/dx) LCR Ne(du/dy) LCR
11x11 1.03E-1 - 1.93E-2 - 2.44E-2 - 2.44E-2 -
21x21 8.36E-2 0.30 9.83E-4 4.30 1.29E-3 4.24 1.29E-3 4.24
31x 31 8.02E-2 0.10 1.80E-4 4.19 2.46E-4 4.09 2.45E-4 4.10
41x 41 7.91E-2 0.05 5.49E-5 4.13 8.05E-5 3.88 7.80E-5 3.98
51x 51 7.87E-2 0.02 2.20E-5 4.10 3.56E-5 3.66 3.54E-5 3.54
61x 61 7.84E-2 0.02 1.06E-5 4.00 1.91E-5 3.42 1.90E-5 341
71x 71 7.83E-2 0.01 5.73E-6 3.99 1.17E-5 3.18 1.17E-5 3.15
O(h0.13) O(h4'17) O(h3'94) O(h3.95)
Coarse gridl x N) Strategy 2nxn=11x 11
11x11 1.03E-1 - 1.93E-2 - 2.44E-2 - 2.44E-2 -
21x21 2.38E-2 2.11 3.91E-4 5.63 1.24E-3 4.30 1.25E-3 4.29
31x31 1.39E-2 1.33 1.82E-4 1.89 2.93E-4 3.56 2.92E-4 3.59
41x 41 5.98E-3 2.93 2.08E-5 7.54 1.05E-4 3.57 1.05E-4 3.56
51x 51 3.59E-3 2.29 5.09E-6 6.31 5.19E-5 3.16 5.22E-5 3.13
61x 61 2.39E-3 2.23 1.63E-6 6.25 3.17E-5 2.70 3.19E-5 2.70
71x 71 1.78E-3 1.91 9.05E-7 3.82 2.31E-5 2.05 2.32E-5 2.07
O(H 2.10) O(H 5.12) O(H3'60) O(H 3.59)
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Figure 1: A computational domaif with the coarse grid (black dashed lines) and
dual coarse grid (black solid lines); dashed and solid neeslindicate a selected
control volumeQy and a selected dual coarse a@l| respectively. Shown under-
neath is an enlarged control volume, on which is imposacka = 11 x 11 local
fine grid. It can be seen that the size of global fine grid (ddgireen lines) is
41x 41.
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Figure 2: Local indices of dual cells and nodal points asgedi with a coarse grid
nodexy andxy = Xj.
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Figure 4: Schematic outline for 2-node IRBFEs.
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Figure 5: A CV discretisation scheme in 1D: nodand its associated control
volume. The circles represent the nodes, and the verticdl lilges represent the
faces of the control volume.

Figure 6: Schematic outline for a 2D control volume on the ficale grid.
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Figure 7: One-dimensional examplegls= 0.01,N = 11,n = 101: basis functions
(a) and correction function (b) associated with the firstreeaell ( = 1). Itis
noted that the coarse cell is mapped to a unit length.
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Figure 9: One-dimensional example&l= 0.01, N = 11, n = 101: field variable
and its first derivatives obtained by the present method mparison with those
obtained by MFEM and the exact solution.
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Figure 11: One-dimensional examples2= 0.01,N = 51,n = 101: field variable,
its first and second derivatives obtained by the presentadethcomparison with
the exact solution.
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Figure 12: Two-dimensional example 1: collection of allreation functions on
the problem domain obtained with a grid systenNof N =5x5,nx n=21x 21.
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Figure 14: Two-dimensional example 2: typical basis andemion functions for
the cases of = 0.1 using a grid system dl x N =5x5nxn=21x 21 and
€ =0.01usingagridsystem®™ xN=11x11lnxn=21x 21.
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Figure 15: Two-dimensional example 2: contour plots of ection functions on
the problem domain for the casesa#= 0.1 using a grid system dfl x N

=5x

5,nxn=21x21 ande = 0.01 using a grid system ¢ x N =11x 11 nxn

21x 21.
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Figure 17: Two-dimensional example€=0.01,NxN=11x11nxn=71x71
(@ andN xN=71x7Lnxn=11x 11 (b): effect of the number of smoothing
stepsns on the convergence behaviour.
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Figure 18: Two-dimensional example£s= 0.1, ns= 1. convergence of the present
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Figure 19: Two-dimensional example 2: contour plots of sohs for the cases of
€ =0.1 ande = 0.01, the former is obtained with x N =5x5,nxn=31x 31
while the latter is obtained witN x N=11x 11 nx n=31x 31.



