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Abstract: Many important engineering problems have multiple-scale solutions.
Thermal conductivity of composite materials, flow in porousmedia, and turbulent
transport in high Reynolds number flows are examples of this type. Direct nu-
merical simulations for these problems typically require extremely large amounts
of CPU time and computer memory, which may be too expensive orimpossible
on the present supercomputers. In this paper, we develop a high order computa-
tional method, based on multiscale basis function approachand integrated radial-
basis-function (IRBF) approximant, for the solution of multiscale elliptic problems
with reduced computational cost. Unlike other methods based on multiscale basis
function approach, sets of basis and correction functions here are obtained through
C2-continuous IRBF element formulations. High accuracy and efficiency of this
method are demonstrated by several one- and two-dimensional examples.

Keywords: integrated radial basis functions, multiscale elliptic problems, Carte-
sian grid, control volume method, multiscale method.

1 Introduction

In composite materials, the presence of particles/fibres inthe resin gives rise to the
multiscale fluctuations in the thermal or electrical conductivity. In porous media,
formation properties, e.g. permeability, have a very high degree of spatial vari-
ability. These effects are typically captured at scales that are too fine for direct
numerical simulation. To enable the solution of these problems, a number of ad-
vanced numerical methods have been developed. Examples include those based on
the homogenisation theory (e.g. Dykaar and Kitanidis (1992)), upscaling methods
(e.g. McCarthy (1995)) and multiscale methods (e.g. Hou andWu (1997)). The
homogenisation-theory-based methods have been successfully applied for the pre-
diction of effective properties and statistical correlation lengths for multicomponent
random media. However, restrictive assumptions on the media, such as scale sepa-
ration and periodicity, limit their range of application. Furthermore, when dealing
with problems having many separate scales, they become veryexpensive because
their computational cost increases exponentially with thenumber of scales. For
upscaling methods, their design principle is based on simple physical and/or math-
ematical motivations. A heterogeneous medium is replaced by a homogeneous
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medium characterised by equivalent properties, and coarsescale equations are pre-
scribed in explicit form. Although upscaling techniques are effective, most of their
applications have been reported for the case of periodic structures. As opposed to
upscaling, multiscale methods consider the full problem with the original resolu-
tion. The coarse scale equations are formed and solved numerically, where one
constructs the basis functions from the leading order homogeneous elliptic equa-
tion in coarse scale elements. The idea of using the non-polynomial multiscale
approximation space rather than the standard piecewise polynomial space was first
introduced by Babuška, Caloz, and Osborn (1994) for one-dimensional problems
and by Hou and Wu (1997); Hou, Wu, and Cai (1999) for two-dimensional el-
liptic problems. These methods have the ability to capture accurately the effects
of fine scale variations without the need for using global finemeshes. Multiscale
methods can be categorised into multiscale finite-element methods (MFEM) (e.g.
Allaire and Brizzi (2005); Hou (2005)), mixed MFEM (e.g. Aarnes, Kippe, and
Lie (2005); Arbogast (2002)) and multiscale finite-volume methods (MFVM) (e.g.
Chu, Efendiev, Ginting, and Hou (2008); Jenny, Lee, and Tchelepi (2003)). Typ-
ically, there are two different meshes used: a fine mesh for computing locally the
basis function space, and a coarse mesh for computing globally the solution of an
elliptic partial differential equation (PDE). The multiscale bases are independent
of each other and their constructions can thus be conducted in parallel. In solv-
ing the elliptic PDE, one may only need to employ a mesh that today’s computing
resources can efficiently and effectively handle. For two-scale periodic structures,
Hou, Wu, and Cai (1999) have proved that the MFEM indeed converges to the cor-
rect solution independent of the small scale in the homogenisation limit. Multiscale
techniques require the solutions of elliptic PDEs which areachieved by means of
discretisation schemes.

Radial-basis-function networks (RBFNs) are known as a powerful tool for the ap-
proximation of scattered data. Their application to the solution of PDEs has re-
ceived a great deal of attention over the last 20 years (e.g. Fasshauer (2007) and
references therein). It is easy to implement RBF collocation methods and such
methods can give a high order convergence solution. RBF-based approximants can
be constructed through a conventional differentiation process, e.g. Kansa (1990), or
an integration process (IRBF), e.g. Mai-Duy and Tran-Cong (2001, 2003). The lat-
ter (a smoothing operator) has several advantages over the former, including (i) to
avoid the reduction in convergence rate caused by differentiation and (ii) to improve
the numerical stability of a discrete solution. A number of IRBF approaches, based
on local approximations (Mai-Duy and Tran-Cong, 2009), domain decompositions
(Mai-Duy and Tran-Cong, 2008) and preconditioning schemes(Mai-Duy and Tran-
Cong, 2010), have been presented towards the solution of large-scale problems. Re-
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cently, a local high order approximant based on 2-node IRBF elements (a smallest
IRBF set ever used for constructing approximants) has been proposed by An-Vo,
Mai-Duy, and Tran-Cong (2010, 2011a). It was shown that suchIRBF elements
(IRBFEs) lead to aC2-continuous solution rather than the usualC0-continuous so-
lution. IRBFEs have been successfully incorporated into the subregion-collocation
(An-Vo, Mai-Duy, and Tran-Cong, 2011b) and point-collocation (An-Vo, Mai-Duy,
and Tran-Cong, 2011b; An-Vo, Mai-Duy, Tran, and Tran-Cong,2013) formula-
tion for simulating highly nonlinear flows accurately and effectively. We also use
IRBFEs to model strain localisation in (An-Vo, Mai-Duy, Tran, and Tran-Cong,
2012).

This paper is concerned with the incorporation of IRBFEs andsubregion colloca-
tion (i.e. control-volume (CV) formulation) into the non-polynomial approximation
space approach for solving one- and two-dimensional multiscale elliptic problems.
Unlike other multiscale CV methods in the literature, sets of basis and correction
functions in the present RBF-based multiscale CV method areobtained through
highly accurateC2-continuous IRBFE-CV formulations. As a result, not only the
field variable but also its first derivatives are reconstructed directly with high ac-
curacy. This is an important issue since the first derivatives contain information of
great practical interest, such as the stress distribution and heat flux in composite
materials or the flow velocity field in porous media.

The remainder of the paper is organised as follows. Section 2defines the problem.
Section 3 and 4 briefly review the multiscale finite element and finite volume meth-
ods, respectively, for the problem. The proposed method is described in Section 5
and numerical results are discussed in Section 6. Section 7 concludes the paper.

2 Problem definition

We consider the following multiscale elliptic problem

−∇ · (λ∇u) = f in Ω, (1)

with appropriate boundary conditions.λ is a complex multiscale coefficient tensor;
f a given function. Assume that the finest scale inλ is represented byε .

3 Multiscale finite-element methods (MFEM)

Conventional discretisation techniques using piecewise polynomial approximation
spaces can be applied to solve (1). However, it would requirethe mesh sizeh be
much smaller than the finest scale, i.e.h≪ ε . In contrast, the multiscale computa-
tional framework which was firstly proposed by Hou and Wu (1997); Hou, Wu, and
Cai (1999) uses a coarse grid of sizeh> ε and basis functions which aim to adapt to
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the small-scale features of the oscillatory coefficient tensorλ ). The formulation of
Hou and Wu (1997); Hou, Wu, and Cai (1999), namely the multiscale finite element
method (MFEM), is based on a finite element framework where both the local and
global problems are solved by a linear finite element method (LFEM). The MFEM
is highly efficient and capable of capturing the large scale solution without resolv-
ing all the small scale details. For the case of two-scale periodic structures, it has
been proved in Hou, Wu, and Cai (1999) that the MFEM indeed converges to the
correct solution independent of the small scale in the homogenisation limit. How-
ever, for general cases e.g. non-periodic and random-scalemedia, the convergence
of MFEM is not always guaranteed. In addition, there is an error gap between the
MFEM solution and a corresponding fine scale reference solution. This error gap
typically comes from two sources: (i) reduced problem boundary conditions for
solving basis functions which is empirical even though an over-sampling technique
has been proposed (Hou and Wu, 1997); and (ii) local homogeneous elliptic prob-
lems for basis functions. Due to the latter the basis functions do not involve effects
of the right hand side fieldf . The right hand side, in a manner similar to that in
the MSFV method (discussed next), is only considered in the global coarse mesh
system.

4 Multiscale finite volume (MSFV) method

Based on the multiscale basis function approach (Hou, Wu, and Cai, 1999; Hou
and Wu, 1997), Jenny, Lee, and Tchelepi (2003) and Chu, Efendiev, Ginting, and
Hou (2008) proposed the MSFV method for elliptic problems insubsurface flow
simulation. Equation (1) governs the pressure fieldp as

−∇ · (λ∇p) = f in Ω, (2)

with the boundary conditions∇p ·n = q and p(x) = g on ∂Ω1 and∂Ω2, respec-
tively. Note that∂Ω = ∂Ω1 ∪ ∂Ω2 is the whole boundary of the domainΩ and
n is the outward unit vector normal to∂Ω. The mobility tensorλ (permeability,
K , divided by the fluid viscosity,µ) is positive definite and the right-hand sidef ,
q, andg are specified fields. The permeability heterogeneity is a dominant factor
in dictating the flow behavior in natural porous formations.The heterogeneity of
K is usually represented as a complex multiscale function of space. Resolving the
spatial correlation structures and capturing the variability of permeability requires
highly detailed description.

The MSFV method aims to efficiently compute the approximate solution of prob-
lem (2) for highly heterogeneous coefficientλ and source termf . The method can
be explained as a cell-centered finite-volume method (Jenny, Lee, and Tchelepi,
2003) or a vertex-centered finite-volume method (Chu, Efendiev, Ginting, and
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Hou, 2008). We present the latter here. A Cartesian grid ofN×N is employed
to represent the problem domainΩ (solid lines in Fig. 1), from whichI (I =
(N−2)× (N−2)) non-overlapping control volumesΩk associated withI interior
grid pointsxk (k∈ [1, I ]) are formed. This set of control volumes constitutes a grid
which is referred to as the coarse grid (dashed black lines inFig. 1). In addition,
let Ω̃ be a collection ofJ cellsΩ̃l (l ∈ [1,J],J = (N−1)× (N−1)) defined by the
original N×N Cartesian grid (solid lines in Fig. 1). This set ofJ cells is referred
to as the dual coarse grid. Note that these two grids can be much coarser than the
underlying fine grid (dashed green lines in Fig. 1 wherein each dual cellΩ̃l is dis-
cretised by a local fine grid ofn×n) on which the mobility field is represented. On
each dual cell̃Ωl , we seek the approximate solutioñp of p in the form

pl ≈ p̃l =
4

∑
i=1

pl
i φ l

i , (3)

wherepl
i andφ l

i are the pressure value at and the basis function associated with the
nodexl

i , respectively, of the dual coarse cellΩ̃l .

Unlike conventional discretisation methods, these basis functions{φ l
i }

4
i=1 are gen-

erated from solving the following leading order homogeneous elliptic equations on
the dual coarse cell̃Ωl ,

∇ · (λ∇φ l
i ) = 0 in Ω̃l . (4)

Boundary conditions for (4) are derived from the requirement that φ l
i (x

l
j) = δi j

(i, j ∈ [1,4]) and (4) be well-posed problems. Jenny, Lee, and Tchelepi (2003)
employed the proposition in (Hou, Wu, and Cai, 1999) by solving reduced local
one-dimensional problems to specify the boundary conditions for (4). The elliptic
problems (4) iñΩl with such boundary conditions can be solved by any appropriate
numerical method. In order to obtain a solution that dependslinearly on the nodal
pressurespl

i as in (3), we solve four elliptic problems, one for each nodalpressure.

To derive a linear system for the nodal pressure valuespk, we substitute expressions
(3) for p̃ in the four dual cells associated withxk into equation (2) and integrate over
Ωk, which leads to

−

∫

Ωk

∇ · (λ∇p̃)dΩ =−

∫

Ωk

∇ ·

(
λ∇

(
4

∑
l=1

9

∑
i=1

φ l
i pi

))
dΩ =

∫

Ωk

f dΩ, (5)

where the indicesl andi refer to local dual cells and local nodal points, respectively,
associated withxk andxk ≡ x1 as shown in Fig. 2. Note that in the summation
∑9

i=1φ l
i pi the indexi of the basis functionsφ l

i only takes on the four values relevant
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to Ω̃l (i.e. φ l
i = 0 otherwise). Applying the Gauss theorem to equation (5), one

obtains

−
∫

∂Ωk

(
λ∇

(
4

∑
l=1

9

∑
i=1

φ l
i pi

))
·nkdΓ =

9

∑
i=1

pi

4

∑
l=1

∫

∂Ωk

(
−λ∇φ l

i

)
·nkdΓ =

∫

Ωk

f dΩ,

(6)

wherenk is the outward unit vector normal to∂Ωk. Equations (6) at a nodal point
xk (k∈ [1, I ]) can be written in matrix form as

Aki pi = bk (7)

for the nodal pressure valuespk with

Aki =
4

∑
l=1

∫

∂Ωk

(
−λ∇φ l

i

)
·nkdΓ (8)

and

bk =
∫

Ωk

f dΩ. (9)

We can reconstruct the fine scale pressurep̃l in each dual coarse cell̃Ωl with pk

and the approximation (3). Implementing the reconstruction on the whole problem
domainΩ one obtains the fine scale pressurep̃, which is an approximation of the
pressure fieldp.

Although the MSFV approach strongly resembles the multiscale finite element
method by Hou, Wu, and Cai (1999), i.e. the construction of the basis functions is
almost identical, the MSFV is a finite-volume method and hence conservative. In
some applications such as single and multiphase flows through porous media one
is also interested in accurately representing the small-scale velocity field. Chen
and Hou (2002) provide clear evidences that a locally conservative fine scale ve-
locity field is a necessary requirement for accurate modeling of fluid transport. To
construct the fine scale flow field, a straightforward way would be to use the basis
functions in (3), but then the reconstructed fine scale velocity field is in general dis-
continuous at the interfaces of the dual cells. Therefore, large errors can occur in
the divergence field, and local mass balance is violated. Jenny, Lee, and Tchelepi
(2003) describe how to reconstruct a conservative fine scalevelocity field through
the obtained pressure field̃p. The reader is referred to this work for more details.

The efficiency of the MSFV method for large scale problems comes from the fact
that fine scale details are captured through solving local problems (4) on small dual
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cells for basis functions. This step is a preprocessing stepand has to be done once
only. Furthermore, the construction of the fine scale basis functions is independent
from cell to cell and therefore perfectly suited for parallel computation.

The MSFV method was firstly used for solving single-phase flowin homogeneous
and heterogenous permeability fields in (Jenny, Lee, and Tchelepi, 2003). Jenny,
Lee, and Tchelepi (2004) and Jenny, Lee, and Tchelepi (2006)extended the method
to time dependent problems in incompressible two-phase flows where the explicit
and implicit time integrations were presented respectively. Lunati and Jenny re-
laxed the incompressible constraint in (Lunati and Jenny, 2006a) and compressible
multiphase flow models were solved. It is important to note that until this stage of
development the MSFV method basically was not designed to solve elliptic prob-
lems with complex source terms and not appropriate to account for gravity and
capillary pressure effects. The reason is that the basis functions and their linear
combinations are solutions of local homogenous elliptic problems (4). The right
hand side of the governing equation (2) is only taken into account in the coarse grid
linear system (7). This led to the idea of introducing correction functions in (Lunati
and Jenny, 2006b, 2008). Unlike basis functionsφ l

i , correction functionspl
c are the

solutions of local elliptic problems on the dual cells with the right hand sidef , i.e.

∇ · (λ∇pl
c) = f in Ω̃l . (10)

At the grid nodesxk which belong toΩ̃l , we imposepl
c(xk) = 0. The boundary

conditions of (10) on the edge segments of the dual cell can beobtained in a man-
ner similar to those in (4), i.e. by solving reduced local one-dimensional problems.
It has been shown for a wide range of challenging test cases that these reduced
problem boundary conditions provide a good localisation assumption. There exist
scenarios, however, which demonstrate some limitations ofthese boundary condi-
tions. Specifically, the MSFV solution with correction functions and global fine
scale reference solutionpf (pf is an approximation ofp on the global fine grid) are
identical only if the basis and correction functions happento capture the exact fine
scale pressure solution on the interfaces of the dual coarsecells , i.e.

pl
f =

4

∑
i=1

pl
i φ l

i + pl
c on ∂ Ω̃l . (11)

It is desirable to approach boundary conditions for local elliptic problems via (11)
instead of the reduced problem boundary conditions. Hajibeygi, Bonfigli, Hesse,
and Jenny (2008) made it possible through an iterative framework based on a two-
grid algorithm. At a stepn with an initial pressure field̃p(n), they perform several
smoothing steps on the global fine grid to obtain a temporary reference solution
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p̃(n)s . This smoothed pressure field yields the boundary values of correction func-
tions on each dual cell through (11) withpl

f replaced bỹp(n)s , i.e.

pl
c = p̃l (n)

s −
4

∑
i=1

pl
i φ l

i on ∂ Ω̃l , (12)

where the boundary values of the basis functionsφ l
i on the dual cells are still ob-

tained from the reduced problem boundary conditions. The boundary conditions
(12) serve to solve the local problems (10) on the dual cells for the correction func-
tions at stepn. Then the nodal pressurespk are obtained through the solution of a
coarse grid system (Hajibeygi, Bonfigli, Hesse, and Jenny, 2008) and a new pres-
sure fieldp̃(n+1) is constructed via

p̃l (n+1)
=

4

∑
i=1

pl
i φ l

i + pl
c in Ω̃l . (13)

Again, we smooth̃p(n+1) to yield a new smoothed field̃p(n+1)
s and repeat the it-

eration until convergence. It was shown by a series of examples in (Hajibeygi,
Bonfigli, Hesse, and Jenny, 2008) that this iterative MSFV (iMSFV) method con-
verges to the fine scale reference solutionpf .

The iMSFV method relatively maintains the efficiency of MSFVmethod and has
the possibility to approach the accuracy of corresponding fine scale solver. This
method has been successfully applied to incompressible (Hajibeygi, Bonfigli, Hesse,
and Jenny, 2008) and compressible (Hajibeygi and Jenny, 2009) multiphase flow
in porous media. Recently, it is used adaptively (Hajibeygiand Jenny, 2011) and
extended to simulate multiphase flow in fractured porous media (Hajibeygi, Kar-
vounis, and Jenny, 2011).

5 Proposed RBF-based multiscale control-volume method

In this work we are interested in a one-parameter (ε) form of the multiscale elliptic
problem (1), i.e.

−∇ · (aε(x)∇u(x)) = f (x) in Ω (14)

with the boundary conditions∇u·n= bandu(x) = gon∂Ω1 and∂Ω2, respectively.
Note that∂Ω = ∂Ω1∪ ∂Ω2 andn is the outward unit vector normal to∂Ω. aε is
the coefficient tensor which is positive-definite with upperand lower bounds and
involving a small scaleε , and f ,b andg are specified fields. This elliptic problem
usually arises in modeling composite materials and porous media flows. In the case
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of heat conduction in composite materials,u anda represent the temperature and
thermal conductivity, respectively. In the case of flows in porous media,u is the
pressure anda is the mobility field.

For the reasons mentioned above, the MFEM is an efficient method to capture the
large scale solution but cannot produce the fine scale reference solution. In ad-
dition, the method used in MFEM to determine the basis functions and solve the
global coarse mesh problem is a linear finite element formulation. Note that there
is an attempt to use a high-order method, e.g. the Chebyshev spectral method, to
determine the basis functions in Hou and Wu (1997); Hou, Wu, and Cai (1999).
They found that the accuracy of the final results is relatively insensitive to the
accuracy of the basis functions. On the other hand, as described above, though
possessing conservative property the MSFV method stronglyresemble the MFEM
and hence also cannot produce the fine scale reference solution. In contrast to the
MFEM and the MSFV method, the iMSFV method (Hajibeygi, Bonfigli, Hesse,
and Jenny, 2008) can produce the reference solution efficiently. However, a low
order smoother has been used which results in a low-order accuracy relative to the
exact solution. Moreover, like the MSFV method the iMSFV method requires a
further reconstruction step to obtain a continuous velocity field for the solution of
transport equations. It is pointed out in (Chen and Hou, 2002) that this is a compul-
sory step to accurately solve the flow-transport-related applications, e.g. the single
and multiphase flows through porous media.

It is desirable to develop a multiscale computational framework which can pro-
duce the fine scale reference solution of elliptic problem (14) with high efficiency
and accuracy. In the following, we propose a high-order conservative multiscale
computational framework based on 2-node IRBFEs for solving(14). Unlike other
multiscale computational frameworks, the proposed methodcan produce fine scale
reference solutions efficiently with high accuracy. Furthermore, iterative solutions
which converge toC2-continuous reference solutions are obtained in 2D problems.
As a result, intrinsically continuous velocity fields are guaranteed automatically in
flow-transport-related applications without the need for areconstruction step. Be-
cause of fundamental differences, the proposed method for 1D and 2D problems is
presented independently, following a brief review of the two-node integrated-RBF
elements in our discretisation scheme based on Cartesian grids.

5.1 Two-node integrated-RBF elements (IRBFEs)

Assume that a Cartesian grid is used to discretise a rectangular domainΩ. As a
result, a set of nodal points includes interior grid nodes and boundary nodes which
are defined as the intersection of the grid lines and the boundaries. Over straight-
line segments between two adjacent nodal points, 1D-IRBFs (e.g. Mai-Duy and
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Tanner (2007)) are utilised to represent the variation of the field variable and its
derivatives, forming 2-node IRBFEs. It can be seen that there are two types of el-
ements, namely interior and semi-interior elements. An interior element is formed
using two adjacent interior nodes while a semi-interior element is generated by an
interior node and a boundary node (Fig. 3).

5.1.1 Interior elements

1D-IRBF expressions for interior elements are of similar forms. Consider an inte-
rior element,η ∈ [η1,η2], and its two nodes are locally named as 1 and 2. Letφ(η)
be a function andφ1, ∂φ1/∂η , φ2 and∂φ2/∂η be the values ofφ and∂φ/∂η at
the two nodes, respectively (Fig. 4(a)). The 2-node IRBFE scheme approximates
the second-order derivative ofφ(η) using two multiquadric (MQ) functions whose
centres are located atη1 andη2

∂ 2φ
∂η2(η) = w1

√
(η −η1)2+a2

1+w2

√
(η −η2)2+a2

2 = w1I (2)1 (η)+w2I
(2)
2 (η),

(15)

whereI (2)i (η) conveniently denotes the MQ,wi andai are the associated weight
and MQ-width at nodei (i ∈ {1,2}). We simply takeai = βh, whereh is a grid size
andβ is a factor.

First-order derivative ofφ and the functionφ are approximated by integrating (15)
with respect toη
∂φ
∂η

(η) = w1I (1)1 (η)+w2I
(1)
2 (η)+C1, (16)

φ(η) = w1I (0)1 (η)+w2I
(0)
2 (η)+C1η +C2, (17)

whereI (1)i (η) =
∫

I (2)i (η)dη , I (0)i (η) =
∫

I (1)i (η)dη , andC1 andC2 are the con-
stants of integration. By collocating (17) and (16) atη1 andη2, the relation between
the physical space and the RBF coefficient space is obtained



φ1

φ2
∂φ1
∂η
∂φ2
∂η




︸ ︷︷ ︸
φ̂

=




I (0)1 (η1) I (0)2 (η1) η1 1

I (0)1 (η2) I (0)2 (η2) η2 1

I (1)1 (η1) I (1)2 (η1) 1 0

I (1)1 (η2) I (1)2 (η2) 1 0




︸ ︷︷ ︸
I




w1

w2

C1

C2




︸ ︷︷ ︸
ŵ

, (18)

whereφ̂ is the nodal-value vector,I the conversion matrix, and̂w the coefficient
vector. It is noted that not only the nodal values ofφ but also of∂φ/∂η are incor-
porated into the conversion system and this imposition is done in an exact manner
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owing to the presence of integration constants. Solving (18) yields

ŵ= I
−1φ̂ . (19)

Substitution of (19) into (17), (16) and (15) leads to

φ(η) =
[
I (0)1 (η), I (0)2 (η),η ,1

]
I

−1φ̂ , (20)

∂φ
∂η

(η) =
[
I (1)1 (η), I (1)2 (η),1,0

]
I

−1φ̂ , (21)

∂ 2φ
∂η2(η) =

[
I (2)1 (η), I (2)2 (η),0,0

]
I

−1φ̂ . (22)

They can be rewritten in the form

φ(η) = ϕ1(η)φ1+ϕ2(η)φ2+ϕ3(η)
∂φ1

∂η
+ϕ4(η)

∂φ2

∂η
, (23)

∂φ
∂η

(η) =
∂ϕ1(η)

∂η
φ1+

∂ϕ2(η)

∂η
φ2+

∂ϕ3(η)

∂η
∂φ1

∂η
+

∂ϕ4(η)

∂η
∂φ2

∂η
, (24)

∂ 2φ
∂η2(η) =

∂ 2ϕ1(η)

∂η2 φ1+
∂ 2ϕ2(η)

∂η2 φ2+
∂ 2ϕ3(η)

∂η2

∂φ1

∂η
+

∂ 2ϕ4(η)

∂η2

∂φ2

∂η
, (25)

where{ϕi(η)}4
i=1 is the set of basis functions in the physical space. These expres-

sions allow one to compute the values ofφ , ∂φ/∂η , and∂ 2φ/∂η2 at any pointη
in [η1,η2] in terms of four nodal unknowns, i.e. the values of the field variable and
its first-order derivatives at the two extremes (also grid points) of the element.

For convenience, in the case ofη ≡ x, we denote

µi =
∂ϕi

∂x

(
x1+x2

2

)
, (26)

νi =
∂ 2ϕi

∂x2 (x1) , (27)

ζi =
∂ 2ϕi

∂x2 (x2) , (28)

and in the case ofη ≡ y,

θi =
∂ϕi

∂y

(
y1+y2

2

)
, (29)

ϑi =
∂ 2ϕi

∂y2 (y1) , (30)

ξi =
∂ 2ϕi

∂y2 (y2) , (31)

where i ∈ {1,2,3,4}.
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5.1.2 Semi-interior elements

As mentioned earlier, a semi-interior element is defined by two nodes: an interior
node and a boundary node. The subscripts 1 and 2 are now replaced withb (for a
boundary node) andg (for an interior grid node), respectively (Fig. 4(b)). Assume
that the value ofφ is given atηb. The conversion system can be formed as




φb

φg
∂φg

∂η


=




I (0)b (ηb) I (0)g (ηb) ηb 1

I (0)b (ηg) I (0)g (ηg) ηg 1

I (1)b (ηg) I (1)g (ηg) 1 0







wb

wg

C1

C2


 , (32)

which leads to

φ(η) = ϕ1(η)φb+ϕ2(η)φg+ϕ3(η)
∂φg

∂η
, (33)

∂φ
∂η

(η) =
∂ϕ1(η)

∂η
φb+

∂ϕ2(η)

∂η
φg+

∂ϕ3(η)

∂η
∂φg

∂η
, (34)

∂ 2φ
∂η2(η) =

∂ 2ϕ1(η)

∂η2 φb+
∂ 2ϕ2(η)

∂η2 φg+
∂ 2ϕ3(η)

∂η2

∂φg

∂η
. (35)

It can be seen that the conversion matrix in (32) is under-determined and its in-
verse can be obtained using the SVD technique (pseudo-inversion). Owing to the
facts that point collocation is used and the RBF conversion matrix is not over-
determined, the boundary conditionφb is imposed in an exact manner in the sense
that the error is due to the numerical inversion only and there is no intrinsic approx-
imation errors such as those associated with “unconstrained" boundary conditions
imposed by certain finite element methods (Burnett, 1987). For Neumann bound-
ary conditions such as given surface traction or boundary pressure, other types of
semi-interior elements have been proposed in (An-Vo, Mai-Duy, and Tran-Cong,
2011a) to which the reader is referred for details.

5.2 Proposed method for 1D problems

In a 1D domain, problem (14) reduces to

−
d
dx

(
aε(x)

du(x)
dx

)
= f (x), x∈ Ω, (36)

whereaε(x) is a single variable function involving a small scale parameter ε . The
problem domain is represented using a set ofN nodal points, called a global coarse
scale grid. This grid is used to obtain the coarse scale solution of problem (36). On
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each interval or coarse cell̃Ωl , Ω̃l = [xi−1,xi ] with i ∈ [2,N] and l ∈ [1,N−1], an
approximation to the field variableu is sought in the form

ul (x) = φ l
i−1(x)ui−1+φ l

i (x)ui +ul
c(x), (37)

wherex∈ Ω̃l , ui−1 = u(xi−1), ui = u(xi), φ l
i−1(x) andφ l

i (x) are the basis functions

associated with the nodesxi−1 andxi respectively on the coarse cellΩ̃l , andul
c(x)

is the correction function associated with the coarse cellΩ̃l .

We employ subregion collocation to discretise (36). Each nodexi with i ∈ [2,N−1]
is surrounded by a control volumeΩi , Ωi = [xi−1/2,xi+1/2] as shown in Fig. 5.
Integrating (36) over a control volumeΩi, one has

aε(xi+1/2)
du
dx

(xi+1/2)−aε(xi−1/2)
du
dx

(xi−1/2)+
∫ xi+1/2

xi−1/2

f dx= 0. (38)

Taking (37) into account, one can express first derivatives in (38) in terms of nodal
values ofu. Unlike traditional discretisation methods, the basis functionsφ l

i−1(x)

andφ l
i (x) on a coarse cell̃Ωl are not analytic functions (e.g. not polynomials), but

local numerical solutions to the following differential equation

d
dx

(
aε dφ l

k

dx

)
= 0 (39)

with k∈ {i−1, i} andx∈ Ω̃l . Boundary conditions for (39) are specified using the
conditionφ l

k(x j) = δk j with j ∈ {i −1, i}. Likewise, the correction functionul
c(x)

is a numerical solution to the following differential equation

−
d
dx

(
aε dul

c

dx

)
= f (40)

with homogeneous boundary conditionsul
c(x j) = 0, j ∈ {i −1, i}. Unlike (39) the

right hand sidef of the governing equation (36) is involved in (40). Equation
(39) needs to be solved twice while equation (40) needs to be solved once for the
determination of the two basis functions and the correctionfunction respectively on
each coarse cell. A coarse cellΩ̃l is discretised by a set ofn points, called local fine
scale grid. Such a grid is used to capture the fine scale structure information of the
solution. Let{η1 = xi−1,η2, . . . ,ηn = xi} be a set of nodes of the local fine scale
grid. Similar to a coarse scale node, each fine scale nodeηm with m∈ [2,n−1] is
surrounded by a local control volumeΩm, Ωm = [ηm−1/2,ηm+1/2]. Integrating (39)
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and (40) overΩm, one has respectively

aε(ηm+1/2)
dφ l

k

dx
(ηm+1/2)−aε(ηm−1/2)

dφ l
k

dx
(ηm−1/2) = 0, (41)

aε(ηm+1/2)
dul

c

dx
(ηm+1/2)−aε(ηm−1/2)

dul
c

dx
(ηm−1/2)+

∫ ηm+1/2

ηm−1/2

f dη = 0. (42)

We propose to approximate the first-order derivatives in (41) and (42) by a 2-node
IRBFE scheme, i.e. equation (24). Assuming thatηm−1 and ηm+1 are interior
fine scale nodes, we can form two interior 2-node IRBFEs atηm, i.e. elements
[ηm−1,ηm] and [ηm,ηm+1], to the left and right side ofηm respectively. Applying
(24) with notation (26) to the element[ηm−1,ηm], one has

dφ l
k

dx
(ηm−1/2) = µ1φ l

k(ηm−1)+µ2φ l
k(ηm)+µ3

dφ l
k

dη
(ηm−1)+µ4

dφ l
k

dη
(ηm), (43)

dul
c

dx
(ηm−1/2) = µ1ul

c(ηm−1)+µ2ul
c(ηm)+µ3

dul
c

dη
(ηm−1)+µ4

dul
c

dη
(ηm). (44)

Similarly, to the element[ηm,ηm+1], one has

dφ l
k

dx
(ηm+1/2) = µ1φ l

k(ηm)+µ2φ l
k(ηm+1)+µ3

dφ l
k

dη
(ηm)+µ4

dφ l
k

dη
(ηm+1), (45)

dul
c

dx
(ηm+1/2) = µ1ul

c(ηm)+µ2ul
c(ηm+1)+µ3

dul
c

dη
(ηm)+µ4

dul
c

dη
(ηm+1). (46)

Note that (43)-(46) will be slightly different at the coarsecell boundaries (also the
coarse scale nodes) where (34) for semi-interior elements is used instead of (24).
Substituting (43) and (45) into (41) yields

aε(ηm+1/2)µ2φ l
k(ηm+1)+

[
aε (ηm+1/2)µ1−aε(ηm−1/2)µ2

]
φ l

k(ηm)

−aε(ηm−1/2)µ1φ l
k(ηm−1)+aε(ηm+1/2)µ4

dφ l
k

dη
(ηm+1)

+
[
aε(ηm+1/2)µ3−aε(ηm−1/2)µ4

] dφ l
k

dη
(ηm)−aε(ηm−1/2)µ3

dφ l
k

dη
(ηm−1) = 0.

(47)

It can be seen from (47) that there are two unknowns, namelyφ l
k(ηm) and dφ l

k/dη(ηm),
associated with each nodal pointsηm (m∈ [2,n−1]). Collection of (47) at all nodal
points leads to a system ofn−2 equations for 2× (n−2) unknowns. For the alge-
braic system to be solvable one more equation needs to be added at each and every
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nodal pointsηm, which is here achieved by imposingC2-continuous condition at
ηm, i.e.
[

d2φ l
k

dη2 (ηm)

]

L
=

[
d2φ l

k

dη2 (ηm)

]

R
, (48)

where(.)L indicates that the computation of(.) is based on the element to the left
of ηm, i.e. element[ηm−1,ηm], and similarly subscriptR denotes the right element
[ηm,ηm+1]. The left and the right of equation (48) are obtained via expression (25),
noting (28) and (27) respectively, yielding

ζ1φ l
k(ηm−1)+ζ2φ l

k(ηm)+ζ3
dφ l

k

dη
(ηm−1)+ζ4

dφ l
k

dη
(ηm) =

ν1φ l
k(ηm)+ν2φ l

k(ηm+1)+ν3
dφ l

k

dη
(ηm)+ν4

dφ l
k

dη
(ηm+1). (49)

Collection of equations (47) and (49) at each and every fine scale nodesηm (m∈
[2,n− 1]) with the associated boundary conditions leads to two systems of 2×
(n− 2) equations for 2× (n− 2) unknowns. These two systems are solved for
the two basis functions oñΩl . Unlike other conventional discretisation techniques,
both the field variable and its first-derivative are considered in the present proposed
technique, resultingC2-continuous solutions for the basis functions.

Similarly, at each fine scale nodeηm, substituting (44) and (46) into (42) and im-
posingC2-continuous condition atηm lead to two equations for two unknowns
associated withηm. Collection of these equations at all fine scale nodes with the
homogeneous boundary conditions results in a system of 2× (n−1) equations for
2× (n−1) unknowns. This system is solved for the correction functionul

c associ-
ated with the coarse cell̃Ωl .

The set of basis and correction functions of the whole domainΩ is used to represent
the first derivatives in (38) in terms of coarse scale nodal valuesui (i ∈ [2,N−1]).
Collection of equation (38) at all coarse scale nodes with the associated boundary
conditions lead to a coarse scale system ofN−2 equations forN−2 coarse scale
nodal values ofu. Consequently, the complete solution of problem (36) is con-
structed on each and every coarse cellΩ̃l via (37). It can be seen that the presently
proposed multiscale method is conservative for both local and global problems.

5.3 Proposed method for 2D problems

We consider the coefficient tensoraε in the following form

aε =

(
aε(x) 0

0 bε(y)

)
, (50)
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whereaε (x) and bε(y) are oscillatory functions involving a small scaleε . It is
noted that the periodicity and scale separation assumptions of aε(x) andbε(y) are
not necessary here. The two-dimensional equation (14) becomes

−
∂
∂x

(
aε (x)

∂u
∂x

)
−

∂
∂y

(
bε(y)

∂u
∂y

)
= f (x,y). (51)

Here we are considering a particular class (51) of the general problem (14) for the
convenience of presenting the main features of the proposedmethod. Extension of
the proposed method to the general problem whereaε is a full tensor requires con-
sideration of a mixed derivative term and will be reported inan up-coming work.
Nevertheless, the multiscale problem (51) does have important application in, e.g.
two-dimensional semi-conductor quantum devices wherein there is a specific direc-
tion oscillation of the coefficients at each location in space and time. The readers
are referred to (Wang and Shu, 2009) for the application of such device models in
one-dimension.

A Cartesian grid system is employed to represent the problemdomainΩ in a man-
ner similar to that in the MSFV method (e.g. Fig. 1). Integrating (51) over a control
volumeΩk and then applying the Green’s theorem in plane, one has

−
∫

Ωk

[
∂
∂x

(
aε (x)

∂u
∂x

)
+

∂
∂y

(
bε(y)

∂u
∂y

)]
dΩ =

−

∫

∂Ωk

aε (x)
∂u
∂x

dy+
∫

∂Ωk

bε(y)
∂u
∂y

dx= Ak fk, (52)

whereAk is the area ofΩk and

fk =
1
Ak

∫

Ωk

f dΩ. (53)

Approximating the line integrals in (52) by the midpoint rule, one obtains

−

[(
aε(x)

∂u
∂x

)

e
−

(
aε(x)

∂u
∂x

)

w

]
∆y−

[(
bε (y)

∂u
∂y

)

n
−

(
bε (y)

∂u
∂y

)

s

]
∆x =Ak fk,

(54)

where∆x and∆y are the coarse grid spacing inx andy direction respectively; and
the subscriptse,w,n and s are used to indicate that the flux is estimated at the
intersections of the dual grid lines with the east, west, north and south faces of the
control volumeΩk, respectively (Fig. 2).
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To estimate the first-order derivatives ofu in (54) we consider the dual coarse cells
Ω̃l in a 2D computational domain as shown in Fig. 1. We seek the approximation
for the field variableu on eachΩ̃l in the form

ul (x) =
4

∑
i=1

φ l
i (x)ui +ul

c(x), (55)

whereφ l
i (x) is the basis function associated with a coarse scale nodexi andi ∈ [1,4]

is the local index of the four nodes of a coarse cellΩ̃l , ui = u(xi), andul
c(x) is the

correction function associated with a coarse cellΩ̃l . As explained earlier via (4)
and (10), these basis functions and correction function aresimilarly local numerical
solutions of problem (51) oñΩl without and with right-hand side, respectively, i.e.

−
∂
∂x

(
aε (x)

∂φ l
i

∂x

)
−

∂
∂y

(
bε(y)

∂φ l
i

∂y

)
= 0, (56)

−
∂
∂x

(
aε (x)

∂ul
c

∂x

)
−

∂
∂y

(
bε(y)

∂ul
c

∂y

)
= f (x,y). (57)

Boundary conditions for (56) are

∂
∂x

(
aε(x)

∂φ l
i

∂x

)
= 0 on ∂ Ω̃l

x, (58)

∂
∂y

(
bε(y)

∂φ l
i

∂y

)
= 0 on ∂ Ω̃l

y, (59)

and for (57) are

∂
∂x

(
aε(x)

∂ul
c

∂x

)
=

∂
∂x

(
aε(x)

∂uf

∂x

)
on ∂ Ω̃l

x, (60)

∂
∂y

(
bε(y)

∂ul
c

∂y

)
=

∂
∂y

(
bε(y)

∂uf

∂y

)
on ∂ Ω̃l

y, (61)

where∂ Ω̃l
x and∂ Ω̃l

y denote thex- andy-segments, respectively, of the boundary of

a dual cellΩ̃l anduf is a reference solution on the global fine scale grid. A method
to create a fine scale reference solutionuf will be presented in the following section.
At the dual-grid nodesxi which belong tõΩl , φ l

j (xi)= δ ji ( j ∈ [1,4]) andul
c(xi)= 0.

Note that outsidẽΩl the φ l
j and ul

c are set to zero. In the present approach, a
C2-continuous IRBFE based control volume method (An-Vo, Mai-Duy, and Tran-
Cong, 2011a) is used to solve the local problems (56) and (57)with the associated
boundary conditions for the basis functions and correctionfunctions respectively.
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The first-order derivatives ofu in (54) can now be estimated by using expressions
(55) for ul in the four dual coarse cells associated with a grid nodexk (Fig. 2).
Specifically, we use local indices ofl (l ∈ [1,4]) and i (i ∈ [1,9]) for local dual
coarse cells and local coarse nodes, respectively, associated with xk andxk ≡ x1

(Fig. 2) to obtain

(
∂u
∂x

)

e
=

∂φ2
1

∂x
(xe)u1+

∂φ2
5

∂x
(xe)u5+

∂u2
c

∂x
(xe) =

∂φ3
1

∂x
(xe)u1+

∂φ3
5

∂x
(xe)u5+

∂u3
c

∂x
(xe) ,

(62)
(

∂u
∂x

)

w
=

∂φ1
9

∂x
(xw)u9+

∂φ1
1

∂x
(xw)u1+

∂u1
c

∂x
(xw) =

∂φ4
9

∂x
(xw)u9+

∂φ4
1

∂x
(xw)u1+

∂u4
c

∂x
(xw) ,

(63)
(

∂u
∂y

)

n
=

∂φ3
1

∂y
(yn)u1+

∂φ3
7

∂y
(yn)u7+

∂u3
c

∂y
(yn) =

∂φ4
1

∂y
(yn)u1+

∂φ4
7

∂y
(yn)u7+

∂u4
c

∂y
(yn) ,

(64)
(

∂u
∂y

)

s
=

∂φ1
3

∂y
(ys)u3+

∂φ1
1

∂y
(ys)u1+

∂u1
c

∂y
(ys) =

∂φ2
3

∂y
(ys)u3+

∂φ2
1

∂y
(ys)u1+

∂u2
c

∂y
(ys) .

(65)

We substitute (62)-(65) into (54) to obtain the discretisedequation at a coarse node
xk. Collection of the discretised equations at all coarse nodes leads to a linear
system to be solved for the coarse scale nodal valuesuk, k ∈ [1,N− 2×N− 2].
Consequently, the solution foru in each dual coarse cell̃Ωl is reconstructed via
uk and the approximation (55). By implementing the reconstruction on the whole
problem domainΩ, the global solution foru is obtained.

It should be noted that the current computational frameworkfor u depends strongly
on the boundary conditions of local problems for the determination of the correction
functions, i.e. (60) and (61), which unfortunately requirea priori knowledge ofuf .
To obtain the fine scale reference solutionuf one typically has to directly resolve
all the small scale features of a multiscale problem. In the following section, we
avoid this costly and even impossible task by proposing a conservative fine scale
solver based on 2-node IRBFEs.

5.3.1 Fine scale C2-continuous conservative solver

Consider problem (51) on a global fine scale grid. Each fine scale node, similar
to a coarse scale node, is surrounded by a control volume. Integrating (51) over
the control volumeΩP of a fine scale interior grid nodeP (Fig. 6) by a similar
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procedure in obtaining (54), one has

−

[(
aε(x)

∂u
∂x

)

e
−

(
aε(x)

∂u
∂x

)

w

]
δy−

[(
bε (y)

∂u
∂y

)

n
−

(
bε (y)

∂u
∂y

)

s

]
δx =AP fP,

(66)

whereδx andδy are fine grid spacing inx andy direction respectively; the subscripts
e,w,n andsare now used to indicate that the flux is estimated at the intersections of
the fine grid lines with the east, west, north and south faces of the control volume
ΩP, respectively (Fig. 6); andAP is the area ofΩP and fP = 1

AP

∫
ΩP

f dΩ. Unlike
(62)-(65), the fluxes are presently computed via 2-node IRBFEs defined over line
segments betweenP and its neighbouring grid nodes (E,W,N andS). There are 4
IRBFEs associated with a control volumeΩP. Assuming thatPE, WPare interior
elements and making use of (24), noting (26), one obtains fluxes in thex-direction
as

(
∂u
∂x

)

e
= µ1uP+µ2uE +µ3

∂uP

∂x
+µ4

∂uE

∂x
with x1 ≡ xP and x2 ≡ xE, (67)

(
∂u
∂x

)

w
= µ1uW +µ2uP+µ3

∂uW

∂x
+µ4

∂uP

∂x
with x1 ≡ xW and x2 ≡ xP. (68)

Expressions for the flux at the facesy= yn andy= ys are of similar forms obtained
by usingPN andSP, assumed as interior elements, and making use of (24), noting
(29),

(
∂u
∂y

)

n
= θ1uP+θ2uN +θ3

∂uP

∂y
+θ4

∂uN

∂y
with y1 ≡ yP and y2 ≡ yN, (69)

(
∂u
∂y

)

s
= θ1uS+θ2uP+θ3

∂uS

∂y
+θ4

∂uP

∂y
with y1 ≡ yS and y2 ≡ yP. (70)

(67)-(70) may change ifPE, WP, PN, andSPare semi-interior elements where
(34) is used instead of (24).

Substituting (67)-(70) into (66), one has

G[x]




uW

uP

uE


+G[y]




uS

uP

uN


+D[x]




∂uW
∂x

∂uP
∂x

∂uE
∂x


+D[y]




∂uS
∂y

∂uP
∂y

∂uN
∂y


= AP fP, (71)
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where

G[x] =−
[
−aε(xw)µ1 aε(xe)µ1−aε(xw)µ2 aε(xe)µ2

]
δy, (72)

G[y] =−
[
−bε(ys)θ1 bε(yn)θ1−bε(ys)θ2 bε(yn)θ2

]
δx, (73)

D[x] =−
[
−aε(xw)µ3 aε(xe)µ3−aε(xw)µ4 aε(xe)µ4

]
δy, (74)

D[y] =−
[
−bε(ys)θ3 bε(yn)θ3−bε(ys)θ4 bε(yn)θ4

]
δx. (75)

It can be seen from (71), there are three unknowns, namelyuP, ∂uP/∂x and∂uP/∂y,
at a grid nodeP. To solve (71), two additional equations are needed and devised
here by enforcingC2-continuity condition atP in x- andy-directions, i.e.

(
∂ 2uP

∂x2

)

L
=

(
∂ 2uP

∂x2

)

R
, (76)

(
∂ 2uP

∂y2

)

B
=

(
∂ 2uP

∂y2

)

T
, (77)

where(.)L indicates that the computation of(.) is based on the element to the left of
P, i.e. elementWP, and similarly subscriptsR,B,T denote the right(PE), bottom
(SP) and top(PN) elements. Making use of (25) with noting (27) and (28) for (76)
and (30) and (31) for (77), one has

ζ1uW +ζ2uP+ζ3
∂uW

∂x
+ζ4

∂uP

∂x
= ν1uP+ν2uE +ν3

∂uP

∂x
+ν4

∂uE

∂x
, (78)

ξ1uS+ξ2uP+ξ3
∂uS

∂y
+ξ4

∂uP

∂y
= ϑ1uP+ϑ2uN +ϑ3

∂uP

∂y
+ϑ4

∂uN

∂y
. (79)

In compact forms, (78) and (79) can be rewritten as

C[x]
[

uW uP uE
∂uW
∂x

∂uP
∂x

∂uE
∂x

]T
= 0, (80)

C[y]
[

uS uP uN
∂uS
∂y

∂uP
∂y

∂uN
∂y

]T
= 0, (81)

with

C[x] = [ ζ1 ζ2−ν1 −ν2 ζ3 ζ4−ν3 −ν4 ], (82)

C[y] = [ ξ1 ξ2−ϑ1 −ϑ2 ξ3 ξ4−ϑ3 −ϑ4 ]. (83)

Collection of equations (71), (78) and (79) at all interior nodal points of the global
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fine grid leads to a global fine scale system,

[
G[x]+G[y] D[x] D[y]

]



u
ux

uy


= R, (84)

C[x]
[

u
ux

]
= 0, (85)

C[y]
[

u
uy

]
= 0, (86)

whereG[•],D[•] andC[•] result from the assembly ofG[•],D[•] andC[•] respectively;
u,ux anduy are global vectors of values ofu at all nodal points and itsx- andy-
partial derivatives at interior grid nodes; andR collects the right hand side of (71),
which results from the application of (71) at fine scale interior grid nodes.

Instead of directly solving the large fine scale system (84)-(86) for the fine scale
reference solutionuf , we propose a line-relaxation (LR) scheme to smooth a tem-

porarily guessed approximate fine grid solution. Assuming thatu(t) andu(t)
y are a

temporarily guessed solution, an iterative strategy in twostages for smoothing is
proposed as

[
G[x]+diag(G[y]) D[x]

C[x]

][
u
ux

]γ+1/2

=


 R−

[
G[y]−diag(G[y]) D[y]

][ u
uy

]γ

0


 , (87)

[
G[y]+diag(G[x]) D[y]

C[y]

][
u
uy

]γ+1

=


 R−

[
G[x]−diag(G[x]) D[x]

][ u
ux

]γ+1/2

0


 , (88)

where[ u ux uy ]γ is the approximate solution after theγ smoothing step and

[ u uy ]0 = [ u(t) u(t)
y ], diag(G[x]) is the diagonal ofG[x]. Owing to the fact that

2-node IRBFE flux approximation is used, the linear systems in (87) and (88) are
very sparse. Moreover, these systems can be further split into independent linear
systems for each grid line, which is an important property for the implementation
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of massively parallel computation. Note that the presentC2-continuous IRBFE-LR
solver is convergent, but for large problem the rate is extremely slow. In our frame-
work, however, only a few LR-steps are required to smooth thetemporarily guessed
approximate solution. The smoothed fine grid solution then serve to estimate tem-
porary boundary conditions for correction functions via (60) and (61) instead of the
fine scale reference solutionuf . To ensure that these temporary boundary condi-
tions approach the conditions (60) and (61) an iterative algorithm is used. Such an
algorithm is presented next.

5.3.2 Iterative algorithm

We present here an iterative algorithm to improve the localised boundary conditions
of the correction functions. Such boundary conditions do not depend onuf . Instead
of requirements (60) and (61), we employ an iterative improvement

∂
∂x

(
aε(x)

∂ul
c
(t)

∂x

)
=

∂
∂x

(
aε(x)

∂u(t)s

∂x

)
on ∂ Ω̃l

x, (89)

∂
∂y

(
bε(y)

∂ul
c
(t)

∂y

)
=

∂
∂y

(
bε(y)

∂u(t)s

∂y

)
on ∂ Ω̃l

y ∀l ∈ [1,J]. (90)

The superscript(t) denotes an iterative step and
[

u(t)s
∂u(t)s
∂x

∂u(t)s
∂y

]
= Sns

([
u(t) ∂u(t)

∂x
∂u(t)

∂y

])
(91)

is a smoothed fine scale approximate solution, whereS is the proposedC2-continuous
IRBFE-LR smoothing operator, i.e. (87) and (88),ns the number of smoothing
steps, and [

u(t) ∂u(t)

∂x
∂u(t)

∂y

]

is the temporary solution which is constructed on each dual coarse cell̃Ωl as

ul (t) =
4

∑
i=1

φ l
i u(t)i +ul

c
(t−1)

, (92)

∂ul (t)

∂x
=

4

∑
i=1

∂φ l
i

∂x
u(t)i +

∂ul
c
(t−1)

∂x
, (93)

∂ul (t)

∂y
=

4

∑
i=1

∂φ l
i

∂y
u(t)i +

∂ul
c
(t−1)

∂y
∀l ∈ [1,J]. (94)

Note that the correction functionsul
c
(t−1)

are obtained based on local boundary

conditions (89) and (90) withu(t)s replaced byu(t−1)
s . A pseudocode of the iterative
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algorithm is given below.

(1) Initialise [ u(t=0) u(t=0)
x u(t=0)

y

]

(2) ∀l , ∀i: 
ompute basis fun
tions φ l
i , equations (56) with boundary 
onditions(58), (59) by a C2-
ontinuous IRBFE-CV method (An-Vo, Mai-Duy, and Tran-Cong, 2011a)

(3) for t = 1 to number of iterations {(3i) [ u(t−1)
s u(t−1)

xs u(t−1)
ys

]
=
[

u(t−1) u(t−1)
x u(t−1)

y

](3ii) for i = 1 to ns {[
u(t−1)

s u(t−1)
xs u(t−1)

ys

]
=S

([
u(t−1)

s u(t−1)
xs u(t−1)

ys

]); smooth-ing step }(3iii) ∀l : 
ompute 
orre
tion fun
tions ul
c
(t−1); based on u(t−1)

s , equations(57) with boundary 
onditions (89) and (90) by a C2-
ontinuous IRBFE-CVmethod (An-Vo, Mai-Duy, and Tran-Cong, 2011a)(3iv) Cal
ulate right hand side of the 
oarse grid dis
retised system(3v) Solve 
oarse system(3vi) Re
onstru
t [ u(t) u(t)
x u(t)

y

], equations (92)-(94)(3vii) Cal
ulate 
onvergen
e measures (CMs) through
CM(u) =

‖ u(t)−u f ‖2

‖ u f ‖2

CM(ux) =
‖ u(t)

x −uxf ‖2

‖ uxf ‖2

CM(uy) =
‖ u(t)

y −uyf ‖2

‖ uyf ‖2}.
First, the fine scale field is initialised to zero. Then, all basis functions are computed
and the right-hand side of equation (51) is integrated over each coarse volume.
These steps have to be performed only once and are followed bythe main iteration
loop. At the beginning of each iteration,ns smoothing steps are applied and the
smoothed fine scale field is employed to compute the correction functions. The
right hand side of the coarse linear system for coarse nodal values also includes
induced terms from these correction functions. At the end ofeach iteration, the
coarse system is solved and a new fine scale field is reconstructed.
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5.3.3 Deferred correction of coarse grid fluxes

In the coarse grid flux expressions, namely (62)-(65), thereare required first-derivative
values of basis functions and correction functions at the control volume faces. The
former needs to be computed only once at the preprocessing stage and be fixed
throughout the iteration loop. The latter, however, need tobe updated at each itera-
tion via the numerical differentiation of correction functions. This differentiation is
usually resulted in a considerable numerical error. Here wepropose a deferred cor-
rection strategy to obtain the coarse grid fluxes accuratelywithout the need of the
numerical differentiation of correction functions. Consider an east control volume
face at an iteration levelt, instead of using (62) we compute the flux value as

(
∂u
∂x

)(t)

e
=

∂φ2
1

∂x
(xe)u(t)1 +

∂φ2
5

∂x
(xe)u(t)5 +∆ f (t−1)

e =
∂φ3

1

∂x
(xe)u(t)1 +

∂φ3
5

∂x
(xe)u(t)5 +∆ f (t−1)

e ,

(95)

where∆ f (t−1)
e is the correction term ate which is a known value derived from the

smoothed fine scale field, i.e.

∆ f (t−1)
e =

(
∂u
∂x

)(t−1)

e
−

(
∂φ2

1

∂x
(xe)u(t−1)

1 +
∂φ2

5

∂x
(xe)u(t−1)

5

)

=

(
∂u
∂x

)(t−1)

e
−

(
∂φ3

1

∂x
(xe)u(t−1)

1 +
∂φ3

5

∂x
(xe)u(t−1)

5

)
. (96)

Since the proposedC2-continuous fine scale solver is used the smoothed fine scale
field includes not only the field variable but also its first partial derivatives. As
a result, the value(∂u/∂x)(t−1)

e is explicitly given without the need of numerical
differentiation. The flux values at other control-volume faces can be computed in a
similar manner. It can be seen that via this correction strategy the coarse grid fluxes
are matched with the fine scale smoothed field.

6 Numerical results

The proposed method is verified by solving several problems in one and two di-
mension. We refer to the size of a coarse grid asN in 1D problems andN×N in
2D problems and the size of a fine grid on a coarse cell asn andn×n in 1D and
2D respectively. The fine grid on a coarse cell also referred to as the local fine grid.
The fine grid on the whole problem domain is called the global fine grid. In 2D
problems, the smoothing system is constructed on the globalfine grid. The coarse
grid spacing is denoted asH which is also the size of a coarse cell in this study. The
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local fine grids on the coarse cells are mapped to[0,1] in 1D problems and[0,1]2

in 2D problems and the grid spacing is denoted ash.

In each problem, two grid refinement strategies are employed. The first strategy,
Strategy 1, keeps the coarse grid fixed while refining the local fine grids. In contrast,
the second strategy, Strategy 2, keeps the local fine grids fixed while refining the
coarse grid. The numerical results are compared with those obtained by the MFEM
(Hou, Wu, and Cai, 1999).

The factor of the MQ-width is chosen asβ = 15 throughout the computation. We
assess the numerical performance of the proposed method through two measures:
(i) the relative discreteL2 error defined as

Ne(α) =

√
∑M

i=1

(
αi −α(e)

i

)2

√
∑M

i=1

(
α(e)

i

)2
(97)

whereM is the number of test points,α denotes the field variableu and its deriva-
tives and (ii) the convergence ratesγ with respect to the two grid refinement strate-
gies defined via the error norm behavioursO(hγ ) and O(Hγ) for the Strategy 1
and 2 respectively. The convergence rates are calculated over 2 successive grids
(point-wise rate) and also over the whole set of grids used (average rate).

6.1 One-dimensional examples

6.1.1 Example 1

Consider a model 1D problem (36) with

aε(x) =
1

2+x+sin(2πx/ε)
, f = x, Ω = [0,1], (98)

and homogeneous Dirichlet boundary conditionsu(0) = u(1) = 0.

The problem domain is discretised using a series of uniform coarse elements and
the shape functions and correction functions that capture the fine scale physics in
the coarse elements are numerically obtained by ourC2-continuous IRBFE-Control
Volume (IRBFE-CV) method. Figure 7 shows the basis functions and correction
function associated with a typical coarse element. Unlike conventional basis func-
tions, the present basis functions are highly oscillatory since they adapt to the small
scale information within each element (Figure 7(a)). The correction function is also
highly oscillatory and its scale is small as shown in Figure 7(b). Figure 8 displays
the convergence behaviour of a numerical shape function on atypical coarse ele-
ment obtained by our IRBFE-CVM and the linear FEM. IRBFE-CVMand linear
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FEM give convergence rates of 4.0267 and 2.0253 respectively. It can be seen that
the use of high order approximants in the form of IRBFEs thus helps capture the
fine scale physics and hence produce highly accurate solutions.

The coarse scale solution at the coarse grid points is obtained by a conservative
CV method where the fluxes are estimated by the obtained shapeand correction
functions. In order to have a good consistent measure of accuracy, error norms
in all cases are computed using the same 10,001 test points where the fine scale
solution is recovered via (37). Table 1 presents convergence behaviour associ-
ated with Strategy 1 where a fixed coarse scale grid of 10 elements and a series
of 21,41, . . . ,181 local fine grids are used. The present method converges mono-
tonically while MFEM does not converge. It was pointed out in(Hou and Wu,
1997; Hou, Wu, and Cai, 1999) that the accuracy of the shape functions does not
have much effect on the overall accuracy of MFEM. The presentapproach achieves
convergence rates of 3.91, 3.16, and 2.09 for the field variable, its first, and sec-
ond derivatives respectively. In comparison to multiscalediscontinuous Galerkin
method proposed by Wang, Guzman, and Shu (2011), in terms ofL2 error, the
present method yields two orders of magnitude improvement for the field variable
and one order of magnitude improvement for the first derivative by using a local
fine grid of n = 181. Note that exact shape functions have been used in (Wang,
Guzman, and Shu, 2011). Table 2 presents convergence behaviour associated with
Strategy 2 where a fixed local fine grid of 27 nodes and a series of 10,20, . . . ,100
uniform coarse elements (i.e. 11,21, . . . ,101 nodes) are used. Both the present
method and the MFEM converge well with refinement of the coarse grids. The
present approach achieves convergence rates of 3.03, 2.51, and 1.47 for the field
variable, its first, and second derivatives respectively while the MFEM achieves a
value of 1.61 for the field variable. These results show superior performance of the
present approach indicated by (i) high rates of convergencenot only for the field
variable but also for the first and second derivatives; (ii) working for both grid re-
finement strategies. One can thus either keep fine scale or coarse scale grid fixed
and obtain convergence by refining the other scale grid.

Figures 9 displays the recovered fine scale results for the field variableu(x) and
its first derivative by the present method, MFEM and exact solution. It can be seen
that the present method has captured the exact solution muchbetter than MFEM. In
addition, the present method can produce approximation of derivatives up to second
order as shown in Figure 10.

6.1.2 Example 2

In this example, we consider a model 1D problem with highly oscillatory solution at
both macro- and micro-scales. The multiscale problem (36) is specifically defined
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with

aε(x) =
1

2+x+sin(10πx/ε)
, f = 300sin(10πx), Ω = [0,1], (99)

and homogeneous Dirichlet boundary conditionsu(0) = u(1) = 0.

Similar to example 1, two strategies of grid refinement are implemented here. Ta-
ble 3 presents the convergence behaviour associated with Strategy 1 where a fixed
coarse scale grid of 50 elements and a series of 21,41, . . . ,281 local fine grids are
used. Present method converges monotonically as in the caseof example 1. The
convergence rates are 3.91, 3.24, and 2.13 for the field variable, its first, and second
derivatives respectively. Table 4 presents convergence behaviour associated with
Strategy 2 where fixed local fine grids of 101 nodes and a seriesof 10,20, . . . ,100
uniform coarse elements (i.e. 11,21, . . . ,101 nodes) are used. The present method
converges well with refinement of the coarse grids. The convergence rates are 3.71,
2.55, and 1.49 for the field variable, its first, and second derivatives respectively.

Figure 11 displays the recovered fine scale solution for the field variableu(x), its
first, and second derivatives by the present method and the exact solution. The
solutions by the present method are in excellent agreement with the exact solution.

6.2 Two-dimensional examples

We demonstrate that the proposed iterative algorithm for 2Dproblems converges
to the fine scale reference solution. In the following discussion, by “smoother" we
mean one iteration of the fine scale solver. By “the present method" we mean a
two-grid method where the smoother is invoked for only a few cycles within the it-
erative algorithm. Computational efficiency of the presentmethod is assessed via a
convergence acceleration in comparison with the fine scale solver. The acceleration
is estimated by comparing the computational time to achievea certain convergence
measure (CM).

6.2.1 Example 1

We consider a special case of equation (51) withaε(x) = bε(y) = 1 as follows.

∂ 2u
∂x2 +

∂ 2u
∂y2 =−2π2 cos(πx)cos(πy), (100)
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on a square domain 0≤ x,y≤ 1 with boundary conditions:

u= cos(πy) for x= 0, 0≤ y≤ 1;

u=−cos(πy) for x= 1, 0≤ y≤ 1;

u= cos(πx) for y= 0, 0≤ x≤ 1;

u=−cos(πx) for y= 1, 0≤ x≤ 1.

The exact solution to this problem can be verified to be

u(e)(x,y) = cos(πx)cos(πy). (101)

It can be seen that the basis functions on each coarse cell aresimply those of a lin-
ear 2D rectangular element in FEM and the MFEM is identical tothe conventional
FEM. We also utilise these exact basis functions in the present method. The correc-
tion functions are numerically obtained via ourC2-continuous CVM (An-Vo, Mai-
Duy, and Tran-Cong, 2011a) with the iteratively improved boundary conditions.
Figure 12 shows a typical set of converged correction functions on the problem
domain.

Iterative convergence: Figure 13 displays the convergence to the reference so-
lution as a function of iterations and smoothing steps (per iteration),ns, for two
grid systems. The first grid system includes a coarse grid ofN×N = 5× 5 and
local fine grids on each coarse cells ofn× n = 81× 81. The other grid system
includes a coarse grid ofN×N = 33×33 and local fine grids ofn×n= 11×11.
Note that these two grid systems have the same size in terms ofthe global fine
grid of 321× 321. It can be seen that for both grid systems the smoothing steps
have a significant effect on the convergence behaviours. Increasingns helps reduce
the iterations. In addition, the present method converges well even with only one
smoothing step. This robustness is very useful for large scale problems where one
smoothing step could require a significant computational load. The convergence
behaviours of the first derivatives are similar to those of the field variable. Compar-
ing between the two grid systems (with the same smoothing operation), the use of a
larger coarse grid helps reduce the iterations remarkably.For instance withns = 4,
the first grid system (smaller coarse grid) requires about 200 iterations to converge
to the reference solution while the other grid system (larger coarse grid) requires
only about 20 iterations.

Grid refinement convergence: Two grid refinement strategies are presented in
Table 5. In Strategy 1, a fixed coarse grid ofN×N = 5×5 is used while the local
fine grids on coarse cellsn×n are refined in a series of 11×11,21×21, . . . ,91×91.
In contrast, Strategy 2 utilises a series of refined coarse grids ofN×N = 5×5,9×
9, . . . ,37× 37 while keeping the size of local fine grids on coarse cells fixed as



Manuscript submitted to CMES

29

n× n = 11× 11. The present method converges well with both grid refinement
strategies while the MFEM does not converge with Strategy 1.Note that exact basis
functions are employed in both MFEM and the present method. The convergence
rates of the present method are 1.90 and 1.94 for the field variable and its first
derivatives respectively in Strategy 1. A high convergencerate of 4.01 for the field
variable is obtained with Strategy 2 where the convergence rate of the MFEM is
2.00.

Solution accuracy: Table 5 also presents theL2 error norm of the present method
in comparison with those of MFEM. Very high levels of accuracy are obtained
in the present method. With a small grid system, i.e.N×N = 5× 5 andn×
n= 11×11, the error is 1.73×10−5 and with a relatively larger grid system, i.e.
N×N = 37×37 andn×n= 11×11, the error is 2.63×10−9. Compared to the
errors of the MFEM, with the same grid systems, the present errors are 3 and 5
orders of magnitude better respectively.

6.2.2 Example 2

Consider a multiscale elliptic problem on a domainΩ = [−1,1]2 governed by

−
∂
∂x

(
aε (x)

∂u
∂x

)
−

∂
∂y

(
bε(y)

∂u
∂y

)
= xue(y)+yue(x) (102)

with homogeneous Dirichlet boundary condition, where

aε(x) =
1

4+x+sin
(

x
ε
) , bε(y) =

1

4+y+sin
( y

ε
) , (103)

andue(x) is the exact solution of the one-dimensional problem−d(aε (x)du/dx)/dx=
x with aε (x) as in (103) (note thatbε(x) = aε(x)). The exact solution of (102) has
the form

u(x,y) = ue(x)ue(y). (104)

Both the basis and correction functions are numerically obtained by ourC2-continuous
CVM (An-Vo, Mai-Duy, and Tran-Cong, 2011a) in the present method. The basis
functions in MFEM are obtained by a linear FEM. Figure 14 shows typical basis
and correction functions in the present method for two casesof small scale param-
eter, i.e.ε = 0.1 andε = 0.01. Typical sets of correction functions on the problem
domain for these two values of small scale parameter are displayed by contour plots
in Figure 15.

Iterative convergence:Figures 16 and 17 display the convergence to the reference
solution of the present method in cases ofε = 0.1 andε = 0.01 respectively. Two
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grid systems are employed to study the effect of smoothing stepsns on the conver-
gence behaviours in each case ofε values. As in example 1, the smoothing steps
have a significant effect on the convergence behaviours and we can reduce the num-
ber of iterations by increasingns. With the same smoothing systems, i.e. 241×241
in the case ofε = 0.1 in Figure 16 and 701×701 in the case ofε = 0.01 in Figure
17, the use of larger coarse grids reduces the iterations remarkably. Computational
efficiency is assessed in Figure 18 where the convergence behaviours of the present
method (ns= 1) and the fine scale solver (FSS) are presented. It can be seenin Fig-
ure 18(a) that the FSS requires about 3.4×104 cycles to converge toCM = 10−8

in the case of grid 1. By using the smoothing system of grid 1 and with a coarse
grid of 5×5 the present method converges toCM= 10−8 after about 330 iterations
(Figure 18(b)). The number of iterations can reduce to about42 when a coarse grid
of 25× 25 is used as shown in Figure 16(b). By using this 25× 25 coarse grid,
the computational time of each iteration is measured to be 5.24 s on average which
include the time of a smoothing cycle, for obtaining correction functions, and for
solving the coarse grid system. The computational time of a smoothing cycle is
measured to be 4.31 s. It can be seen that the time of a smoothing cycle dominates
the time of an iteration. The present method hence has the potential of roughly
1000 times more efficient than the FSS. Furthermore, when we increase the size
of the global fine grid to grid 2 and grid 3, the number of cyclesof the smoother
increases very fast compared to that of the present method (Figure 18(a)).

Grid refinement convergence:The two grid refinement strategies forε = 0.1 and
ε = 0.01 are presented in Tables 6 and 7 respectively. Forε = 0.1, Strategy 1
uses a fixed coarse grid of 5× 5 and a series of refined local fine grids of 11×
11,21× 21, . . . ,91× 91. Strategy 2 uses fixed local fine grids of 11× 11 and a
series of refined coarse grids of 5×5,9×9, . . . ,37×37. The convergence rates of
the present method are 3.24 and 3.05 for the field variable and its first derivatives
respectively in Strategy 1. It can be seen that MFEM does not converge in Strategy
1. In Strategy 2, the convergence rates of the present methodare 3.38 and 1.40 for
the field variable and its first derivative respectively. MFEM converges at the rate
of 1.95 for the field variable.

For ε = 0.01, Strategy 1 uses a fixed coarse grid of 11×11 and a series of refined
local fine grids of 11×11,21×21, . . . ,71×71. Strategy 2 uses a fixed local fine
grid of 11×11 and a series of refined coarse grids of 11×11,21×21, . . . ,71×71.
The convergence rates of the present method are 4.17, 3.94 and 3.95 for u, ∂u/∂x
and∂u/∂y respectively in Strategy 1. These rates are especially highcompared to
the rate of 0.13 for the field variable in MFEM. In Strategy 2, the convergence rates
of the present method are 5.12, 3.60 and 3.59 foru, ∂u/∂x and∂u/∂y respectively
while MFEM gives a rate of 2.10 for the field variable.
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Solution accuracy: Tables 6 and 7 also present theL2 error norm forε = 0.1 and
ε = 0.01 respectively. Forε = 0.1 and Strategy 1 (Table 6), the present method
achieves the errors of 3.90× 10−8 and 1.67× 10−7 for the field variable and its
first derivatives respectively by using a grid system ofN×N = 5×5 andn×n=
91×91. The error for the field variable is 7 orders of magnitude better compared
to that of MFEM by using the same grid system. In Strategy 2, the present method
achieves the errors of 2.66×10−8 and 3.84×10−6 for the field variable and its first
derivatives respectively by using a grid system ofN×N = 37× 37 andn× n =
11×11. The error for the field variable is 5 orders of magnitude better compared
to that of MFEM by using the same grid system.

For ε = 0.01 and Strategy 1 (Table 7), the present method achieves the errors of
5.73×10−6 and 1.17×10−5 for the field variable and its first derivatives respec-
tively by using a grid system ofN×N = 11×11 andn×n= 71×71. The error
for the field variable is 4 orders of magnitude better compared to that of MFEM by
using the same grid system. In Strategy 2, the present methodachieves the errors
of 9.05×10−7, 2.31×10−5 and 2.32×10−5 for u, ∂u/∂x and∂u/∂y respectively
by using a grid system ofN×N = 71×71 andn×n= 11×11. The error for the
field variable is more than 3 orders of magnitude better compared to that of MFEM
by using the same grid system.

Figure 19 displays the contour plots of the solutions obtained by MFEM, present
method and the exact one forε = 0.1 andε = 0.01. The present result is obtained
with N×N = 5×5,n×n = 31×31 while the MFEM result is obtained withN×
N= 11×11,n×n= 31×31. It can be seen that the solutions of the present method
are in excellent agreement with the exact solution.

7 Concluding remarks

A high-order RBF-based multiscale control-volume method has been successfully
developed for 1D and 2D multiscale elliptic problems. To assess the performance
of the methods, we use two grid refinement strategies, namely(i) fixed coarse grid
and various local fine grids, and (ii) fixed local fine grid and various coarse grids.
Unlike MFEM, the proposed methods work well for both grid refinement strategies.
High rates of convergence and levels of accuracy are obtained. The method for
2D problems is proposed with an iterative algorithm which helps overcome the
limitation of MFEM where artificial localised boundary conditions are employed. It
has been demonstrated numerically that the proposed iterative algorithm converges
to C2-continuous solutions. This feature is very useful especially in subsurface
flow simulations where the velocity field has to be continuousacross the coarse cell
interfaces to ensure a conservative flow field. The scalability and high efficiency
of the proposed algorithm has been confirmed against the performance of the fine
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scale solver.
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Table 1: One-dimensional example 1,ε = 0.01, Strategy 1:L2 errors of the field variable, its first and second derivatives. It
is noted that the set of test nodes contains 10,001 uniformly distributed points. LCR stands for local convergence rate and
[*] is Wang, Guzman, and Shu (2011).

ε = 0.01,N = 11
MFEM Present method

Local fine grid (n) Ne(u) LCR Ne(u) LCR Ne(du/dx) LCR Ne(d2u/dx2) LCR
21 1.30E-02 - 4.10E-03 - 1.16E-01 - 5.37E-01 -
41 1.22E-02 0.09 3.60E-04 3.51 2.44E-02 2.25 2.19E-01 1.29
61 1.21E-02 0.02 6.76E-05 4.12 5.80E-03 3.54 8.21E-02 2.42
81 1.21E-02 0.00 2.11E-05 4.05 2.13E-03 3.48 4.14E-02 2.38
101 1.21E-02 0.00 8.63E-06 4.01 9.90E-04 3.43 2.50E-02 2.26
121 1.21E-02 0.00 4.18E-06 3.98 5.34E-04 3.39 1.62E-02 2.38
141 1.21E-02 0.00 2.28E-06 3.93 3.18E-04 3.36 1.16E-02 2.17
161 1.21E-02 0.00 1.35E-06 3.92 2.04E-04 3.32 8.47E-03 2.36
181 1.21E-02 0.00 8.53E-07 3.90 1.39E-04 3.26 6.56E-03 2.17

O(h0.03) O(h3.91) O(h3.16) O(h2.09)
Wang et al. (S1) [*] 1.03E-03 4.73E-02
Wang et al. (S2) [*] 1.16E-05 1.01E-03
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Table 2: One-dimensional example 1,ε = 0.01, Strategy 2:L2 errors of the field variable, its first and second derivatives. It
is noted that the set of test nodes contains 10,001 uniformly distributed points. LCR stands for local convergence rate

ε = 0.01,n= 27
MFEM Present method

Coarse grid (N) Ne(u) LCR Ne(u) LCR Ne(du/dx) LCR Ne(d2u/dx2) LCR
11 1.25E-2 - 2.06E-3 - 1.09E-1 - 5.90E-1 -
21 2.63E-3 2.25 8.91E-5 4.53 1.26E-2 3.11 1.49E-1 1.99
31 1.66E-3 1.14 3.52E-4 -3.39 5.97E-3 1.84 1.09E-1 0.77
41 9.63E-4 1.89 1.98E-4 2.00 1.65E-3 4.47 3.64E-2 3.80
51 7.36E-4 1.20 3.93E-6 17.57 7.79E-4 3.37 2.32E-2 2.02
61 3.71E-4 3.76 2.40E-5 -9.92 1.43E-3 -3.33 5.26E-2 -4.49
71 2.74E-4 1.98 1.43E-5 3.36 9.88E-4 2.40 4.38E-2 1.18
81 2.12E-4 1.93 8.44E-6 3.94 8.42E-4 1.20 3.96E-2 0.76
91 1.83E-4 1.22 6.86E-6 1.76 6.13E-4 2.70 3.44E-2 1.19
101 9.12E-4 -15.24 2.53E-7 31.31 1.01E-4 17.12 5.82E-3 16.86

O(H1.61) O(H3.03) O(H2.51) O(H1.47)
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Table 3: One-dimensional example 2,ε = 0.01, Strategy 1:L2 errors of the field
variable, its first and second derivatives by the present method. It is noted that the
set of test nodes contains 100,001 uniformly distributed points. LCR stands for
local convergence rate.

ε = 0.01,N = 51

Local fine grid (n) Ne(u) LCR Ne(du/dx) LCR Ne(d2u/dx2) LCR

21 2.59E-2 - 1.18E-1 - 5.33E-1 -

41 2.19E-3 3.56 2.45E-2 2.27 2.16E-1 1.30

61 4.02E-4 4.18 5.77E-3 3.57 8.07E-2 2.43

81 1.25E-4 4.06 2.10E-3 3.51 4.07E-2 2.38

101 5.11E-5 4.01 9.69E-4 3.47 2.42E-2 2.33

121 2.49E-5 3.94 5.19E-4 3.42 1.59E-2 2.30

141 1.36E-5 3.92 3.07E-4 3.41 1.12E-2 2.27

161 8.09E-6 3.89 1.96E-4 3.36 8.32E-3 2.23

181 5.14E-6 3.85 1.32E-4 3.36 6.44E-3 2.17

201 3.43E-6 3.84 9.30E-5 3.32 5.23E-3 1.98

241 1.72E-6 3.79 5.11E-5 3.28 3.46E-3 2.27

281 9.62E-7 3.77 3.11E-5 3.22 2.50E-3 2.11

O(h3.91) O(h3.24) O(h2.13)
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Table 4: One-dimensional example 2,ε = 0.01, Strategy 2:L2 errors of the field
variable, its first and second derivatives by the present method. It is noted that the
set of test nodes contains 100,001 uniformly distributed points. LCR stands for
local convergence rate.

ε = 0.01,n= 101

Coarse grid (N) Ne(u) LCR Ne(du/dx) LCR Ne(d2u/dx2) LCR

11 3.66E-2 - 7.81E-2 - 3.53E-1 -

21 1.35E-3 4.76 1.83E-2 2.09 1.66E-1 1.09

31 5.86E-3 -3.62 6.85E-3 2.42 7.72E-2 1.89

41 1.18E-3 5.57 2.58E-3 3.39 3.82E-2 2.45

51 5.11E-5 14.07 9.69E-4 4.39 2.42E-2 2.05

61 1.72E-4 -6.66 1.29E-3 -1.57 3.60E-2 -2.18

71 1.13E-4 2.73 9.39E-4 2.06 3.06E-2 1.05

81 5.82E-5 4.97 7.20E-4 1.99 2.66E-2 1.05

91 2.71E-5 6.49 4.08E-4 4.82 1.74E-2 3.60

101 7.86E-7 33.60 1.20E-4 11.62 6.16E-3 9.86

O(H3.71) O(H2.55) O(H1.49)
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Table 5: Two-dimensional example 1:L2 errors of the field variable, its first and second derivatives. LCR stands for local
convergence rate.

Strategy 1,N×N = 5×5
MFEM Present method

Fine scale grid (n×n) Ne(u) LCR Ne(u) LCR Ne(∂u/∂x) LCR Ne(∂u/∂y) LCR
11×11 5.54E-2 - 1.73E-5 - 5.48E-5 - 5.49E-5 -
21×21 5.54E-2 0.00 4.76E-6 1.86 1.47E-5 1.90 1.46E-5 1.91
31×31 5.54E-2 0.00 2.21E-6 1.89 6.68E-6 1.94 6.68E-6 1.94
41×41 5.54E-2 0.00 1.28E-6 1.91 3.81E-6 1.95 3.81E-6 1.95
51×51 5.54E-2 0.00 8.30E-7 1.93 2.46E-6 1.96 2.46E-6 1.96
61×61 5.54E-2 0.00 5.83E-7 1.94 1.72E-6 1.97 1.72E-6 1.97
71×71 5.54E-2 0.00 4.32E-7 1.94 1.27E-6 1.97 1.27E-6 1.97
81×81 5.54E-2 0.00 3.33E-7 1.95 9.75E-7 1.97 9.75E-7 1.97
91×91 5.54E-2 0.00 2.65E-7 1.94 7.75E-7 1.96 7.75E-7 1.96

O(h0.00) O(h1.90) O(h1.94) O(h1.94)

Coarse grid (N×N) Strategy 2,n×n= 11×11
5×5 5.54E-2 - 1.73E-5 - 5.48E-5 - 5.49E-5 -
9×9 1.40E-2 1.99 1.09E-6 3.99 6.99E-6 2.97 6.99E-6 2.97

13×13 6.23E-3 2.00 2.09E-7 4.07 2.31E-6 2.73 2.31E-6 2.73
17×17 3.51E-3 2.00 6.54E-8 4.04 1.33E-6 1.92 1.33E-6 1.92
21×21 2.25E-3 2.00 2.67E-8 4.01 1.03E-6 1.15 1.03E-6 1.15
25×25 1.56E-3 2.00 1.29E-8 3.99 8.85E-7 0.83 8.85E-7 0.83
29×29 1.15E-3 2.00 7.04E-9 3.93 7.86E-7 0.77 7.86E-7 0.77
33×33 8.78E-4 2.00 4.17E-9 3.92 7.04E-7 0.83 7.04E-7 0.83
37×37 6.94E-4 2.00 2.63E-9 3.91 6.33E-7 0.90 6.33E-7 0.90

O(H2.00) O(H4.01) O(H1.97) O(H1.97)
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Table 6: Two-dimensional example 2,ε = 0.1: L2 errors of the field variable, its first and second derivatives. LCR stands for
local convergence rate.

Strategy 1,N×N = 5×5
MFEM Present method

Local fine grid (n×n) Ne(u) LCR Ne(u) LCR Ne(∂u/∂x) LCR Ne(∂u/∂y) LCR
11×11 4.13E-1 - 5.01E-5 - 1.49E-4 - 1.49E-4 -
21×21 4.14E-1 0.00 3.55E-6 3.82 1.14E-5 3.71 1.13E-5 3.72
31×31 4.15E-1 0.00 8.51E-7 3.52 2.95E-6 3.33 2.95E-6 3.31
41×41 4.15E-1 0.00 3.37E-7 3.22 1.26E-6 2.96 1.26E-6 2.96
51×51 4.15E-1 0.00 1.75E-7 2.94 6.86E-7 2.72 6.86E-7 2.72
61×61 4.15E-1 0.00 1.07E-7 2.70 4.33E-7 2.52 4.33E-7 2.52
71×71 4.15E-1 0.00 7.15E-8 2.62 2.99E-7 2.40 2.99E-7 2.40
81×81 4.15E-1 0.00 5.15E-8 2.46 2.19E-7 2.33 2.19E-7 2.33
91×91 4.15E-1 0.00 3.90E-8 2.36 1.68E-7 2.25 1.68E-7 2.25

O(h0.00) O(h3.24) O(h3.05) O(h3.05)

Coarse grid (N×N) Strategy 2,n×n= 11×11
5×5 4.13E-1 - 5.01E-5 - 1.49E-4 - 1.49E-4 -
9×9 1.15E-1 1.84 3.99E-6 3.65 1.06E-5 3.81 1.06E-5 3.81

13×13 5.19E-2 1.96 7.26E-7 4.20 7.30E-6 0.92 7.29E-6 0.92
17×17 2.94E-2 1.98 2.52E-7 3.68 6.38E-6 0.47 6.38E-6 0.46
21×21 1.89E-2 1.98 1.21E-7 3.29 5.76E-6 0.46 5.76E-6 0.46
25×25 1.31E-2 2.01 7.03E-8 2.98 5.22E-6 0.54 5.22E-6 0.54
29×29 9.64E-3 1.99 6.49E-8 0.52 4.72E-6 0.65 4.71E-6 0.67
33×33 7.39E-3 1.99 5.00E-8 1.95 4.26E-6 0.77 4.25E-6 0.77
37×37 5.84E-3 2.00 2.66E-8 5.36 3.84E-6 0.88 3.84E-6 0.86

O(H1.95) O(H3.38) O(H1.40) O(H1.40)
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Table 7: Two-dimensional example 2,ε = 0.01: L2 errors of the field variable, its first and second derivatives. LCR stands
for local convergence rate.

Strategy 1,N×N = 11×11
MFEM Present method

Local fine grid (n×n) Ne(u) LCR Ne(u) LCR Ne(∂u/∂x) LCR Ne(∂u/∂y) LCR
11×11 1.03E-1 - 1.93E-2 - 2.44E-2 - 2.44E-2 -
21×21 8.36E-2 0.30 9.83E-4 4.30 1.29E-3 4.24 1.29E-3 4.24
31×31 8.02E-2 0.10 1.80E-4 4.19 2.46E-4 4.09 2.45E-4 4.10
41×41 7.91E-2 0.05 5.49E-5 4.13 8.05E-5 3.88 7.80E-5 3.98
51×51 7.87E-2 0.02 2.20E-5 4.10 3.56E-5 3.66 3.54E-5 3.54
61×61 7.84E-2 0.02 1.06E-5 4.00 1.91E-5 3.42 1.90E-5 3.41
71×71 7.83E-2 0.01 5.73E-6 3.99 1.17E-5 3.18 1.17E-5 3.15

O(h0.13) O(h4.17) O(h3.94) O(h3.95)

Coarse grid (N×N) Strategy 2,n×n= 11×11
11×11 1.03E-1 - 1.93E-2 - 2.44E-2 - 2.44E-2 -
21×21 2.38E-2 2.11 3.91E-4 5.63 1.24E-3 4.30 1.25E-3 4.29
31×31 1.39E-2 1.33 1.82E-4 1.89 2.93E-4 3.56 2.92E-4 3.59
41×41 5.98E-3 2.93 2.08E-5 7.54 1.05E-4 3.57 1.05E-4 3.56
51×51 3.59E-3 2.29 5.09E-6 6.31 5.19E-5 3.16 5.22E-5 3.13
61×61 2.39E-3 2.23 1.63E-6 6.25 3.17E-5 2.70 3.19E-5 2.70
71×71 1.78E-3 1.91 9.05E-7 3.82 2.31E-5 2.05 2.32E-5 2.07

O(H2.10) O(H5.12) O(H3.60) O(H3.59)
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Ω

Ωk

Ω̃l

xk

Ωk

Figure 1: A computational domainΩ with the coarse grid (black dashed lines) and
dual coarse grid (black solid lines); dashed and solid red lines indicate a selected
control volumeΩk and a selected dual coarse cellΩ̃l , respectively. Shown under-
neath is an enlarged control volume, on which is imposed an×n= 11×11 local
fine grid. It can be seen that the size of global fine grid (dashed green lines) is
41×41.
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Figure 2: Local indices of dual cells and nodal points associated with a coarse grid
nodexk andxk ≡ x1.
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Figure 3: A domain is discretised by a Cartesian grid with interior and semi-interior
elements.

(a) Interior element (b) Semi-interior element
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Figure 4: Schematic outline for 2-node IRBFEs.
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Figure 5: A CV discretisation scheme in 1D: nodei and its associated control
volume. The circles represent the nodes, and the vertical dash lines represent the
faces of the control volume.
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Figure 6: Schematic outline for a 2D control volume on the finescale grid.
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Figure 7: One-dimensional example 1,ε = 0.01,N = 11,n= 101: basis functions
(a) and correction function (b) associated with the first coarse cell (l = 1). It is
noted that the coarse cell is mapped to a unit length.
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Figure 8: One-dimensional example 1: mesh convergence of a basis function.
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Figure 9: One-dimensional example 1,ε = 0.01, N = 11, n = 101: field variable
and its first derivatives obtained by the present method in comparison with those
obtained by MFEM and the exact solution.
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Figure 10: One-dimensional example 1,ε = 0.01,N = 11,n= 101: second deriva-
tives obtained by the present method in comparison with thatobtained by the exact
solution.
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Figure 11: One-dimensional example 2,ε = 0.01,N = 51,n= 101: field variable,
its first and second derivatives obtained by the present method in comparison with
the exact solution.
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Figure 12: Two-dimensional example 1: collection of all correction functions on
the problem domain obtained with a grid system ofN×N = 5×5, n×n= 21×21.
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Figure 13: Two-dimensional example 1,N×N = 5×5,n×n = 81×81 (left) and
N×N = 33×33,n×n = 11×11 (right): effect of the number of smoothing steps
ns on the convergence behaviour.
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Figure 14: Two-dimensional example 2: typical basis and correction functions for
the cases ofε = 0.1 using a grid system ofN×N = 5× 5,n× n = 21× 21 and
ε = 0.01 using a grid system ofN×N = 11×11,n×n= 21×21.
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Figure 15: Two-dimensional example 2: contour plots of correction functions on
the problem domain for the cases ofε = 0.1 using a grid system ofN×N = 5×
5,n×n = 21×21 andε = 0.01 using a grid system ofN×N = 11×11,n×n =
21×21.
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Figure 16: Two-dimensional example 2,ε = 0.1, N ×N = 5× 5,n× n = 61×
61 (left) andN×N = 25× 25,n× n = 11× 11 (right): effect of the number of
smoothing stepsns on the convergence behaviour.
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Figure 17: Two-dimensional example 2,ε = 0.01,N×N= 11×11,n×n= 71×71
(a) andN×N = 71×71,n×n = 11×11 (b): effect of the number of smoothing
stepsns on the convergence behaviour.
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Figure 18: Two-dimensional example 2,ε = 0.1, ns= 1: convergence of the present
method and the fine scale solver with increasing sizes of the global fine grid; grid
1 = 241× 241 (N×N = 5× 5,n× n = 61× 61), grid 2= 281× 281 (N×N =
5×5,n×n= 71×71), grid 3= 321×321 (N×N = 5×5,n×n= 81×81).
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Figure 19: Two-dimensional example 2: contour plots of solutions for the cases of
ε = 0.1 andε = 0.01, the former is obtained withN×N = 5×5,n×n= 31×31
while the latter is obtained withN×N = 11×11,n×n= 31×31.


