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Consciousness and Depth of Anesthesia Assessment
Based on Bayesian Analysis of EEG Signals
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Abstract—This study applies Bayesian techniques to analyze4
EEG signals for the assessment of the consciousness and depth of5
anesthesia (DoA). This method takes the limiting large-sample nor-6
mal distribution as posterior inferences to implement the Bayesian7
paradigm. The maximum a posterior (MAP) is applied to denoise8
the wavelet coefficients based on a shrinkage function. When the9
anesthesia states change from awake to light, moderate, and deep10
anesthesia, the MAP values increase gradually. Based on these11
changes, a new function BDoA is designed to assess the DoA. The12
new proposed method is evaluated using anesthetized EEG record-13
ings and BIS data from 25 patients. The Bland–Alman plot is used14
to verify the agreement of BDoA and the popular BIS index. A15
correlation between BDoA and BIS was measured using predic-16
tion probability PK . In order to estimate the accuracy of DoA,17
the effect of sample n and variance τ on the maximum posterior18
probability is studied. The results show that the new index accu-19
rately estimates the patient’s hypnotic states. Compared with the20
BIS index in some cases, the BDoA index can estimate the patient’s21
hypnotic state in the case of poor signal quality.22

Index Terms—Bayesian, depth of anesthesia (DoA), electroen-23
cephalogram (EEG), maximum a posterior (MAP), maximum24
posterior probability (MPP), wavelet transform.25

I. INTRODUCTION26

ANESTHETISTS seek an early warning of a patient’s level27

of hypnosis in real time. A number of methods have been28

developed over the years to detect the level of consciousness29

and determine the depth of anesthesia (DoA), such as clinical30

signs (systolic blood pressure, heart rate, sweating, and tears),31

spontaneous surface electromyogram, heart rate variability, the32

minimum alveolar concentration, lower esophageal contractility33

(LOC), and isolated forearm technique (IFT). However, these34

methods are not reliable and could not achieve the desired accu-35

racy of anesthetic depth, as individual patients have variability36

and various factors, such as the degree of stimulation, pain in-37

duced by surgery and the use of concomitant analgesic drugs. It38
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is impossible to gain a constant level of consciousness through 39

precalculating the exact dose of anesthetics. Clinical investiga- 40

tions and individual cases report that some patients had been 41

aware during the anesthesia at times when there were no ab- 42

normalities in blood pressure and heart rate [1]. LOC was not 43

reliable for detecting of inadequate anesthesia when the primary 44

anesthetic agent was used [2]. In the IFT method, patients were 45

asked to move their fingers to check the level of the DoA. How- 46

ever, some patients could hear the commands but were unable 47

to move the isolated arm. The incidence of movement with IFT 48

could vary with the choice of anesthetic [3], [4]. 49

Results from both human and animal studies demonstrate that 50

changes in electroencephalogram (EEG) with anesthesia pri- 51

marily reflect hypnotic information [5]–[8]. Several DoA moni- 52

toring devices were developed based on EEG. Currently, the BIS 53

monitor is widely used in hospitals. Although the algorithms of 54

these monitors are different and are not fully published, their 55

basic principles can be described as the following. The cere- 56

bral state index is calculated using a fuzzy logic combination of 57

four subparameters of the EEG signals in the time domain and 58

the frequency domain [9]. The patient state index is the result 59

of a complex computation that combines weighted quantitative 60

EEG parameters reflecting many dimensions of brain electrical 61

activities [10]. Entropy index monitoring is based on the acqui- 62

sition and processing of raw EEG and FEMG signals by using 63

Entropy algorithms to produce two parameters: state entropy 64

over the frequency range of 0.8–32 Hz, and response entropy 65

over the frequency range of 0.8–47 Hz [11]. In the Nacotrend 66

index, numerous quantitative features were extracted from the 67

time and the frequency domains, such as spectral parameters, 68

entropy measures, and autoregressive parameters [12]. The BIS 69

index is calculated from the following four parameters: 1) burst 70

suppression ratio (BSR); 2) quazi suppression index; 3) relative 71

β ratio; and 4) synchfastslow [13]. 72

These monitors are widely used in clinical practice and they 73

work satisfactorily most of the time. However, there are still 74

some criticisms in some special cases, such as not consistent 75

with the clinical observations [14], [15], not adequately de- 76

tecting the transition between consciousness and unconscious- 77

ness [16], and not responsive to some anesthetic agents [17]. The 78

time-domain analysis is used for the detection of epochs that rep- 79

resent the electrical suppression of EEG signals. However, that 80

only happens in the case of very deep anesthesia. Therefore, 81

these analyses could not be used for the light anesthesia state 82

detection. 83

There are other developed methods for monitoring the DoA, 84

such as wavelet transformation [18] and modified detrended 85

moving average [19]. Recently, an adaptive time–frequency 86
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analysis method based on ensemble empirical-model decom-87

position was used to analyze EEG signals for estimating the88

DoA [20]. The spectral features of EEG signals were proposed89

in [21] for separating the anesthetic effects. The Isomap-based90

estimation was used to assess neurophysiological changes dur-91

ing anesthesia [22]. The Hurst exponent and the wavelet trans-92

form was applied in multiscale rescaled range analysis algo-93

rithms to measure the anesthetic drug effects on brain activ-94

ity [23].95

The Bayesian method was also applied to analyze the EEG96

signals for the DoA [24], [25]. Rezek et al. presented an autore-97

gressive class of polyspectral models in the variation Bayesian98

framework [24]. Their results showed that the estimated higher99

order spectra can give a significant improvement for the DoA.100

The midlatency auditory evoked potentials were used to estimate101

the DoA by a neural network and the Bayesian rule [25].102

In this paper, a statistical method is developed to estimate the103

DoA based on the Bayesian method. A denoising raw EEG data104

technique is introduced using the maximum a posterior (MAP)105

to compute a new Bayesian-wavelet threshold for the large sam-106

ple posterior distribution. After denoising, the maximum pos-107

terior probability (MPP) is used to study the distribution of the108

EEG signal. A new function BDoA is designed to estimate the109

anesthesia levels. To the best of our knowledge, this is the first110

time a Bayesian method is proposed for assessing the DoA based111

on the EEG signal.112

This paper is organized as follows. In Section II, the data ac-113

quisition and a Bayesian wavelet denoising method is presented114

with a new threshold Tn . Section III introduces a relationship115

between the maximum posterior and anesthesia states. A new116

function BDoA for monitoring the DoA is proposed in this sec-117

tion. The Bland–Altman method is used to test the degree of118

agreement between the new index BDoA and the BIS method in119

Section IV. The experiment results are provided in Section V.120

The discussion and the limitations of the study are presented in121

Section VI. Finally, a short conclusion is drawn in Section VII.122

II. BAYESIAN WAVELET DENOISING123

A. Data Acquisition124

Based on the relevant ethics approvals, the EEG data were125

collected at the Toowoomba St. Vincent’s Hospital. The formal126

consents were obtained from 25 adult patients (ASA I or II, age127

42–76 years, weight 64–130 kg, gender 10 F/15 M). Opera-128

tion types include minor orthopedics, peripheral generals, si-129

nus, thyroid, middle ear, abdominals, chest wall, laparoscopic130

abdos, open abdos, lower abdos, perineal surgery, and laparo-131

scopic bowels. Typical drug administration included earlier132

pharmaceuticals intravenous midazolam 0.05 mg/kg, fentanyl133

1.5–3 μg/kg, or alfentanil 15–30 μg/kg. Intravenous propofol134

was induction 1–3 mg/kg as clinically appropriate and mainte-135

nance with inhaled sevoflurane or desflurane in oxygen-enriched136

air, or in 60% nitrous oxide in air. The airway was supported137

by endotracheal intubation or by laryngeal mask airway as138

indicated clinically. The timing of all intravenous dosing and139

significant intraoperative events as indicated by the BIS mon-140

itor clock was recorded by the attending anesthetist. In the141

meantime, clinical observations by the attending anesthetists 142

during the data collection were also recorded for the 143

comparison. 144

The BIS Quatro sensor was attached to the patient’s forehead. 145

Raw EEG data, BIS values, EMG, and signal quantity index 146

(SQI) were obtained and exported to a USB drive. Raw EEG 147

data were presented as a binary file documenting two channels 148

of unfiltered signals. Each EEG sample was a 16-bit signed 149

integer in units of 0.05 μV. The data were sampled at 128 times 150

per second for each channel. Q1151

B. Denoised Method 152

A noise EEG signal yi of size n can be presented as 153

yi = xi + ε, i = 1, 2, ..., n (1)

where xi is the true EEG signal and ε represents a noise which is 154

the sequence of independent and identically distributed random 155

variable. In the wavelet domain, a transform of yi has the form 156

of 157

d = d̂ + ε̂ (2)

where d = Wy; d̂ = Wx; ε̂ = Wε; y = y1 , ..., yn ;x = x1 , ..., 158

xn ; and ε = ε1 , ..., εn . 159

Here, W is an orthogonal matrix, d is a noisy wavelet coef- 160

ficient, d̂ is the true coefficient, and ε̂ is noise. Our goal is to 161

estimate d̂ from the noise observation d. The supposition to test 162

is H0 : d̂ = 0 versus H1 : d̂ �= 0. 163

A Bayesian wavelet threshold was proposed in [29]–[31]. 164

Prior information with Bayesian estimation techniques was ap- 165

plied for the wavelet-based denoising. The MAP was used to es- 166

timate d̂ from the noisy observation d. A large sample posterior 167

distribution and approximations were presented by Press in [32]. 168

The limiting large-sample normal distribution was adopted for 169

posterior inferences of implementing the Bayesian paradigm. 170

In [33], a larger posterior mode for the wavelet threshold was 171

proposed by Cutillo et al. based on the MAP with the threshold 172

T = 2σ
√

2k − 1, k > 1/2. (3)

C. Statistic Model 173

For the model, the assumption is made that the wavelet coef- 174

ficient d is normally distributed with the parameters μ and σ2 , 175

and its density function p(d|μ, σ2) is given by 176

p(d|μ, σ2) =
1

σ
√

2π
exp

{
− 1

2σ2 (d − μ)2
}

. (4)

If d ∼ N(μ, σ2), then E(d) = μ and V (d) = σ2 . The param- 177

eter μ of the normal distribution is determined by the expected 178

value and the parameter σ2 by the variance of the random vari- 179

able d. 180

Suppose we have normal observations d|d̂ ∼ N(d̂, σ2), 181

where σ is known and the prior distribution for d̂ is 182

d̂|λ2 ∼ N(μ, λ2), λ2 ∼ (λ2)−nk , k > 0 (5)

where λ2 is the single unknown hyperparameter. Here, it is 183

assumed that the parameters d̂ are independent and identi- 184
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cally distributed, and conditional on other parameters, such as185

d̂ ∼ N(μ, λ2). Consider a conjugate prior to p(d|d̂) and p(d̂|λ2),186

the hierarchical Bayes induces the following structure [32]:187

λ2 ∼ p(λ2), d̂|λ2 ∼ p(d̂|λ2), d|d̂ ∼ p(d|d̂). (6)

The likelihood function l(d|d̂) is the probability of observing188

d being conditional on the values of d̂. The prior distribution on189

d̂ [33] is190

p(d̂) =
∫

p(d̂|λ2)p(λ2)d(λ2). (7)

The posterior distribution expresses the information of d191

based on both the sample data and the prior information [33]192

p(d, d̂) =
∫

p(d|d̂)p(d̂|λ2)p(λ2)d(λ2). (8)

D. New Bayesian Wavelet Threshold193

The MAP estimator developed for the Gaussian case is194

p(d, d̂) ∝ p(d, d̂) ∝ l(d̂). (9)

Here, l(d̂) is the likelihood [33]195

l(d̂) = e−
1

2 σ 2 (d−d̂)2
(d̂ − μ)2( 1

2 −nk). (10)

The goal here is to find the parameters d̂ that maximize the196

posterior probability. The logarithm of the posterior is propor-197

tional to198

log
{

p(d, d̂)
}
∝ log

{
l(d̂)

}
= L(d̂)

=
{
− 1

2σ2 (d − d̂)2
}

+ (1 − 2nk) log
(
d̂ − μ

)
. (11)

Maximum posterior estimators are asymptotically equivalent199

to the classical maximum likelihood estimators. The eventual200

models of the posterior p(d|d̂) happen when L(d̂) maximizes.201

The derivative of L(d̂) with respect to d̂ is202

∂L(d̂)

∂d̂
=

d̂2 − (μ + d)d̂ + μd + σ2(2nk − 1)
σ2(μ − d)

. (12)

Setting the derivative equal to 0, we obtain203

d ≥ μ + 2
√

σ2(2nk − 1). (13)

To estimate the noise variance σ2 from the noisy wavelet204

coefficients, the finest scale wavelet coefficient a1 is used to205

compute a median estimator in [26]–[28] as206

σ2 =
median(|a1 |)

0.6745
. (14)

Combining (13) and (14), a new threshold Tn is defined as207

Tn = log
(
μ + 2

√
σ2(2nk − 1)

)
(15)

with208

μ = mean(x). (16)

The BDoA function is used to compare the efficiency of two209

denoising thresholds which were presented in (3) and (15). The210

detail of BDoA will be presented in the next section (see (24)).211

Fig. 1. Comparison between the two denoising thresholds: (a) BDoA trend
using the threshold in (3). (b) BDoA trend using the new proposed Bayesian
threshold in (15).

In Fig. 1(b), BDoA clearly shows the changes of patient’s states 212

from awake state to deep anesthesia, and from general anesthe- 213

sia to awake. This BDoA trend used the new proposed Bayesian 214

threshold in (25). In contrast, the trend of BDoA which used 215

the threshold in (3) has some spike noise during general anes- 216

thesia period as shown in Fig. 1(a). This indicates that our new 217

Bayesian threshold is better than the threshold in (3) for denois- 218

ing raw EEG signals. 219

III. BAYESIAN METHOD FOR THE DOA 220

In this section, we derive the estimate method for monitoring 221

the DoA using a Bayesian method. If the EEG signal is presented 222

by x and denotes the set of unknown parameters by θ, the 223

likelihood function f(x|θ) is the probability of observing the 224

data x being conditional on the values of parameter θ. The prior 225

distribution for θ is π(θ). Bayesian’s theorem gives the posterior 226

probability density function (pdf) for parameter θ as 227

f(θ|x) =
f(x|θ)π(θ)∫
f(x|θ)π(θ)dθ

(17)

where f denotes the joint pdf of the data and π denotes the prior 228

pdf of θ. If f is replaced by the likelihood function L(θ|x), we 229

have 230

f(θ|x) =
L(x|θ)π(θ)∫
L(x|θ)π(θ)dθ

. (18)

Suppose the EEG signal x has the normal observation x|θ ∼ 231

N(θ, σ2), where sigma is known and the prior distribution for 232

θ is θ ∼ N(μ, τ 2). We have 233

E(θ|x) = μ +
τ 2

σ2 + τ 2 (x − μ) =
σ2μ + τ 2x

σ2 + τ 2 (19)

Var(θ|x) =
τ 2σ2

σ2 + τ 2 . (20)

The posterior for θ is the normal pdf as 234

yθ = f(θ|μ, σ) =
1

σ
√

2π
e−

( θ −μ ) 2

2 σ 2 . (21)
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Fig. 2. Posterior, likelihood, and prior density function of the EEG signal with
patient 19.

Fig. 3. Comparison between the maximum of different posterior distributions,
corresponding to different anesthesia states in four sample ranges.

Fig. 2 shows the posterior, prior, and likelihood of patient’s235

EEG data in the case of normal distributions. The posterior,236

likelihood and, prior density functions are shown together for237

the unknown parameter θ in this figure. The posterior and like-238

lihood density functions are considerably more concentrated239

around their maximum values than the prior density function. A240

posterior density function is used to characterize the values of241

the parameters for the EEG data.242

A. MPP of the θ Distribution243

Let MPP be the maximum value of the posterior of yθ , to give244

MPP = max(yθ ). (22)

MPP will be used to estimate the DoA. Fig. 3(a) shows four245

posterior graphs of yθ in different states of anesthesia. The max-246

imum values of the posterior in Fig. 3(a) have changed from low247

TABLE I
RELATION BETWEEN THE ANESTHESIA STATES AND THE MPP FOR A PATIENT

values to high values when the BIS trend of patient 19 changed 248

from awake to the deep anesthesia states in Fig. 3(b). Patient 19 249

was a 74 yr old, 100 kg male. BIS values were recorded between 250

09:21:36 am and 10:33:44 am. Anesthesia induction was with 251

intravenous midazolam 3 mg at 09:22:00, alfentanil 1000 μg at 252

09:22:03, and propofol 120 mg at 09:25:53. At 09:25:55, inhaled 253

sevoflurane and nitrous oxide were introduced. The rectangles 254

1, 2, 3, and 4 in Fig. 3(a) cover the posteriors 1, 2, 3, and 4 255

which are corresponding to the ranges 1, 2, 3, and 4 in Fig. 3(b). 256

Range 1 indicates the awake state with the BIS values from 80 257

to 97. Range 2 shows the moderate anesthesia state with the BIS 258

values from 41 to 43. Range 3 represents the light anesthesia 259

state with the BIS values from 59 to 68; while range 4 is the 260

deep anesthesia state with the BIS values from 25 to 26. 261

Table I presents a relationship between the anesthesia states 262

and the MPP. When the anesthesia states change from awake 263

to light, moderate, and deep anesthesia, the MPP values in- 264

crease from 0.0954, 0.1065, 0.1083, and 0.1316, respectively. 265

These changes are also shown in Fig. 3, corresponding to the 266

four ranges in the four rectangles. These rectangles are used to 267

connect the BIS trend and the posterior distribution in different 268

ranges. The ranges for computing the MPP in Fig. 3 are selected, 269

based on the levels of the anesthesia states. Each individual pos- 270

terior distribution is computed within its own range and then 271

compared on the same axis. The BIS trend shows the changes 272

of anesthesia states over time. 273

B. Monitor the DoA 274

The MPP values have different scales for individual patients. 275

Therefore, their values are converted to a common scale through 276

normalization. A new scale for the MPP in the range of [0, 1] is 277

MPP = MPP/max(MPP). Fig. 4 presents a scatter plot of the BIS 278

and the MPP for 25 patients. The BIS values are on the x-axis 279

in the range of [0, −100] and the MPP values are on the y-axis 280

in the range of [0, −1]. A least-squares curve-fitting method is 281

used to find the straight line by minimizing the distance from 282

each point to this line. The line equation we obtained is 283

MPP = −0.0077BIS + 0.87. (23)

284

This line is the best fit to a set of data points for minimizing 285

the sum of the squared distances between the line and the data 286

points. Based on the relation of the MPP values and the BIS 287

values in (32) when anesthesia states change from awake to 288

deep anesthesia, a new function is proposed to estimate the 289
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Fig. 4. Scatter plot and regression line of the BIS and MPP for 25 patients.

Fig. 5. Scatter plot, histograms, and regression line for the BDoA and BIS
values.

anesthesia levels as290

BDoA = (1 − MPP) × 100 + VOFFSET . (24)

Fig. 5 presents a scatter plot of the BDoA and the BIS val-291

ues, and their histograms on the horizontal and vertical axes.292

The r-squared values r2 = 0.9285 and r = 0.93 show a strong293

correlation between the BDoA and the BIS. The statistical sig-294

nificance was assumed at probability levels of p < 0.005.295

IV. AGREEMENT OF THE BDOA AND THE BIS296

To evaluate and compare our proposed method with other297

established methods, such as the BIS, the Bland–Altman method298

[36] is used to test the degree of the agreement between the299

proposed and BIS methods.300

Defining the difference of the BDoA and the BIS index as301

(BDoA–BIS), the mean difference is dff = mean(BDoA–BIS),302

and the standard deviation of the differences is SD = std(BDoA–303

BIS). If the differences are normally distributed, 95% of the304

differences lie between (dff –2SD) and (dff – 2SD). The calcu-305

lation of the 95% limits of agreement is based on the assumption306

Fig. 6. Distribution of the differences (BDoA –BIS) and the normal fitting.

Fig. 7. Bland–Altman plot shows the difference (BDoA –BIS) versus the av-
erage of values measured with 95% limits of agreement.

that the differences are normally distributed. The distribution of 307

the differences can be checked by drawing a normal plot or 308

histogram. 309

Fig. 6 presents the fitting of the normal distribution of 310

the differences (BDoA—BIS). In this figure, the distribution 311

of the differences matches well with the normal fitting. The 312

Bland–Altman plot is presented in Fig. 7. The Bland–Altman 313

method calculates the mean difference between two methods 314

of the measurement (the “bias”) and 95% limits of agreement 315

as the mean difference (2SD). The Bland–Altman can include 316

an estimation of confidence intervals for the bias and limits 317

of agreement. In Fig. 7, there is a bias of 0.3379. The upper 318

limit of agreement is (dff + 2SD) = 16.1, and the lower limit 319

is (dff – 2SD) = –11.28. The 94.73% (17.500/18.473) limit 320

of agreement presents a visual judgment of how well the two 321

methods of the measurements agree. 322

Prediction probability PK was assessed as described by Smith 323

et al. [37] as a statistical test to assess the capability of a classifier 324

to discern different levels of anesthesia. In this study, PK is 325

calculated using the PK tool 1.2 by Denis et al. [38]. A value of 326
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Fig. 8. EEG histogram is fitted to the different probability densities: normal,
gamma, Rayleigh, extreme, inverse Gaussian, and exponential.

PK = 0.5 means that the index predicts the observed state no327

better than 50/50 chance, and a value of PK = 1.0 means that the328

index always predicts the observed state correctly. A value of329

p < 0.05 was considered significant. PK was calculated for each330

patient. An average of these PK (mean(PK ) = 0.807) preserves331

a good correlation between expected index values BDoA and332

BIS.333

V. EXPERIMENT RESULTS334

A. Probability Distribution of the EEG Signal335

Assuming that the EEG data are the observations from a con-336

tinuous probability distribution, to model the behavior of those337

data, the modeling will then begin by studying the distribution338

of the data. In practice, it is difficult to know exactly the prob-339

ability distribution of the observations. A simple approach to340

model the behavior of the data is to form a histogram of the341

data. Fig. 8 plots the histogram of the EEG signal in the data342

vector using a number of bin bars in the histograms. The EEG343

histograms are fitted to the different probability densities, such344

as normal, gamma, Rayleigh, extreme, inverse Gaussian, and345

exponential. As shown in Fig. 8(a), the normal probability den-346

sity model matches the histograms well. Therefore, the normal347

pdf is used to compute the pdf of the EEG signal.348

B. Parameter Estimation349

If the hyperparameters (μ and τ) are known, the posterior350

distribution for θ can be obtained as351

θ|x ∼ N

(
σ2μ + τ 2x

σ2 + τ 2 ,
τ 2σ2

σ2 + τ 2

)
. (25)

In practice, the situation parameters n and τ vary over time352

with different patients. Therefore, the BDoA function may not353

be accurate for the large samples of patients. In order to estimate354

the accuracy of DoA, the effect of parameters n and τ on the355

MPP is studied with different values. With sample n and the356

sample mean X̄ = 1/n
∑n

i=1 xi , to give357

θ|x1 , x2 , . . . , xn ∼ N(μp, σp) (26)

Fig. 9. Impacts of n and τ values on the posterior values. (a) MAP values
increase when the sample n increases. (b) MAP values decrease when the
variance τ increases.

TABLE II
BDoA VALUES IN AWAKE STATE WITH DIFFERENT SAMPLES (n)

AND VARIANCE τ VALUES, BIS = 80–100

with 358

μp =
σ2μ + nτ 2X̄

σ2 + nτ 2 , σp =
τ 2σ2

σ2 + nτ 2 . (27)

The impacts of the value of n and τ on the posterior values are 359

shown in Fig. 9. In Fig. 9(a), when n has the values of 100, 1000, 360

and 10000, the posteriors get the maximum values as 0.0074, 361

0.2263, and 0.6737, respectively. The MAP value will have a 362

high value with a large sample n and vice versa. In Fig. 9(b), 363

when τ has the values of 5, 10, 20, and 40, the posteriors get 364

the maximum values as 0.1072, 0.0820, 0.0744, and 0.0724, 365

respectively. 366

C. BDoA Estimation Based on Bayesian Parameters 367

In this section, BDoA values are considered based on the 368

change of the different samples (n) and variance τ values. Four 369

states of anesthesia are studied such as awake, light anesthesia, 370

moderate anesthesia, and deep anesthesia states, corresponding 371

to the BIS value ranges at 80–100, 60–80, 40–60, and 20–40, 372

respectively. The simulation results are presented in Tables II– 373

V. The samples (n) are chosen with the values as n = 128 × k, 374

with k = 1, 5, 10, 15, 20, 30. The variance τ are chosen with 375
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TABLE III
BDoA VALUES IN LIGHT ANESTHESIA STATE WITH DIFFERENT SAMPLES (n)

AND VARIANCE τ VALUES, BIS = 70–80

TABLE IV
BDoA VALUES IN MODERATE ANESTHESIA STATE WITH DIFFERENT SAMPLES

(n) AND VARIANCE τ VALUES, BIS = 40–55

the values as τ = 5 × m, with m = 1, 2, . . ., 10. In Table II, in376

awake state, the BDoA values are in the range of 80–100, except377

the change of n and τ values. However, in Tables III and IV,378

the BDoA values are only correct with the situations when the379

values n are 128 × k, 128 × k, and 128 × k, with k = 20, 25,380

and 30. Finally, in Table V, the BDoA values are correct with381

the situations when the values of k are 20 and 25. Summarizing382

for different cases of anesthesia states, the sample n is chosen383

in the range of [2560, 3200], and τ values can vary from 5 to384

50.385

D. Choosing the θ Distribution Function386

In this section, the BDoA values are considered with differ-387

ent θ distributions, such as linear function, logarithm function,388

normal cumulative distribution function (cdf), and normal pdf.389

In order to select a best θ distribution, the BDoA values are col-390

lected and compared with patient’s states and the BIS values. For391

the linear distribution for θ [see Fig. 10(a)], the BDoA trend cor-392

rectly reflects the clinical changes of the patient. In Fig. 10(b),393

TABLE V
BDoA VALUES IN DEEP ANESTHESIA STATE WITH DIFFERENT SAMPLES (n)

AND VARIANCE τ VALUES, BIS = 20–35

Fig. 10. Different θ distributions: linear function, logarithm function, normal
CDF, and normal pdf are used to compute the BDoA which were compared
with the BIS trends.

the BDoA trend changes from the range of 80–100 to the range 394

of 20–40 when the patient’s state changes from consciousness 395

to unconsciousness. During the moderate anesthesia state, the 396

BDoA trend is in the range of 40–50. In the emergence state, 397

the BDoA trend increases from 50 to 95. With the logarithm 398

distribution θ in Fig. 10(b), the BDoA trend is flat as shown in 399

Fig. 10(d). For the normal cdf in Fig. 10(c), the BDoA trend in 400

Fig. 10(f) is not close to the BIS trend. 401

The normal cdf is 402

θncdf = F (x|μ, σ) =
1

σ
√

2π

∫ ∞

−∞
e−

( t−μ ) 2

2 σ 2 dt. (28)

The normal pdf is 403

θnpdf = F (x|μ, σ) =
1

σ
√

2π
e−

(x −μ ) 2

2 σ 2 . (29)
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Fig. 11. Burst suppression happens from 390 to 397 s. (a) Comparison between
BDoA and BIS trends. BDoA index can show the DoA values during the burst
suppression time. (b) Sample EEG signal during the burst suppression time.

For the normal pdf distribution of θ in Fig. 10(g), the BDoA404

trend in Fig. 10(h) shows the same result as the BDoA trend in405

Fig. 10(b). In both cases, the BDoA trends are close to the BIS406

trends. Therefore, the linear function and the normal pdf can be407

chosen for the θ distribution.408

E. Burst Suppression EEG Pattern409

During the deep anesthesia, the EEG voltage may change410

from high activity to low or even isoelectricity. This pattern is411

known as burst suppression. The BSR is a time-domain EEG412

parameter developed to quantify this phenomenon (i.e., a flat413

EEG or no significant electrical activity in the brain). The burst414

suppression is recognized as those periods longer than 0.50 s,415

during which the EEG voltage does not exceed approximately416

±5.0 μV [6]. The BDoA and BIS trends are shown in Fig. 11(a).417

This figure shows the BDoA values in the range of 13.3–15.5 sec-418

onds during burst suppression, lasted 4 s from 390 to 394 s. The419

EEG signal during the burst suppression is shown in Fig. 11(b).420

During this period, the EEG signal has an amplitude value lower421

than 5.0 μV.422

F. Patient’s State in the Case of Poor Signal Quality423

The BIS index is a good monitor but in some cases BIS424

index could not display the values on the screen when signal425

quality indicator (SQI) was lower than 15. This paper claims426

that BDoA can display the DoA values in the case of poor signal427

quality but the BIS could not. For these cases, the BIS monitor428

displays a notice “Excessive artifact detected in signal”. In the429

recorded BIS data of excel file, the value –3276.8 was labeled430

in these cases. In the BIS monitor, the signal quality indicator431

(SQI) is a measure of the signal quality for the EEG channel432

source and is calculated based on impedance data, artifacts, and433

other variables. When the signal quality is too low to accurately434

calculate a BIS value, the affected BIS value and other trends435

will not be displayed on the screen. Potential artifacts may be436

caused by poor skin contact (high impedance), muscle activity or437

rigidity, head and body motion, sustained eye movements, etc.438

Only “valid” BIS values are displayed on the monitor screen439

when signal quality index (SQI) is above 15 [22].440

Fig. 12. DoA values in the case of poor signal quality of Patient 12: a com-
parison between the BDoA and BIS trends. From 0 to 180 s, when SQI is lower
than 15, the BDoA values can display the DoA values but the BIS cannot.

Fig. 13. During general anesthesia, the BDoA values can display the DoA
values but the BIS cannot when SQI is lower than 15.

Fig. 12 shows a case of poor signal quality of Patient 12 441

when patient’s state changed from awake to anesthesia. Patient 442

12 was a 63 yr old, 72 kg, female. Surgery was undertaken from 443

10:31:33 am to 10:52:26 am. Drug administration consisted 444

of midazolam (4 mg) as a sedative drug at 10:31:35 am. At 445

10:31:55 am, alfentanil (1000 μg) was used as strong pain relief 446

given only once during the operation. Parecoxib (40 mg) and 447

Propofol (160 mg) were used at 10:32:55 am and 10:33:30 448

am, respectively. At 10:33:35 am, desflurane and nitrous oxide 449

(N2O) were started. From 0 to 180 s (10:31:33 am to 10:34:33 450

am), the BIS cannot display the DoA values. The clinically 451

important transition from the awake state (BIS = 100) to deep 452

anesthesia (BIS = 33.6) is masked by this phenomenon (see 453

Fig. 12). In this case, the anesthetist could not use the BIS index 454

to estimate the state of the patient. 455

Another case of poor signal quality is presented in Fig. 13 dur- 456

ing general anesthesia. However, the proposed BDoA index can 457

compute and display the DoA index at times when SQI is lower 458

than 15 and the invalid BIS value did not display on the moni- 459

tor screen. The proposed BDoA displays are shown in Figs. 12 460

and 13. Compared with the BIS index in these cases, during the 461

periods of poor signal quality, the results of this Bayesian MMP 462

method better correlate with clinical observations. Those other 463

cases can be found when BIS values dropped as shown in Figs. 464

14 and 16(c). 465
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Fig. 14. Comparison between the BDoA and BIS trends in the case of poor
signal quality in Patient 11.

Fig. 15. Comparison between the BDoA and BIS trends in the case of poor
signal quality in Patient 19.

There is a case where BDOA goes wrong while BIS seems466

to be reliable as shown in Fig. 15. At the awake state, BDoA467

drops two times to value 25 when BIS only drops one time. At468

the second 1500, the BIS value increases but BDOA decreases469

at the recovery time. In this case, probably there are impedance-470

related artifacts that can arise from electrode drift on the skin. In471

the other cases during general anesthetic, dropped BDoA values472

do not happen but the BIS does.473

G. Testing Denoise Algorithm474

In order to check the denoise result, the BDoA function is475

used for three parameters y, x, and ε in (1): y = x + ε. Here,476

y is a noise EEG signal, x is the EEG signal after denoising,477

and ε is a noise. Fig. 16(a), (b), and (c) shows the BDoA of478

the raw EEG signal, noise, and the EEG signal after denoising,479

respectively. BDoA(y) and BDoA(ε) trends are in the range of480

96.5–100 and do not have any relation to the patient’s states. In481

contrast, BDoA(x) trend is close to the BIS trend. This means482

that the denoising algorithm did not filter out any important483

information regarding the DoA.484

VI. DISCUSSION485

In this paper, clinically observed changes in conscious state486

were also observed and recorded by the attending anesthetist487

Fig. 16. (a) BDoA (y): BDoA of raw EEG signal, (b) BDoA (ε): BDoA of
noise, and (c) BDoA (x): BDoA of EEG signal after denoising in Patient 4.

for comparison. The patients’ responses were the overall (ex- 488

perienced) clinical impressions which took into account patient 489

movement, lacrimation, heart rate, blood pressure, respiratory 490

effort, pupil status, and, importantly, what surgery the patient 491

had undergone. The two main components to create the anes- 492

thetic state are hypnosis created with drugs, and analgesia cre- 493

ated with the nitrous oxide. The earlier pharmaceuticals mida- 494

zolam 4 mg and alfentanil 1000 μg were induced. Most patients 495

might not remember but might well move in response to stimuli 496

after these drugs have been given. Loss of consciousness (LOC) 497

occurs reliably at about 30–60 s after intravenous propofol. As- 498

sessment of LOC clinically was by lack of response to verbal 499

and tactile stimuli. Loss of the lash reflex was used in the case 500

of doubt. However, we did not have the plasmatic concentra- 501

tions of sedative drugs. This could be a limitation of this study, 502

especially with a small number of patients. Data exported to 503

a USB drive and transferred to a portable computer for offline 504

analysis. The results were compared with the BIS in the simu- 505

lation, the same as with real-time analysis. Therefore, extensive 506

testing with a larger set of subjects in real time is necessary 507

to further improve the method. Furthermore, clinical anesthe- 508

sia scales, such as the observer’s assessment of anesthesia and 509

sedation and drug concentrations, can be used as an additional 510

reference to improve the accuracy of the DoA estimation. 511

VII. CONCLUSION 512

This paper studies a Bayesian method for denoising EEG sig- 513

nals and estimating the hypnotic DoA. First, an adaptive thresh- 514

old for Bayesian wavelet denoising is proposed. The wavelet 515

transform coefficients are modeled with prior probability distri- 516

butions. A Bayesian technique is used to denoise the coefficients 517

based on this prior information and the likelihood function. A 518

new Bayesian threshold Tn is better than the threshold in [33] 519

for denoising raw EEG signals. 520
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Second, a new index BDoA is proposed based on the MPP521

values. When the anesthesia states change from awake to light,522

moderate, and deep anesthesia, the MPP values increase corre-523

spondingly. The Bland–Altman method is used to test the degree524

of agreement between our proposed method and the BIS index.525

The scatterplot indicates the agreement rates of 94.73% between526

BDoA and BIS indices. The result mean (PK ) = 0.807 preserves527

a good correlation between the expected index values BDoA and528

BIS.529

In order to estimate the accuracy of DoA, the effect of sample530

n and variance τ on MPP is studied. The MPP value will have531

the high value with a large sample n and vice versa. For different532

anesthesia states, the sample n is chosen in the range of [2560,533

3200], and τ value can vary from 5 to 50. In order to select the534

best θ distributions, the BDoA values are collected and compared535

with the patient’s states and the BIS values. In the cases of the536

linear function and the normal pdf, the BDoA trends are close to537

the BIS trends. Therefore, these functions are chosen for the θ538

distribution.539

The simulation results show that the new index accurately540

estimates patient’s hypnotic states. In addition, BDoA can reflect541

the clinical observations better than the BIS index during the542

periods of poor signal quality.543
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