Surgical disruption: Information quality perspective

Latif Al-Hakim Faculty of Business University of Southern Queensland Queensland, Australia 4350 Email: <u>hakim@usq.edu.au</u>

Abstract. This paper emphasises that most surgical errors can be prevented or intercepted by reducing preventable disruptions inside the operating rooms. It uses information quality concepts and identifies information elements cause disruptions. The paper report initial results from 27 observed surgeries conducted in operating rooms of two Australian hospitals. This research employs an 'object-centred' strategy in which the object is the surgeon conducting the surgery and records the time during which a surgeon has to wait unnecessarily is recorded. The research indicates that disruptions may force surgeons to unnecessary wait more than 19% of the surgical time. However, the paper stresses that the results from the limited number of observations may not provides comprehensive list of disruptions.

Keywords: Disruption, information quality, governance information, surgery.

Author's Accepted Version of

Al-Hakim, Latif (2008) *Surgical disruption: information quality perspective*. International Journal of Information Quality, 2 (2). pp. 192-204. ISSN 1751-0457 (Print), 1751-0465 (Online)

Bibliographical notes: Latif Al-Hakim lectures in management in the Faculty of Business at the University of Southern Queensland, Australia. His experience spans industry, research and development and academic institutions. He received his first degree in Mechanical Engineering in 1968. His MSc (1977) in Industrial Engineering and PhD (1983) in Management Science were awarded from the University of Wales (UK). He has published extensively in industrial engineering, information management and systems modelling. He is the author and editor of nine books, twelve chapters in books and more than 75 papers in various journals and conference proceedings. He is selected in the editorial board of several research journals and has consulted to a number of major organisations in Australia.

1. Introduction

Literature shows a strong relationship between disruptions within operating rooms and medical surgical errors (Wiegmann, et al. 2007). Reducing disruption improves patient flow and reduces possible medical errors. The literature stresses that most disruptions within operating rooms are not the result of controllable variables within the system, process and conditions (Reason, 2001; Etchells 2003; Khon et al. 2000; Wiegmann, et al. 2007). Disruption resulting from controllable variables is referred to as 'preventive disruption'. Faulty systems, processes and conditions are sources of disruption. It follows that most surgical errors can be prevented or intercepted by reducing preventable disruptions inside the operating rooms.

This research deals with preventable disruption within the operating rooms. It employs the concepts of information quality (IQ) and applies the approach developed by Al-Hakim (2008) for mapping information flow and identifying information elements that govern activities within a process. Twenty-seven surgeries conducted within operating rooms of two hospitals were observed. Disruptions within the observed surgeries were recorded and discussed with the relevant surgeons. This research provides some insight into observed disruptions within the operating rooms and highlights the importance of considering the dimensions of information quality in dealing with information elements that cause disruptions. The paper is a research-in-progress work. It provides initial results for a larger study dealing with the disruption in operating rooms. It is limited and does not necessarily reflect the actual situation or provides comprehensive list of disruptions.

The next section of this paper provides a brief summary of literature related to disruptions within operating theatre. Two concepts of IQ are then discussed; the elements of governance information and dimensions of IQ. The paper outlines the research methodology used to record disruptions in operating rooms of two Australian hospitals. The paper presents some statistical results and provides some insight relating to the role of IQ dimensions and elements of information flow on surgical disruption.

2. Literature review

In a surgical setting, disruption is any action or event that alters the planned surgical flow and forces surgeons to either wait or perform surgery inefficiently. Disruptions prolong surgery session time, increase costs (Couch 1981) and cause delay. We define delay as any action which prevents the planned flow of a patient to the operating rooms. Wiegmann, et al. (2007) conclude that lack of mental readiness and inability to maintain focus, are rated by surgeons as the most important factors causing errors and affecting surgery outcomes. Disruptions may comprise minor events. The accumulation of these events, however, creates stress and fatigue and, as a result, predisposes the surgical team to errors (Reason, 2001; Etchells 2003). An error is the failure of a planned action to be completed as intended (error of execution) or the use of a wrong plan to achieve an aim (error of planning) (Reason 1990; Khon et al. 2000; Etchells et al. 2003). However, Sexton et al. (2000) conclude that error is difficult to discuss in medicine and that medical staff are more likely to deny the effects of stress and fatigue. Some medical errors could lead to adverse events. An adverse event is defined as an injury caused by medical management rather than the underlying condition of the patient (McFadden et al. 2006). An adverse event attributable to error is a preventable adverse event (Kohn et al. 2000).

The time surgeons have to wait reduces quality of performance (Wiegmann et al. 2007). In addition, disruption to surgical flow for one patient delays the next surgery and forces the next patient to wait. The time patients have to wait directly affects patient satisfaction and forms a measure of healthcare service quality (Eitel et al. 2007). Several studies have focused on reducing surgeon's waiting time by reducing disruption during turnaround (turnover) times (Adams et al. 2004). Other studies attempt the same goal by reducing disruption during nonoperative time. Turnover time is the time from departure of the previous patient from an operating room to the entrance of the next patient into the operating rooms. Nonoperative time is the time between when surgical activity ends and the next patient is ready for surgical prep. It includes turnover time, plus anaesthesia induction and emergency time (post-anaesthesia period). Despite the present study focusing on disruptions in surgical flow as a source of preventable adverse events, there has been no research

adequately dealing with interdependencies between disruptions and actions outside operating rooms. This proposal addresses this gap in the literature. In addition, this study goes a step further by considering disruptions during operative time as well as nonoperative time.

3. Information quality concepts

In this section we briefly discuss two related information quality (IQ) concepts; governance information and IQ dimensions.

3.1 Governance information

Lillrank (2003) suggests that the primary problem in healthcare is not the quality of the actual performance of a process, such as surgery, but the quality of information that regulates or constrains the implementation of the process. Al-Hakim (2008) refers to information that governs, regulates or constrains the activities of a process as 'governance information'. Al-Hakim emphasises that identifying the elements of governance information for surgical activities and their interdependencies is the first step towards improving the quality of information flow within surgical activities and, as a result, reducing disruptions inside operating rooms.

Governance information has three sets of information elements other than input and output. These are 'guidance', 'constraint' and 'feedback'. Guidance is made up of the policies, procedures and rules governing the implementation of the activity. The constraint comprises information from prior activities which influences or adjusts the implementation of a current activity or adjusts guidance information. A clinical test which resulted from a previous activity may affect the way in which a subsequent activity is performed. Feedback for an activity comprises information received from a subsequent activity that may require changes in the implementation of the activity. For example, bed availability in the recovery area may affect admission of patients to the operating room. Input information, output information, constraint and feedback represent information created during the implementation of the surgery process while the guidance is information created prior to the start of the process (Al-Hakim). Figure 1 illustrates the five elements of information; input, output, constraint, guidance and feedback.

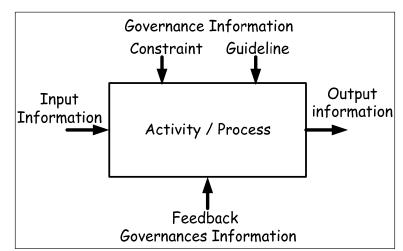


Figure 1. Elements of information controlling an activity.

Source: Adapted from Al-Hakim (2007, 2008)

Information mapping is a process of tracing the relationships (interdependencies) between information elements governing the process activities. Though the quality of information flow for all elements is crucial for achieving quality healthcare, the constraints and feedback directly related to disruptions inside operating rooms. Improving IQ of constraints and feedback elements are crucial for reducing disruptions and ultimately reducing the preventable medical errors and adverse events. Identifying the related IQ dimensions of is the first step towards improving the quality of information. The next section provides brief description of IQ dimensions.

3.2 Dimensions of information quality

Individuals have different ways of considering the quality of information because they have different wants and needs and, hence, different quality standards which lead to a user-based quality perspective (Evans & Lindsay, 2005). This perspective is based on the Juran definition of quality which defines quality as 'fitness for intended use' (Juran & Godfrey, 1999). Thus, information and data can be regarded as being of high quality if they are fit for their intended use in operations, decision making and planning (Redman, 2004). While this perspective captures the essence of information quality, it is very broad definition and is difficult to use in the measurement of quality (Al-Hakim 2007). Several researchers have attempted to identify the IQ dimensions (Wand and Wang 1996; Wang, Story, and Fifth 1995; Wang and Strong 1996). Table 1 defines the most common IQ dimensions.

Dimension	Definition		
Accessibility	The degree to which information is available, easily obtainable or		
	quickly retrievable when needed. Accessibility depends on the		
	customer's circumstances.		
Accuracy	The degree to which information represents the real world state.		
Amount of	This dimension measures the appropriateness of the volume of		
Information	information to the user or task at hand		
Believability	This dimension measures the user assessment of trueness and		
	credibility of information.		
Coherency	This measures how information "hangs together" and provides one		
	meaning to different users.		
Compatibility	The level to which information can be combined with other		
	information to form certain knowledge.		
Completeness	The degree to which information is sufficient enough to depict every		
	state of the task at hand or the represented system, that is, assesses		
	the degree of missing information.		
Conciseness of	The compactness of information representation.		
representation			
Consistency of			
representation	represent information by different systems/users.		
Ease of manipulation	The applicability of information to different tasks.		
Ease of	of The degree of user's comprehension of information.		
understanding			
Free-of-error	The degree to which information is correct. This dimension		

Table 1. Definitions of the common IQ dimensions used in literature. (Adapted from several research works).

	measures the number, percent or ratio of incorrect or unreliable information.				
Interpretability	The appropriateness and clarity of information, language and symbols to the user.				
Objectivity	This dimension measures the information impartiality including whether information is unbiased and unprejudiced.				
Relevancy	Relevancy indicates whether information addresses the customer's needs. It reflects the level of appropriateness of information to the task under consideration.				
Reputation	The degree of respect and admiration for both information source and information content.				
Security	The level of either restriction on access to information or appropriateness of information back-up - protecting information from disasters.				
Timeliness	This dimension measures how up-to-date information is with respect to customer's needs or the task at hand. It reflects also how fast the information system is updated.				

4. Research methodology

The study was conducted in two hospitals, one from a rural area and one from a metropolitan area. The research methodology comprises two phases. The first phase introduces the project to hospital executives and arranges meetings with surgeons, anaesthetists and nurses. It also involves acquiring an understanding of the current situation at each hospital including study and analysis of existing processes for managing operating rooms, preparing surgery requirements, pre-operative activities, activities inside operating rooms, and possible disruptions. The second stage involves observations inside operating rooms. This research employs an 'object-centred' strategy in which the object is the surgeon conducting the surgery. The time during which a surgeon has to wait unnecessarily is recorded. This includes avoidable disruption times during operating room setup, anaesthesia inducement or emergency time. A liaison officer assigned by the hospital accompanies the observers. The officer introduces the observers to the surgical team and arranges meetings with surgeons after surgery sessions to comprehend reasons for recorded disruptions and the effect of disruptions on surgery performance and time.

5. Results

Two observers involved in this study; the author and a Master student. A sample of twenty seven surgery operations was observed over a four month period (May-August 2008). All operations were chosen randomly from elective day surgery lists. Surgery time for the observed surgeries ranges from approximately ³/₄ an hour to almost three hours with total time for all observed surgery operations equals to 37.88 hours and average time for surgery is 1.40 hours (about 84 minutes). The surgery time is the time between when a patient enters the anaesthetic bay of an operating room to the time when the patient is moved out of the room. The following events were not considered - surgery cancellation, patient condition, unanticipated complication in anaesthesia preparation and delays in elective surgery resulting from priority given to emergency cases. The effect of these disruptions on actual surgery performance was not recorded also. It is very important to note that the number of observed

surgery operations is limited and the related results may not reflect the actual situation. However, this study provides some insight relating to the role of information flow and information quality on surgical disruption.

No.	Disruption	Occurrence	Effect %
1	Theatre staff not available for patient transport	23	4.05%
	(in/out OR)		
2	Anaehestist unavailable/ not ready	4	0.79%
3	Surgeon unavailable / not ready	2	0.30%
4	Change order of list during surgery session	3	0.35%
5	Wrong consent form	2	0.57%
6	Incomplete consent form	7	0.84%
7	Unavailability (not enough) of required instruments or material	11	1.54%
8	Wrong / unsuitable instruments or material	12	2.95%
9	Unsuitable attachment for patient positioning	5	1.19%
10	Wrong patient positioning	6	1.27%
11	Recovery bed unavailable (preparation)	3	0.58%
12	Awaiting ICU bed (preparation)	1	0.17%
13	Document not readily available	3	0.75%
14	Awaiting pathology results	2	0.62%
15	Radiographer unavailable	3	0.63%
16	X-ray machine unavailable	1	0.39%
17	Patient lost way to pre-operative area	3	0.97
18	Unsuitable trolley to move a patient	2	0.48%
19	Surgeon moves around surgery table	2	0.09%
20	Instruments and material are scattered	19	0.35%
21	Searching for instrument	16	0.57
22	Telephone disruption	39	0.30%
	Total	169	19.75%

Table 2. Disruptions and their percent effect relative to total time for surgery sessions.

Table 2 shows statistics relating to type, and effect of disruption (in term of percentage relative to total surgical time). A total of 169 disruptions were observed with an effect of about 20% of the total surgery time. It should be noted that though some disruptions such as disruptions numbers 18-21 has relatively low effect on surgeon waiting time but the probability these disruptions cause medical errors and may lead to adverse events is very high. Such disruption should receive significant attention. Meetings were arranged with several surgeons to discuss reasons for disruptions and the main information elements (constraints and feedback) that controlling the disruptions. Discussions with surgeons also clarified the IQ dimensions required to be considered when dealing with quality of information required to reduce disruptions. Constraints and feed back provides better understanding of disruption reasons and make action required more feasible and realistic. Table 3 illustrates type of disruptions, information elements govern disruptions, related IQ dimensions and action required to reduce disruptions. It can be noticed that most recommended actions can be easily performed without significant costs or resources. One may wonder why such actions were not implemented before. The author background on industrial engineering helps establishing links between identified information elements and

industrial engineering techniques such as time and motion economy and workstation design. Though literature on operating room techniques emphasises time and motion economy concepts, (see for example Phillips 2004), the high number of observations in which instruments were scattered on the patient's drape, around and sometimes within anatomic area is but one example for the need for training the scrub nurses on work and motion economy techniques.

One may argue that this research provides a simplistic approach to a very complicated issue. However, the research looks to disruption from new, novel perspective and it worth it to consider.

6. Conclusion

Disruption is the main source of preventable medical errors and adverse events. The present study dealt with disruption from IQ perspective. This is part of a comprehensive research program aiming at reduction of disruption and medical errors with the operating rooms in Australian hospitals. Twenty-seven surgeries were observed with 169 disruptions categorised into 22 types. Results demonstrated that disruption caused an increase in surgical time and forced surgeons to unnecessarily wait for more than 19% of the normal surgery time. Such additional time could be used to deal with other surgeries and consequently reduces the waiting list and save money. It can also ease the pressure of emergency cases and on the admission of elective surgery patients. The paper suggests several actions to be taken among which training surgeon team on time and motion economy is considered as the most effective.

Acknowledgement

The author thanks anonymous reviewers for their insightful comments which have greatly improved the paper. The author is grateful to Dr. Nicole Fairweather (University of Queensland) for her time, support and involvement in this project. The author gratefully acknowledge the thoughtful time of Queensland Health Project Liaison Officers and Ms. Sylvia Johnson. The author would also like to acknowledge the time of Dr. Rafat Al-Jassim (Queensland University of Technology) for his helpful comments on the earlier version of the paper.

References

Adams, R., Warner, P., Hubbard, B. and Goulding, T. (2004) 'Decreasing turnaround time between general surgery cases: a six sigma initiative', *JONA*, Vol. 34, No. 3, pp.140–148.

Al-Hakim, L. (2007) 'Information quality factors affecting innovation process', *International Journal of Information Quality*, Vol. 1, No. 2, pp.162–176.

Al-Hakim, L. (2008) 'Modelling information flow for surgery management process', *International Journal of Information Quality*, Vol. 2, No. 1, pp.60–74.

Barlow, G. (2002) 'Auditing hospital queuing', *Managerial Auditing Journal*, Vol. 17, No. 7, pp.397–403.

Etchells, E., O'Neil, R.N. and Bernstein, M. (2003) 'Patient safety in surgery: error detection and prevention', *Word Journal of Surgery*, Vol. 27, No. 8, pp.936–942.

Evans, J.R. and Lindsay, W.M. (2005) *The Management and Control of Quality*, 6th ed., South-Western, Thomson Learning, Cincinnati, Ohio.

Gawande, A.A., Thomas, E.J., Zinner, M.J. and Brennan, T.A. (1999) 'The incidence and nature of surgical adverse events in Colorado and Utah', *Surgery*, Vol. 126, No. 1, pp.66–75.

Juran, J.M. and Godfrey, A.B. (1999) *Juran's Quality Handbook*, 5th ed., McGraw-Hill, NY, p.22.

Kohn, L.T., Corrigan, J.M. and Donald, M.S. (2000) *To Err is Human: Building a Safer Health System*, National Academic Press, Washington DC.

Kumar, S. and Steinebach, M. (2008) 'Eliminating US hospital medical errors', *International Journal of Health Care Quality Assurance*, Vol. 21, No. 5, pp.444–471.

Lillrank, P. (2003) 'The quality of information', *International Journal of Quality and Reliability Management*, Vol. 20, No. 6, pp.691–703.

McFadden, K.L., Stock, G.N. and Gowen, C.R. (2006) 'Exploring strategies for reducing hospital errors', *Journal of Healthcare Management*, Vol. 51, No. 2, pp.123–135.

Phillips, N. (2004) *Berry and Kohn's Operating Room Techniques*, Mosby, Inc., St. Louis, MO 62146.

Reason, J.F. (2001) 'Heroic compensation: the benign face of the human factor', *Flight Safety Australia*, Vol. 5, No. 1, pp.29–31.

Redman, T.C. (2004) 'Data: an unfolding quality disaster', *DM Review Magazine*, August Issue, Retrieved 6 November, 2005, from http://www.dmreview.com/article_sub.cfm?articleId=1007211

Sevdalis, N., Forrest, D., Undre, S., Darzi, A. and Vincent, C. (2008) 'Annoyances, disruptions, and interruptions in surgeries: the disruption in surgery index (DiSi)', *World Journal of Surgery*, Vol. 32, pp.1643–1650.

Sexton, J.B., Thomas, E.J. and Helmreich, R.L. (2000) 'Errors, stress and teanmwork in medicine and aviation: cross sectional surveys', *British Medical Journal*, Vol. 320, pp.745–749.

Wand, Y. and Wang, R.Y. (1996) 'Anchoring data quality dimensions in ontological foundations', *Communications of ACM*, Vol. 39, No. 11, pp.86–95.

Wang, R.Y. and Strong, D.M. (1996) 'Beyond accuracy: what data quality means to data consumers', *Journal of Management Information Systems*, Vol. 12, No. 4, pp.5–34.

Wang, R.Y., Storey, V.C. and Firth, C.P. (1995) 'A framework for analysis of data quality research', *IEEE Transactions Knowledge and Data Engineering*, Vol. 7, No. 4, pp.623–640.

Wiegmann, D.A., Elbardissi, A.W., Dearani, J.A., Daly, R.C. and Sundt, T.M. (2007) 'Disruption in surgical flow and their relationship to surgical errors: an exploratory investigation', *Surgery*, Vol. 142, No. 5, pp.658–66

Disruption	tions and related IQ dimensions a Information Element		IQ dimension	Reason	Required Action
-	Constraint	Feedback	1		
Theatre staff not available for	Timing of initiating the call	Requiring extra minutes to arrive	Timeliness	Delay in initiating the call	Call staff before the anaesthesia period).
patient transport	Location & room number		Completeness	Failure to allocate the operating room (OR)	Information in the c OR number. Confir recommended to ins OR.
Anaehestist unavailable	Timing of calling	Requiring further time	Timeliness	OR supervisor fails to inform anaesthetist in time	Communication bet supervisor should be
Surgeon unavailable	Timing of calling	Requiring further time	Timeliness	OR supervisor fails to inform the surgeon in time	Communication bet supervisor should be
Change order of list during surgery session	Similarity of patients' positioning	Inform pre- recovery Inform patient	Timeliness, coherency , compatibility Timeliness,	Surgeon failure to recognise positioning similarity before the day of surgery Failure to inform patients	Surgeon should veri amend the list before pre-operative area sh day before the day of
Wrong consent	Selecting correct	Reprepare	accessibility Accuracy	about the changeUsing wrong consent form	Having different con
form	form Verify data	Amend data	Accuracy, free-of-error, relevancy	Consent form contains wrong information related to surgery	prevents such disrup It is advisable that a information is prepa consultation with su
			Accuracy, free-of-error	Ticking 'yes' incorrectly	Add field requiring of suggestion makes sta 'yes' field
	Verify patient name	Select patient's form	Accuracy	Consent form is belong to another patient	Develop consent for (digital form)
Incomplete consent form	Verify fields	Complete the form	Completeness	Failure to enter data in all related fields	Missing data and un by developing conse digitised.
Unavailability of required instruments or material	Check availability	Confirm availability	Accessibility, Timeliness	Failure to confirm instruments unavailability	Facilitate direct info office and store / inv
Wrong / unsuitable instruments or	Specification	Confirm availability	Compatibility, relevancy	Receiving instrument with incompatible or wrong specification	Use coding system t instruments and mat
material			completeness	Surgeon fails to record complete specifications	Same as above. Inve query about the spec
Unsuitable attachment for patient positioning	Positioning & Specification		Compatibility, relevancy Completeness	Receiving wrong or unsuitable attachment Surgeon fails to record complete specifications	Use coding system t attachments – prefer
Wrong patient positioning	Surgeon's Requirements	Repeat / adjust positioning	Ease of understanding Completeness, amount of information	Failure to follow the surgeon's requirements Incomplete description	Positioning staff ma Coding positions –u considering patient s
Recovery bed unavailable	Patient readiness	Number of available beds	Timeliness, accessibility	Failure to confirm bed availability within adequate time	Pre-operative area s bed availability & n
Awaiting ICU bed	Patient health status	Number of available beds	Timeliness, accessibility	Failure to confirm bed availability within adequate time	Pre-operative area s bed availability & n area
Document not readily available	Search		Accessibility	Searching takes considerable time	Certain documents s colour signs.
	Search	Not found	Accessibility	Failure to allocate the	This is very vital ma

Table 3. Disruptions and related IQ dimensions and elements of governance information.

	1		1		
				medication chart (ECT operation)	should be in recognise attached to top of the
Awaiting pathology results	Test sample	Result not available	Timeliness, coherency	Failure to have the test before the surgery day	Checklist for each ca be used to remind sur
			Accessibility, timeliness	Failure to obtain the results before the surgery	Direct communication maintained. Tests can urgency.
Radiographer unavailable	Availability	No instant response. Requiring extra time	Timeliness, accessibility, ease of manipulation	Failure to inform radiographer in advance.	Schedule the available consistency with the
X-ray machine unavailable	Availability	Not available	Timeliness, accessibility, ease of manipulation	Failure to bring the machine in time	Schedule the available radiographers in consistent schedule.
Patient lost way to pre-operative area	Patient Mobility	Patient booked at reception	Relevancy	Failure to recognise patient's inability to move freely – using wheelchair	All relevant informat should be identified. operative and recepti guided by a porter to
	Arrival time	Patient booked at reception	Ease of understanding, interpretability	Patient arrive late and lost way to pre-operative	Coordination betwee required. Recommen directing patients tow Allow to use staff lift
Unsuitable trolley to move a patient	Patient weight		Relevancy, accessibility	Failure to bring trolley that suit overweighted patient.	Patient weight, age a information that may transportation should accessible to the rele
Surgeon moves around surgery table	Positioning	Adjust positioning	Relevancy, coherency	Positioning prevents surgeon to comfortably observe the anatomic area	Lack of knowledge of study, and motion ec required
	Table height	Lower surgery table	Relevancy, coherency	The height of the table prevents surgeon works comfortably	Anatomic area should the surgeon. Lack of on methods and moti required
Instruments and material are scattered	Handling instruments and sponges		Relevancy, coherency, ease of manipulation	Sharp instruments and used sponges are scattered randomly around anatomic area	Use mayo table. Dev disruption. Lack of k motion economy. Ins within the grasp rang be required.
Searching for instrument	Handling Instrument	Search	Relevancy, coherency	Failure to locate the position of instruments	Lack of knowledge of on workstation desig within the grasp rang be required.
	Handling instruments	Missing	Relevancy, coherency	Instruments slipped under surgery drape	The use Mayo Table hospital policy (guid time and motion econ workstation design. 7
Telephone disruption	Handled by circulating nurse	Answering call	Relevancy	Surgeon dictates the answers	Most calls can be and Calls can be received