
remote sensing  

Article

Estimation of Poverty Using Random Forest
Regression with Multi-Source Data: A Case Study
in Bangladesh

Xizhi Zhao 1,2,3, Bailang Yu 1,2,* , Yan Liu 3,* , Zuoqi Chen 1,2 , Qiaoxuan Li 1,2 ,
Congxiao Wang 1,2 and Jianping Wu 1,2

1 Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University,
Shanghai 200241, China; zhaoxizhizhi@126.com (X.Z.); zqchen@geo.ecnu.edu.cn (Z.C.);
leejoetion@gmail.com (Q.L.); cxwang1992@126.com (C.W.); jpwu@geo.ecnu.edu.cn (J.W.)

2 School of Geographic Sciences, East China Normal University, Shanghai 200241, China
3 School of Earth and Environmental Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
* Correspondence: blyu@geo.ecnu.edu.cn (B.Y.); yan.liu@uq.edu.au (Y.L.); Tel.: +86-21-5434-1172 (B.Y.);

+61-7-3365-6483 (Y.L.)

Received: 20 January 2019; Accepted: 9 February 2019; Published: 13 February 2019
����������
�������

Abstract: Spatially explicit and reliable data on poverty is critical for both policy makers and
researchers. However, such data remain scarce particularly in developing countries. Current research
is limited in using environmental data from different sources in isolation to estimate poverty despite
the fact that poverty is a complex phenomenon which cannot be quantified either theoretically or
practically by one single data type. This study proposes a random forest regression (RFR) model to
estimate poverty at 10 km × 10 km spatial resolution by combining features extracted from multiple
data sources, including the National Polar-orbiting Partnership Visible Infrared Imaging Radiometer
Suite (NPP-VIIRS) Day/Night Band (DNB) nighttime light (NTL) data, Google satellite imagery,
land cover map, road map and division headquarter location data. The household wealth index
(WI) drawn from the Demographic and Health Surveys (DHS) program was used to reflect poverty
level. We trained the RFR model using data in Bangladesh and applied the model to both Bangladesh
and Nepal to evaluate the model’s accuracy. The results show that the R2 between the actual and
estimated WI in Bangladesh is 0.70, indicating a good predictive power of our model in WI estimation.
The R2 between actual and estimated WI of 0.61 in Nepal also indicates a good generalization ability
of the model. Furthermore, a negative correlation is observed between the district average WI and the
poverty head count ratio (HCR) in Bangladesh with the Pearson Correlation Coefficient of -0.6. Using
Gini importance, we identify that proximity to urban areas is the most important variable to explain
poverty which contribute to 37.9% of the explanatory power. Compared to the study that used NTL
and Google satellite imagery in isolation to estimate poverty, our method increases the accuracy of
estimation. Given that the data we use are globally and publicly available, the methodology reported
in this study would also be applicable in other countries or regions to estimate the extent of poverty.

Keywords: poverty; random forest regression; Bangladesh; nighttime light; Google satellite imagery

1. Introduction

Poverty reduction has been an important mission for all countries around the world, especially
for the less developed countries. The United Nations (UN) has proposed 17 Sustainable Development
Goals (SDGs) for 2015–2030, including the elimination of all forms of poverty in the world [1].
According to the 2018 World Bank report, 10% of the world’s population still lived in poverty in
2015 [2]. Monitoring poverty is vital for both policy makers and researchers to analyze the living
conditions of the poor as well as to formulates poverty reduction strategies. Traditional ways of
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poverty measurements largely rely on survey data, including income, consumption, health, education,
and housing [3,4]. However, obtaining survey data is time-consuming and costly and these surveys
are generally conducted once every 3–5 years [3]. In between surveys, there is still a need to provide
detailed poverty data. Furthermore, countries that are extremely poor or in war can even lack of
these survey data for years. Remote sensing data have the advantage of offering large-scale, multiple
spatial and temporal resolution information about the land surface and have been used widely to
estimate socioeconomic conditions including poverty. The most commonly used remote sensing data
to estimate poverty include nighttime light (NTL) remote sensing data, high resolution remote sensing
data, and other visible spectral remote sensing data.

NTL data can record artificial lights from human settlements at night and have been proved
to have good ability to estimate various socioeconomic parameters such as gross domestic
product (GDP) [5,6], population [7,8], electric power consumption [9–12], carbon dioxide (CO2)
emissions [13,14] and others [15,16]. It has also been used to analyze urban structures [17–20]. The most
commonly used NTL data include data acquired by the Defense Meteorological Satellite Program’s
Operational Line Scan System (DMSP-OLS) and the Suomi National Polar-orbiting Partnership
(S-NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) Day-Night Band (DNB). DMSP-OLS
data have some limitations such as coarse radiometric accuracy, low spatial resolution, lack of
on-board calibration and limited dynamic range [21]. NPP-VIIRS DNB have provided NTL data
with a higher spatial and radiometric accuracy since 2012 [22]. Both DMSP-OLS and NPP-VIIRS DNB
data have been used in estimating poverty. For instance, Noor et al. [23] examined the correlation
between a survey based Wealth Asset Index and three indices derived from DMSP-OLS NTL data
(including mean brightness of NTL, mean distance to NTL, and proportion of area covered by NTL)
for 338 states in 37 African countries, with the Pearson correlation coefficient of 0.64, 0.63, and −0.61,
respectively. Elvidge et al. [24] produced a global poverty map at 30 arc second resolution by dividing
the population count by the DMSP-OLS NTL value. Yu et al. [25] evaluated the ability of NPP-VIIRS
DNB monthly composite data in estimating poverty at the county level in China; their results showed a
good correlation between the survey based Integrated Poverty Index (IPI) and the Average Light Index
(ALI) in 38 counties of Chongqing city and a general agreement between the national poor counties
and the counties with low ALI values.

High-resolution remote sensing data such as Google satellite imageries, Quickbird imageries
and moderate resolution remote sensing data such as Landsat TM/ETM+ data have been used to
estimate poverty. Varshney et al. [26] estimated the proportion of thatched and metal roofs in each
village using Google satellite images and targeted the villages with large percentages of thatched roofs
as poor villages. Duque et al. [27] extracted land cover, urban texture and urban structure features
from Quickbird imageries and found that these features can explain up to 59% of the variability in a
survey-based Slum Index, which was used to indicate poverty level. Jean et al. [28] proposed a transfer
learning method to estimate poverty at a 10-km spatial resolution for five countries in Africa by using
features extracted from the Google satellite imagery. Gary et al. [29] extracted land cover variables
from Landsat ETM+ data and found that female literacy was related to some of these variables.

Apart from remote sensing data, other publicly available data such as road maps were also
used in the literature to estimate poverty. Weiss et al. [30] produced a global map of travel time to
cities and found a clear association between higher household wealth and greater accessibility to
population centers.

These data can be used to estimate poverty in the absence of poverty survey data because
each data type can reflect some of the environmental characteristics that are associated with poverty.
For example, NTL brightness can directly reflect the level of economic development. High- and
moderate-resolution remote sensing data contain landscape information of human settlements that
could be correlated with human living conditions. Accessibility to roads and cities is related to poverty
because communities in remote locations away from roads and developed regions often have poor
access to infrastructure and services such as education, health facilities, transportation and participate
in the market economy [31], resulting in a high concentration of poverty. However, each data type is
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only capable of providing information about a particular aspect of poverty. Given that the causes of
poverty and the characteristics of poor households are complex, poverty variation is difficult to explain
by a single data type theoretically and in practice. For example, NTL data displays little variation in
lower poverty levels and has difficulty distinguishing between poor, densely populated areas and
wealthy, sparsely populated areas [28]. NTL radiance and landscape features have limited ability to
reflect accessibility of communities to roads and cities. This study aims to fill in this research gap by
developing a Random Forest Regression (RFR) model using data from different sources to estimate the
multidimensional construct of poverty in the developing country context.

The RFR was first introduced by Breiman et al. [32] as a type of effective machine learning
models for regression which has been used in many different applications [33–37]. Compared to other
methods, the RFR model is less sensitive to noise and overfitting and has the ability to handle high
data dimensionality and multicollinearity [35,38]. It has shown good performance on multi-source
data with different spatial-resolution and units [39]. In this study, we propose a RFR model to estimate
poverty at 10-km resolution by integrating multi-source datasets, including NTL data, Google satellite
imagery, land cover data, road data and division headquarter location data. The remainder of the
article is organized as follows. Section 2 introduces the study area, data and methods used in this
study. Sections 3 and 4 present the results and discussion, respectively. Conclusions are summarized
in Section 5.

2. Materials and Methods

2.1. Study Area

Bangladesh is a South Asian country consisting of eight administrative divisions, with Dhaka
being its capital and the largest city (Figure 1). It is one of the most densely populated countries
in the world with a sizable population still living in poverty. In 2014, the population and GDP in
Bangladesh were $0.16 billion and $173 billion (USD), respectively [40]. It was a lower-middle income
country at the time, according to the World Bank’s classification of countries by income. The poverty
headcount ratio at national poverty lines (percentage of the population) was 31.5% in 2010 and 24.3% in
2016 [40]. In addition, Bangladesh possesses a highly complex and challenging physical environment,
encountering yearly natural disasters such as floods, droughts and cyclone surges [41]. When faced
with natural disasters, poor people are more likely to get injured or sick, but harder to recover [42].
Due to this, targeting the poverty in Bangladesh is important for both understanding the situation of
poor people and developing policies to help them.Remote Sens. 2019, 11, x FOR PEER REVIEW 4 of 19 
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2.2. Data

The Wealth Index (WI) (Figure 2a) drawn from the Demographic and Health Surveys (DHS)
program [43–45] was used as the dependent variable of the poverty estimation model. WI is computed
as the first principal component of household’s ownership of selected assets (such as televisions and
bicycles, materials used for housing construction, types of water access and sanitation facilities) and
has been used as a reflection of household poverty level in previous studies [28,30,46]. The WI value is
an integer ranging from 1 to 5, indicating the lowest, second, middle, fourth, and the highest asset
levels. The DHS provides WI for each household participating in the survey. Instead of specific
household locations this dataset provides the average latitude and longitude of the groupings of
households, known as household clusters. To further preserve the anonymity of survey respondents,
the data collection agency displaced the positions of clusters by adding up to 5 km positional errors in
each direction (1% of rural clusters contain up to 10 km positional error). We averaged the WI across
households within the cluster to get the average WI of each cluster. In this study, the latest WI data in
2014 was used to represent the poverty level in Bangladesh. The final WI data consist of 598 household
clusters, each of which contains between 3 to 30 households. The average and median number of
households in each cluster were 28.8 and 29.Remote Sens. 2019, 11, x FOR PEER REVIEW 5 of 19 
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Figure 2. Datasets used in this study. (a) Wealth Index (WI) map, (b) National Polar-orbiting Partnership
Visible Infrared Imaging Radiometer Suite (NPP-VIIRS) nighttime light (NTL) image, (c) Open Street
Map (OSM) primary and secondary road map, (d) land cover map.
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The VIIRS Cloud Mask–Outlier Removed (vcm–orm) annual composite NPP-VIIRS DNB data
(Figure 2b) collected from the National Oceanic and Atmospheric Administration’s National Centers
for Environmental Information (NOAA/NCEI) of the United States [47] were used to reflect the
NTL intensity in Bangladesh. The annual composite NTL data were calculated as the average
radiance values of the daily DNB data that had undergone stray light correction, lunar irradiance
correction, cloud removal, and outlier removal procedure. The resolution of the data is 15 arc-second
(~500 m). As the annual composite NTL data in 2015 and 2016 are the only available data, we chose
the data in 2015 to minimize the temporal differences between the WI data, NTL data and the Google
satellite images.

Google provides high resolution satellite images of cities around the world. In this study,
Google satellite images were used to extract the structure and texture features of the landscape. We
downloaded the Google satellite images at zoom level 16 with the size of each image being 224 × 224
pixels using the Google Static Maps API [48]. The spatial resolution of the image was ~2.39 m which is
high enough to reflect the detailed landscape. The size of each image is ~535 m × 535 m (calculated as
224 × 2.39 m), which is similar in size to the NPP-VIIRS NTL pixel size. The dates of most Google
images we used were from 2015 to 2017, which we downloaded in January 2018. The dates were close
to WI data and other environmental data used in this study.

Maps illustrating the primary and secondary roads (Figure 2c) acquired from Open Street Map
(OSM) [49] were used to calculate the accessibility of the region. Land cover maps at a 300-m resolution
for 2015, acquired from the European Space Agency (ESA) Climate Change Initiative (CCI) project [50],
were used to extract urban area as well as other land cover features. We integrated land cover types
into four categories: urban, cropland, tree, and water (Figure 2d). The Administrative boundary and
division headquarter data (Figure 1) were obtained from a geo-spatial data storing and sharing website
provided by Bangladesh government [51].

2.3. Methods

A flowchart of the RFR model to estimate WI is illustrated in Figure 3. We first extracted various
features from multiple data sources described above and used these features as independent variables
to develop and train a RFR model; these features were used to estimate the WI as the dependent
variable in the model. Given that there is up to 5 km of positional error added for each WI cluster
location, we generated a 10 km × 10 km grid centered at each cluster location to ensure that the true
location falls within the grid. The 10 km × 10 km grid was then used as the basic unit of analysis and
features were extracted for each grid.
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2.3.1. Feature Extraction

We extracted four types of variables from multiple data sources. Table 1 lists the descriptions of
all variables we used and the data source used to define and quantify the variables. Socioeconomic
variables included three indices derived from NTL data (Mean, Min, and Max NTL). We used NTL
indices to reflect socioeconomic conditions because NTL has proven to be correlated with many
socioeconomic indicators [5,52,53]. Generally, the lower NTL intensity indicates less developed
economy and high probability to be poor.

Table 1. Independent variables derived from multi-source data.

Variable Type Variable Name Description Data Source

Socioeconomic
Mean NTL The mean radiance value of NTL in

each grid. NPP-VIIRS NTL
Min NTL The minimum radiance value of NTL in

each grid.
Max NTL The maximum radiance value of NTL in

each grid.

Structure and texture PC1~PC25 25 principal components extracted from
Google Satellite Map.

Google satellite
image

Land cover

Proportion of Urban Proportion of urban area in each grid.

Land cover mapProportion of Cropland Proportion of cropland in each grid.
Proportion of Tree Proportion of tree cover in each grid.
Proportion of Water Proportion of water cover in each grid.

Accessibility

Road Density The total length of primary and
secondary roads in each grid.

OSM road map

Distance to Roads The distance from the grid center to the
nearest primary or secondary roads.

OSM road map

Distance to Urban The distance from the grid center to the
nearest urban area.

Land cover map

Distance to Division
Headquarters

The distance from the grid center to the
nearest headquarter of divisions.

Division
headquarter map

The physical living environment of households was reflected by structure and texture variables
as well as land cover variables. Structure and texture variables were abstract variables that can reflect
the detailed landscape feature such as the presence/absence of buildings, roads, and water [28], which
are useful to quantify the detailed living environment. The structure and texture variables (PC1~PC25)
were extracted from Google satellite images combined with NTL data by adapting a transfer learning
model introduced by Jean et al. [28]. The procedures we took to extract structure and texture variables
are described as follows.

Firstly, by fitting a Gaussian mixture model to the relative frequencies of the NTL intensity
values across Bangladesh, the NTL values were classified into three classes, with the classes ranging
from 0.0–0.65, 0.65–2.55, 2.55–200.43 nW·cm−2·sr−1, indicating low, medium, and high NTL intensity,
respectively. Secondly, we fine-tuned a convolutional neural network (CNN) model named VGG-F [54]
to predict NTL classes from the corresponding Google satellite images. Since NTL can reflect economic
activities, the features that explain variation in NTL intensity is also predictive of economic outcomes
such as poverty [28], which serves as a basis for the transfer learning method. The fine-tuned CNN
model was then used as a feature extractor to extract these features. Thirdly, as the dimension of features
extracted from the CNN model was large (4096-dimensions), we used the principal component analysis
(PCA) to reduce the vector dimension to prevent overfitting to the relatively small training sets. The first
25 principal components retained 90% of data variation and were used in the following RFR model.
Because each 10 km × 10 km grid covered 400 NTL and Google images, we got 400 feature vectors from
each grid. We then averaged these feature vectors to obtain one feature vector for each grid.

Land cover variables described the composition of the surface landscape in terms of the amount
of basic land cover types (including urban, cropland, tree, and water), which could reflect the overall
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living environment of the area. Land cover variables were computed as the proportion of each land
cover type in each grid.

Accessibility features describe the convenience of households to access roads, urban, and division
headquarters. Communities in remote locations away from roads and developed regions often
have a large concentration of poverty because people in these communities often have poor access
to infrastructure such as education, health facilities, transportation and participate in the market
economy [31]. Accessibility features were computed as the distance from the grid center to roads,
urban area, and division headquarters as well as the total road length in a grid. The urban areas were
extracted from the land cover map (Figure 2d).

2.3.2. The RFR Model

RFR is a combination model that consists of a large number of regression trees. A regression
tree [55] is defined as a flowchart-like structure in which the input dataset is repeatedly split into
increasingly homogeneous subsets at each node and ends with a series of terminal nodes. Once a
regression tree is trained using the training data, the predictions for new observations are determined
by sending the input variables down the tree and taking the means of the response variables within
the terminal node into which the observation fall [56]. In a RFR, each regression tree is constructed
using a subset of training samples that is independently selected, with replacement from the original
data set [32]. For each node per tree, only a small subset of variables is randomly selected to determine
the split. This strategy increases the diversity between trees to avoid over-fitting and increases the
robustness of the model. The final RFR predictor is formed by taking the average over all trees.
The samples that are not used to grow the tree are called Out-Of-Bag (OOB) data. To estimate the
model accuracy, the RFR gives an error of estimate called the OOB error by calculating the difference
in the mean square errors between the OOB data and the data used to grow the regression trees [32].
To assess the explanatory power of each variable, Gini importance was used. Gini importance is
defined as the total decrease in node impurity (weighted by the probability of reaching that node)
averaged over all trees [57] and can be used as a general indicator of feature relevance. The sum of the
Gini importance of all variables is 1.0. A higher Gini importance value indicates that the variable is
relatively more important.

In our study, we implemented RFR by using a Python package named scikit-learn [58]. Firstly,
we standardized the input variables, that is, features extracted from multiple data sources, by removing
the mean and scaling to unit variance. Secondly, we used backward elimination method [59] to select
variables that would offer the best predictive ability of the RFR model. We started the RFR model
with all the variables and removed the least important variable at each iteration. If the OOB error
of the model increased, we added this variable back to the model. We repeated this until no further
improvement was observed on removal of variables. After that, we used the remaining variables to
train the RFR model. When training the model, several parameters need to be determined. Table 2
shows the parameters that we optimized in the RFR model. The values of parameters were determined
by the grid search method [60] using all the samples as the training data.

Table 2. The descriptions and values of RFR model parameters.

Parameter Name Description Value

n_estimators The number of trees in RFR. 280
max_depth The maximum depth of the tree. 56

min_samples_split The minimum number of samples required to split an internal node. 2
min_samples_leaf The minimum number of samples required to be at a leaf node. 3

We estimated the WI values for 598 household clusters using a 10-fold cross validation approach,
that is, the household clusters were randomly partitioned into 10 equal sized subsamples among
which the WI values for each subsample were estimated using the model that was trained using the
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other nine subsamples. The R2 between the actual and estimated WI was used to evaluate the model
performance. Once validated, the resulting RFR model was applied to the entire Bangladesh to obtain
an estimate of the WI at 10 km × 10 km resolution.

2.3.3. Collinearity Analysis of Variables

To measure the collinearity between the variables used in the RFR model, we first calculated
the Pearson correlation coefficient r between any two variables (except between any two principal
components extracted from the Google satellite imagery given that the PCA ensures no correlation
between principal components). Then, we calculated two indicators—tolerance and Variance Inflation
Factor (VIF)—to further check the multicollinearity between variables:

tolerance = 1 − R2
j (1)

VIF =
1

tolerance
(2)

where R2
j is the coefficient of determination of a regression of explanatory variable j on all the

other explanators. A tolerance of less than 0.2 or a VIF of 5 and above indicates the existence of
a multicollinearity problem [61].

3. Results

3.1. Variables Selection Results

Selected variables ordered by Gini importance are shown in Figure 4. It shows that 14 out of
the 36 variables were selected, with distance to urban being the most important variable with an
importance weight of 37.9%. Amongst the four types of variable sets, accessibility variables (including
distance to urban, distance to roads, and distance to division headquarters) were the most important
variables with a total importance weight of 42.2%, indicating that accessibility was the key factor to
estimate poverty level. On the other hand, 9 out of the 25 structure and texture variables extract from
Google satellite images were selected (including PC1, PC10, PC5, PC8, PC9, PC2, PC7, PC22, and PC16)
with a collective importance weightage of 24.1%. The mean NTL was the only socioeconomic variable
that was retained with an importance weight of 32.6%, whereas the proportion of water was the only
land cover variable that was retained with a marginal importance weight of 1.0%.
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3.2. Accuracy Evaluation of the RFR Model

To evaluate the accuracy of the proposed RFR model, we calculated the R2 between the actual
and estimated WI in Bangladesh (Figure 5a). The R2 of 0.70 indicates a strong correlation between
the actual and estimated WI, showing a good performance of the RFR model. To test whether the
model trained using data from Bangladesh could be used to estimate the poverty in other countries,
we applied the model to estimate the WI in Nepal by using variables extracted from multiple data
sources in Nepal as model inputs. We chose Nepal because it is geographically close to Bangladesh
and is a low-income country according to the World Bank’s classification of countries by income.
More importantly, the DHS provided WI data for Nepal in 2016, which can be used to validate the
model results. We compared the estimated WI with the actual WI in Nepal (Figure 5b). The R2 of
0.61 indicates a good generalization ability of our model.Remote Sens. 2019, 11, x FOR PEER REVIEW 10 of 19 
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Figure 6a,b presents the spatial distribution of the actual and estimated WI in Bangladesh,
respectively. The actual and the estimated WI distribute very similar patterns geographically across
Bangladesh. However, the range of the estimated WI (from 1.43 to 4.91) was smaller than that of the
actual WI (from 1.07 to 5.0), indicating that the proposed method has compressed the data range to
some extent. Figure 6c shows the residuals between the actual and the estimated WI, calculated as the
estimated WI minus the actual WI. Most of the residuals fall within the −0.5 to 0.5 range (represented
in yellow color in Figure 6c), indicating an overall small difference between the actual and estimated
WI. In order to further analyze the spatial distribution of residuals, we conducted a hotspot analysis of
the residuals using the Getis–Ord (Gi*) statistic [62]. The result showed that the cold spots were mainly
distributed in places with high WI values, while the hot spots were mainly distributed in places with
low WI value (Figure 6d), indicating that the proposed method tends to underestimate the high WI
values and overestimate the low WI values.
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3.3. Accuracy Evaluation by A Comparison with District-Level Census Data

Using the RFR model, we reconstructed the 10 km × 10 km poverty map for the whole of
Bangladesh (Figure 7a). Areas where the model assigns a low WI were colored blue, while areas
assigned a high WI were colored red. We aggregated the estimated WI to the district level by calculating
the average WI value of all grids in each district (Figure 7b). As a validity check, we compared the
aggregated WI against the most recent poverty Head Count Rate (HCR) map (Figure 7c), which was
derived based on the 2015 survey data [63]. Both the WI map and poverty HCR map were classified
into five grades using the Jenks natural breaks [64] classification method. The patterns shown in these
two maps are largely similar.
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Furthermore, we calculated the Pearson correlation coefficient (r) between the log-transformed
poverty HCR and estimated WI. The log transformation was applied to decrease the variability of data
and make the data conform more closely to a normal distribution. The r of −0.60 (p < 0.001) indicates a
negative correlation between the log-scaled poverty HCR and WI (Figure 8).
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3.4. Collinearity of Variables

Table 3 lists the Pearson correlation coefficient r between any two variables used in the RFR
model (except between any two principal components extracted from Google satellite image). There
was a strong correlation between the mean NTL and PC1 (r = 0.90). Apart from this set of variables,
the r values between any other pair of variables were less than 0.50, indicating no strong correlation
between them.
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Table 3. The Pearson correlation coefficient r between any two variables used in the RFR model.

Distance to
Urban Mean NTL

Distance to
Division

Headquarters

Distance to
Roads

Proportion of
Water

Distance to Urban 1.00
Mean NTL −0.40 ** 1.00

Distance to Division
Headquarters 0.25 ** −0.46 ** 1.00

Distance to Roads 0.34 ** −0.28 ** 0.17 ** 1.00
Proportion of Water −0.16 ** 0.37 ** −0.21 ** −0.06 1.00

PC1 −0.49 ** 0.90 ** −0.44 ** −0.30 ** 0.42 **
PC2 0.13 ** 0.11 ** 0.07 −0.03 0.01
PC5 0.11 ** 0.11 ** −0.20 ** 0.14 ** 0.10 *
PC7 0.12 ** −0.04 0.05 0.10 * −0.05
PC8 −0.02 0.03 −0.03 −0.02 0.09 *
PC9 0.04 −0.03 −0.14 ** 0.02 0.07

PC10 0.11 ** 0.10 * −0.10 * 0.07 0.03
PC16 0.04 -0.10 * 0.16 ** 0.14 ** −0.01
PC22 0.00 0.02 0.01 0.02 0.11 **

** Correlation is significant at the 0.01 level. * Correlation is significant at the 0.05 level.

Table 4 lists the tolerance and VIF of all variables used in the RFR model. The tolerance of
mean NTL and PC1 were both under 0.2, and the VIF larger than 5, indicating the existence of the
multicollinearity problem. However, both of them were indispensable since discarding either of them
would result in a substantial decrease in the accuracy of the model.

Table 4. The tolerance and variance inflation factor (VIF) of variables.

Variables Tolerance VIF

Distance to Urban 0.66 1.51
Mean NTL 0.15 6.84

Distance to Division Headquarters 0.69 1.44
Distance to Roads 0.81 1.23

Proportion of Water 0.78 1.29
PC1 0.13 7.58
PC2 0.90 1.11
PC5 0.84 1.19
PC7 0.96 1.05
PC8 0.98 1.02
PC9 0.96 1.04

PC10 0.91 1.10
PC16 0.89 1.12
PC22 0.98 1.02

4. Discussion

This study applies a RFR model for estimating poverty at 10 km × 10 km spatial resolution using
variables extracted from multiple data sources in Bangladesh. The R2 between the estimated WI from
10-fold cross validation and the actual WI in Bangladesh is 0.70, which is relatively high compared
to the results in previous research [23,25,27,28]. By applying the model trained in Bangladesh to
Nepal, we tested the replicability of the model in different geographical context. The R2 between the
estimated and actual WI of 0.61 in Nepal indicated a relatively good generalization ability compared
to the previous research [28], which used a model trained in one country to estimate WI in other five
countries with R2 between estimated and actual WI ranging from 0.24 to 0.71. Our results show that a
relatively accurate estimation can be made by using multiple environmental data sources. Therefore,
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for countries that lack survey data, the RFR model can be used by using training data in other countries
to estimate poverty.

The overall small residuals indicate a relatively accurate predictive power of our model. However,
the results of the residual analysis also indicate that the proposed RFR model tends to underestimate
high WI values and overestimate low WI values. That is because the final result of a RFR model is the
average result over all the trees that formed the RFR. Therefore, it is impossible to predict either beyond
the range of response values in the training data, or within the entire range of the response values [65].
That would result in the underestimation of high values and overestimation of low values. This is
an inherent limitation of the RFR model. When we aggregate the data to the district-level, and valid
the model results with the HCR data, a negative correlation between the average WI and the poverty
HCR was established, which is in line with our perception that poor areas tend to have lower average
household assets and a higher proportion of poor people. The correlation between them was not very
high (r = −0.60) due to the different measuring methods. WI was calculated based on household’s
ownership of several assets as a reflection of wealth, whereas poverty HCR was computed as the
proportion of poor people in each division. Despite this difference, it still shows that the aggregated
WI can partially reflect the district-level poverty HCR.

To test whether our RFR model improves upon the direct use of Google satellite images or NTL to
estimate WI, we compared the results from our RFR model with the outcome from two other models.
The first was a transfer learning model that used the 4096-dimensional feature vector from the Google
satellite images along with the WI data to train a ridge regression model to estimate the WI [28].
The second model used a linear regression to estimate the WI from the log-transformed NTL data [65].
We also compared our results with a RFR model that excludes variables extracted from Google satellite
images. This comparison was practiced to assess the extent the model without Google satellite images
can estimate WI given that time-consuming nature for computing the Google image data. Table 5
shows the R2 between the estimated and actual WI from all four methods.

Table 5. The R2 of four different methods to estimate WI.

Method R2

1 The proposed RFR model 0.70
2 Linear Regression model (with NTL) 0.58
3 Transfer learning model (with Google satellite imagery and NTL) 0.63
4 RFR model (without the use of Google satellite images) 0.66

The R2 of the linear regression model using the log-transformed NTL was 0.58, which was lower
than the R2 of our proposed RFR model. The R2 of the transfer learning model was 0.63. Previous
research [28] using the same method got the R2 values of 0.55, 0.58, 0.66, 0.69, and 0.75 for five countries
in Africa. Our result was within this range, indicating that the transfer learning model can be applied
to Bangladesh and our estimation was reasonable. Compared to models that used NTL and Google
satellite imagery in isolation to estimate poverty, our RFR model had a higher accuracy. This proves
that our RFR model can increase the poverty estimation accuracy by adding different types of data.
The R2 of the RFR model that excludes features extracted from Google satellite images was 0.66, which
was slightly lower than the proposed RFR model and higher than the transfer learning model that used
Google satellite images only. Considering the time-consuming nature of computing the Google image
data, the RFR-based model without using Google satellite images was more efficient and accurate than
the transfer learning model.

The analysis of the variables’ importance shows that accessibility variables were the most import
variables to estimate poverty, indicating that the variations in distance to roads, urban and division
headquarters are most likely to lead to variations in poverty level. This also illustrates that communities
in regions that are far from roads, urban and large cities tend to have limited resources and are therefore
more inclined to poverty. Socioeconomic variables can directly reflect the economic condition and were
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assessed to be the second important variables. Amongst the three socioeconomic variables, minimum
NTL and maximum NTL radiance were discarded because their variations can be expressed by the
variation of the mean NTL. Amongst the land cover variables, the proportion of urban, cropland,
and tree were discarded probably because the features extracted from Google satellite images can
reflect more detailed land cover information by providing the spatial distribution of each type of land
cover rather than the proportion.

The collinearity analysis of the variables shows that there is strong collinearity between PC1 and
mean NTL. Besides, the correlation between some other variables, although not strong, was statistically
significant. Despite this, the RFR model still has good ability to estimate poverty. The analysis of the
importance of variables shows that all of these variables contribute to the RFR model. In addition,
discarding either of them would result in a decrease in accuracy of the model, indicating that the
differences between them still contribute to the RFR model. This shows that RFR model has the ability
to handle multicollinearity because the variables used to train each tree in a RFR model are different
given that each of them were selected randomly from all variables. Therefore, the RFR model is not
constrained to selecting only independent variables to estimate poverty.

5. Conclusions

There is pressing need to identify reliable data for poverty estimation in the absence of poverty
survey data. While remote sensing data and road maps can reflect some of the environmental
characteristics that are associated with poverty, existing studies are limited in using such data in
isolation rather than collectively to represent the multidimensional construct of poverty and improve
the accuracy of estimation. This study explores an integration of multi-source data and a RFR model
to estimate poverty at 10 km × 10 km resolution. The WI for household clusters was used as the
dependent variable to reflect poverty level and model training was conducted in Bangladesh. Thirty-six
independent variables representing four poverty dimensions including socioeconomic status, structure
and texture, land cover, and accessibility were extracted from NPP-VIIRS NTL data, Google satellite
imagery, land cover map, OSM road map, and the division headquarter map. Following a vigorous
variable selection procedure, 14 variables that offered the best predictive ability of the RFR model were
reserved to train the final RFR model. After training the RFR model, we verified the accuracy of the
model in three ways. Firstly, we calculated the R2 between the actual WI and the WI estimated from
10-fold cross validation in Bangladesh. A high overall accuracy of our RFR model with an R2 of 0.70
was obtained to estimate poverty at 10 km × 10 km resolution. Analysis of the residuals shows that the
RFR model tends to underestimate the high WI values and overestimate the low WI values. Secondly,
the trained RFR model was applied to Nepal to test whether the model trained in one country can be
used to estimate poverty in another country. The R2 between the actual and estimated WI in Nepal
was 0.61, indicating a good generalization ability of our model. Thirdly, we calculated the average WI
of each district and compared it to the district level poverty HCR. The r of −0.60 showed a relatively
strong negative correlation between them, indicating that the results of our RFR model can reflect
poverty HCR at the district level to some extent. Gini importance was used to assess the explanatory
power of each variable. Accessibility variables were the most important variables to estimate WI with
the total importance of 42.2%, followed by socioeconomic variables (32.6%), structure and texture
variables (24.1%), and land cover variables (1.0%). Although there was multicollinearity between
variables, the proposed RFR had good ability to estimate poverty, which confirmed the finding that the
RFR model has the ability to handle multicollinearity [35,38]. Compared to other methods that used
NTL or Google satellite imagery in isolation to estimate poverty, our method has produced higher
accuracy by using multi-source data. All data we use in this study, including NPP-VIIRS NTL data,
Google satellite imagery, land cover data, OSM road map, and division headquarter location map,
are publicly and globally available. Therefore, the proposed model can be easily applied to other
countries or regions.
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This study has some limitations. Firstly, the acquisition time of the data in use was different.
The WI survey data were obtained in 2014, while the NTL and land cover data were obtained in
2015, the road map was in 2018 and Google satellite data were from 2015 to 2017. As the Bangladesh
government has been working to eradicate poverty, the poverty level could be changing every year.
Therefore, differences in data acquisition time could result in reduced estimation accuracy. Secondly,
the location of the WI data was not accurate due to the up to 5 km of positional errors added by the
data collection agencies to protect the privacy of survey respondents, which could also contribute to
noise in the model accuracy assessment. Furthermore, given the 5-km positional error, we estimated
WI at 10-km resolution, which was relatively rough. Further training and validation of the estimation
can be achieved and higher resolution estimation can be conducted as more environmental data and
more accurate poverty survey data become available.
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