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Abstract: The purpose of this study is to develop a design for maximum area drone coverage in
a post-disaster flood situation. When it comes to covering a disaster-region for monitoring and
detection of the extent of damage and losses, a suitable and technically balanced approach is vital to
achieving the best solution while covering the maximum affected area. Therefore, a mathematical
optimisation model is proposed to effectively capture maximum images of the impacted region. The
particle swarm optimisation (PSO) algorithm is used to solve the optimisation problem. Modern
relief missions heavily rely on drones, specifically in the case of flooding, to capture the damage due
to the disaster and to create roadmaps to help impacted people. This system has convincing results
for inertia, exploration, exploitation, velocity, and determining the height of the drones to enhance
the response to a disaster. The proposed approach indicates that when maintaining the flight height
of the drone above 120 m, the coverage can be enhanced by approximately 34% compared with a
flight height of 100 m.

Keywords: drone coverage; disaster areas; disaster response; maximum area coverage; minimum
resource utilisation; PSO; drones; UAVs; power consumption

1. Introduction

Worldwide, approximately 2.6 billion people have been severely impacted by natural
disasters [1] and a lack of a proper emergency response plans. In the post-disaster envi-
ronment, the major goal of the disaster response and relief services is to quickly map the
disaster-stricken areas to identify affected buildings or infrastructure. This allows rescuers
to provide relief services to regions that need help. Once such sites are identified, the
rescue operations can commence, and people can be evacuated to safety. The nature of the
response undertaken determines the number of fatalities that can be prevented and can
limit the extent of damage to infrastructure and lands. Time is very limited when a disaster
strikes, and due to the severity of the disaster, it may not be possible or sufficiently safe
for humans to reach impacted areas for post-disaster inspections. Drones have emerged
as useful tools to conduct post-disaster relief activities [2] due to their agility and ease of
operation. Given that they do not require the presence of human resources, such vehicles
can be readily made available to use in case of emergencies. One main issue that disaster
managers face when establishing their disaster response plans is the limited number of
drones that are available to cover an impacted region [3]. Traditionally, to cover an impacted
region, satellite imagery are extensively used for mapping land cover, weather forecasting,
and obtaining global coverage of earth’s landmasses. Satellite images have some noise in
the data as they are taken far from the earth [4], and also contain irrelevant data due to
various barriers existing between the earth and the satellite, such as clouds and birds. This
makes it hard to identify and analyse the target. In addition, accessing the satellite images
is slow which is not effective in case of emergencies caused by disasters. However, with
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the availability of battery-operated drones, the reliance on satellite imagery has been signif-
icantly reduced. Drones can capture close-up, high-quality, noise-free images, and they can
reach target sites with ease. High-resolution images captured by drones of the region are
sent to the main station of disaster management authorities for further analysis [5]. These
pictures can be used to analyse the state of the land, identify stranded people, estimate
damage, and determine the rescue routes [6]. Images captured by drones during disasters
are crucial for initiating rescue activities, analysing the extent of the damage, and planning
an emergency response [7].

Research has been conducted to enhance the capabilities of drones for disaster man-
agement by acquiring photogrammetry-ready data which can be analysed for producing
hazard maps, elevation models, and estimating the extent of the disaster and its charac-
teristics. For instance, Ackerman [8] deployed the T-Hawk Micro Aerial Vehicle to collect
images from the Fukushima Daiichi nuclear facility after a devastating earthquake hit Japan
in March 2011. Due to its small size and single-rotor flight design, the aerial vehicle was
able to capture images and hours of video at lower altitudes.

The drones need to be allocated appropriately to the required tasks to ensure maxi-
mum coverage of the disaster region [9]. Several constraints arise when allocating drones to
disaster areas [10]. First, within a limited period, the drone must follow the shortest path to
the target location and complete the allocated tasks. Each drone is battery operated, mean-
ing that there is limited time (approximately 15–25 min) during which it can continuously
operate on a mission [11]. This also requires minimizing the time taken by each drone to
perform its task. Second, multiple drones are used by the disaster management authorities
to be able to obtain full coverage of the affected area (Figure 1). Mismanagement of the
drones by the operator results in the problem of deciding which drone to assign for the
next task. For example, one drone may already have many tasks in its queue compared
with another. Assigning too many tasks to one drone results in a condition known as
drone attrition, which can be solved using optimisation [12]. Third, depending on the
size of the affected area, multiple drones may be required to fully cover the region to
capture images, deliver aid and locate victims. In this paper, we propose a mathematical
optimisation model that integrates area coverage and minimum battery consumption, and
at the same time, considers the limitations that occur while implementing drones during
post-disaster management. An appropriate objective function applicable to drone allocation
that accounts for the attrition of drones and the location of the target area is formulated.

The most common algorithms utilised for solving maximum area coverage and
minimum energy consumption of drones are [4], Glowworm swarm-based optimisation
(GSO) [13], ant colony optimisation (ACO) [14], network flow optimization [15], and genetic
algorithm (GA) [16]. Another new optimisation algorithm is the QUasi-Affine TRansfor-
mation Evolutionary algorithm (QUATRE) which solves complex multiple real-parameter
optimisation problems. It is a simple and powerful stochastic optimisation problem, which,
however, easily falls into local optimisation [17]. The PSO technique has been applied as
a solution approach for tasks during environmental disasters. In a study conducted by
Ravikumar [18], fuzzy logic using hybrid PSO was used for the forecasting of natural events
and disaster management. Similarly, Sánchez-García et al. [19] proposed a novel distributed
PSO algorithm for drone networking to explore disaster scenarios, which was compared
with an optimal-trajectory planning algorithm for different scenarios (Table 1). Shi et al. [20]
maximised the user coverage in the 5G network through optimum positioning of the drone.
Furthermore, the application of the PSO algorithm has been tested for maximum area
coverage while considering public safety and disaster management [21]. However, its
application for the allocation of drones during rescue missions in the post-disaster period
is limited and has not been attempted. The Table 1 presents the comparison of different
existing algorithms:
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Table 1. Comparison of different existing algorithms.

Algorithms GSO ACO PSO GA

Year 2005 1992 1995 1975

Author K.N. Krishnanand and
Debasish Ghose Marco Dorigo James Kennedy & Russell

Eberhart John Holland

Optimisation Meta Heuristic
Optimisation

Metaheuristic
Optimisation Stochastic Optimisation Discrete Optimisation

Purpose Finding the local
finest solution Finding the shortest path Reaching target with

minimal duration
Locating the best among

the rest.

Advantages
Ability to solve

multi-model optimisation
and nonlinear problems.

Rapid selection of good
solutions, applicable in a

dynamic environment,
resolve travelling

salesman
problems effectively.

Applicable for scientific
and engineering research.

There is no mutation
calculation and

overlapping. Search is
based on the speed

of particles.

Efficiently investigate and
solve large combinatorial
problems. It is faster than

“brute force”
exhaustive searches.

Disadvantages

Weakness in locating
global optimal solutions,
low calculation accuracy,
lower speed to converge.

The local optimum issue,
lower convergence speed,

and stagnation.

Local optimum and low
convergence speed.

Computationally
expensive,

time-consuming and
different in design
objective function.

There is great interest in drones and related innovations in fields, such as defence,
search and rescue, farming, production, and natural environment observation [22,23].
Drones are capable of covering wide and extensive zones within a selected field, even
without any modifications being made to the currently used frameworks of deployment [24].
However, the use of drones is not without costs. To effectively make use of these adaptable
assets, it is fundamental to set up an association and observing framework for drones
to identify their open-air course and formulate strategies in a way that is secure, time-
efficient, and collision-free, and one that considers their working environment [25–27].
Taking into consideration the current progress in drone innovation, Federal Express [13],
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Amazon [14], DHL [15], and various other conglomerates that depend on package delivery
have started exploring the possibility of using drones for delivering goods commercially. It
is highly likely that in the near future, transportation systems will be operating through
the integration of drones due to their cost-effectiveness and ease of use compared with
conventional methods of transporting goods, such as lorries and trucks. Moreover, drones
can reduce the overall costs of goods delivery by removing the cost of labour involved
in transportation [28,29], and are quick and able to bypass traffic and congested paths.
However, this leads to the important issue of drone steering. To maintain varied purposes
of drone routing in practice, we present several contributions to drone energy consumption
in this paper.

In the routing of drones, most of the published literature either assumes boundless
fuel capacities [30] or does not fully consume or factor in the fuel for drones. The authors
have identified few studies that consider the limitations of fuel when working with drone
routing [31,32]. To attain a practical and effective routing, it is crucial to understand the
components involved in determining the energy utilisation and the overall system for fuel
consumption in drones.

In steering the drone, fuel utilisation is ordinarily correlated to the speed of the vehi-
cle [33] which is a non-linear relation [34]. In the existing literature on drones, researchers
have only utilised linear approximations for drone directing [35]. In any case, the data
from industry suggest that this approach is not suitable for drones, as the combination of
payload, speed and environmental conditions are quite basic. The point is to characterise
which drone steering issues ought to be considered and how this varies from conventional
steering issues. This paper contributes to the study of disaster area coverage using drones.
The study covers the assessment of a flood disaster region which is mostly a residential
area to provide a framework for evaluating flight height and area coverage using a fixed
number of drones and area dimensions. Further, the battery consumption of the drones is
analysed to derive the height and the battery usage during different phases of the flight.
The assumptions made in this paper are that the study is conducted in a no-fly zone with
no obstacles which can impact the drones or the flight trajectory. The focus of the paper is
to consider the single objective of maximising area coverage.

The rest of the paper is organised as follows: Section 2 explains the device coverage
methodology. The PSO algorithm is discussed in detail along with the mathematical
formulation of the problem and application of PSO for its solution. Section 3 discusses the
experimental arrangement and the implementation of the proposed solution. Section 3
presents the results. Section 4 discusses the results and the overall achievements of the
research while Section 5 concludes the paper, summarising the research findings and
identifying the future directions.

2. Problem Statement

This study aims to introduce an algorithm for the coverage of disaster regions using
drones, solve the problem of maximum area coverage with a fixed number of drones and
assess their energy consumption. Assuming the target is in the coverage, the device’s
location set on the x- and y-axis is given as P X and P Y, respectively. Similarly, the device’s
path can be chosen from field of view (FoV). Assuming a set of devices N is trying to
cover stationary targets M in a hurdle free region, every device can place towards specific
directions, D.

The coverage matrix (based on the height of the drone, coverage radius, distance
between the personnel and the drone) of each device is given as AMM

N x PX x PY x D as:

ai
idxy − {1 0 i f camera i with direction d and position x, y covers j.otherwise (1)
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The value of every j is similar; the aim is to maximize the total targets covered. If an
object is being covered by multiple cameras, it is still considered as a single target towards
the whole aim.

max ∑
j∈M

γj (2)

γ j is a binary variable whose value is 1 if it is covered by a single device at the least
and the value will be 0 if it is not being covered at all.

∑
d ε D, xεPX, yεPY

Xidxy ≤ 1 (3)

γi = {1 0}
∑d∈D,x∈PX,y∈PY aj

idxy

∑d∈D,x∈PX,y∈PY aj
idxy

Xidxy < 1
Xidxy ≥ 1

(4)

X ∈ {0, 1}, γ ε {0, 1} (5)

The binary variable Xidxy, takes the value as 1 if for direction d and angles x and y
are chosen for the device i. The device location P is two-dimensional while its direction D
and the target M are one-dimensional. The time complexity is O(N4). Hence, the optimum
issue is non-deterministic and exponential. An NP-hard problem is one which cannot be
solved by the model. These problems are at least as hard as the NP-complete problems and
they do not have to be decision problems.

2.1. Device Coverage

The concept of the device’s field of view (FoV) is taken from Vikram and Nael in [10]
(Figure 2). FoV is generally the area covered by the device, defined by the angle-of-view
(θ) and the depth-of-view (R). The angle of view is further divided into a vertical angle of
view (θh) and a horizontal angle of view (θv). The depth of the field, on the other hand,
denotes the visible area that is reasonably sharp.

In short, the FoV of a device can be described as a circular area that can be defined by
its angle of view (θ) and the depth of field (R).

θ : angle o f view
R : depth of field
i : Device ID
xi , yi : Device i′s position
di : direction vector de f ining initial position
ϕi : The angle between the vector di and x− axis
j : object ID
xi , yi : Object j′s positions.
vj : Object vector f rom device i to object j.
βij : the angle between the device viewing direction Vij and direction vector di .

The angle βij is given as:

vij →=
(
xj − xi, yj − yi

)
(6)

βij =
vij →∣∣vij →

∣∣ .
ei →
|di →|

(7)

j is covered by i if

βij ≤
θ

2
(8)∣∣ vij →

∣∣ cos βij = R (9)
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2.2. Area Coverage

The drone’s trail is evaluated on the assumption that, from the start of the flight,
the device is pointed downwards as depicted in Figure 3. The gap between two rows is
selected as a function of the trail of the onboard device on the field [19]. The breadth L of
the device’s trail can be calculated based on the breadth of the sensor (l), the camera’s lens
focal distance ( f ), and the elevation of the device over a field (H) (Figure 4) [9]:

L = H
l
f

(10)
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The area coverage by a drone on a three-phase disaster recovery mission is as fol-
lows [9]:

Jarea =
3

∑
phase=1

∫ tphase
f

tphase
0

dA
dt

dt (11)

Here the three phases include the climb, cruise, and arrival of the drone. The rate of
immediate area coverage by the drone is given by dA

dt
. The dA (changing area coverage) is

given as follows:
dA = dxL (12)

The differential distance in the track is dx and device track width is given by L. The
area coverage is given as:

dA
dt

=
dx
dt

L (13)

dA
dt

= VxL (14)

As mentioned earlier the area coverage rate is based on the horizontal component of
the true airspeed (Vx) and the height of the camera over the ground (H). Therefore, the
equation is given as:

Jarea =
3

∑
phase

∫ tphase
f

tphase
0

2Vxh tan tan
(

FoV
2

)
dt (15)

Jarea =
3

∑
phase

2tan tan
(

FoV
2

) ∫ tphase
f

tphase
0

Vxhdt (16)

The path limitations are applied on the optimal control issues depending on the
drone’s operational constraints. The path constraints are given below(

dh
dt

)
phase
min

≤ Vh

(
dh
dt

)
phase
max

(17)

Vmin ≤ Vphase
x ≤ Vmax (18)

hphase ≤ 121.92 m (400 ft) (19)
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2.3. Image Footprint Based on Ground Sample Distance (GSD)

Without considering topography, the GSD of a given image is given as:

GSD =
H
F
∗ d

where focal length is given by f, the size of the pixel is given by d, and distance from the centre
of the camera projection to the ground is given by H. For a digital camera, the GSD is given as:

Xm,n = ∂X
∂m =

H (d cos ϕ Z+(md cos ϕ− f sin ϕ )∗(d sin ϕ cos ω))
Z2

Ym,n = ∂Y
∂n =

H (d cos ω Z−(md sin ϕ sin ω+nd cos ω+ f cos ϕ sin ω )∗(d sin ω ))
Z2

where,
Z = nd sin ω−md sin ϕ cos ω− f cos ϕ cos ω

where X and Y are image coordinates and the image coordinates of a pixel are given as m
and n. A true operational challenge depends on the drone imagery, optimum flight and
camera parameters. The operator can optimise the quality and efficiency of the drone by
selecting flight parameters such as image overlap, flight speed and altitude. The influence
of overlap may be a forward overlap or side overlap. The forward overlap can be managed
by changing the number of images per second whereas side overlap is key component in
planning a drone’s flight path.

3. Drone Optimisation

Different algorithms can be applied for drone optimisation. The most common methods
are Generic Algorithm (GA) and Particle Swarm Optimization (PSO). PSO is a stochastic
optimization technique that uses a swarm-based approach similar to the behaviour of animals
such as insects, birds, and fishes to search a large region in the solution space of the optimised
objective function. The movement of particles in a swarm is not limited and one can con-
tinuously search the possible solution space by updating their position and velocity. GAs
iteratively update a population of individuals. On each iteration, the individuals are evaluated
using a fitness function. A new generation of the population is obtained by probabilistically
selecting fitter individuals from the one current generation. Some of these individuals are
admitted to the next generation unchanged. Others are subjected to genetic operators such as
crossover and mutation to create new offspring. A comparison of the features and applications
of GA and PSO has been carried out [36] and is shown in Table 2 and Figure 5 below:

The PSO algorithm uses a particle swarm to search for the best solution, while each
particle keeps adjusting its best position and concerning other particles. The position,
velocity, and particle best position define the particle position. The global best (gbest)
position signifies the best fit value of the particle. Therefore, the particles keep a record of
their personal best (pbest) and (gbest) and they modify their positions based on the current
position and velocity, and the distance from the current position to the pbest and gbest,
respectively [36]. The PSO algorithm optimises the height of the drones to render the
maximum camera footprint. The best height of the drone was utilised for the simulation of
maximum area coverage. The maximum and minimum velocity was used to calculate the
area coverage and identify optimal battery utilisation. It was assumed that the personal
and global best vectors are random variables (with arbitrary means and variances) so that
there is no requirement for the stagnation assumption. Additionally, optimum weather
conditions and an obstacle free zone were assumed.
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Table 2. Comparison of GA and PSO.

Genetic Algorithm PSO

Influence of population size on
solution time Exponential Linear

Accuracy
Requires a large number of
variables and constraints to
produce an optimal solution

Always produces optimal results

Number of iterations Requires more iterations Requires fewer iterations

Require ranking of solutions Yes No

Additional techniques required Additional techniques required to
reach an optimal solution None

Continuity of search space Low High

Ability to reach a good solution
without local search Low High

Influence of best solution on
population Medium Most

Average fitness cannot
become worse False False
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PSO Pseudocode (Algorithm 1)
As per the given equation the position (P) and velocity (V) of the particle is adjusted:

P (t + 1) = P(t) + V(t + 1)

V(t + 1) = wV(t) + c1 ∗ random1 ∗ (Ppbest − P(t)) + c2 ∗ random1 ∗ (Pgbest − P(t))

V(t): the velocity at given time t
P(t): position at given time t
w: Inertia weight
c1, c2: learning/accelerating factor
Random1, random2: number between 0 and 1(random and uniformly distributed)
Ppbest
Pgbest

Algorithm 1

1: Fori = i(N to N = number of particles)
2: Initialise P[i]
3: Initialise V[i]
4: Initialise swarm
5: End for
6: Repeat until stop criteria is satisfied
7: For i = 1 to M (M = max iterations)
8: For j = 1 to N
9: Evaluate P[j]
10: if new population is better than Pbest[j] = P[j]
11: gbest= Best particle position in P[j]
12: V(j + 1) = wV(j) + c1 ∗ random1 ∗ (Ppbest − P(j)) + c2 ∗ random1 ∗ (Pgbest − P(j))
13: if V(j + 1) is not within (velocitymin, velocitymax)
14: then update velocity to be within (velocitymin, velocitymax)
15: P (j + 1) = P(j) + V(j + 1)
16: if P(j + 1) is not within (upper bound, lower bound)
17: then update position to be within (upper bound, lower bound)
18: End for
19: End for

GA Pseudocode (Algorithm 2)

Algorithm 2: GA(n, χ, µ)

Initialise generation 0:
k:= 0;
Pk:= a population of n randomly-generated individuals;

Evaluate Pk:
Compute fitness(i) for each i ∈ Pk;

do {
Create generation
k + 1:
1. Copy:
Select (1 − χ) × n members of Pk and insert into Pk+1;
2. Crossover:
Select χ × n members of Pk; pair them up; produce offspring; insert the offspring into Pk+1;
3. Mutate:
Select µ × n members of Pk+1; invert a randomly-selected bit in each;

Evaluate Pk+1:
Compute fitness(i) for each i ∈ Pk;
Increment:
k:= k + 1;
}
while the fitness of the fittest individual in Pk is not high enough;
return the fittest individual from Pk;

Based on the above analysis, the PSO algorithm is used in the following section to
solve the optimisation problem. The target of the current study is to examine the drone’s
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maximum area coverage and minimise its energy consumption to extend battery life.
Figure 6 represents the altitude of the drone in the computation of the ground sampling
distance and image footprint. The specifications of the drone and the camera impact
the overall performance of area coverage and power consumption. The specifications
of the drone models are maximum height, speed, and flight performance. The camera
specifications are ground sampling distance (GSD), focal length, and FoV [37–39]. The
definition of the scene in our experiment is the Hawkesbury flood region. The drones
cover the disaster impacted area for gathering images and surveillance. As part of our
experiment, we assumed all drones have the same performance, sensor, focal length, and
flight behaviour at a given altitude, velocity and field of view. We also assume that the
area is obstacle-free. Before designing the path of the drone to cover the disaster impacted
region, we need to define the drone parameters.
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3.1. Utilization of Resources for Optimal Outcome by Parameter Tuning

PSO objective function was formulated using the parameters mentioned in Table 3a to
assess the height of the drones that renders the maximum area coverage of the disaster-
impacted region. The simulation considers a maximum area of 200 km2. Initial results
were computed to assess the number of drones required to generate the best area coverage.
According to the initial analysis and the above results, optimal results are achieved when
using 12 drones (Table 3b). The total number of drones used in the experiment was
12, each having the technology and ability to fly at the maximum altitude of 121.97 m,
which is approximately 400 ft. FoVx and FoVy are the horizontal and vertical fields of
view, respectively.
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Table 3. a: Drone specifications, parameter names, and units.

Parameters Symbol Value Units

Maximum Elevation of
the drones hmax 121.97 m

Elevation of the drones
in the solution h 120 m

Total number of drones n 12 -
Drone field of view of X FoVx 83.97 deg
Drone field of view of Y FoVy 61.93 deg

Area Coverage A 146.04 km2

Table 3. b: Optimal number of drones to obtain maximum area coverage.

Number of Drones Area Coverage (km2)

4 57.52
6 69.63
8 59.00

10 112.79
12 146.04

The number of iterations to reach a good solution is problem-dependent. Too few
iterations may terminate the search prematurely, whereas a large number of iterations has
the consequence of adding unnecessary computational complexity. The previous velocity,
vi(t), serves as a memory of the previous flight direction, i.e., movement in the immediate
past. This memory term can be seen as a momentum, which prevents the particle from
drastically changing direction, and to bias towards the current direction [40,41]. This
component is also referred to as the inertia component. Inertia keeps the particle moving
in the same direction with similar velocity. Inertia weight is a positive constant value
that affects the convergence of the PSO. Cognitive weight influences the particle’s best
position and local search. It is proportional to the distance of the particle from its own best
position (referred to as the particle’s personal best position) found since the first-time step.
Social weight influences the particle’s global best position and global search; it updates
information obtained from all the particles in the swarm [42].

The PSO algorithm was used to derive the optimal flying altitude of the drones to
maximize the area coverage of the disaster impacted region. Table 3a details the parameters
used in the code and the corresponding values. The population size (num_of_particles)
defined as 12 refers to the number of drones used. The upper bound and the lower bound
are given as ub and lb, respectively, and represent the area to be covered in a 2D matrix.
The particles in the PSO algorithm are within the specified boundaries of the upper and
lower bounds. There were 20 rounds of trials performed on the solution before concluding
on the outcome. maxIter is the maximum number of iterations during every round of the
trial. Results from each trial were captured and the most near-optimal value of the objective
function was documented. The experiments were performed with the social and cognitive
constants, and based on the results, their values resulting in optimal behaviour were one
and two, respectively.

The experiment involved tracking the area coverage while the drones were at different
heights during a climb, phase, and descent. The height is measured in meters and the
rendered area is measured in km2. We assume that the performance of every drone is the
same at a given time, altitude, and velocity. The total area coverage was observed to be
increasing with the increase in the flying height of the drones.

The research involved flying the drones in different altitudes across the climb, hover,
and descent phases. As defined in Table 3a, the assumption is made that all the selected
drones have maximum altitude support (hmax) up to 121.97 m (400 ft). The maximum area
coverage based on the maximum number of drones is given in Table 3b.
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Considering the constants defined in Table 4, the velocity of the particles is calculated
during each iteration according to Equation (20). If the calculated velocity exceeds the
maximum velocity the velocity is updated to be within the defined range.

Table 4. PSO parameters used in the simulation code.

Parameters Symbol Value

Population size num_of_particles 12
Maximum numbers of iterations maxIter 100

Inertia weight maximum wmax 0.9
Inertia weight minimum wmin 0.4
Inertia constant weight w 0.55

Cognitive weight c1 1
Social weight c2 2

Number of trials - 20
Upper bound ub 10
Lower bound lb −10

Minimum velocity vmin −4 m/s
Maximum velocity vmax 20 m/s

The optimal drone height to provide the maximum area coverage in a multiphase
trajectory of the drones is shown in Table 5. The experiment involved tracking the area
coverage while the drones are at different heights during a climb, phase, and descent.
The height is measured in meters and the rendered area is measured in square kilometres.
Figure 7 displays the incremental area coverage as the flying altitude of the drones was
gradually increased until the hover phase was reached. It was observed that the total area
coverage increased with the increase in the flying height of the drones. There is a steep
increase in the coverage as the drones move from climb to hover phase from 60 to 120 m
altitude. The maximum area coverage was recorded as 182.62 km2 at a flying altitude of
120 m. The altitude recorded in the experiment is used as the altitude for the remaining
research of this paper and is recorded as the Altitude of the drones in the solution (h) in
Table 3a.

Table 5. Drone height and the corresponding area coverage.

Height (m) Area Coverage (km2)

5 0.38142738731860704
20 6.102838197097713
40 20.430856111522864
60 38.22438299912847
80 78.38570877418226

100 119.63576552278626
120 182.6190839211001

The next set of experiments were performed using the height of the drone that resulted
in the maximum area coverage with 12 drones. Furthermore, the impact of the inertia
weight on the area covered with the drone and PSO parameters defined in Tables 1–3
were explored while decreasing the inertia weight from 0.9 (wmax) to 0.4 (wmin) with each
iteration. The equation for the inertia weight is:

w = wmax − (currentIter) ∗ (wmax − wmin)/maxIter (20)
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where currentIter is the current iteration in the maximum iteration range. The value of the
inertia weight (w) as calculated in Equation (3) is parameterized in Equation (2) to calculate
the velocity in every iteration.

Variable inertia where wmax = 0.4 and wmin = 0.9,

Exploration Constant = 1

Exploitation Constant = 2

Height o f UAV (in meters) = 120
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Figure 7. Maximum area coverage is accomplished at 120 m height of the drone.

The inertia coefficient (w) is gradually reduced within the wmax and wmin to calculate
the results of maximum coverage of the disaster-impacted region. The results of the
simulation across a maximum of 20 iterations are displayed in the Appendix A (Table A1).
It was observed that in every trial the best results were obtained within 20 iterations; hence
in this study, we performed all simulations with the maximum iteration at 20. The value of
the inertia decreased with every iteration and the results of the objective function value
were recorded. The gbest position (x, y) is the global best position of the particles during
the iteration across the x- and y-axis. As the inertia decreased, the resulting value of the
objective function was observed to be increasing. Although the optimal value was recorded
as 98.25 during the first iteration at inertia = 0.9, the value showed a considerable rise to
173.65 (value rounded off to 2 decimal places) during the 20th iteration at inertia = 0.425. The
area coverage was smaller during the early iterations but they started growing considerably
as the inertia coefficient was minimised. There was no major change in the rate of optimal
function value after the 15th iteration which is at inertia 0.55.

In the next simulation, the following parameters were used: the inertia coefficient
(w) was kept constant at 0.55, exploration constant = 1, exploitation constant = 2, the
height of drone (in meters) = 120, and FoV = 83.97. We then repeated the same steps.
The inertia coefficient (w) was set to calculate the results for maximum coverage of the
disaster-impacted region. The results of the simulation across a maximum of 20 iterations
are displayed in Table 6. The results of the objective function value are recorded. Unlike
the observations in Appendix A (Table A2), the constant inertia results in no major change
in the objective function value across multiple iterations. The optimal value was recorded
as 161.46 during the first iteration, with no considerable rise till the 20th iteration (161.48).
There was no considerable change in the value of the target function after the eighth
iteration. Considering the inertia coefficient as 0.55, it renders near-optimal outcomes
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in a reduced number of iterations. The solution which renders optimal results in fewer
iterations is cost-effective as the computational cost of the solution is reduced.

Table 6. Power Input Variables.

Parameters Symbol Value Units

Total weight of the drone (weight of the device + weight of
camera)
** No payload weight considered as the drone is not expected to
deliver any relief
**→ Assumption

W 17.06 kg

The density of the air D 0.7 kg/m3

Total number of drones n 12 -

Projected frontal area A 0.827 m2

Aerodynamic drag coefficient of drone drag coefficient 0.004 -

The power needed to overcome the drag P drag - Watt

The power needed to lift P lift - Watt

Width of drone b 0.5 m

Total power consumed (Power needed to overcome the drag
+ Power required to lift the drone) Ptotal - Watt

Figure 8 represents the contour plots for the objective function results. The right graph
is a 3D representation of the changes of the value of the objective function from minima to
maxima. The area is restricted within the upper and lower bounds as defined in Table 2.
From the 3D plot, we assess the minimax model of the solution where the x and y-axis are
restricted between−10 and 10. The z-axis is represented as the optimal objective value. The
yellow peaks represent the maxima, whereas the purple drops represent the minima. The
3D plot suggests that the maximum area coverage is close to 200 km2 and is represented
by the yellow section of the graph. When the same plot is visualised in a 2D contour, the
contour lines represent a continuous distribution, and it can be observed that the maximum
area coverage of the objective function is within 180–200 km2. The star marks represent the
random pbest positions of the particles in a swarm.
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Figure 8. Contour plot representation of the objective function value in a specified boundary within
the defined upper and lower bounds.

The graph in Figure 9 represents the results of the objective function in calculating the
maximum area coverage with the inertia coefficient set as constant at 0.55. The x-axis of the
graph shows the number of iterations used during the simulation to arrive at the solution,
and the y-axis shows the optimal value of the objective function and is represented as the
fitness of the gbest particle. The dotted red line running horizontally marks the final optimal
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value determined by the simulation. Multiple trials (from 10 to 100) were performed on the
solution until the optimal value was reached.
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Comparison with GA Results

A study was performed to assess the performance of the objective function with a
Genetic Algorithm. Figure 10 illustrates the performance of the fitness function.
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The optimal value was recorded as 102.31 during the first iteration, and during the
20th iteration, the value was 120.53. Figure 10 represents the results of the objective function
in calculating the maximum area coverage with 12 drones and 20 iterations. The x-axis
of the graph shows the number of iterations used during the simulation to arrive at the
solution, and the y-axis shows the optimal value of the objective function and is represented
as the fitness of the chromosome. Multiple trials (from 10 to 100) were performed on the
solution until the optimal value was reached.
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The PSO solution suggests that the particles in the swarm would ultimately converge
to the global best solution (Figure 10). In Figure 11, the green circles represent the particles’
best positions, and the red circle represents the global best position across the x,y-axes
represented in a 3D plot. The particles move towards the gbest position while calculating
the optimal objective function value across the iterations. The convergence of the particles
largely depends on the social and cognitive constants defined in Table 2.
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3.2. Factors Affecting the Energy Consumption in Drones
3.2.1. The Weather Effect

In steering open-air drones, one must bargain with the stochastics of climate that
impact the energy utilization of the drones [43–46]. These external factors can heavily
impact the methodology for optimising the steering of drones. Two of the most fundamental
components of weather that impact drones are wind and temperature.

3.2.2. Speed of Drones and Payload

The flying speed of a drone can be the basis for identifying the overall fuel utilisation.
The flying speed is related to the speed and course of wind as these factors can influence
the overall flying path and efficiency of the drone (Figure 12). The drone can have any of
the following flying statuses:

• hovering,
• vertical flight: change of altitude by vehicle, landing or take-off
• horizontal flight: level flight or vehicle cruising
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In this paper, we assume that the drone does not carry any additional payload weight.
The drag coefficient (dragcoefficient) is used to quantify the resistance of the drone against
the air density and is set to a constant value of 0.004.

Drones usually carry payloads such as camera gear or packages. The effect of diverse
weights can be critical to the extent that they ought to be accounted for when determining
the power utilization models [47,48].

4. Power Utilization Models for Drones

The distinctive power models are based on drone steering. The essential plan param-
eters for accomplishing the least lift for the takeoff of the drone include control, weight,
width, thickness, drag coefficient, and surface area of the flying device (Figure 13). There
are various other basic auxiliary plan issues concerning adjustment, control, and shape to
attain flight [35].
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These parameters must be considered when evaluating a drone’s power utilisation
under a specific set of situations as they influence the flight time and storage capacity of
the drone [36]. A power utilization demonstration makes a difference by adjusting these
parameters to achieve optimum energy utilisation by the drone. The following equation
can be derived from Newton’s Second Law:

F = V
(

dm
dt

)
(21)

Since it’s in even motion, the weight of the drone is at the break-even point with
and opposite to the lifting drive; this lifting drive is the response to redirecting the air
downwards. Thus, the weight of the drone is given as:

W = Fl = V
(

dm
dt

)
(22)

W is the weight, V is the air descending speed, and dm/dt is the mass of the air being
pushed down/time. The width of the drone is given by b. The mass of air per time unit
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is given as the thickness of the air multiplied by the speed of the drone increased by the
region impacted by the drone [37,38,41].

dm
dt

=
1
2

DB2v (23)

Replacing this with our major lift, Equation (2) gives:

W = V
1
2

DB2V (24)

where D is air thickness, v is drone relative speed, and b2 is the successful region influenced
by the drone.

4.1. Power Consumption in Horizontal Movement

Lifting the drone in the air requires force, some of which is used to overcome the drag
force which limits the forward movement through the air [38,39,42,43]. The drag force can
be calculated as below [37]:

Fp =
1
2

Cd ADv2 (25)

where FP is the parasitic drag, Cd is the drag coefficient, A is the front region, D is the
thickness of the air, and v is drone speed. The force is given as [41]:

P = Fv (26)

Therefore, the force required to overpower the parasitic drag is:

Fp =
1
2

Cd ADv3 (27)

The drone needs force to overpower the parasitic drag and to lift itself [44]

Pγ = PP + PL (28)

The force required to overpower drag is the most prominent at high speeds, whereas
the force required during a lift is the most prominent at slow speeds (Figure 14). The least
force is required between these two extremes; that is, there is an ideal cruising speed.
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During the lift, there is an exchange of power from the drone to the air, which gives
kinetic energy to the air while displacing it downwards and in return providing upward
thrust to the drone [45,46]. The kinetic energy is often calculated as:

E =
1
2

mV2 (29)

The force needed for the lift is the powerful energy given to the air per unit of time
and substituting (8) we have:

PL =
dE
dt

=
d
(

1
2 mV2

)
dt

=
1
2

(
dm
dt

)
V2 (30)

From substituting (7) and (8) we obtain the energy required to lift as [41]:

PL =
W2

Db2v
(31)

where PL is the energy required for a lift, W is the full weight of the drone, D is the thickness
of the air, b is the width of the drone, and v is the respective speed of the drone through the
air. Reviewing our total energy Equation (28), the energy required for flight is:

Pr =
1
2

Cd ADv3 +
W2

Db2v
(32)

PT is the energy required for the flight in watts, a CDt is the aerodynamic drag
coefficient, A is the front-facing region in m2, W is the entire weight of the drone in kg,
D is the thickness of the air in kg/m3, b is the width of drone in meters, and v is the
respective speed of the drone in m/s considering the wind speed and course. By taking the
subordinate of the full energy equation regarding the speed at that point, we can discover
the speed for minimum energy [37,38,41,42,47].

vmin =

(
2W2

3Cd Ab2D2

)0.25

(33)

The estimated minimum power speed can be substituted into the total energy equation
to calculate the least energy required for flight [37,41,42,47].

Pmin =
4
3

(
W2

Db2vmin

)
(34)

The least energy speed is not the usual cruising speed of the drone, but it would be
the absolute minimum speed that could be used.

4.2. Maximum Flying Speed

The ideal speed is the speed that gives the slightest sum of drag and is considered to
have an ideal cruising speed (Figure 15) [38,43,47]. The full drag is the parasitic drag that
was calculated above, in addition to the drag produced in throwing the air down.

Fr = FP + Fl (35)
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The drag produced by the downward thrust of air translates to the power required for
drones to move through the air [37,42,45]. Thus, the parasitic drag and the initiated drag is
given as:

Fr =
1
2

CD ADv2 +
W2

Db2v2 (36)

To find the speed with the least drag drive, the cruising speed is determined by taking
the derivative of the whole energy condition for speed and setting the outcome equal to
zero [36,43,47].

Voptimum =

(
2W2

CD AB2D2

)0.25

(37)

Voptimum is the ideal cruising speed, W is the weight of the flying machine, D is the
thickness of the air, A is the front-facing region, CD is the drag coefficient, and b is the
width of the drone. Using this equation, we can input data about a drone and the density
of the air to estimate the optimal flight speed.

4.3. Power Consumption during High Speeds

During inconsistent flight level, the thrust is equivalent to the drag of the drone, and
the lift is equivalent to the overall weight of the drone; therefore, the propulsive thrust
energy can be:

T = W ∗ CD
CL

(38)

From Equation (30), it is given as:

PP = Tv (39)

CD and DL are the drag coefficient and the lift coefficient, respectively.

PP =
CD
CL
∗Wv (40)
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From (12), the overall energy in high speed is:

Pr =
CD
CL
∗Wv +

W2

Db2v
(41)

Power Utilisation in Vertical Take-off and Arrival
The power utilisation of drones is estimated by comparison with the energy consump-

tion pattern of a helicopter which is found to be linearly correlated to the battery weight
and payload under real-time [16,34].

p∗ =
T

1
2

√
2Dc

(42)

Moreover, we expected that the energy consumed during take-off and landing is
usually nearly identical to the energy consumed during hovers. Air thickness varies with
temperature, so temperature variation will result in diverse air densities, and thereby will
influence the energy utilisation of drones.

4.4. Factors Affecting Drone Energy Consumption

Several separate factors influence the power utilisation of drones. The wind direction
and wind speed influence the speed of the drone (Figure 12). Previous research has shown
that a drone flying into a headwind resulted in less energy utilisation [39,40], which was
attributed to the expanding thrust caused by translational lift [27]. With the increase in the
wind stream, the transitional lift grows so that less power is consumed in the flight [45].
After a certain limit is reached in wind speed, the advantage of transitional lift is lost due
to the drag force [27].

Additionally, temperature and air thickness impact energy consumption and it is
typically related to battery consumption. Air thickness impacts the lifting capacity of a
flying machine and changes with temperature [49,50]. Research has found drone failures
during lower temperatures even during short flight intervals [51]. The weight and payload
individually play a part in the power utilization of drones.

4.5. Minimum Energy Consumption Model

The total weight of the drone (W) is equal to the sum of the actual weight of the device
and the payload weight (Table 6). Payload weight can be considered as the weight of any
relief or distribution material, or any additional equipment required to be carried by the
drone for the mission.

The energy required to overpower the parasitic drag is:

Pdrag = ∗
(

drag coe f f icient

)
∗ A ∗ D ∗ v̂3 (43)

The drone requires energy both to overpower the parasitic drag and for lifting itself:

Pli f t = W2̂/(D ∗ b̂2 ∗ v) (44)

Initial Power Constants

W = 17.06 kgD = 0.7 kg/m3 A = 0.827 m2dragcoe f f icient = 0.004b = 0.5 m

Overall Consumption
Ptotal = Pdrag + Pli f t (45)

We performed the simulation to identify the optimal velocity between the Vmin and
Vmax defined in Table 3 which would consume the minimum battery power.

The simulation was performed so that the velocity iteratively increases from −4 m/s
to 20 m/s during the multiphase flight of the 12 drones. The drag power and the life power
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were noted for a single drone and the total power consumption was calculated for each
velocity. Since in our paper we have assumed that all drones render similar performance at
a given altitude, time, and velocity, the total power consumption of 12 drones is 12 times
that of the calculated consumption.

Figure 16 depicts a spike in the power consumption during the climb phase of the
drone which stabilises as it enters the hover phase. The highest energy consumption is
observed as the drone moves from a negative velocity to a positive velocity at 1 m/s. As
the velocity is gradually increased, the total power consumption continues to drop at a
steep rate until it renders an almost straight line between 15 and 20 m/s where the total
power is 1109.01 (Table 7). Hence, the power consumption is the highest during the climb
phase of the drone and stabilizes as the drones enter the hover phase.
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Table 7. Output of Power Consumption against Velocity (vmin, vmax).

Velocity (m/s) Power Consumed (W) Drag Power (W) Lift Power (W)

−4 −4990.208047542857 −0.07409919999999999 −415.7765714285714
−3 −6652.800270057143 −0.03126059999999999 −554.368761904762
−2 −9978.748863085713 −0.009262399999999999 −831.5531428571428
−1 −199,57.28932217143 −0.0011577999999999998 −1663.1062857142856
0 0.0 0.00 0
1 19,957.28932217143 0.0011577999999999998 1663.1062857142856
2 9978.748863085713 0.009262399999999999 831.5531428571428
3 6652.800270057143 0.03126059999999999 554.368761904762
4 4990.208047542857 0.07409919999999999 415.7765714285714
5 3993.191785714285 0.144725 332.62125714285713
6 3329.213589028572 0.25008479999999994 277.184380952381
7 2855.8048517387756 0.39712539999999996 237.58661224489796
8 2501.7729517714283 0.5927935999999999 207.8882857142857
9 2227.6034820190475 0.8440361999999999 184.7895873015873
10 2009.6211428571428 1.1578 166.31062857142857
11 1832.7901478337662 1.5410317999999998 151.1914805194805
12 1687.114426514286 2.0006783999999995 138.5921904761905
13 1565.6992721670326 2.5436865999999996 127.93125274725274
14 1463.6437118693877 3.1770031999999997 118.79330612244898
15 1377.3759285714284 3.9075749999999996 110.87375238095237
16 1304.2378998857143 4.742348799999999 103.94414285714285
17 1242.2166349512604 5.6882714 97.82978151260504
18 1189.7649990095238 6.752289599999999 92.39479365079364
19 1145.6791196932331 7.941350199999999 87.53190977443609
20 1109.0125714285714 9.2624 83.15531428571428

5. Conclusions

This study proposes a particle swarm optimisation model for solving the problem of
maximum area coverage of drones with minimum energy consumption in the post-disaster
period. Our main contributions can be summarised as follows:

i Reaching the target with optimal battery consumption
ii Assigning and maintaining the position of particles to cover the maximum area.
iii Optimal usage of a minimum number of drones.

The proposed method can approximate how the drones can reach the target site by cov-
ering the minimum distance. The area coverage of drones is maximised via the horizontal
component of the true airspeed (Vx) and the height of the camera over the ground.

The proposed approach indicates that when maintaining the flight height of the drone
above 120 m, the coverage can be enhanced by approximately 34% compared with a flight
height of 100 m. Extensive simulations were performed using characteristics of the drones
such as inertia, exploration and exploitation constants, velocity, and height to enhance
the response against disaster, minimise the losses and maximise the area coverage of the
disaster impact region. The optimal area coverage was achieved during the hover phase
of the drones. Based on the simulations, we conclude that the maximum area coverage is
achieved at a flight altitude of 120 m and a velocity of 20 m/s. A method for drone path
allocation was established which will assist with improving risk response, and saving time
when dealing with emergencies. Furthermore, the developed method can be utilised to
allocate drones based on the impacted region. Currently, the number of drones has been
taken as a constant value considering each drone always provides the same performance.
Future research should investigate the impact of different performance levels of drones
on the outcomes. Future research could include a multi-objective function to assess the
resource allocation in terms of drones, battery, and energy utilization. The current study
has been performed based on the assumption that the area is obstacle-free. In the future,
the impacts of various types of disasters, such as floods, fire, storms, in a non-obstacle-free
area could be assessed.



Drones 2022, 6, 96 25 of 28

Author Contributions: Methodology, H.S.M. and A.W.A.H.; investigation, A.W.A.H. and S.T.W.;
writing—original draft preparation, H.S.M. and A.W.A.H.; writing—review and editing, A.W.A.H.
and S.T.W.; supervision A.W.A.H. and S.T.W. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The codes/simulations are available with the corresponding author
and can be shared on reasonable request.

Acknowledgments: We would like to thank CDRI for their support in conducting this research.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. Dynamically updating the inertia coefficient from 0.4 to 0.9 per iteration.

Iteration Inertia Coefficient Objective Function Value
(
km2) gBest Position (x,y)

1 0.9 98.25242778509373 [−5.88992833 7.59274691]
2 0.875 166.1080146338387 [−7.56059946 10.]
3 0.85 172.72538867068536 [−7.86179693 10.]
4 0.825 173.57247234463873 [−7.90035293 10.]
5 0.8 173.648669201639 [−7.90382112 10.]
6 0.775 173.65343241781065 [−7.90403793 10.]
7 0.75 173.65364285853295 [−7.9040475 10.]
8 0.725 173.65364297446501 [−7.90404751 10.]
9 0.7 173.65364297446501 [−7.90404751 10.]
10 0.675 173.65364297595357 [−7.90404751 10.]
11 0.65 173.65364297596602 [−7.90404751 10.]
12 0.625 173.65364297596608 [−7.90404751 10.]
13 0.6 173.65364297596608 [−7.90404751 10.]
14 0.575 173.65364297596608 [−7.90404751 10.]
15 0.55 173.65364297596608 [−7.90404751 10.]
16 0.525 173.65364297596608 [−7.90404751 10.]

Table A2. Results of simulation with a constant inertia coefficient at 0.55.

Iteration Inertia Coefficient Objective Function Value (km2) gbest Position (x,y)

1 0.55 161.46087064166917 [9.89232861 −7.42906912]
2 0.55 161.4815220862256 [9.89142012 −7.43070174]
3 0.55 161.48153790723256 [9.89141942 −7.43070299]
4 0.55 161.48153791935488 [9.89141942 −7.43070299]
5 0.55 161.48153791936414 [9.89141942 −7.43070299]
6 0.55 161.48153791936414 [9.89141942 −7.43070299]
7 0.55 161.48153791936414 [9.89141942 −7.43070299]
8 0.55 161.48153791936414 [9.89141942 −7.43070299]
9 0.55 161.48153791936414 [9.89141942 −7.43070299]
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Table A3. Results of simulation with Genetic Algorithm.

Iteration Objective Function Value (km2)

1 102.31
2 102.31
3 102.31
4 102.31
5 102.72
6 102.72
7 105.09
8 105.09
9 105.09
10 110.69
11 112.86
12 112.86
13 112.86
14 112.86
15 113.55
16 113.55
17 117.61
18 117.61
19 118.73
20 120.53
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