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Abstract
Dementia is a growing global health concern that significantly impacts the quality of life for millions of individuals and 
imposes substantial burdens on healthcare systems. Early detection and accurate diagnosis are crucial for effective dementia 
management. Electroencephalography (EEG) has emerged as a non-invasive tool for identifying dementia-related abnormali-
ties and assessing brain function. However, existing EEG-based methods often fail to pinpoint specific biomarkers, particu-
larly brain lobe changes. Brain lobe analysis in EEG is essential for advancing dementia detection and improving diagnostic 
accuracy. This study aims to address this gap by exploring key brain lobes involved in dementia detection and classification, 
focusing on Alzheimer’s disease (AD) and Frontotemporal dementia (FTD). We introduce a Short-Time Fourier Transform to 
generate spectrogram images from EEG signals combined with Convolutional Neural Networks to identify the most critical 
brain lobes for enhanced dementia detection. We have applied Grad-CAM method to improve result interpretability and offer 
meaningful insights to the research community. Our experiments on OpenNeuro ds004504 EEG dataset for AD and FTD 
indicate that the parietal lobe exhibits the most significant changes in both conditions, achieving 95.72% accuracy for FTD 
and 92.25% for AD, followed by the temporal and frontal lobes. When applying the proposed framework to the entire brain 
region, we achieved 95.59% accuracy for AD and 93.14% for FTD. The findings from EEG-based brain lobe analysis aid 
experts in improving diagnostic and monitoring tools for neurodegenerative disorders, thereby advancing the understanding 
and clinical management of dementias like AD and FTD.

Keywords  Electroencephalogram · Dementia · Alzheimer’s disease · Frontotemporal dementia · EEG signal processing · 
Short-time fourier transform · Convolutional neural networks

Introduction

Dementia is a group of neurodegenerative disorders charac-
terized by cognitive impairment, memory loss, and difficul-
ties in daily activities due to the progressive degeneration 
of brain cells. People living with face numerous challenges, 
including functional limitations, social isolation, emotional 
distress, health complications, and financial strain. It is the 
second leading cause of death in Australia and ranks seventh 
globally [1]. The social and economic impacts of dementia 
are profound, as it places immense strain on individuals, 
families, communities, and healthcare systems. According to 
the World Health Organization (WHO), over 55 million peo-
ple currently live with dementia, with cases projected to rise 
to 78 million by 2030 and 139 million by 2050 [2, 3]. This 
growing prevalence places a significant burden on health-
care systems and economies, with global dementia-related 
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costs reaching $1.3 trillion USD in 2019, half of which was 
attributed to informal caregiving [2].

Dementia includes several types, such as Alzheimer’s dis-
ease (AD), frontotemporal dementia (FTD), vascular demen-
tia (VaD), and dementia with Lewy bodies (DLB). AD is 
the most common form, accounting for 60–70% of cases 
[4]. Mild cognitive impairment (MCI) is often considered 
a precursor to dementia, with an increased risk of progres-
sion, though the rate varies among individuals. This study 
focuses on two of the most common forms of dementia-AD 
and FTD, which share overlapping symptoms, making accu-
rate diagnosis and targeted treatment development particu-
larly challenging.

Despite its devastating impact, dementia has no cure or 
treatment to halt or reverse its progression. However, early 
detection can help mitigate its effects and improve patients’ 
quality of life. Traditional diagnostic methods for dementia, 
such as clinical assessments and neuroimaging techniques 
(MRI, PET scans), are expensive, time-consuming, and not 
widely accessible. As a result, researchers are increasingly 
exploring non-invasive, cost-effective alternatives, such as 
electroencephalography (EEG). EEG is a promising tool for 
studying brain activity due to its high temporal resolution, 
affordability, and ease of use. EEG captures the electrical 
activity of the brain through electrodes placed on the scalp, 
allowing researchers to analyze patterns of neural oscil-
lations and connectivity [5]. Dementia-related changes in 
brain function can be reflected in EEG signals, particularly 
in different brain lobes responsible for cognition, memory, 
and sensory processing.

The human brain consists of several lobes-frontal, tem-
poral, parietal, and occipital—each playing a crucial role 
in cognitive processing. Studies have linked EEG abnor-
malities in specific lobes to dementia-related neurodegenera-
tion. For example, temporal lobe disruptions are commonly 
associated with memory and language deficits in AD, while 
frontal and parietal lobe alterations may indicate cognitive 
impairment and executive dysfunction [4]. Recent research 
suggests that identifying lobe-specific EEG biomarkers can 
enhance dementia detection accuracy.

This study aims to investigate brain lobe biomarkers 
derived from EEG data to enhance dementia detection. 
By focusing on lobe-specific EEG alterations, we seek to 
improve diagnostic accuracy and contribute to the develop-
ment of non-invasive, accessible, and reliable tools for early 
dementia detection.

Existing Work/Prior Art

In recent years, numerous studies have focused on detect-
ing various types of dementia using EEG signals [6–29]. 
These studies have employed a range of machine learning 
(ML) algorithms combined with different feature extraction 

techniques for EEG-based dementia detection. Feature 
extraction methods such as time, frequency, and time–fre-
quency analysis [6–10, 19], entropy measures [11, 16], con-
nectivity measures [12, 13], complexity measures [14], and 
event-related analysis [15] have been used in conjunction 
with well-established ML models, including support vector 
machines (SVM) [8, 9, 12, 13, 18, 19], k-nearest neighbors 
(kNN) [8, 11, 12, 16], logistic regression [15], random for-
ests [16], and neural networks [10].

Traditional machine learning methods, which typically 
rely on shallow architectures with at most one layer of non-
linear feature transformation, have limitations in effectively 
capturing the complex patterns hidden in EEG signals. As 
a result, these models may fail to detect the deeper char-
acteristics of AD and related dementias. To address this 
challenge, deep learning (DL) methodologies have become 
increasingly popular because of their ability to automatically 
extract and learn features directly from raw EEG data. This 
approach eliminates the need for hand-crafted features or 
prior domain-specific knowledge, making the feature extrac-
tion process more efficient and data-driven.

In their 2023 study, Alvi et al. [20] introduced a deep 
learning framework utilizing a Long Short-Term Memory 
(LSTM) model. Their approach successfully differentiates 
individuals with MCI, an early stage of AD, from healthy 
controls. That same year, Ravikanti and Saravanan [21] 
proposed an Optimized Transformer-based Attention Long 
Short-Term Memory (OTA-LSTM) model designed for 
AD detection using EEG signals. In [22], Chaabene et al. 
differentiated amnestic MCI (aMCI), non-amnestic MCI 
(naMCI), and healthy controls (HC) during a verbal flu-
ency task (VFT) using EEG data. A transformer-based MCI 
detection method is proposed, achieving up to 94.78% accu-
racy. In 2024, Siuly et al. [5] employed LSTM to discern the 
most effective EEG rhythms and channels for diagnosing 
AD. Tawhid et al. [23] introduced a Convolutional Neural 
Network (CNN)-based framework to pinpoint precise fre-
quency band biomarkers for MCI diagnosis. Hasoon et al. 
[24] explored EEG functional connectivity to differentiate 
stable MCI from converting MCI. Patients who progress 
to dementia show altered EEG connectivity in alpha and 
beta bands, making these measures valuable for early pre-
diction. Şeker and Özerdem [25] investigated spectral and 
synchrony neuromarkers from resting-state EEG for MCI 
detection, identifying peak amplitudes and weighted Phase 
Lag Index (wPLI) in high-frequency bands as effective 
biomarkers. Adebisi et al. [26] employed Phase Lag Index 
(PLI) and Graph Convolution Network (GCN-net) on EEG-
based brain functional networks (BFNs), achieving 95.07% 
accuracy (delta) and 80.62% (theta) in distinguishing MCI, 
AD, and vascular dementia (VD). Sen et al. [27] introduced 
an intrinsic time-scale decomposition (ITD)-based EEG 
method for AD detection, achieving 94% accuracy in Q1, 
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surpassing raw EEG (88.40% in Q2). In 2025, Şeker and 
Özerdem [28] explored MCI classification using EEG data, 
transforming raw signals into input images for deep learn-
ing. CNNs, transfer learning, hybrid models, and Vision 
Transformer (ViT) achieve effective classification. Acharya 
et al. [29] proposed EEGConvNeXt, a lightweight 2D CNN 
model that converts EEG signals into power spectrogram 
images for classifying AD, FD, and controls. It features a 
transformer-based CNN structure with stem, main model, 
downsampling, and output stages.

Motivation, Problem Description, and Objectives

Detecting dementia using EEG signals is challenging due 
to the complex and dynamic nature of brain activity, which 
complicates the extraction of meaningful features to differ-
entiate between healthy individuals and those with demen-
tia. The recent literature reveals a gap in research regarding 
which brain lobes are most effective as biomarkers for the 
efficient diagnosis of dementia, such as AD and FTD, using 
EEG data. Identifying the specific brain regions or lobes that 
provide critical information for dementia detection is cru-
cial, as these biomarkers are essential for understanding the 
brain activity patterns associated with the disease. The key 
aim of this study is to address this gap by developing a deep 
learning-based model that utilizes spectrogram images and 
CNN to identify the most effective brain lobes for improved 
dementia detection.

Our Method

This study proposes a novel framework combining short-
time Fourier transform (STFT) and CNN to identify key 
brain lobes as biomarkers for detecting dementia, specifi-
cally AD and FTD, using EEG data. The framework begins 
by preprocessing the EEG signals, where noise is removed 
using a butterworth band-pass filter, automatic artifact rejec-
tion, and independent component analysis (ICA). The EEG 
signals are then segmented into smaller time frames. Next, 
the EEG channels are organized into five brain lobes based 
on biological principles. Spectrogram images are generated 
for each brain lobe and the full set of EEG channels using 
STFT, which provides a time–frequency representation of 
brain activity. These spectrograms are subsequently fed 
into a deep learning-based CNN, which is trained to clas-
sify dementia. The classification is performed independently 
on the spectrogram images from each brain lobe as well as 
from the full channel set.

The combination of STFT and CNN is particularly effec-
tive for dementia detection because STFT captures both 
the time and frequency domains of the brain’s electrical 
activity, offering insights into cognitive decline. CNNs, 
known for their ability to detect patterns in 2D data such as 

spectrograms, are adept at learning complex and subtle fea-
tures associated with dementia. By leveraging the strengths 
of both techniques, this approach aims to detect dementia-
related abnormalities in brain wave patterns more effectively.

Novelties and Contributions

To our knowledge, no research has explored which brain 
lobes are most responsive in providing critical information 
for effective dementia detection. This study offers several 
significant contributions:

•	 Novel framework development: It introduces a new 
framework for dementia detection that integrates STFT 
with CNN algorithms, capable of distinguishing between 
AD, FTD, and HC using EEG data.

•	 Innovative approach: This study is the first to use STFT-
based spectrogram images alongside a CNN model for 
detecting dementia.

•	 Brain lobe analysis: It investigates which brain lobes are 
most crucial for extracting representative information for 
effective dementia detection.

•	 Performance enhancement: The study aims to improve 
the performance of dementia detection compared to 
existing methods.

Remainder of the Article

The remainder of this paper is structured as follows: the 
“Proposed Methodology Framework” section outlines the 
data analyzed and the proposed methodology. The “Experi-
ments and Results” section presents the experimental setup 
and results, while the “Discussion” section discusses the 
experimental results and overall findings. Finally, the “Con-
clusions and Future Plan” section concludes the paper and 
discusses future work.

Proposed Methodology Framework

In this study, we propose a framework for identifying key 
brain lobes for detecting dementia including AD and FTD 
using EEG brain signal data. An overview of the proposed 
framework is illustrated in Fig. 1, with detailed descriptions 
provided in the following subsections.

Dataset Description

In our study, we used a publicly available EEG dataset: 
OpenNeuro ds004504 [8, 30, 31]. This dataset comprises 
EEG recordings from 88 participants at the Department of 
Neurology, AHEPA General University Hospital of Thessa-
loniki. The participants were categorized into three groups:
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•	 Alzheimer’s disease (AD): This group consisted of 36 
participants (13 males, 23 females) with an average age 
of 66.4 ± 7.9 years. Their cognitive status was assessed 
using the Mini-Mental State Examination (MMSE), 
where lower scores indicated greater cognitive decline. 
The average MMSE score for this group was 17.75.

•	 Frontotemporal dementia (FTD): The FTD group 
included 23 participants (14 males, 9 females) with an 
average age of 63.6 ± 8.2 years. Their average MMSE 
score was 22.17.

•	 Healthy controls (HC): The CN group comprised 29 
participants (11 males, 18 females) with a mean age of 
67.9 ± 5.4 years. Remarkably, their MMSE scores were 
perfect, achieving a score of 30.

The EEG data was recorded from 19 electrode channels 
(Fz, F3, F4, F7, F8, Fp1, Fp2, T3, T4, T5, T6, Cz, C3, C4, 
Pz, P3, P4, O1, and O2) following the 10–20 international 

system. Two reference electrodes (A1 and A2) were used. 
During the eye-closed resting state, EEG data was sam-
pled at a frequency of 500 Hz. Recording durations varied 
approximately 13.5 min (range: 5.1 to 21.3 min) for AD 
group, 12 min (range: 7.9 to 16.9 min) for FTD group, and 
13.8 min (range: 12.5 to 16.5 min) for HC group. Notably, 
the dataset is publicly accessible online, with each partici-
pant having provided informed consent for their data to be 
published. Since the published data do not contain any per-
sonally identifiable information, ethical approval was not 
required for our study. A summary of the dataset is provided 
in Table 1.

Pre‑processing EEG Signals

•	 Noise removing: The EEG signals underwent several pre-
processing steps. Initially, a Butterworth band-pass filter 
ranging from 0.5 to 45 Hz was applied to enhance signal 

Fig. 1   Overview of the proposed framework for detecting dementia using EEG brain signal data

Table 1   Summary of the 
OpenNeuro ds004504 
dataset used for the proposed 
framework

Subjects Male/female Age Average MMSE Average 
recording 
duration

Normal 29 11/18 67.9 ± 5.4 30 13.8 min
AD 36 13/23 66.4 ± 7.9 17.75 ± 4.5 13.5 min
FTD 23 14/9 63.6 ± 8.2 22.17 ± 8.22 12 min
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quality. Afterwards, the signals were re-referenced to 
A1-A2 for consistency. An Automatic Artifact Rejection 
(ASR) [32] routine was then implemented to eliminate 
transient or large-amplitude artifacts [33], identified as 
data periods exceeding the maximum acceptable 0.5-s 
window standard deviation of 17. Next, Independent 
Component Analysis (ICA) using the RunICA algorithm 
transformed the 19 EEG signals into 19 ICA components. 
Components labeled as “eye artifacts” or “jaw artifacts” 
by the automatic classification routine “ICLabel” in the 
EEGLAB platform were automatically discarded [34]. 
Following this, the signals were resampled to 256 Hz for 
standardization.

•	 Segmentation: Finally, the signals were segmented for 
further analysis. In this segmentation technique, the 
original EEG data is divided into short, informative 
fragments. These fragments are then normalized to have 
the same level as the original signal. By doing so, we 
increase the data sample size while maintaining an equal 
ratio [35, 36]. In our study, we have specifically seg-
mented the filtered signals into three-second (3 s) time 
segments, following similar approaches used in previ-
ous studies [35–37]. This choice of 3-s segments offers 
several advantages: it improves computational efficiency, 
preserves essential information, and enhances perfor-
mance in classification tasks [37].

•	 Arranging EEG channels by brain lobes: After segmen-
tation of the EEG signal, we have worked on the chan-
nel selection process. In the channel selection process, 
groups of channels were chosen based on their respective 

brain lobes to facilitate targeted analysis. Five distinct 
brain lobes were considered: frontal (comprising Fp1, 
Fp2, F7, F3, Fz, F4, F8), central (including C3, Cz, C4), 
temporal (encompassing T3, T4, T5, T6), parietal (con-
sisting of P3, P4, Pz), and occipital (comprising O1, O2, 
Oz) as shown in Fig. 2. Each group of channels corre-
sponded to the electrical activity recorded from specific 
regions of the brain, enabling focused examination of 
activity within these regions.

Additionally, to provide a comprehensive perspective, 
all channels were collectively considered as a full set for 
comparative analysis, ensuring that any observed patterns or 
trends could be evaluated across the entirety of the recorded 
EEG data. This approach facilitated a nuanced exploration 
of brain activity across various spatial domains, enhancing 
the depth and breadth of the EEG analysis.

Converting EEG Signals to Spectrogram Images

In this step, we use a plotting method based on short-time 
Fourier transform (STFT) to generate spectrogram images 
from the previously decomposed signal segments. Spectro-
grams are frequently used for analyzing EEG data in the 
time–frequency domain [35]. The process involves convert-
ing the time-varying EEG signal into a two-dimensional 
(2D) matrix, where time is represented along the horizontal 
axis, and frequency is depicted along the vertical axis. The 
horizontal axis corresponds to time, where the EEG signal 
is discretized into segments or windows. Meanwhile, the 

Fig. 2   An illustration of the brain lobe structure showing the arrangement of EEG channels
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vertical axis represents the frequency range, typically com-
mencing with lower frequencies at the base and extending 
upward to higher frequencies.

Within the spectrogram, individual data points corre-
spond to specific time instances and frequencies. The color 
or intensity of each point serves as an indicator of the power 
or magnitude of the associated frequency component at that 
particular moment. Darker or less intense areas represent 
lower power or the absence of certain frequency compo-
nents, while brighter or more intense areas reflect higher 
power and the presence of those frequency components [35]. 
The STFT works by splitting the signal into overlapping, 
windowed segments. A Hamming window is applied to each 
segment to ensure continuity and reduce spectral leakage. 
Subsequently, the Fourier transform is applied to each win-
dowed segment, yielding its localized frequency spectrum. 
The STFT of a signal at a given time t and frequency f, 
represented as STFT(t, f), is computed using the following 
equation:

where x(τ) represents the original signal, ω(t—τ) denotes the 
window function, and f stands for frequency. In summary, 
the STFT-based spectrogram provides valuable insights into 
the time–frequency characteristics of EEG signals, aiding in 
the analysis and classification of brain activity patterns [35].

Classification of Dementia: Training the CNN Model 
with Spectrogram Images

In this study, we employed a DL-based CNN model to clas-
sify the generated spectrogram images. CNNs are highly 
regarded in the field of deep learning for their remarkable 
ability to perform image classification tasks efficiently [38]. 
They excel in this domain by autonomously identifying and 
extracting relevant features from input images, thereby ena-
bling accurate classification into multiple categories [23, 35, 
38].

The strength of CNNs lies in their architectural design, 
which includes multiple convolutional layers. These layers 
are instrumental in the feature learning process, as they can 
detect both low-level features, such as edges, corners, and 
textures, and high-level features, such as complex shapes 
and semantic representations. This multi-layered approach 
allows CNNs to build a hierarchical understanding of the 
visual data [23, 38]. Specifically, the initial layers of a CNN 
capture basic visual elements (low-level features) that are 
foundational to the image, such as edges and textures. As the 
data progresses through the network, deeper layers combine 
these basic elements into more complex patterns and fea-
tures (high-level features), ultimately enabling the model to 

(1)STFT(t, f ) = ∫
∞

−∞

x(�)ω(t − �)e−j2�f �d�

recognize intricate and abstract visual patterns and objects 
[38].

This hierarchical feature learning is crucial for the CNN’s 
ability to comprehend and classify complex visual inputs 
accurately. By leveraging this structured approach, CNN 
can effectively discern and categorize spectrogram images, 
which are visual representations of EEG signals, into their 
respective classes. The capability to understand and process 
such complex patterns makes CNNs exceptionally powerful 
tools for a wide range of image classification applications 
[23, 35].

The convolution operation is essential in CNNs, crucial 
for extracting meaningful features from images, enabling 
tasks like image classification and object detection. The 
operation in a convolutional layer, which utilizes a spatial fil-
ter with dimensions M × N and C channels, can be expressed 
as follows:

In this equation, Yi,j,k represents the value at the ith row, 
jth column, and kth channel of the output feature map; 
Xi+m−1,j+n−1,c corresponds to the value at the (i + m − 1)th row, 
(j + n − 1)th column, and cth channel of the input feature map; 
Wm,n,c,k denotes the filter weight located at mth row, nth col-
umn, and cth channel for the kth output channel; bk represents 
the bias term associated with the kth output channel; and f(.) 
refers to the activation function, which is applied to the sum-
mation result to introduce non-linearity into the model. This 
equation computes the dot product between the filter weights 
and a local region of the input feature map, then adds the 
bias and applies the activation function, enabling the net-
work to capture complex patterns and features in the image.

In our spectrogram image classification endeavors, we 
employed the CNN model that we previously proposed 
and applied in our earlier research [23, 35]. This consistent 
approach allowed us to build upon our prior findings and 
maintain continuity in our methodology. This CNN model 
was initially introduced in [35] for classifying autism spec-
trum disorder (ASD) using spectrogram images and was 
later applied to identify frequency band-based biomarkers 
in EEG signals for the detection of MCI. The architecture of 
this model consists of four convolutional layers, three drop-
out layers, a fully connected layer, and a final classification 
layer, as illustrated in Fig. 3.

Each convolutional layer (Conv) in the model contains 
32 filters, each with a kernel size of 3 × 3, and is followed 
by a max pooling layer to reduce spatial dimensions. Addi-
tionally, the second and fourth pairs of convolutional and 
max pooling layers are followed by dropout layers with a 
dropout rate of 25%, which helps to prevent overfitting. The 
fully connected layer, which serves to integrate the features 

(2)Yi,j,k = f

(

M
∑

m=1

N
∑

n=1

C
∑

c=1

Xi+m−1,j+n−1,c.Wm,n,c,k + bk

)
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extracted by the convolutional layers, is followed by a drop-
out layer with a higher dropout rate of 50%. The final clas-
sification layer uses a softmax activation function, which 
outputs probabilities for the two classes: HC or patient. The 
model is trained using a categorical cross-entropy loss func-
tion and optimized with the Adam optimizer, ensuring effi-
cient and effective learning. For a detailed breakdown of the 
layer configurations, please refer to Table 2.

Performance Evaluation Methods and Metrics

To evaluate our model’s performance, we implemented 
k-fold cross-validation (CV) as our validation technique. In 
this approach, the dataset is partitioned into k equal-sized 
segments. The model is trained using k−1 of these segments 
and subsequently tested on the remaining part. This itera-
tive process is repeated k times, with each segment serving 
as the validation set once. This ensures that every part of 
the dataset is used for validation exactly one time. After 

completing these iterations, we average the results to obtain 
a comprehensive measure of the model’s performance. For 
our study, we specifically employed tenfold cross-validation.

To thoroughly assess the performance of the proposed 
framework, we quantified six well-known parameters: 
specificity (Spec), sensitivity (Sen), precision (Prec), accu-
racy (Acc), F1 score (F1), and false positive rate (FPR). A 
receiver operating characteristic (ROC) curve is a graphical 
representation used to evaluate the diagnostic performance 
of a binary classifier system. It plots the true positive rate 
(sensitivity) against the false positive rate (1-specificity) at 
various threshold settings. The ROC curve is a powerful 
tool in medical research and machine learning for assessing 
the ability of a model to distinguish between two classes, 
such as disease presence versus absence. By visualizing the 
trade-off between sensitivity and specificity, the ROC curve 
helps in selecting the optimal threshold for classification 
and comparing the performance of different models. This 
makes it an essential tool for evaluating predictive accuracy 

Fig. 3   Proposed architecture of our CNN model

Table 2   The configuration of 
the CNN model used is this 
study

Layer type Filters/units Kernel size Strides Activation Padding Dropout rate

Input - - - - - -
Conv2D 32 3 × 3 1 × 1 ReLU Same -
MaxPooling2D - 2 × 2 2 × 2 - - -
Conv2D 32 3 × 3 1 × 1 ReLU Same -
MaxPooling2D - 2 × 2 2 × 2 - - -
Dropout - - - - - 0.25
Conv2D 32 3 × 3 1 ×  ReLU Same -
MaxPooling2D - 2 × 2 2 × 2 - - -
Conv2D 32 3 × 3 1 × 1 ReLU Same -
MaxPooling2D - 2 × 2 2 × 2 - - -
Dropout - - - - - 0.25
Flatten - - - - - -
Dense 256 - - ReLU - -
Dropout - - - - - 0.50
Dense (Output) 2 - - Softmax - -
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in various applications, particularly in diagnostic tests and 
classification problems [18, 39].

Experiments and Results

This section begins by describing the experimental setup, 
followed by a thorough presentation of the results. It con-
cludes with an in-depth analysis of the outcomes achieved.

Experimental Setup

Here, we have used dataset with three different categories 
of subjects and have carried out two different classifica-
tion tasks: AD vs. HC and FTD vs. HC. We have used a 
segmentation length of 3-s, consistent with the approach 
used in prior research [23, 35–37]. Then, we have generated 
the spectrogram image from those signal segments using 
STFT. After these segmentation and image generation steps 
the resulting dataset contains 9695 images of AD subjects, 
5546 images of FTD subjects, and 8024 images of HC sub-
jects. The dimension of those images are 224 × 224 pixels 
and are then used as input for the CNN model. We have 
also followed the same process for different brain regions to 
generate the spectrogram images by using the channel data 
of those regions. The experiments were conducted on a com-
puter equipped with an AMD Threadripper Pro processor, 
boasting 256 GB of RAM and 48 GB of graphics memory. 
During training, we have employed 50 epochs with a training 
batch size of 32 to train the CNN model.

Results

In this research work, we have devised a framework to find 
out the critical brain lobes of EEG signal data for demen-
tia disease detection. We have conducted two classification 
tasks to check the performance of the proposed framework: 
AD vs. HC and FTD vs. HC. We have used tenfold CV to 
validate the experimental results. Table 3 reports the tenfold 
average result of the experiments for different brain lobes for 
the considered evaluation parameters.

From Table 3, we can see that, using full brain region 
with the proposed framework, we have achieved an accuracy 
of 95.59% with a standard deviation of ± 0.46 over tenfold 
in AD vs. HC classification. On the other hand, for FTD 
vs. HC, we have achieved an accuracy of 93.14% with a 
standard deviation of ± 0.93. Among the tested five brain 
lobes, for AD vs. HC, we have achieved an accuracy of 
55.91 ± 2.71, 74.84 ± 10.84, 76.61 ± 1.51, 92.25 ± 0.89, and 
78.77 ± 8.26 for Central, Frontal, Occipital, Parietal, and 
Temporal lobes, respectively. For FTD vs. HC, those values 

are 64.97 ± 2.93, 82.32 ± 1.13, 77.13 ± 2.18, 95.72 ± 0.42, 
and 79.34 ± 1.89, accordingly.

To further analyze the comparison of the considered 
parameters in different lobes, we have plotted lobe-wise 
sensitivity, specificity, precision, and accuracy in Figs. 4, 5, 
6, and 7, respectively. In these figures, we used error bars to 
visually represent the variability of the performance param-
eters within two groups: AD vs. HC and FTD vs. HC. The 
error bars illustrate the range of variation within each group, 
providing insight into the consistency of performance across 

Table 3   Average performance (%) and standard deviation of the pro-
posed framework in tenfold cross-validation across different brain 
lobes for AD vs. HC and FTD vs. HC classification tasks

Brain lobes AD vs. HC FTD vs. HC

Full brain region Sensitivity 97.37 ± 0.80 92.03 ± 1.38
Specificity 93.42 ± 1.24 93.92 ± 1.34
Precision 94.73 ± 0.84 91.29 ± 1.79
F1 96.00 ± 0.00 92.00 ± 0.01
Accuracy 95.59 ± 0.46 93.14 ± 0.93
FPR 6.00 ± 1.24 5.77 ± 1.34

Central
(C3, Cz, C4)

Sensitivity 97.57 ± 7.28 37.62 ± 19.32
Specificity 5.09 ± 15.26 83.65 ± 8.67
Precision 55.77 ± 2.32 49.19 ± 24.64
F1 71.00 ± 0.01 42.00 ± 0.21
Accuracy 55.91 ± 2.71 64.97 ± 2.93
FPR 100.00 ± 15.26 17.21 ± 8.67

Frontal
(Fp1, Fp2, F7, F3, 

Fz, F4, F8)

Sensitivity 83.13 ± 9.18 72.21 ± 2.88
Specificity 65.35 ± 32.70 89.31 ± 0.98
Precision 77.93 ± 12.27 82.26 ± 1.83
F1 79.00 ± 0.05 77.00 ± 0.02
Accuracy 74.84 ± 10.84 82.32 ± 1.13
FPR 34.81 ± 32.70 10.32 ± 0.98

Occipital
(O1, O2, Oz)

Sensitivity 83.52 ± 1.49 74.13 ± 4.56
Specificity 68.24 ± 3.22 79.17 ± 3.15
Precision 76.11 ± 1.83 71.13 ± 2.41
F1 80.00 ± 0.01 73.00 ± 0.03
Accuracy 76.61 ± 1.51 77.13 ± 2.18
FPR 32.92 ± 3.22 19.60 ± 3.15

Parietal
(P3, P4, Pz)

Sensitivity 89.67 ± 1.44 92.79 ± 1.27
Specificity 95.38 ± 0.77 97.75 ± 0.49
Precision 95.90 ± 0.70 96.59 ± 0.71
F1 93.00 ± 0.01 95.00 ± 0.00
Accuracy 92.25 ± 0.89 95.72 ± 0.42
FPR 4.17 ± 0.77 2.25 ± 0.49

Temporal
(T3, T4, T5, T6)

Sensitivity 86.94 ± 5.09 73.59 ± 3.51
Specificity 68.91 ± 23.15 83.34 ± 2.26
Precision 78.85 ± 8.34 75.29 ± 2.65
F1 82.00 ± 0.04 74.00 ± 0.02
Accuracy 78.77 ± 8.26 79.34 ± 1.89
FPR 23.48 ± 23.15 17.23 ± 2.26
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Fig. 4   Sensitivity comparison 
across different brain regions 
for AD vs. HC and FTD vs. HC 
classification

Fig. 5   Specificity comparison 
across different brain regions 
for AD vs. HC and FTD vs. HC 
classification

Fig. 6   Precision comparison 
across different brain regions 
for AD vs. HC and FTD vs. HC 
classification
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the two groups. This helps in understanding how reliable 
and stable the observed performance metrics are within each 
comparison.

Figure 4 shows the lobe-wise comparison for the sensitiv-
ity values in both AD vs. HC and FTD vs. HC classification. 
From Fig. 4, we can see that, for AD vs. HC with full brain 
region, we have achieved an average sensitivity of 97.37% 
and for FTD vs. HC, it is 92.03%. On the other hand, among 
the five brain lobes, central lobe has given the highest sensi-
tivity value of 97.57% for AD vs. HC classification, which is 
higher than the full brain region. Other regions like parietal 
and temporal also show high sensitivity, while the frontal 
and occipital regions display comparatively lower sensitiv-
ity. In case of FTD vs. HC, parietal lobe has generated the 
highest average sensitivity of 92.79%, which is also better 
than the full brain region. The error bars in Fig. 4 indicate 
that there are no significant differences in sensitivity across 
the various lobes between the two groups, with the excep-
tion of the central lobe. Notably, the central region shows 
a markedly low sensitivity of 37.62%, suggesting it is less 
effective in identifying FTD. Overall, this comparison high-
lights the varying diagnostic value of different brain regions, 
emphasizing the importance of region-specific analysis in 
accurately distinguishing between these neurodegenerative 
diseases and healthy states.

Figure 5 illustrates the specificity percentages for differ-
ent brain regions in distinguishing AD from HC and FTD 
from HC. For AD vs. HC, the parietal region demonstrates 
the highest specificity at 95.38%, followed closely by the 
full region at 93.42%. The central region shows a notably 
low specificity of 5.09%, indicating poor effectiveness in 
ruling out AD when it is not present, which results in a 
low overall classification accuracy for this region despite 
producing the highest sensitivity value. Other regions like 

the frontal, occipital, and temporal regions exhibit moder-
ate specificity levels. In the context of FTD vs. HC, the 
parietal and full regions again show high specificity at 
97.75% and 89.31%, respectively, suggesting their robust-
ness in distinguishing FTD from healthy controls. Similar 
to Fig. 4, Fig. 5 also shows that the variation in specificity 
across the various lobes between the two groups is con-
sistent, with the exception of the central lobe. The central 
region displays improved specificity for FTD vs. HC at 
83.65% compared to its performance in AD vs. HC. The 
frontal and temporal regions show relatively high specific-
ity, while the occipital region exhibits moderate specific-
ity. This comparison highlights the variability in speci-
ficity across different brain regions and underscores the 
significance of selecting appropriate regions for accurate 
differentiation between neurodegenerative diseases and 
healthy states.

Figure 6 illustrates the precision percentages for different 
brain regions in AD vs. HC and FTD vs. HC. In the AD vs. 
HC comparison, the full brain and parietal region analysis 
yields a high precision of 94.73% and 95.9%, respectively, 
while the central region shows a significantly lower preci-
sion of 55.77%. The occipital, frontal, and temporal regions 
show moderate precision values of 76.11%, 77.93%, and 
78.85%, respectively. In the FTD vs. HC comparison, the 
parietal analysis again shows a high precision of 96.59% fol-
lowed by full brain with 91.29%, with the central region lag-
ging at 49.19%. The frontal, occipital, and temporal regions 
display precisions of 82.26%, 71.13%, and 75.29%, respec-
tively. Overall, the full brain analysis and parietal region 
consistently exhibit high precision, while the central region 
consistently underperforms in both comparisons. Figure 6 
reveals that the variation in precision across the different 
lobes between the two groups is stable.

Fig. 7   Accuracy comparison 
across different brain regions 
for AD vs. HC and FTD vs. HC 
classification
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Figure 7 provides a comparative analysis of the accuracy 
percentages for different brain regions in distinguishing AD 
vs. HC and FTD vs. HC. For AD vs. HC comparison, the 
full brain region demonstrates the highest accuracy, with 
95.59%. Conversely, the central region shows the lowest 
accuracy, with 55.91%. Among other regions, the parietal 
region shows high accuracy of 92.25%, while the frontal, 
temporal, and occipital regions display moderate accu-
racy levels. On the other hand, for FTD vs. HC, parietal 
region achieved higher accuracy (95.72%) than the full 
region (93.14%). Like the AD vs. HC, the central region 
again shows the lowest accuracy, with 64.97% and other 
three regions have produced moderate accuracy level. This 
comparison highlights the variability in diagnostic accuracy 
across different brain regions, emphasizing the superior per-
formance of the full and parietal regions in both conditions. 
Figure 7 also shows that the variation in accuracy across the 
different lobes between the two groups is consistent.

Figure 8 is the ROC curve illustrating the performance 
of classifier across different brain regions for AD vs. HC. 
Each line on the graph represents a different brain region, 
and the curve plots the true positive rate (sensitivity) 
against the false positive rate (1-specificity). The full brain 
analysis (green line) shows an almost perfect performance 
with a sharp rise and high positioning close to the top-left 
corner, indicating high sensitivity and low false positive 
rate. The parietal region (blue line) also shows excellent 
performance, closely following the full brain analysis. 

Other regions like frontal (yellow), occipital (green), and 
temporal (brown) show moderate performance with some 
variability but still demonstrate relatively high true posi-
tive rates with acceptable false-positive rates. The central 
region (dark blue line) deviates significantly, indicating 
poorer performance with a higher false positive rate. Over-
all, the graph emphasizes the superior performance of the 
full brain and parietal regions in distinguishing AD from 
HC.

The ROC curve presented in Fig. 9 illustrates the per-
formance of the classifier across various brain regions for 
distinguishing FTD from HC. The full brain analysis (green 
line) shows an almost ideal performance with a steep rise 
and positioning close to the top-left corner, indicating high 
sensitivity and low false positive rate. The parietal region 
(blue line) also demonstrates excellent performance, closely 
following the full brain curve with high sensitivity and 
low false-positive rates. Other regions, such as the frontal 
(yellow), occipital (green), and temporal (brown), exhibit 
moderate performance, showing variability but maintain-
ing relatively high true positive rates with acceptable false 
positive rates. The central region (dark blue line), however, 
deviates significantly, indicating poor performance with a 
higher false positive rate and lower sensitivity. Overall, the 
graph highlights the superior performance of the full brain 
and parietal regions in differentiating FTD from HC, while 
the central region shows substantial limitations in classifica-
tion accuracy.

Fig. 8   ROC curve for AD vs. HC classification for different brain regions
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Figure 10 presents confusion matrices for binary clas-
sification tasks involving AD vs. HC and FTD vs. HC. Each 
matrix shows the distribution of predictions: true positives 
(P), true negatives (N), false positives, and false negatives. 
The varying classification performances indicate the diag-
nostic significance of these regions, with differences in sen-
sitivity and specificity contributing to insights into the role 
of each region in distinguishing between the conditions.

Discussion

This study presents a novel framework combining STFT and 
CNN to identify key brain lobes as biomarkers for detecting 
AD and FTD using EEG data. In the framework, firstly EEG 
signals were pre-processed using a Butterworth band-pass 
filter, automatic artifact rejection, and Independent Compo-
nent Analysis (ICA) to remove various artifacts and noise. 

Fig. 9   ROC curve for FTD vs. HC classification for different brain regions

Fig. 10   Confusion matrices for binary classification tasks comparing 
AD and HC (1st row) and FTD and HC (2nd row) across different 
brain regions: full, central, frontal, occipital, parietal, and temporal. 

Each confusion matrix displays the true positives (P) and true nega-
tives (N) for the respective comparisons
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The signals were then segmented into three-second (3 s) 
time frames, following established research [35–37]. Next, 
EEG channels were grouped based on their corresponding 
brain lobes-frontal (Fp1, Fp2, F7, F3, Fz, F4, F8), central 
(C3, Cz, C4), temporal (T3, T4, T5, T6), parietal (P3, P4, 
Pz), and occipital (O1, O2, Oz) to facilitate targeted analy-
sis. The EEG signals were then converted into spectrogram 
images using STFT, providing a time–frequency representa-
tion of brain activity for each brain lobe and the full EEG 
channel set. These spectrograms were subsequently fed into 
a deep learning-based CNN trained to classify dementia. 
Two classification tasks—AD vs. HC and FTD vs. HC—
were conducted to evaluate the proposed approach. Classi-
fication was performed separately for each brain lobe’s spec-
trograms and the full channel set to assess their effectiveness 
in dementia detection. The framework was evaluated using 
the OpenNeuro ds004504 EEG dataset, demonstrating its 
effectiveness in accurate and lobe-specific dementia clas-
sification. As per results in Table 3 and Fig. 7, the proposed 
method achieved a 95.59% classification accuracy for AD vs. 
HC using the full brain region and 95.72% for FTD vs. HC 
in the parietal lobe. The ROC graph in Fig. 8 demonstrates 
that our proposed STFT-based CNN model achieves superior 
performance in distinguishing AD from HC, particularly in 
the full brain and parietal regions. Similarly, Fig. 9 high-
lights the model’s strong performance in differentiating FTD 
from HC, with the full brain and parietal regions showing 
the highest accuracy.

The EEG signals from various brain regions provide criti-
cal insights into the neural dysfunctions associated with AD. 
Each brain region contributes uniquely to the diagnostic pro-
cess, and understanding these contributions helps improve 
the accuracy and reliability of EEG-based AD detection 
[37–43]:

•	 The temporal lobe, particularly the hippocampus, plays 
a significant role in memory and cognitive functions, 
which are severely affected in AD. EEG studies have 
shown that AD patients exhibit reduced alpha and beta 
power in the temporal regions, along with increased 
theta and delta activity, indicating neural deterioration. 
These changes are crucial for early detection as they cor-
relate strongly with the hallmark symptoms of AD. In 
this study, we have also found that using temporal region 
EEG data, we achieved an accuracy of 78.77% for AD 
vs. HC and 79.34% for FTD vs. HC classification. These 
are the second and third highest classification accuracy 
for the two classifications, accordingly.

•	 The parietal lobe is involved in integrating sensory infor-
mation and spatial navigation. EEG signals from the pari-
etal region in AD patients often show decreased alpha 
activity and increased theta activity. This disruption in 
normal brain rhythms is associated with impaired cog-

nitive and spatial processing abilities, making parietal 
EEG signals important for detecting AD-related changes. 
Here, we have achieved the highest accuracy among the 
tested five brain regions for both the classification tasks. 
Even we have achieved better accuracy (95.72%) using 
parietal brain region than using the full brain region 
(93.14%) for FTD vs. HC classification.

•	 The frontal lobe is associated with executive functions, 
such as decision-making and problem-solving. EEG 
recordings from the frontal region in AD patients typi-
cally show decreased beta power and increased theta 
and delta power. These alterations reflect the decline 
in cognitive control and executive functions, which are 
critical for comprehensive AD diagnostics. This is also 
supported by our study as we have obtained a moderate 
accuracy using frontal lobe.

•	 The occipital lobe, responsible for visual processing, 
shows less pronounced changes in the early stages of AD. 
However, EEG studies indicate that AD patients may 
exhibit reduced alpha activity and increased slow-wave 
activity in the occipital regions as the disease progresses. 
Including occipital EEG signals can enhance the detec-
tion of AD, especially in its later stages. Our obtained 
results again support this claim by gaining a significant 
classification accuracy for the classification tasks.

•	 EEG signals from the central brain regions, including 
the sensorimotor cortex, are less commonly associated 
with primary AD symptoms. However, these regions can 
still show changes in brain rhythms, such as altered mu 
rhythms, which may reflect broader neural network dis-
ruptions in AD. While central EEG signals may not be 
as diagnostic as those from other regions, they can still 
contribute to a holistic understanding of AD progression. 
This is also exhibited in our research work as we have got 
the lowest classification accuracy using this brain region. 
We have achieved 55.91% and 64.97% accuracy for AD 
vs. HC and FTD vs. HC classification, respectively.

Therefore, based on the results, the identified important 
brain lobes align with prior research findings [40–45].

To identify the most influential spectrogram features in 
the model’s decisions, we applied Grad-CAM method. Fig-
ure 11 presents sample spectrogram images from different 
brain lobes along with their corresponding Grad-CAM visu-
alizations for both classification tasks (AD vs. HC and FTD 
vs. HC). From the figure, we can see that for the full brain 
region and parietal lobe, the GRAD-CAM images have sig-
nificant regions with high heatmap area. Frontal, occipital, 
and temporal brain lobes also have significant areas with 
differences in the GRAD-CAM images, but for the central 
lobe, the GRAD-CAM images also have very few areas with 
distinguishable markers, which is why its classification per-
formance is low for the classification task.
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To ensure a comprehensive comparison between our 
framework and existing state-of-the-art (SoA) studies using 
the OpenNeuro ds004504 dataset, we have compiled and 
presented a detailed comparative analysis in Table 4. By 
presenting this side-by-side comparison, we aim to highlight 
the effectiveness and advancements of our approach in rela-
tion to established methodologies.

Miltiadous et al. [31] introduced a Dual-Input Convolu-
tion Encoder Network (DICE-net) for classifying EEG data 
related to AD. DICE-net integrates convolutional layers, 
a transformer encoder, and feed-forward layers to classify 
band power and coherence features extracted from denoised 
signal data. The results showed an accuracy of 83.28% for 
AD vs. HC classification using Leave-One-Out Validation 
(LOOV) and 74.96% for FTD vs. HC classification. Chen 
et al. [45] presented a two-branch network architecture com-
bining CNNs and visual transformers (ViTs) for classifying 
EEG data to detect AD and FTD. They achieved an accuracy 
of 87.33% for AD vs. HC classification and 82.98% for FTD 
vs. HC classification. Miltiadous et al. [6] calculated EEG 
rhythm energy by applying five bandpass filters (delta, theta, 

alpha, beta, and gamma) to extract frequency-domain char-
acteristics. Mean, variance, and interquartile range (IQR) 
were time-domain measures. Six supervised machine learn-
ing models for dementia diagnosis were used to assess these 
features. The best accuracy among them was 78.5% for AD 
vs. HC for decision trees (C4.5), and 86.3% for FTD detec-
tion for random forests. Miltiadous et al. [8] described the 
OpenNeuro ds004504 dataset, used in this study, contain-
ing raw and pre-processed EEG data in BIDS format. The 
study extracted Relative Band Power (RBP) features and 
applied SVM, KNN, MLP, and RF for classification, with 
RF achieving 77.01% accuracy for AD vs. HC and MLP 
73.12% for FTD vs. HC.

In [11], Lal et al. evaluated various feature extraction 
techniques to identify AD and FTD biomarkers from EEG 
signals. They developed an optimized machine learning 
framework integrating sliding windowing, feature extrac-
tion, and supervised learning to differentiate AD, FTD, and 
HC. Using singular value decomposition (SVD) entropy for 
feature extraction and K-nearest neighbors (KNN) for clas-
sification, their model achieved 91% accuracy for AD vs. HC 

Fig. 11   Sample spectrogram 
image and their correspond-
ing GRAD-CAM images. First 
four rows are for AD vs. HC 
classification and the bottom 
four rows are for FTD vs. HC 
classification. Here, odd rows 
are spectrogram images for dif-
ferent brain lobes and the even 
rows are their corresponding 
GRAD-CAM images
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and 93% for FTD vs. HC. Parihar and Swami [46] utilized 
EEG features from multiple frequency bands (delta, theta, 
alpha, beta, and gamma) with an Ensemble Bagged Learn-
ing (EL) algorithm to classify subjects as healthy, AD, or 
FTD. Their approach achieved 93.6% accuracy for AD vs. 
HC and 87.0% for FTD vs. HC. Mootoo et al. [7] applied 
Graph Signal Processing (GSP) techniques using the Graph 
Discrete Fourier Transform (GDFT) to analyze EEG record-
ings for AD detection, leveraging various machine learning 
and deep learning models. The results demonstrated that 
the SVM classifier achieved the highest accuracy of 85% 
for AD vs. HC.

As shown in Table 4, our study achieved superior accu-
racy compared to all previous studies that utilized the 
OpenNeuro ds004504 dataset. This demonstrates the strong 
capability of our STFT-based CNN framework in identifying 
different forms of dementia, including AD and FTD, using 
EEG signals. These results highlight the effectiveness of our 
approach and its potential to establish a new benchmark in 
the field.

Conclusions and Future Plan

In this research, we developed a framework for identifying 
critical brain lobes for dementia detection, specifically focus-
ing on the classification of AD and FTD from HC subjects 
using EEG data. Initially, the EEG signals were segmented 
into three-second time frames, and these segments were then 
transformed into spectrogram images using STFT. A CNN 
model is used to train and classify those spectrogram images 

into corresponding classes. We have tested our model on two 
classification tasks: AD vs. HC and FTD vs. HC. We have 
used this process for full brain region as well as five differ-
ent brain regions to identify the important brain region in 
dementia detection. By examining EEG data from a publicly 
available dataset with AD, FTD, and HC, we have identified 
that the parietal lobe exhibits the most significant changes 
in both AD and FTD, followed by the temporal and fron-
tal lobes. In addition, we have used GradCAM method to 
enhance the interpretability of our results and provide mean-
ingful insights for the research community. These findings 
emphasize the importance of targeting specific brain lobes 
in the development of diagnostic and monitoring tools for 
these neurodegenerative disorders.

The ability to detect abnormalities in the parietal, tempo-
ral, and frontal lobes through non-invasive EEG techniques 
offers a promising avenue for improving early diagnosis and 
intervention strategies. This approach not only enhances our 
understanding of the pathological progression of AD and 
FTD but also has the potential to significantly impact patient 
outcomes by facilitating timely and accurate diagnosis.

Our research contributes to the growing body of evidence 
supporting the use of EEG as a valuable tool in the clinical 
management of neurodegenerative diseases. By pinpointing 
the brain regions most affected by AD and FTD, we pave the 
way for more targeted and effective therapeutic interven-
tions. Future studies should continue to explore the utility of 
EEG in detecting and monitoring these disorders, ultimately 
aiming to integrate this technology into routine clinical prac-
tice for the benefit of patients worldwide.

Table 4   Comparison with existing studies on AD vs. HC and FTD vs. HC classification for the EEG dataset: OpenNeuro ds004504 dataset (used 
in this study)

Note: “ − ” indicates “not reported in the paper”

Classification Study Method Segmentation Validation Accuracy

AD vs. HC Miltiadous et al. [31] DICE-net 30 s with 15 s overlap LOOV 83.28%
Chen et al. [45] Combining CNNs and visual transformers 4 s tenfold 87.33%
Miltiadous et al. [6] Energy, mean, variance, IQR, decision trees 5 s LOOV 78.50%
Lal et al. [11] SVD entropy based KNN 1 s 15-fold 91.00%
Parihar and Swami [46] Frequency band analysis with EL  −  15-fold 93.60%
Mootoo et al. [7] Graph-based SVM  −  twofold 85%
Miltiadous et al.[8] RBP-based random forests 4 s LOOV 77.01%
Proposed work Short-time Fourier transform-based CNN 3 s tenfold 95.59%

FTD vs. HC Miltiadous et al. [31] DICE-net 30 s with 15 s overlap LOOV 74.96%
Chen et al. [45] Combining CNNs and visual transformers 4 s tenfold 82.98%
Miltiadous et al.[6] Energy, mean, variance, IQR, random forests 5 s LOOV 86.30%
Lal et al. [11] SVD entropy based KNN 1 s 15-fold 93.00%
Parihar and Swami [46] Variance and Kurtosis with EL  −  15-fold 87.00%
Miltiadous et al. [8] RBP-based MLP 4 s LOOV 73.12%
Proposed work Short-time Fourier transform-based CNN 5 s tenfold 95.72%
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