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ABSTRACT

We use Kepler short cadence light curves to constrain the oblateness of planet candidates in the
Kepler sample. The transits of rapidly rotating planets that are deformed in shape will lead to
distortions in the ingress and egress of their light curves. We report the first tentative detection
of an oblate planet outside of the solar system, measuring an oblateness of 0.22+0.11

−0.11 for the 18MJ

mass brown dwarf Kepler 39b (KOI-423.01). We also provide constraints on the oblateness of the
planets (candidates) HAT-P-7b, KOI-686.01, and KOI-197.01 to be < 0.067, < 0.251, and < 0.186,
respectively. Using the Q′-values from Jupiter and Saturn, we expect tidal synchronization for the
spins of HAT-P-7b, KOI-686.01 and KOI-197.01, and for their rotational oblateness signatures to
be undetectable in the current data. The potentially large oblateness of KOI-423.01 (Kepler 39b)
suggests that the Q′-value of the brown dwarf needs to be two orders of magnitude larger than that
of the solar system gas giants to avoid being tidally spun-down.
Subject headings: stars: planetary systems–techniques: photometric–stars: individual (HAT-P-7, KOI

686, KOI 197, KOI 423)

1. INTRODUCTION

The Solar System planets are oblate in shape due to
their rapid rotations. The equatorial radius is larger than
the polar radius by 7 % for Jupiter, and by 10 % for Sat-
urn. The bulk rotational angular momentum of a planet
is retained from gas accretion in the formation process
(e.g. Lissauer 1995). For a planet in hydrostatic equilib-
rium, the level of deformation is related to the rotation
rate and moment of inertia of the planet, which in turn
are influenced by its density profile (Hubbard & Marley
1989; Murray & Dermott 1999; Carter & Winn 2010a).
Measuring the oblateness of exoplanets will enable us to
better understand their interior structure, as well as their
formation and evolutionary history.

Previous works (Hui & Seager 2002; Seager & Hui 2002;
Barnes & Fortney 2003; Carter & Winn 2010a,b) ex-
plored the predicted transit light curves of oblate planets.
The transit light curve of an oblate planet a) is asym-
metric about the ingress and egress regions, and b) will
exhibit small differences over ingress and egress to the
transit of a spherical planet. However, it is difficult to
photometrically measure the oblateness of an extrasolar
planet due to its small amplitude signature. For an op-
timal case that a transiting Jupiter with planet-to-star
radius ratio of 0.15 and a Saturn-like oblateness of 0.1,
the maximum deviation between an oblate and a spheri-
cal planet transit is 400 parts per million (ppm) over the
ingress and egress light curve regions (Carter & Winn
2010a).

The only implementation of oblate transit models to
date was carried out by Carter & Winn (2010a), with
seven transits of the hot Jupiter HD 189733b observed
by the Spitzer Space Telescope. They were able to rule
out a Saturn-like oblateness for the planet. HD 189733b

and other hot-Jupiters, with orbital semi-major axes
< 0.2 AU, are expected to have spun-down due to tidal
dissipation to be tidally locked. The photometric signa-
tures due to oblateness from these slowly rotating gas
giants are too small to be measurable by any current
facility.

The unprecedented photometric precision of the Ke-
pler mission has enabled the detections of many sub-
tle photometric effects, such as phase curves of reflected
light from planets (Borucki et al. 2009), Doppler beaming
(Mazeh et al. 2012), and gravity induced asymmetry due
to system spin-orbit misalignments (Barnes et al. 2011;
Zhou & Huang 2013). The four-year baseline of Kepler
also means that observations of planetary transits are no
longer restricted to short-period systems. The possibility
of observing the transits of gas giants that are not tidally
affected and thus still retain their primordial spin rate
motivates a new search for oblateness signals in transit
light curves. This work is the first survey to use Kepler
short cadence photometry to measure the oblateness of
transiting planets.

The structure of this paper is as follows: §2 describes
the light curve modeling of a transiting oblate planet, and
discusses the detectability of such a signal. §3 describes
the target selection and Kepler light curve reduction pro-
cedures. We apply the oblate planet transit model to
Kepler light curves in §4, first as a signal injection and
recovery exercise to demonstrate the detectability of the
signal, then to model four selected Kepler planet candi-
dates. In §5 we discuss the implications of our results.

2. LIGHT CURVE MODEL

2.1. The Transit of an Oblate Planet
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The shape of an oblate planet can be quantified by the
flattening, or oblateness, parameter f ,

f =
Req −Rpol

Req
, (1)

where Req and Rpol are the equatorial and polar radii,
respectively (Murray & Dermott 1999). We also define
the effective mean radius to be

Rp ≡
√
ReqRpol,

which is the radius of a spherical planet of the same cross-
sectional area. The planet’s spin obliquity, θ, is defined
as the angle between the polar axis of the planet and
the orbital angular momentum vector (Carter & Winn
2010a).

The flattening f can be related to the rotation period
Prot of a planet with mass Mp by

Prot = 2π

√
R3

eq

GMp(2f − 3J2)
, (2)

where J2 is the quadrupole moment (Carter & Winn
2010a).

However, what we can measure from transit is not the
true flattening and obliquity, but their projected compo-
nents on the plane of the sky, f⊥ and θ⊥, meaning that
the constrained oblateness from transit is only a lower
limit on the true oblateness. The relations between f , θ
and f⊥, θ⊥ can be found in Carter & Winn (2010a). The
definition for the sign of θ⊥ is shown in the upper panel
of Figure 2.

The transit light curve of an oblate planet is described
by the intersection between an ellipse and a circle. For
the ingress and egress regions of the light curve, where
the deviation from a spherical planet model light curve
is greatest, we compute the intersection region using the
quasi-Monte Carlo integration algorithm introduced by
Carter & Winn (2010a). 1 For the in-transit regions,
where the planet is fully within the stellar disk, we re-
place the oblate planet signal with a spherical planet with
the same cross-section area. Since Rp � R?, we assume
the spatial limb darkening variation within the area cov-
ered by the planet ellipse is negligible. In fact, the in-
transit signal induced by limb darkening is < 10 ppm
even for planets with substantially large Rp/R? (Carter
& Winn 2010a), which is insignificant for the purpose of
model-fitting compared with the noise level (∼500 ppm)
of Kepler short cadence light curves. By replacing the
oblate planet with a spherical planet for the in-transit
region, we are able to speed up the original algorithm
introduced by Carter & Winn (2010a) by a factor of 10.
We demonstrate in Figure 1 the theoretical oblateness-
induced signal for a Jupiter-size planet in a 100-day orbit
around a sun like star with uniform surface brightness
(i.e., no limb darkening effect). We assume the planet
has a Saturn-like oblateness (f⊥ = 0.1, we note that
fsaturn = 0.098). Signals from different projected planet
spin obliquities θ⊥ (0◦, 45◦, 90◦) are plotted for com-
parison. We also add an example signal from the oblate

1 The correct form of Equations (B5) and (B6) of Carter & Winn

(2010a) should be r =
√
u+ (1 − u)(a1/a2)2 and θ = (1 − v)θ1 +

vθ2, respectively.

planet transiting a limb-darkened stellar surface in Fig-
ure 1, with the in-transit signal considered, to show the
influence of the limb darkening effect.

As Figure 1 shows, the oblateness-induced signal is
at least an order of magnitude greater over ingress and
egress than the in-transit part. The theoretical maxi-
mum amplitude of the signal at the ingress/egress part
can be estimated by

Signalmax ≈
f⊥
2π

(
Rp

R?

)2

= 160 ppm

(
Rp/R?

0.1

)2(
f⊥
0.1

)
,

(3)
which can be achieved when the impact parameter sat-
isfies the following condition:

b = −min[abs(sin θ⊥), abs(cos θ⊥)]. (4)

The derivation for this expression of the maximum
achieved signal is shown in detail in Appendix A. Al-
though Equation (3) is useful in estimating the ampli-
tude of oblateness-induced signal, one should keep in
mind that the recovered signal from light curve modeling
may have a smaller amplitude due to slight changes in
those from other fitting parameters, especially when the
oblateness-induced signal is mirror symmetric (Barnes &
Fortney 2003). Space-based observations, such as Ke-
pler, can achieve photometric precision comparable to
this signal amplitude (Jenkins et al. 2010; Gilliland et
al. 2010; Murphy 2012), making possible the detec-
tion of planetary oblateness when multiple transits are
observed.

It is also useful to have a comprehensive understanding
of the amplitude of the oblateness signal for arbitrary
projected obliquity angles, θ⊥, and impact parameters,
b0. To achieve that, we simulated theoretical light curves
on a grid of θ⊥ and b0 with fixed f⊥ and Rp/R?. For
most of the ranges of θ⊥ and b0 we consider, assuming a
moderate projected oblateness f⊥ (. 0.2), Equation (3)
can be written as

Signalmax(Rp/R?, f⊥, θ⊥, b0) ≈ f⊥
2π

(
Rp

R?

)2

g(θ⊥, b0),

(5)
In Figure 2 we show an example of
Signalmax(Rp/R?, f⊥, θ⊥, b0) with Rp/R? = 0.1 and
f⊥ = 0.1. This figure tells us that the amplitude of
oblateness signal reaches maximum at θ⊥ ∼ 0◦ for
a system that is very close to edge-on, and at larger
(absolute) projected obliquities as the system becomes
more inclined. Particularly, for b0 ≈ ±0.7, the signal
will have maximum amplitude at θ⊥ ≈ ±45◦ where the
shape of the signal becomes the most asymmetric (see
Figure 1). This is why the detectability of oblateness
is maximized at b ≈ 0.7, as determined numerically
by Barnes & Fortney (2003). The values of θ⊥ where
the maximum amplitude of signal is achieved are also
the ones where the oblateness can be most tightly
constrained. We will further demonstrate this point in
the modeling of simulated signal and real data.

If limb darkening is considered, the maximum ampli-
tude decreases by a factor of 6(1−u1−u2)/(6−2u1−u2),
where u1 and u2 are the quadratic limb darkening coef-
ficients (Claret 2000).

2.2. Detectability in Kepler Data
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Figure 1. Example signals induced by an oblate planet with respect to a spherical planet of the same cross-sectional area, for θ⊥ =
0, 45, 90◦, at b = 0.63 (Top) and b = 0 (Bottom). These signals are for a Jupiter-size (Rp/R? = 0.1) planet with a Saturn-like oblateness
(f⊥ = 0.1). The black curves are computed for stars with uniform surface brightness, and the blue solid curve is for a limb-darkened
Sun-like star.

As discussed in Section §2.1, for a Jupiter-size planet
(Rp/R? = 0.1) with Saturn-like oblateness (f = 0.1),
the maximum signal amplitude due to oblateness is ∼160
ppm.

The signal-to-noise ratio (SNR) for a single transit in
the white noise limit can be estimated by

SNR =

(
f⊥
0.1

)(
Rp/R∗

0.1

)2(
ootv

160ppm

)−1√
2Np, (6)

in which, ootv is the out-of-transit variation amplitude
(per point), Np denotes the number of observations
during the ingress/egress time. The duration of the
ingress/egress time τ can be estimated by

τ ≈ 2Rp

vorb
= 50.4 mins

(
Rp/R?

0.1

)(
R?

R�

)(
Porb

100 days

)1/3(
M?

M�

)−1/3

.

(7)
For a 12m magnitude star, the Kepler long cadence

data can typically achieve a photometric precision of
100 ppm. Assuming white noise, the equivalent out-of-
transit scattering (ootv) of the corresponding short ca-
dence data is ∼ 550 ppm, which corresponds to SNR∼ 3.
We note that this SNR estimation is almost exact for
short cadence data, with the oblateness-induced signal
sufficiently mapped out by the 1 min cadence. Tran-
sits having only long cadence data will typically have a
much shallower signal than the theoretical value, given
the signal duration is roughly comparable to the long in-

tegration time (30 min). For example, for a Jupiter-size
planet in a 15-day orbit, the ingress/egress duration is
∼30 min, and thus the oblateness signal is strongly sup-
pressed in the long cadence data. For this reason, we do
not consider the long cadence data in the present work.

With Kepler light curves from Q1-Q16 (∼ 1400 day),
we expect a planet with a 100-day orbital period and a
Saturn-like oblateness to be detected with a SNR ∼ 11
in the white noise limit. In the red noise limit, SNR
would scale with the number of transits instead of the
number of data points observed, which would reduce the
expected SNR severely.

3. TARGET SELECTION AND LIGHT CURVE TREND
REMOVAL

We select Kepler planet candidates from Q1-Q16
(Batalha et al. 2013; Burke et al. 2014) with the following
criteria:

a) candidates with radius smaller than 2.0 RJ , to avoid
eclipsing binaries;

b) orbital periods longer than 15 days, such that
the spin-orbit synchronization timescale of the planet is
greater than 250 Myr, assuming a Jupiter-mass planet
around a solar-mass star (Carter & Winn 2010b);

c) the transit is not grazing (b < 0.8), such that the
transit system parameters are well constrained;

d) expected SNR for a planet with a Saturn like oblate-
ness is higher than 0.5 for a single transit.

We use Equation 6 to compute the SNR per transit
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Figure 2. Upper panel: three schematic system configurations to demonstrate the definition of θ⊥; the shape and the relative size of the
planet are not scaled for a realistic planet. Lower panel: The amplitude of oblateness signal as a function of the impact parameter b0 and
the projected obliquity θ⊥; a Jupiter-size (Rp/R? = 0.1) planet with a Saturn-like oblateness (f⊥ = 0.1) is assumed.

for each candidate. The ootv value is the point-to-point
scatter of the light curve, measured over the regions on
either side of the transit event, with width of half transit
duration. The actual expected SNR will be multiplied by
the square root of the available number of transits from
Kepler data. In addition, we did not select those sys-
tems with strong transit timing variations, for it leads to
more complexity in the modelling. 11 candidates pass the
above threshold, among which, only 3 have short cadence
data. We select these three targets as examples for the
modeling. They are KOI 686.01, KOI 197.01 and KOI
423.01 (Kepler 39b). We note that these three targets
together are not a statistically meaningful sample since
our selection criteria are somewhat arbitrary. We also
modeled HAT-P-7b (KOI 2.01), despite the fact that it
is a hot Jupiter and outside of our period selection range,
since it will provide a direct comparison to the modeling
of HD 189733b in Carter & Winn (2010a).

To characterize our detection sensitivity to the oblate
planet signals, we perform a signal injection and recov-
ery exercise using the light curves of KOI-368. The
11.3 magnitude star is photometrically quiet, with near-
minimum ootv of a bright star in Kepler band. The
KOI-368 system, with 110-day period, resembles an ideal
system, with near-optimal oblateness SNR detectability.
We chose not to fit for oblateness in the actual transits
of KOI-368.01, since 1) KOI-368.01 is an M-dwarf, not
a planet, and 2) the modeling would require a simulta-
neous fit of the stellar gravity darkening effect (Zhou &

Huang 2013) and the planet oblateness effect, which is
outside the scope of this study.

We detrended all the available public Kepler short ca-
dence light curves of the above targets for our analysis.
To remove the stellar variability, we use the raw flux
(Simple Aperture Photometry, SAP FLUX) obtained
from the MAST archive 2, with the out-of-transit varia-
tions corrected by the following steps from Huang et al.
(2013):

a) removal of bad data points;
b) correction of systematics due to various phenomena

of the space craft, such as safe modes and tweaks;
c) we use either a set of cosine functions with minimum

period of 3 times the transit width (Kipping et al. 2013)
to fit over the out-of-transit regions and correct the trend
in the light curves if there are high-amplitude, short term
(1 day - 20 days) variations present in the light curves.
Otherwise, we use a 7th order polynomial as our fitting
function for the out-of-transit variations.

4. LIGHT CURVE FITTING AND RESULTS

In this section, we first perform a signal injection and
recovery exercise with simulated transits of KOI 368.01
to demonstrate the modeling and fitting process. We
then present the modeling of the four selected systems:
HAT-P-7b (KOI 2.01), KOI 686.01, KOI 197.01, and KOI
423.01 (Kepler 39b). We first fit a standard Mandel &
Agol (2002) transit model to the light curves, with the

2 http://archive.stsci.edu/kepler/data search/search.php
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free parameters being the orbital period P , transit epoch
T0, planet-to-star radius ratio Rp/R?, normalized orbital
semi-major axis (Rp + R?)/a, line-of-sight inclination i,
and quadratic limb darkening parameters q1 and q2 pa-
rameterized according to Kipping (2013)

q1 ≡ (u1 + u2)2; q2 ≡
u1

2(u1 + u2)
. (8)

For the initial positions of the minimization, we use sys-
tem parameters from the cumulative Kepler planetary
candidate table of the NASA Exoplanet Archive 3 and
limb darkening coefficients from Sing (2010). We then
introduce the oblateness parameters f⊥ and θ⊥, and re-
run the minimization using the oblateness model, with
the best fit values from the standard model fit as start-
ing points. To avoid artifacts from boundary conditions,
we allow f⊥ to vary from -0.6 to 0.6, taking the abso-
lute value and then folding the negative and positive f⊥
steps together in the final analysis. Similarly, we also
allow periodic boundary conditions for θ⊥ between −90◦

and 90◦.
For each minimization, we perform a Markov chain

Monte Carlo (MCMC) analysis to find the best fit param-
eters and the associated uncertainties using the emcee en-
semble sampler (Foreman-Mackey et al. 2013). In each
fitting routine, we employ 150 walkers each with 4000
iterations. We chose the number of walkers to match the
suggested acceptance rate by emcee. After the MCMC
routine finishes, we flatten the whole chain and discard
the initial steps (≤ 25%) where the sampling has not
burnt-in. We confirmed the convergence of the chain by
splitting the whole chain, after the burn-in steps were
discarded, into two parts and comparing the posteriors
from them.

We give the comparison between the Kepler parame-
ters and our best-fit parameters for each planet. The
same as Carter & Winn (2010a), for most parameters we
report the median of the posterior probability distribu-
tion, along with error bars defined by the 16% and 84%
levels of the cumulative distribution. For the projected
oblateness f⊥, we report the 68% confidence upper limit
if the peak of f⊥ has no obvious deviation from zero.
Otherwise we report the median value, together with the
16% and 84% levels of the cumulative distribution as the
error bars. We do not report constraints on the pro-
jected obliquity since it is weakly constrained, as Carter
& Winn (2010a) has shown.

For each system, we also inject null signal transit light
curves, resembling that of a spherical planet with the
same system parameters as the target system, into dif-
ferent out-of-transit sections of the SAP light curve. The
injected transits are shifted in time to the same epoches
as the true transits. The simulated null-case transits are
then processed in the same way as the observed transits.

4.1. Injection and Recovery Simulations with KOI
368.01

To demonstrate the detectability of the oblateness sig-
nal, we perform a signal injection and recovery exer-
cise using out-of-transit light curve segments from the
KOI-368 system. KOI-368 is a photometrically quiet A-
dwarf hosting a transiting M-dwarf with P = 110.32 day,

3 http://exoplanetarchive.ipac.caltech.edu/

Figure 3. The simulated transit of an oblate planet, with the
same system parameters as that of KOI-368.01, with oblateness of
f⊥ = 0.1 and obliquity θ⊥ = 45◦, into the out-of-transit light curve
of KOI-368 (Top). The fit residuals with 12 transits to the best-
fit oblate planet model (middle panel) and the best-fit standard
transit model (bottom panel) are plotted. We binned the data in
the phase space with a 150 points moving window and show the
median and scattering in the black dots.

Rp/R∗ = 0.084, i = 89.36 (b = 0.64), and limb darkening
coefficients u1 = 0.23, u2 = 0.29 (Zhou & Huang 2013).
The KOI-368 light curves and system properties resemble
the transits of an optimal case long-period planet candi-
date. We inject 12 transits of an oblate planet with the
same system parameters as KOI-368.01, and f⊥ = 0.1
and θ⊥ = 45◦, onto random segments of the SAP short
cadence light curves of KOI-368. The injected transit
yields an oblateness signal with amplitude 80 ppm. In
contrast, the out-of-transit variation amplitude of the
light curves is 300 ppm.

The simulated light curve is then processed by our
standard detrending pipeline (see Section §3) and then
fitted with the MCMC method. For comparison, we also
report the results with standard Mandel-Agol transits in-
jected in the same segments and detrended in the same
way. In each case, the simulated data is first fitted by a
standard transit model and then an oblate planet model.
To demonstrate the least and most optimal cases, we
present the injection and recovery for the case of a single
transit, and the case of all 12 full transits for the KOI
368 system. The light curves and the residuals to the
standard and oblate planet models (for the 12 transits
case) are shown in Figure 3.

The signal is detected at a significant confidence level
in our oblate planet model fitting. The original injected
oblateness f⊥ is recovered in the single transit case. The
left panels in Figure 4 show the posterior distributions
from the fitting of a single injected short cadence transit
that contains the oblateness signal. Although the pro-
jected obliquity suffers the degeneracy between f⊥ and

http://exoplanetarchive.ipac.caltech.edu/
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Figure 4. Panel (a): 2D posterior distributions for the projected oblateness f⊥ = 0.1 and obliquity θ⊥ = 45◦ of a single simulated KOI
368.01 oblate planet transit. Panel (b): Posterior distributions for the simulated KOI 368.01 standard Mandel-Agol transit (null case).
Panel (c) and (d): Marginalized distributions of f⊥ and θ⊥ for simulated cases with (red) and without (black) the oblateness signal.

Figure 5. Correlations between f⊥, θ⊥ and other transit parameters, as derived from the single simulated KOI-368.01 oblate planet
transit.

θ⊥ and is therefore not well recovered, the asymmetry be-
tween θ⊥ > 0 and θ⊥ < 0 implies the true value should
be positive.

For comparison, the posteriors of the null case are
shown on the right panels of Figure 4. The null case here
is also an example that can be used to demonstrate the
ability of constraining the oblateness with Kepler data.
From the fitting of a single injected transit, an oblateness
as large as that of Saturn can be ruled out if the planet
has moderate obliquity. However, the constraint we can
place at θ⊥ = 0,±90◦ is very weak, since for this case
b = 0.64, the oblateness signal can still be very small

even for large oblateness, as is shown in Figure 2.
The correlations between oblateness parameters f⊥, θ⊥

and other transit parameters, derived from the MCMC
fitting of a single injected oblate planet transit, are
shown in Figure 5. f⊥ appears to be correlated with
(Rp +R?)/a, Rp/R? and i0, and shows long tails toward
large oblateness in each plot, since θ⊥ is only weakly
constrained. These correlations suggest that one might
get systematic biases on the planetary parameters if an
oblate planet is fit with a spherical model. It is worth-
while noting that the f⊥ is hardly correlated with the
limb darkening coefficients q1 and q2.
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Figure 6. The posterior distributions as recovered from 12 injected KOI-368 oblate planet transits. Figure captions as per Figure 4.

Table 1
Signal injection and recovery parameters for KOI-368 (12 transits)

Parameters Injected (Oblate Model) Standard Model Oblate Model Injected (Standard Model) Oblate Model

q1 0.27 0.26 ± 1 0.25 ± 1 0.27 0.25 ± 1
q2 0.22 0.23 ± 5 0.24 ± 4 0.22 0.25 ± 5

Porb (days) 110.321645 110.32167 ± 2 110.32166 ± 2 110.321645 110.32166 ± 2
t0 (BJDUTC-2454000) 1030.36409 1030.3639 ± 1 1030.3639 ± 1 1030.36409 1030.3639 ± 1

(Rp +R?)/a 0.02097 0.02103 ± 4 0.02101 ± 5 0.02097 0.02103 ± 5
Rp/R? 0.08408 0.0842 ± 1 0.0842 ± 1 0.08408 0.0842 ± 2
i0 (deg) 89.204 89.199 ± 3 89.200 ± 4 89.204 89.199 ± 4
f⊥ 0.1 – 0.11 ± 3 0 < 0.03

When the number of transits is increased to 12, the
injected signal is recovered with significantly higher con-
fidence level, as is shown in Figure 6. We can see the
oblateness signal visually in the residual (from all 12
transits) of the fitting using only the standard Mandel-
Agol model in Figure 3. For the null case, we can suc-
cessfully rule out an oblateness as small as that of Uranus
for most θ⊥. The injected parameters, and the recovered
parameters from standard model and oblateness model
are shown in Table 1.

4.2. HAT-P-7b (KOI 2.01)

HAT-P-7b orbits around a slightly evolved F star in a
2.2-day orbit (Pál et al. 2008). A planet in such a close-in
orbit is believed to be tidally locked, and therefore HAT-
P-7b should not exhibit rotation-induced oblateness. We
include this planet in our sample for a number of reasons.

Table 2
Physical parameters about the
host star HAT-P-7 (KOI 2.01,

KIC 10666592).

Parameters Values

Teff (K) 6350 ± 80 a

log g (dex) 4.07+0.04
−0.08

a

[Fe/H] (dex) +0.26 ± 0.08 a

M? (M�) 1.47+0.08
−0.05

a

R? (R�) 1.84+0.23
−0.11

a

v sin i? (km/s) 3.8 ± 0.5 a

J-band mag 9.555
H-band mag 9.344
K-band mag 9.334

Note. — a Adopted from Pál
et al. (2008).
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Table 3
Fitting parameters of HAT-P-7b.

Parameters Kepler Standard model Oblate model

q1 a 0.28 ± 2 b 0.28 ± 1 0.28 ± 1
q2 a 0.33 ± 1 b 0.33 ± 1 0.33 ± 1

Porb (days) 2.2047354 ± 1 2.2047350 ± 3 2.2047349 ± 3
t0 (BJDUTC-2454000) 954.35780 ± 2 954.35860 ± 2 954.358608+16

−15

(Rp +R?)/a – 0.2595 ± 4 0.2597+16
−4

a/R? 4.7 – –
Rp/R? 0.07545 ± 2 0.07748 ± 4 0.07750+9

−7

i0 (deg) 88.2 83.13 ± 5 83.11+9
−18

f⊥ – – < 0.067

Note. —
a: q1 and q2 are calculated using Equations 8 for the “Kepler model”.

b: Adopted from (Van Eylen et al. 2013).
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Figure 7. Posterior distributions for the projected oblateness f⊥ and obliquity θ⊥ for HAT-P-7b. a) The 2D posterior of f⊥ and θ⊥ are
plotted. The true oblateness of Saturn, Jupiter, and Neptune are marked for reference. The marginalized 1D posteriors for f⊥ and θ⊥ are
also plotted in panels b) and c) respectively.
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Table 4
Physical parameters about
the host star KOI 686 (KIC

7906882).

Parameters Values

Teff (K) 5559 ± 71
log g (dex) 4.47 ± 0.3

[Fe/H] (dex) −0.18
M? (M�) 0.869 ± 0.051
R? (R�) 0.9 ± 0.35

J-band mag 12.270
H-band mag 11.931
K-band mag 11.847

First, this planet has been observed with short cadence
mode all through Kepler’s operation time. There are in
total 591 full transits of HAT-P-7b within Q1 – Q16 short
cadence data. The 1min cadence out-of-transit variation
is 234 ppm. This will allow us to directly compare our
modeling result with that of HD 189733b, the only other
hot-Jupiter with its oblateness constrained by observa-
tions (Carter & Winn 2010a). Furthermore, there are
various other photometric effects present in the HAT-
P-7 light curves, such as the intrinsic stellar variability,
planetary phase variations, stellar ellipsoidal variations
(Borucki et al. 2009), and possibly planet induced grav-
ity darkening effects (Morris et al. 2013). An analysis of
HAT-P-7b can also help us understand how these effects
affect our oblateness model fitting procedure. We list the
physical parameters of the host star in Table 2.

Fitting all 591 short cadence transits is extremely com-
putationally expensive. It may also produce questionable
results given the systematic transit depth variations be-
tween different quarters (Van Eylen et al. 2013). We
therefore fit the light curve of HAT-P-7b in three groups
of 100 consecutive orbits each. The MCMC chains from
the three groups are combined afterwards to arrive at
the global best fit parameters. Examining the individual
group results will also allow us to better judge the effect
of stellar variability and red-noise on the consistency of
our results. Our best-fit parameters for both standard
and oblateness fittings, together with the initial param-
eters from Kepler, are listed in Table 3. We show in
Figure 7 the upper limits of f⊥ for different θ⊥. The
overall 68% upper limit on the oblateness is 0.067. The
oblateness is only weakly constrained around θ⊥ = 0 and
±90◦, which results in the small bump around 0.1 in the
posterior distribution of f⊥. However, if the planet is
moderately tilted, an oblateness as large as that of Nep-
tune (0.017) can be ruled out with 95% confidence. This
constraint is comparable to that placed on HD189733b
by Carter & Winn (2010a), who ruled out a Uranus-like
oblateness (0.023) (95% confidence) for most of the pro-
jected obliquity angles and placed an overall 95% upper
limit of 0.058 on the planet.

4.3. KOI 686.01

KOI 686.01 (KIC 7906882) is a planetary candidate
with orbital period 52.51 days and planet-to-star radius
ratio Rp/R? = 0.12, orbiting around a G-type star with
a Kepler-band magnitude of 13.58m. The physical pa-
rameters of the host star are listed in Table 4.

We assign epoch zero to the first transit observed by

Kepler. KOI 686.01 has only one short cadence full tran-
sit at epoch +12. The out-of-transit variation amplitude
of this transit is 851 ppm. After reducing the data ac-
cording to Section 3, we fit this short cadence transit to
a standard transit model, using the parameters given by
Kepler as initials. With the best-fit parameters given by
the standard transit model, we then set f⊥ and θ⊥ free
to allow the oblateness fitting. Our best-fit parameters
for both standard and oblateness fittings, together with
the initial parameters from Kepler, are listed in Table 5.

We show the posterior plots from the oblateness fitting
in Figure 8. Based on the best-fit parameters, the im-
pact parameter b0 of KOI 686.01 transiting the host is
determined to be 0.64. For this b0, the oblateness should
be weakly constrained at θ⊥ = 0 and ±90◦ according
to Figure 2. Therefore the result is consistent with our
expectation.

No oblateness signature is detected for KOI 686.01.
The overall projected oblateness f⊥ can only be con-
strained to be < 0.25 (68% limit). For most θ⊥ 6=
0,±90◦, we can rule out a planet more oblate than Sat-
urn. For comparison, the posterior distributions of f⊥
and θ⊥ for the simulated standard transit light curve are
showed on the right panels of Figure 8. The 68% con-
fidence upper limit of the projected oblateness for the
injected null case is 0.26. The comparison between the
null case result and data-fit posterior suggests that KOI
686.01 is consistent with a spherical shape. However,
since the upper limit we can set on the oblateness is very
weak, an oblateness as large as that of Saturn can only
be ruled out in 1 − σ level if the planet is moderately
tilted.

4.4. KOI 197.01

KOI 197.01 is a planetary candidate 4 with orbital pe-
riod 17.28 days and planet-to-star radius ratio Rp/R? =
0.091, orbiting around a K-type star whose Kepler band
magnitude is 14.02m. Physical parameters about the host
star are listed in Table 6.

There are 18 short cadence full transits of KOI 197.01
at epochs from +13 to +30. The averaged out-of-transit
variation amplitude is 1196 ppm. After reducing the data
according to Section §3, we fit the standard transit model
to the normalized light curves using the parameters given
by Kepler as initials. With the best-fit parameters given
by this standard transit model, we then set f⊥ and θ⊥
free to allow the oblate model fitting. Our best-fit param-
eters for both standard and oblateness fittings, together
with the initial parameters from Kepler, are listed in Ta-
ble 7.

We show the posterior plots of the oblateness fitting in
Figure 9. Based on the best-fit parameters, the impact
parameter b0 of KOI 197.01 is 0.076. For this b0, the
oblateness is weakly constrained at θ⊥ ≈ ±45◦ according
to Figure 2. Therefore the result is consistent with our
expectation.

We detected no oblateness signal for KOI 197.01. The
overall projected oblateness f⊥ is constrained to be <

4 We notice that it was reported as a false positive based on
secondary eclipse depth measured with Q0-Q2 data by Demory
& Seager (2011), but with data from Q1 – Q16, we did not find
the secondary eclipse at the phase reported by Demory & Seager
(2011).
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Table 5
Fitting parameters of KOI-686.

Parameters Kepler Standard model Oblate model

q1 0.46 ± 7 0.29 ± 15 0.32+24
−11

q2 0.34 ± 2 0.39 ± 29 0.34+40
−26

t0 (BJDUTC-2454000) 1004.6737 ± 1 1004.6743 ± 2 1004.6743 ± 2
(Rp +R?)/a – 0.0108 ± 2 0.0107+3

−2
a/R? 109.3 ± 4.2 – –
Rp/R? 0.1166 ± 5 0.121 ± 2 0.12 ± 2
i0 (deg) 89.4 89.60 ± 2 89.61+4

−2
f⊥ – – < 0.251
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Figure 8. The posterior distributions derived from the MCMC fittings of KOI-686.01. See caption of Figure 7 for details. The only
difference from the HAT-P-7b case is that we also show the results from “null case” test. See the text for more details.
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Figure 9. The posterior distributions derived from the MCMC fitting of KOI-197.01. See caption of Figure 8 for details.
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Table 6
Physical parameters about the

host star KOI 197 (KIC
2987027).

Parameters Values

Teff (K) 4995 ± 126 a

log g (dex) 4.62 ± 0.24 a

[Fe/H] (dex) −0.11 ± 0.06 a

M? (M�) 0.77 ± 0.09 a

R? (R�) 0.74 ± 0.08 a

v sin i? (km/s) 11 ± 1 a

J-band mag 12.536
H-band mag 12.058
K-band mag 11.959

Note. — a Adopted from San-
terne et al. (2012).

0.19 (68% limit). An oblateness as large as that of Saturn
can be ruled out in 1− σ level if the projected obliquity
θ⊥ is close to 0◦. For comparison, the posterior distri-
bution of f⊥ and θ⊥ for the injected null-case standard
transit light curves are shown on the right panel of Fig-
ure 9. The 68% confidence upper limit of the injected
null case projected oblateness is 0.18. We conclude that
KOI 197.01 is consistent with a spherical shape, but with
the oblateness only weakly constrained.

4.5. KOI 423.01 (Kepler 39b)

KOI 423.01 is a confirmed planet/brown dwarf (for
simplicity, we just note it as a planet hereafter) with mass
18MJ (Bouchy et al. 2011). The planet has an orbital pe-
riod of 21.09 days, orbiting around a F-type star which
has a Kepler-band magnitude 14.33m. The planet-to-star
radius ratio of this system is Rp/R? = 0.087. Physical
parameters about the host star are listed in Table 8.

We use the 12 full short cadence transits of KOI 423.01
available, from epochs +43 to +55, with +48 absent, in
our analysis. The averaged out-of-transit-variation am-
plitude is 1256 ppm. After reducing the data according
to Section §3, we fit the standard transit model to the
normalized light curves using the parameters given by
Kepler as initials. With the best-fit parameters given by
this standard transit model, we then set f⊥ and θ⊥ free
to fit for oblateness. The best-fit parameters for both
the standard and oblateness fittings, together with the
initial parameters from Kepler, are listed in Table 9.

The posterior plots from the oblateness fitting are
shown in Figure 10, the light curve and residuals of stan-
dard fit and oblateness fit are shown on the upper panel
of Figure 11. The residuals to each individual transit are
shown in the lower panel of Figure 11.

The marginalized distribution of f⊥, shown in the
lower left panel of Figure 10, suggests that KOI 423.01
may have an oblateness of f⊥ = 0.22+0.11

−0.11, substantially
larger than any planet in the Solar System. The total
SNR of all 12 transits is 7.4 (Equation 6). The SNR of
each transit is also shown in the residual plots of Fig-
ure 11.

To check for the robustness of such a signal, we first
perform the injection and recovery of the null signal
case, with a spherical planet, into the out-of-transit light
curves. The recovered posteriors of the null signal case
are plotted on the right panels of Figure 10. The null de-

tection case produces no oblateness signal, with the f⊥
constrained to be < 0.2 at the 1σ level.

We then inject a simulated oblate planet transit, with
the same transit parameters as KOI 423.01, and f⊥ =
0.22 and θ⊥ = −40◦, into the out-of-transit sections of
the light curve. The injected transits are shifted to the
true transit epochs and fitted similar to the observed
transits. The recovered posterior probability distribu-
tions are plotted in Figure 12. We successfully recovered
the injected oblateness factor f⊥, arriving at a posterior
distribution similar to what we see with the observed
data. This suggests that the observed oblateness signal
is unlikely to be due to the red noise and stellar oscilla-
tions in the light curves.

To check for the consistency of such a signal between
epochs, we choose 11 out of the 12 available observed
transits, with epoch +45 excluded due to spot crossing
event (see the lower panel of Figure 11), and divide them
into three subgroups with three transits in the first sub-
group and four in each of the other two, to see if such
a “detection” appears in each subgroup. We fit these
subgroups simultaneously, such that all subgroups share
the same system parameters, but each one has its own
independent f⊥ and θ⊥ values. In total, we fit 13 free
parameters. The result of this fitting is shown in Fig-
ure 13. Subgroups 2 and 3 both indicate oblateness de-
tections and they are consistent within 1-σ level. Sub-
group 1 does not show noticeable detection according to
the marginalized posterior distribution of f⊥, but the
asymmetry in the marginalized distribution of θ⊥ as well
as the 2D posterior contour between f⊥ and θ⊥ suggests
a potential oblateness detection, which is also consistent
with that from the other two subgroups within 1-σ level.

However, we note that similar exercises performed on
the simulated datasets can show inconsistency between
epochs. As an example, shown in Figure 14, in the null
case, one of the three subgroups indicates that a large
oblateness is detected, and in the signal-injected case,
one subgroup does not show any oblateness detection.
These results suggests that the noise level per subgroup
of transits is too high to allow for a robust consistency
analysis. Therefore, we conclude that whilst we cannot
validate the consistency of the observed oblateness sig-
nal based on the current data, we cannot dismiss such a
potential signal either.

5. DISCUSSION

In this study, we present the first search for rotationally
oblate gas giants in the Kepler planet sample. The tran-
sit light curve of an oblate planet deviates from that of
a spheroid primarily over the ingress and egress regions.
We derived an analytical estimate for the amplitude of
the deviation from the transit of a spheroid with the
same transit parameters (Equation 3). Through a signal
injection and recovery exercise with the KOI-368.01 sys-
tem, we showed that the signal of a Jupiter-sized planet
with a Saturn-like oblateness can be detected with Ke-
pler photometry at a high significance after only a single
short cadence transit.

We examined four selected Kepler planets (candidates)
for signatures of oblateness in their transit light curves.
We find the hot-Jupiter HAT-P-7b to be consistent to
a spheroid, with an overall oblateness constrained to be
< 0.067 at the 1-σ level. In addition, an oblateness as
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Table 7
Fitting parameters of KOI 197.

Parameters Kepler Standard model Oblate model

q1 0.50 ± 6 0.41 ± 6 0.41+7
−6

q2 0.40 ± 1 0.48 ± 7 0.49+7
−6

Porb (days) 17.276290 ± 7 17.27629 ± 2 17.27629 ± 2
t0 (BJDUTC-2454000) 966.8386 ± 2 966.8395 ± 4 966.8396+3

−4

(Rp +R?)/a – 0.0301 ± 4 0.0299+7
−4

a/R? 36.6 ± 3.8 – –
Rp/R? 0.091 ± 1 0.0914 ± 6 0.0914+7

−4

i0 (deg) 90.0 89.88 ± 28 89.87+24
−25

f⊥ – – < 0.186
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Figure 10. The posterior distributions derived from the MCMC fitting of KOI-423.01. See caption of Figure 8 for details. The posteriors

indicate a marginal detection of oblateness, with f⊥ = 0.22+0.11
−0.11.
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Figure 11. a) The transits of KOI 423.01 are plotted in green (top panel). Residuals to the standard transit model (middle panel) and
oblate transit model (bottom panel) are plotted. We only show the binned residuals and associated scattering for every 100 measurements.
b) We plot the residuals to the oblate planet model of each individual transit. Ingresses and egresses are marked out by dashed lines. The
transit epoches and oblate signal SNR (according to Equation 6) are labeled. We only show the binned residuals and associated scattering
for every 10 measurements.
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Figure 12. Marginalized distributions of projected oblateness f⊥ (left panel) and obliquity θ⊥ (right panel) for the simulated data with
the f⊥ = 0.22, θ⊥ = −40◦ detected signal into the out-of-transit portions of the light curve (red), and for a spherical planet injected signal
(black).
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Figure 13. Results of the subgroups fittings of KOI 423.01. 11 good short cadence transits, with epoch +45 excluded due to spot crossing
event, are divided into three subgroups with three transits in the first subgroup and four in each of the other two. All transits are fitted
simultaneously, sharing the same system parameters, except for f⊥ and θ⊥.

small as that of Neptune (0.017) can be ruled out at 2-
σ confidence level if the planet is moderately inclined,
although at some particular projected obliquities (θ⊥ =
0◦ and ±90◦), an oblateness up to that of Saturn (0.1)
is still allowed within the 2-σ level.

The oblatenesses of KOI 686.01 and KOI 197.01 are
only weakly constrained due to the high noise level, with
overall constraints of <0.251 and <0.186 for the 1σ cases,
respectively. However, for most spin obliquities for two
candidates, we can rule out oblateness larger than that
of Saturn at the 1-σ level.

KOI 423.01 (Kepler 39b) shows a potentially large
oblateness (f⊥ = 0.22+0.11

−0.11). However, we find that the
oblateness signal is only mildly self-consistent over multi-
ple epochs, suggesting that the detection may not be ro-
bust. Given the long orbital period of 21.09 days, and its
eccentricity of 0.12, such an oblateness, if real, is likely to
be rotationally, rather than tidally, induced. Using Equa-
tion 2, and the assumptions on the moment of inertia
with Equation 8 of Carter & Winn (2010a), we estimate
the rotation period of KOI 423.01 to be 1.6 ± 0.4 hrs,
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Figure 14. Marginalized distributions of f⊥ and θ⊥ for the subgroups fitting of simulated KOI 423.01 data with (Lower panel) and
without (Upper panel) oblateness signal.

Table 8
Physical parameters about the

host star KOI 423 (KIC
9478990).

Parameters Values

Teff (K) 6260 ± 140 a

log g (dex) 4.1 ± 0.2 a

[Fe/H] (dex) −0.29 ± 0.10 a

M? (M�) 1.10+0.07
−0.06

a

R? (R�) 1.39+0.11
−0.10

a

v sin i? (km/s) 16 ± 2.5 a

Age (Gyr) 5.1 ± 1.5 a

J-band mag 13.236
H-band mag 12.999
K-band mag 12.918

Note. — a Adopted from
Bouchy et al. (2011).

assuming no line-of-sight obliquity. Whilst the derived
rotation period is high in comparison with solar system
gas giants, it is lower than the breakup rotation period
of ∼ 0.9 hrs for KOI 423.01. In addition, β Pic b was re-
cently measured to have a rotation rate of 25± 3 km s−1

(Snellen et al. 2014). After cooling and contraction, the
rotational period of the planet is expected to be ∼ 3 hrs,
similar to our predicted rotation period of KOI 423.01.
We also note that KOI 423.01 has a larger-than expected
radius (Bouchy et al. 2011; Mordasini et al. 2012). Its
radius is larger by 20% than both theoretical predictions
and the radii of similar mass brown dwarfs (e.g., CoRoT-
3b, Deleuil et al. 2008). Such a discrepancy cannot be
solved by invoking an ad hoc increase in the atmospheric
opacities because of the fact that KOI 423 is metal-poor
(Bouchy et al. 2011), or by tidal heating which only works
in very eccentric orbits (Dong et al. 2013). With the fact
that a fast rotator is expected to be moderately inflated,

we suggest that the discrepancy on KOI 423.01 could be
explained by the oblateness measurement in this work.

Various other effects have the potential of systemat-
ically distorting the planet oblateness detection. The
gravity darkening effect can distort the transit light curve
slightly, but the distortion appears mostly during the in-
transit part of the light curve, and is only detectable for
rapidly rotating stars (Barnes et al. 2011; Philippov &
Rafikov 2013; Zhou & Huang 2013). Targets selected in
this paper are too slowly rotating for gravity darkening
to be an important factor. As for the influence of spot
crossings, we note that even when the spot crossing oc-
curs, it is much more likely to happen in the in-transit
part than during the ingress/egress session, meaning that
the detection of planetary oblateness is hardly affected.
Furthermore, such events are in principle visually distin-
guishable and only affect a fraction of the transits, and
thus can be excluded when one wants to do a finer anal-
ysis, as we have done in the KOI 423 case. Nonetheless,
due to the high noise level of the light curve, we could
not validate the oblateness detection of KOI 423.01 in
a high significance level, although the observed transits
seem to show consistency between different epochs.

We interpret the detected oblateness of KOI 423.01
(Kepler 39b), if true, as being due to the preservation
of its primordial spin angular momentum. Although we
cannot constrain the projected spin obliquity of KOI-
423.01 very well, our results suggest that the spin axis
of KOI-423.01 is significantly offset from the orbit nor-
mal. Whilst this is unexpected if the object is formed
by accretion of gases from the protoplanetary disk, we
recall that the gas giants in our Solar system are tilted
to some extent, with the exception of Jupiter. To esti-
mate the spin synchronization timescale of KOI 423.01,
we adopt a planet mass of 18MJ and an eccentricity of
0.12 (Bouchy et al. 2011). The expected spin synchro-
nization timescale for this brown dwarf is calculated to
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Table 9
Fitting parameters of KOI 423.

Parameters Kepler Standard model Oblate model

q1 0.40 ± 4 0.24 ± 8 0.23 ± 5
q2 0.27 ± 1 0.32 ± 13 0.34+11

−9
Porb (days) 21.08717 ± 2 21.08722 ± 4 21.08722 ± 3

t0 (BJDUTC-2454000) 1035.8578 ± 3 1035.8574 ± 19 0.8575 ± 17
(Rp +R?)/a – 0.0391 ± 11 0.0392+9

−11
a/R? 29.6 ± 3.5 – –
Rp/R? 0.086 ± 1 0.0888 ± 8 0.0889 ± 6
i0 (deg) 90.0 89.26 ± 33 89.25+30

−13

f⊥ – – 0.22+11
−11

be ' 320Q′s yr, where Q′s is the modified Q value for syn-
chronization. In order for it not to be tidally spun down
within a time scale comparable or longer than the age of
its host star (a few Gyr), its Q′s value must be ≥ 107 (see
Appendix B for the details of this estimation).

The spin synchronization timescales for the three re-
maining planetary candidate targets, HAT-P-7b, KOI
686.01 and KOI 197.01, are 0.02Q′s yr, 10Q′s yr and 3.2Q′s
yr, respectively. Assuming that the ages of their host
stars are comparable to that of the Sun and that their
Q′s values are in the range of that (∼ 105) estimated for
Jupiter and Saturn (Yoder & Peale 1981; Peale 1999),
these numbers suggest that HAT-P-7b, KOI 686.01 and

KOI 197.01 have been tidally spun down, which is consis-
tent with the non-detection of oblateness of these objects.
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APPENDIX

DERIVATION OF THE MAXIMUM AMPLITUDE

The signal induced by an oblate planet with respect to the spherical planet with the same (projected) cross-section,
reaches the maximum when the impact parameter b and the projected spin obliquity θ⊥ have the relation depicted in
any of the four cases in Figure 15.

The induced signal arises from the differential transit area between the oblate planet and the spherical planet. In
Figure 15 we mark the maximum differential area as shaded. From geometry we find this maximum differential area
can be written as

∆S = r2

(
arccos

√
1− f
2− f

− arctan
√

1− f

)
, (A1)

where f is the measured oblateness of the planet, and r = Rmean/R? is the dimensionless mean radius. Therefore the
differential transit signal, in the absence of limb darkening effect, is

Signalmax =
∆S

π
=
r2

π

(
arccos

√
1− f
2− f

− arctan
√

1− f

)
. (A2)

In the limit of f � 1, we find

Signalmax =
fr2

2π

[
1 +

f

2
+O(f2)

]
. (A3)

When the quadratic limb darkening effect is taken into account, the brightness profile is changed to

I = 1− u1(1−
√

1− r2)− u2(1−
√

1− r2)2,

where u1 and u2 are the quadratic limb darkening coefficients. Since this oblateness-induced signal happens at the
ingress/egress part, the brightness of this differential area is therefore decreased by a factor of (1−u1−u2). However,
the total flux from the stellar plane also decreases from π to

f = 2π

∫ 1

0

Irdr =
π

6
(6− 2u1 − u2). (A4)

Thus the amplitude of the oblateness signal decreases by a factor of 6(1− u1 − u2)/(6− 2u1 − u2).
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Figure 15. Four cases where the maximum oblateness signal can be achieved for a specified impact parameter b. The shaded area is the
maximum differential transit area between the oblate planet and a spherical planet with the same cross-sectional area.

SYNCHRONIZATION TIMESCALE ESTIMATION

Dissipation of tidal perturbation by a star with a mass M∗ and radius R∗ on its planets leads to their orbital
synchronization and circulation on time scales

τΩ =
Q′sαp

9π

(
Mp

M∗

)(
a

Rp

)3
Ωp/n

|f3(e)− f4(e)Ωp/n|
Po, (B1)

τe =
Q′c
81π

Mp

M∗

(
a

Rp

)5
18/11

|f2(e)Ωp/n− 18f1(e)/11|
Po (B2)

where αp, Mp, Rp, Ωp, n, a, e, and Po are the planet’s coefficient of moment of inertia, mass, radius, spin angular
frequency, mean motion, orbital semi major axis, eccentricity and orbital period respectively. The magnitude of f1, f2,
f3, and f4 reduces to unity for circular orbits, but they can be significantly larger for highly eccentric orbits(Dobbs-
Dixon et al. 2004). The modified Q′ = 3Q/2k where k is the planet’s Love number. In the equilibrium tidal
model(Goldreich & Soter 1966), the planets’ Q-values for synchronization (Qs) and circularization (Qc) equal to each
other. However, they may attain different values in dynamical tidal models(Ogilvie & Lin 2004).

In the limit Ωp >> n,

τΩ
τe

=
11αpf2

2f4

Qs

Qc

(
Rp

a

)2
Ω

n
(B3)

is much less than unity for short- and intermediate-period gas giants. This inequality leads to a possible state of
pseudo synchronization in which

Ωp

n
=
f3

f4
=

(1 + 15e2/2 + 45e4/8 + 15e6/16)

(1 + 3e2 + 3e4/8)(1− e2)3/2
. (B4)

It also implies that the circularization period (i.e., the period out to which the planets’ orbits are circularized) is gener-
ally much longer than the synchronization time scale (i.e., the period out to which the planet’s spins are synchronized
with their orbital period).
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Based on the value of αp ' 0.2 for Jupiter and Saturn (Helled 2011; Helled et al. 2011; Helled & Guillot 2013) and
the expression for f4 (Dobbs-Dixon et al. 2004), we scale τΩ = τ9Q5Gyr where Q5 = Q′s/105 and

τ9 ≡
10−4αp

9π

(
Mp

M∗

)(
a

R∗

)3
(1− e2)9/2

(1 + 3e2 + 3e4/8)

Po

yr
. (B5)

We adopt Mp = 1.74MJ for HAT-P-7b(Winn et al. 2009), an upper limit of 1MJ for KOI 686.01 based on the non-
detection of radial velocity variations (Dawson & Johnson 2012; Dı́az et al. 2012), 0.27MJ for KOI 197.01 (Santerne et
al. 2012) and 18MJ for KOI 423.01 (Bouchy et al. 2011). We adopt e = 0 for HAT-P-7b(Pál et al. 2008) and 0.62 for
KOI 686.01 based on the analysis of Dawson & Johnson (2012). We also assume e << 1 for KOI 197.01 and e = 0.12
for 423.01.

With these model parameters, we obtain τ9 = 1.8 × 10−6, 0.001 and 3.2 × 10−4 for HAT-P-7b, KOI 686.01 and
KOI 197.01, respectively. These translate to spin synchronization timescales (τΩ) of 0.02 Myr, 1 Myr, and 0.32 Myr,
respectively, assuming the Q′s is of order 105, which is in the range of that estimated for Jupiter and Saturn (Yoder &
Peale 1981; Peale 1999).

However, for the brown dwarf KOI 423.01, τΩ = 160Q′s yr. The retention of its initial rapid spin requires Q′s ≥ 107

which is two orders of magnitude larger than those for the planetary companion. In a subsequent paper, we will explore
the efficiency of dynamical tides induced by inertial waves as a possible cause for this dichotomy.
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