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Deep Learning-Assisted Sensitive 3C-SiC Sensor for
Long-Term Monitoring of Physical Respiration

Thi Lap Tran,* Duy Van Nguyen, Hung Nguyen, Thi Phuoc Van Nguyen, Pingan Song,
Ravinesh C Deo, Clint Moloney, Viet Dung Dao, Nam-Trung Nguyen, and Toan Dinh*

In human life, respiration serves as a crucial physiological signal. Continuous
real-time respiration monitoring can provide valuable insights for the early
detection and management of several respiratory diseases. High-sensitivity,
noninvasive, comfortable, and long-term stable respiration devices are highly
desirable. In spite of this, existing respiration sensors cannot provide
continuous long-term monitoring due to the erosion from moisture,
fluctuations in body temperature, and many other environmental factors. This
research developed a wearable thermal-based respiration sensor made of
cubic silicon carbide (3C-SiC) using a microfabrication process. The results
showed that as a result of the Joule heating effect in the robustness 3C-SiC
material, the sensor offered high sensitivity with the negative temperature
coefficient of resistance of approximately 5,200ppmK-1, an excellent response
to respiration and long-term stability monitoring. Furthermore, by
incorporating a deep learning model, this fabricated sensor can develop
advanced capabilities to distinguish between the four distinct breath patterns:
slow, normal, fast, and deep breathing, and provide an impressive
classification accuracy rate of ≈ 99.7%. The results of this research represent
a significant step in developing wearable respiration sensors for personal
healthcare systems.

1. Introduction

Respiration, a fundamental and unceasing biomechanical phys-
iological process, is an indispensable function that persists
throughout human life.[1] Physiological respiration, involving
breathing rate and depth, exhibits vital signs for clinical mon-
itoring. Sudden changes in breathing patterns can serve as a
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pathological indicator for conditions
such as respiratory distress, asthma,
cardiac arrest, sleep apnea, and other
respiratory disorders.[1–4] Therefore,
continuous monitoring of human breath
is paramount for assessing human well-
being, diagnosing illnesses, and, in some
cases, even saving human lives.

In clinical practice, the respiration rate
is measured by clinicians to assess the
health status of patients. Manual count-
ing of the expansion/contraction of the
chest or abdomen per minute with a
timer is standard. This method requires
personal focus and can prove challeng-
ing when patients are restless, crying,
and breathing rapidly or when practition-
ers must deal with numerous patients si-
multaneously. Another approach to mea-
suring a patient’s exhalation comprises a
nasal cannula with pipes inserted into the
nostrils.[5,6] However, these devices have
drawbacks such as costliness, bulkiness,
and uncomfortable breathing in long-
term monitoring. Notably, the system

used for diagnosing sleep apnea involves polysomnography and
comprises lots of cables, very uncomfortable for patients whilst
they attempt to sleep. Hence, the development of a novel, afford-
able and portable option for continuously monitoring of breath
patterns that helps to screen sleep related issues, like sleep ap-
noea in rural and remote location is a pressing need for the
present hour.
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Recently, there has been significant progress in respira-
tion monitoring that encompasses both physical[7–9] and gas
or chemical breath sensors.[1,10] In terms of physical respira-
tory monitoring systems, wearable sensors have been developed
that detect physical changes during breathing, which include
strain and pressure sensors,[11,12] humidity sensors,[8,13,14] ther-
mal sensors,[9,15–19] and acoustic sensors.[20] Among these sen-
sors, the adoption of thermal flow sensors has gained signifi-
cant interest as they provide directly measurement of respiration
flow, are non-invasive, sensitive, real-time monitoring, and cost-
effective.[9,16,17,19,21] These devices commonly employ conductive
metallic and nanostructure materials, such as metals, graphene,
carbon nanotubes (CNTs), silver nanowires, hydrogel, and more,
which are typically integrated with flexible and stretchable sub-
strates. For instance, the study of Dinh et al.[17] has reported a
low–cost wearable sensor using conductive pencil graphite on a
flexible cellular paper substrate for noninvasive real-time respi-
ratory monitoring. However, the use of paper substrate results
in low stretchability, which is unsuitable for long-term uses.[22]

The study of Jiang et al.[19] introduced the thermal flow breath
sensor using metallic layers (Cr/Au) encapsulated in two poly-
imide films. The sensor can recognize the abnormalities of the
breath conditions, such as hypopnea, polypnea, and apnea. How-
ever, metals are usually affected by chemical reaction for a long
duration. Additionally, Nguyen et al.[21] has demonstrated a ther-
mal flow sensor by aligning CNTs between the electro-spun poly-
acrylonitrile (PAN) layers, effectively recording normal, deep, and
apnea breath in real time.

In spite of significant progress in this rapidly evolving field,
the performance of these sensors is not satisfactory for long-term
use due to the adverse effects of the ambient environment dur-
ing its operation. It is noted that human respiration is highly
complex, particularly the exhaled gases consisting of more than
800 compounds, including carbon dioxide, nitrogen, oxygen, wa-
ter vapor,volatile organic components,[11] humidity, and elevated
temperature. These can contribute to the degradation in the me-
chanical and electrical performance of sensing materials in the
long-term monitoring process. Furthermore, the biocompatibil-
ity performance of nanomaterials such as carbon nanotube still
raises concerns in the long-term applications.[23] Therefore, se-
lecting the proper material to overcome those issues is essential.

Silicon carbide (SiC) has been known as an excellent sens-
ing material for sensitive sensors operating in harsh environ-
ments thanks to its chemical inertness and stable electrical and
mechanical properties.[24–27] For example, SiC has been inves-
tigated for application in high temperatures (such as in the
combustion engine of an automobile,[25,27] chemically corro-
sive conditions,[28] and high radiation conditions (such as in
space exploration missions)[27,28]). Additionally, compared with
silicon (Si), SiC is valued for its biocompatibility and long-lived
stability under immersion in simulated biofluid conditions.[27]

Among over 200 SiC polytypes, 3C-SiC stands out as its ability
to grow on a Si wafer, allowing compatibility with conventional
Micro-electromechanical Systems (MEMS) fabrication technolo-
gies and reducing the cost.[29] Furthermore, 3C-SiC has emerged
as an ideal candidate for developing temperature sensors,[30] and
thermal flow sensors[31] because of its high bandgap, low Young’s
modulus, and fast thermal response.[32,33] These features make
3C-SiC highly suitable for healthcare application. However, to

date, there have been no reports demonstrating on the poten-
tial of 3C-SiC as a sensing material for respiratory detection. It
is worth noting that exhaled breath temperature closely approxi-
mates core body temperature, typically around 35°C, as reported
in ref. [34], while thermal sensors would require to work at much
higher temperatures (e.g., 80°C or above). Therefore, 3C-SiC is
an excellent material for making thermal flow sensors for long-
term respiratory monitoring.

The monitoring of respiration is essential for diagnosing and
monitoring diseases, such as asthma, sleep apnea, and other
respiratory-related diseases. However, conventional respiration
sensors are typically stand-alone and limited to single-function
detection. Recently, there has been growing interest in devel-
oping respiration sensors that not only detect respiratory sig-
nals but also provide comprehensive data and decision-making
support to clinicians through integrated machine learning (ML)
algorithms.[4,35,36] These studies purposely aim to provide an au-
tomated system to classify breathing patterns, whether normal
or abnormal in order to associate these with the presence of dis-
ease signals for accurate diagnosis and monitoring. To date, the
integration of machine learning with the thermal respiration sen-
sor has not yet been reported. In this study, we employed the
one dimensional-convolutional neural network (1D-CNN) algo-
rithm to classify various breath signals from the developed sen-
sor. The advantages of this method include the capability of the
algorithm to directly learn from the incoming (real-time) data sig-
nals, which would eliminate the need for hand-crafted feature ex-
traction. This method is particularly well-suited for analysing 1D
sensor data and remains invariant in interpreting the features of
such datasets.[35,37]

The contributions and novelty of this research work are
twofold. 1) To develop a sensitive 3C-SiC sensor for physical res-
piration monitoring and better understand the thermal sensing
characteristics capable of accurately continuous monitoring of
respiration over extended periods. 2) To test the effectiveness of
the 3C-SiC thermal flow sensor integrated with deep learning al-
gorithms and provide automatic classification of respiration sig-
nals with high accuracy. In particular, we investigated the sen-
sitivity, linearity, and long-term stability of the developed sen-
sor. Additionally, the 3C-SiC sensor tested real-time breathing by
affixing the device to the philtrum of the subject to sense vari-
ous breath patterns. Furthermore, the 1D-CNN algorithm is em-
ployed to classify breath signals derived from sensor data involv-
ing slow, normal, fast, and deep breaths with an accuracy of up
to 99.7%, beneficial for early warning of respiratory-related dis-
eases and management, such as sleep apnea, asthma. The excel-
lent performance of the 3C-SiC thermal sensor, with its precise
various respiratory rates and classification capabilities, provides
promising Internet of Medical Things applications in personal-
ized health management.

2. Results and Discussion

2.1. Working Principle and Fabrication 3C-SiC Sensor

Figure 1 illustrates the overall concept and fabrication process
of 3C-SiC respiration sensors, and Figure 1a shows more specif-
ically the sensing principle. Basically, the sensing principle be-
hind this sensor based on the hot-film-flow sensing, as reported
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Figure 1. Fabrication and sensing concept of the respiration sensor. a) Working principle of the 3C-SiC thermal flow sensors. b) Fabrication steps
of the 3C-SiC respiratory sensor: 1) Preparing Si wafer (100), 2) Grow of 3C-SiC on Si wafer, 3) Deposition of aluminium on the top of 3C-SiC, 4)
Photolithography, 5) Etching aluminium, 6) Dicing strips of the 3C-SiC/Si wafer, 7) The sample was attached to stretchable PDMS substrate and making
interconnection. c)The crystaline structure of p-3C-SiC grown on (100) Si substrate, TEM image (left), and SAED image (right).[40] d)Optical image of
the sample attached to the (polydimethylsiloxane) PDMS substrate.

in ref. [38, 39]. By applying a constant current or voltage to the 3C-
SiC thin film, the Joule heating effect causes its temperature to
rise. The temperature of the 3C-SiC film subsequently reaches a
steady state when supplying Joule heating balances the heat loss
to the surroundings. As air passes over the sensor, forced convec-
tion causes more heat to be lost to the environment, resulting in
a reduction in temperature. As a result, the electrical resistance
of the 3C-SiC changes. The airflow rate can be determined by
measuring this variation in resistance.

The process of fabricating a wearable 3C-SiC thermal flow sen-
sor consists of seven steps, as outlined in Figure 1b. This pro-
cess starts with the preparation of the substrate, as indicated in
Figure 1b, step 1. A 3C-SiC nanofilm was then grown on a silicon
wafer substrate by employing the low-pressure chemical vapor
deposition method (LPCVD) (Figure 1b, step 2). The aluminum
(Al) was then deposited onto the top of the 3C-SiC nanofilm by
sputtering to form electric contact (Figure 1b, step 3). In the next

step, a layer of positive photoresist was spin-coated onto the alu-
minum surface. Here, the shape of the electric contact was pat-
terned by exposing the wafer to ultraviolet light (Figure 1b, step
4). The aluminum electrodes were created by wet etching of alu-
minum (Figure 1b, step 5). After dicing the strips, the 3C-SiC
sample was attached to a stretchable substrate to form the respi-
ration sensor (Figure 1b, step 7).

The crystalline properties of p-3C-SiC on a (100) Si substrate
using the LPCVD method are shown in Figure 1c. The left im-
age confirms the transmission electron microscopy (TEM) of the
thin film. And the right image shows the selected area electron
diffraction (SAED), indicating the single crystalline characteris-
tics of the grown p-3C-SiC on Si substrate. Additionally, Figure 1d
indicates the optical images of the device sample formed on a
stretchable polydimethylsiloxane (PDMS) substrate before and
after stretching. The stretchability of the PDMS substrate is
up to approximately 60% strain, meeting the flexibility and
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Figure 2. Characterization of the fabricated 3C-SiC sensor. a) I–V characteristic of p-3C-SiC measured under different temperatures. b) Relative re-
sistance variation of 3C-SiC versus temperature. c) Temperature coefficient resistance (TCR) of 3C-SiC. Inset: experimental setup to characterize the
thermosensitive effect of the thin film. d) Cyclic test of the 3C-SiC based sensor between temperature 35 to 40°C.

stretchability requirements of wearable breath sensors. The
PDMS substrate was designed with arrays of tiny holes surround-
ing the sample for thermal insulation to reduce power consump-
tion.

2.2. Characterization of the 3C-SiC Sensor

As the sensor was specifically fabricated for breath monitoring,
which operates at temperatures lower than 80°C, we built an ex-
perimental setup to investigate the characteristic of the thermore-
sistive effect of the 3C-SiC nanofilm under the temperature vary-
ing from 26 to 80°C (Figure 2c inset). The current- voltage (I--V)
curves of the fabricated sensor were then measured at different
temperature, Figure 2a. The observed linear characteristics indi-
cate an excellent Ohmic contact between 3C-SiC and Al electric
contacts across the temperature range. For instance, at a consis-
tent electrical voltage 2 V, the recorded electrical current I exhib-
ited a noticeable increase from 6.58 to 8.67 mA with increasing
temperature. This is because the increasing temperature leads to
a rise in the concentration charge carriers, resulting in a decrease
in electrical resistance of the thin film.[26] The correlation be-
tween the electrical resistance and temperature can be expressed
as follows:[30]

R ∼ exp(
−Ea

kT
) (1)

where Ea denotes the activation energy and and k represents
Boltzmann constant.

Figure 2b illustrates the normalized resistance changes de-
rived from the I–V data. The relative change in resistance was cal-
culated by △R/R = (R − Ro)/R, where R stands for the electrical
resistance of the cubic silicon carbide at elevated temperature, Ro
denotes the initial resistance. The dependence exhibited a high
degree of linearity (R2 = 0.9976), with the resistance decreased by
about 25% in response to the temperature rise to 80°C, owning
to the negative temperature coefficient of resistance (TCR) of the
nanofilm. In general, TCR is commonly defined as the fraction
between change in electrical resistance and temperature varia-
tion as follows:[39]

TCR = △R
R

1
△T

(2)

where △T refers to the variation in temperature. This value is
employed to evaluate the sensitivity of thermal flow sensor. A
high TCR materials are excellent candidates for a sensitive ther-
mal flow sensors.[24] The high negative TCR value is shown in
Figure 2c. As observed from this figure, this value is substan-
tial, approximately of −5, 200 ppmK-1, at around room tempera-
ture, and significantly stable in temperature range. This value is
comparable to that of other thermal sensing materials in respi-
ration devices. The sensitivity between the developed sensor and
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Table 1. Comparing the sensitivity, long-term stability of the developed sensor and previous thermal flow respiration sensors.

Sensor Materials Sensitivity (TCR) Repeatability Year Ref.

Thermal flow sensor Platinum TCR = 2490ppmK−1 - 2000 [41]

Thermal flow sensor CNT yarnon paper TCR= 750ppmK−1 20 cycles 2016 [16]

Thermal flow sensor Pencil trace on paper TCR= 2900ppmK−1 one day 2017 [17]

Thermal flow sensor CNT on paper TCR= 850ppmK−1 Stability for 30 days 2020 [21]

Thermal flow sensor Cr/PI TCR= 3786ppmK−1 – 2020 [9]

Thermal flow sensor Au/PI TCR= 3900ppmK−1 – 2020 [19]

Thermal flow sensor Graphite on paper TCR= 750ppmK−1 – 2022 [22]

Thermal flow sensor 3C-SiC on polymer substrate TCR= 5200ppmK−1 Good stability for 90 days This work

previous ones has been shown in Table 1. The TCR varies from
−5, 200 ppmK-1 to −4, 368 ppmK-1 (Figure 2c), which is compa-
rable with other SiC-based thermal sensors.[39] In addition, this
value is averagely six times greater than carbon nanotube,[16,21]

1.8 times higher than graphite,[17] and 1.4 times higher than
other material (Cr/Au)[9,19] used for thermal flow respiration sen-
sors.

In this study, we have also investigated the repeatability of the
3C-SiC sensor by applying a constant voltage of 2 V to the sen-
sor to conduct a cyclic test within a temperature range of 35 to
40°C. Figure 2d displays the response of the sensor for 20 cy-
cles. The response time and recovery time of the device are ap-
proximately 13 s and 72 s, respectively (inset in Figure 2d). The
response/recovery time is long because the experiment was con-
ducted at temperature ranging from 35 to 40°C with the increase
rate of 30°Cmin-1 followed by room temperature cooling condi-
tion. The consistency of relative electrical resistance during cyclic
tests indicates excellent repeatability of responses from the 3C-
SiC thermal sensor. These outstanding characteristics make the
fabricated sensor an ideal candidate for continuous long- term
respiratory monitoring.

2.3. Respiration Monitoring of 3C-SiC Thermal Flow Sensor

As explained in Section 1, the respiration rate is a vital physi-
ological signal that provides deep insight into the recognition
of disease of any patient. In general, the respiration rate refers
to the number of breaths one minute or breath per minute
(breaths/min). The rate of respiration for healthy adults ranges
from 12 to 20 breaths/min, whereas the rate is less than 9
breaths/min, or more than 25 breaths/min is considered irreg-
ular. The depth of respiration is the peak-to-peak amplitude mea-
sured by respiratory devices. The rate and depth of respiration
are sensitive to various factors such as age, gender, weight, and
individual health status.[42,43]

In order to evaluate the performance of the developed sensor,
the sensor was securely attached to the philtrum of the volun-
teer, Figure 3a. All experiments were conducted under the same
surrounding conditions (room temperature of 26°C and a stable
humidity approximately of 70%). Thanks to the biocompatibility
and stretchability of the respiration device, the volunteer experi-
ences comfort during breathing. According to the sensing prin-
ciple, when a constant electrical voltage of 5 volts is supplied, the
temperature of the device reaches to steady state. When the sub-

ject exhales, the temperature of the 3C-SiC thin film decreases,
resulting in an increases in the electrical resistance. The change
in the temperature of the thin film leads to the change in its
resistance. The respiratory rate will be examined by calculating
the number peaks of the acquired signals (electrical resistance).
Figure 3b shows the change of temperature of the sensor before
(left) and after (right) exhalation. The change of △R/R in exhal-
ing and inhaling activities monitored by the sensor for a normal
breathing cycle is illustrated in Figure 3c; a peak indicates the
moment at which the exhale ended and the inhale started. The
number of peaks confirms different breath patterns.

Figure 3d displays the response of the 3C-SiC sensor on nor-
mal breathing (0.25 Hz) with the relative change in resistance
is approximately 0.46%. This value in slow breath (0.1 Hz) is
different because the peak-to-peak values in normal breathing
are higher than in slow breathing Figure 3e. However, the pe-
riod of slow breathing is more significant than that of normal. In
contrast, fast breath (0.5 Hz) shows the slightest relative change
in resistance of 0.25% (lowest peak-to-peak), as represented in
Figure 3f. Regarding deep breathing, the subject exhalation lasted
longer than the others, deducing the significant decrease in the
temperature of the sensor, leading to the peak-to-peak ampli-
tude of resistance exhibiting a higher of approximately 1.6%
(Figure 3g). The breath sensing results demonstrate that the 3C-
SiC thermal sensor could detect highly effectively no matter how
slow or fast the breath is. Furthermore, these results confirm that
the 3C-SiC sensor is more sensitive with respiratory airflow than
that of others respiratory devices. For example, the study of Liu
et al.[18] developed a hydrogel-based temperature respiratory sen-
sor with relative changes in resistance of about 0.3% for normal
breath, while that in our sensor is approximately 0.46%. Nguyen
et al.[22] reported a thermal sensor using graphite on paper for
human breath monitoring with the relative resistance changes
in normal breath is around 0.16%, which is nearly three times
less than that of our sensor.

Furthermore, the 3C-SiC respiration sensor underwent test-
ing to assess its performance in detecting sleep apnea. During
the test, the volunteer intentionally held their breath three times
during normal breathing to simulate sleep apnea episodes, in
which their breath is paused for approximately 12 s in each hold-
ing time. Figure 3h shows the response of the developed sen-
sor in this experiment. As the sensor operates based on the Joule
heating effect, when the volunteer suddenly pauses their breath,
the reduction of thermal convection leads to higher tempera-
ture around the thin film, causing the decrease in the electrical
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Figure 3. Real-time monitoring of respiration. a) Photograph the fabrication of device was attached to the philtrum of a subject. b) Temperature of the
3C-SiC before and after breathing out. c) A normal breathing cycle. d) Normal breathing (15 bpm). e) Slow breathing (6 bpm). f) Fast breathing (30
bpm). g) Deep breathing (9 bpm). h) Test curve for sleep apnea.

resistance of the film. When the volunteer starts to breathe, the
temperature of the sensor decreases, leading to an increase in
its resistance. Notably, the key distinguishing between normal
breathing and apnea state lies in the continuous waveform ver-
sus its discontinuity. By integrating an additional alarm system
to alert in the case of threat events, the fabricated sensor is con-
sidered a promising option that helps to screen for sleep issues,
like sleep apnea.

It is noteworthy that human breath owns more than 800 dif-
ferent chemical compounds, which can interfere with the capa-
bility of the 3C-SiC sensor to detect respiration in long-term pro-
cess. The interfering agents include moisture, nitrogen, oxygen,
carbon dioxide, and various residual gases such as ammonia,
methane, sulphur dioxide, and volatile organic compounds,[1,11]

which may challenge the performance of some sensing materi-
als in continuous long-term monitoring. To assess the long-term
durability of the fabricated sensor, we conducted a test by repeat-
ing the monitoring respiration experiment over three months
with a specific duration each day. Figure 4a shows the response of

the 3C-SiC respiratory sensor to the normal breath of the volun-
teer on the first day, one month later, and three months later, re-
spectively. It is noted that the normal breathing patterns were typ-
ically consistent in all experiments, confirming the stability of the
fabricated sensor over long duration. Furthermore, the response
to electrical resistance response of sensor was investigated over
three months as shown in Figure 4b. This value was quite consis-
tent each day of testing over three months. The difference ranges
from 0,01 to 0.2 Ohm(Ω) by comparing the performance day by
day in each month, and about 2 Ω by comparing the performance
monthly. The minimal degradation in the electrical resistance val-
ues indicates the excellent stability and repeatability of the sensor
over the long test. The robustness of the respiration sensor stems
from the unique properties of SiC material. SiC with super prop-
erties, such as high bandgap (2.38 eV), breakdown voltage (1.2
MVcm−1), and melting point(3103K), enhancing both the relia-
bility and stability of SiC devices at elevated temperatures.[26,44]

In addition, the high Si-C covalent bond energy (4.6 eV) makes
SiC a very inert material that hardly reacts with any other materi-
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Figure 4. Long-term stability of the 3C-SiC thermal flow sensor. a) Response of the developed sensor to normal breathing at the first day (1), one month
later (2), and three months later (3). b) Response of the electrical resistance over three months.

als in room conditions,[24,45,46] allowing it to operate in chemically
corrosive conditions.

2.4. Development of Deep Learning Model for the Classification
Breath Patterns

Healthcare delivery is changing from its current disease-centric
method to a personalized, preventive, predictable mode, focusing
on disease prevention, health monitoring, and early issue iden-
tification based on analyzing vital signals. In order to improve
the precise recognition capability of various respiratory patterns,
this study proposes a deep learning model to identify different
breath signals from the fabricated sensor that may support early
warning, diagnosis of respiratory-related diseases.

In this study, we have adopted the Convolutional Neural Net-
works (CNN) which is a fundamental algorithm in deep learn-
ing classification areas that provides merits relative to the shal-
low methods. We note that there are several tradition classifi-
cation models. However, the advantage of the proposed CNN
model entails in its advanced capability to directly learn the sub-
tle, yet important features from any real-time data signal without
requiring human intervention in the feature extraction stages.
Besides, the proposed CNN algorithm can harness significantly
large amounts of data to achieve highly promising classification
accuracy. Furthermore, the CNN model extends from the tradi-
tional artificial neuron networks model by incorporating convo-
lution layers, which help preserve important spatial features of
real observations that may be lost or ignored when employing
traditional approaches. In respect to prior applications, the CNN
model has been extensively used in image classification, includ-
ing 1D scenarios.[47–50]

It is of particular note that this study has adopted the 1D-
CNN model that typically utilizes 1D kernels to interpret 1-D
data signal quite effectively by extracting the feature of the fixed-
length segment in the entire dataset.[50] Moreover, the 1D-CNN
is a viable option to maximize the classification accuracy for
many 1D signal applications where the scarce labelled data is
concerned.[37,47] A CNN architecture typically consists of three
layers: convolution, pooling, and fully connected layers.[48] The
convolution layers serve as a pivotal step for feature extraction, as
they extract all important features from the diverse input signals.
As a result of convolution, feature maps contain a large number
of features that are prone to over-fitting. In training, the down-
sampling or pooling layer mitigates over-fitting by reducing the
spatial dimension of the input signal. The most popular pooling
technique is max pooling, which determines the maximum value
for each piece of the feature map. Lastly, the feature maps are fed
into the fully connected layer, which comprises the number of
neurons equal to the number of classes. Each convolution layer
typically utilizes a leaky rectifier linear activation function, deter-
mining which information should be transmitted to the next neu-
ron. The model is trained with a backpropagation algorithm, and
the tuning parameter can be employed to optimize training per-
formance.

The 1D-CNN in this research work consists of three convo-
lutional layers and two fully connected (FC) layers, Figure 5a.
The fabricated sensor was used to collect four common breath-
ing patterns: slow, normal, fast, and deep. As a result, the res-
piration signals were then loaded into memory, segmented, and
labeled into four categories: slow breathing (S), normal breath-
ing (N), fast breathing (F), and deep breathing (D) (Figure 5a).
For class numbers, labels were defined as integers. A 1D-CNN
model with multi-class classification was fitted using one-hot
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Figure 5. a) The structure of 1D-CNN for classification respiration patterns: Class 0: Slow breathing; Class 1: Normal breathing; Class 2: Fast breathing;
Class 3: Deep breathing. b) Training and validation accuracy of respiration data. c) Training and validation loss of the respiration signal. d) Confusion
matrix of four types of respiration.

Table 2. Comparing the performance of the proposed 1-D-CNN deep learning model with several previous investigations.

Algorithm Classification Type Accuracy, % Ref.

KNN, DT, RF, BPNN Normal breath, fast breath, deep breath Up to 94.0 [36]

DT Respiration of healthy, asthma, bronchitis, and COPD group Up to 95.0 [4]

1D-CNN Four breath patterns: Eupnea, bradypnea, tachypnea, and apnea Up to 95.8 [51]

1D-CNN Normal, slow, fast, and deep breath 96.9 [35]

1D-CNN Normal, slow, fast, and deep breathing 99.7 Our work

encoding for class integers. The effectiveness of the proposed
deep learning algorithm was evaluated by learning accuracy, and
the loss function. The proposed 1D-CNN model achieved higher
classification accuracy and robustness after 50 epochs, as shown
in (Figures 5b and 5c). The performance of the proposed system
was further evaluated by a confusion matrix, which compared the
predicted labels with true labels from the test set. The purpose of
this analysis was to determine the ability of the model to differ-
entiate between different breath patterns accurately. The target
class (true label) was determined by current output information
at the test set, and the output class was determined by the trained
1D-CNN algorithm.

The results of the proposed 1-D-CNN model applied in the
classification of different breaths using the real-time signal gen-
erated from the 3C-SiC sensor reported an impressive average
predictive accuracy of up to 99.7% and the accuracy of an indi-
vidual class above 98.9%, Figure 5d, which is one of the highest

Table 3. Comparing the performance of the proposed 1D-CNN model with
a number of traditional machine learning models.

Algorithm Accuracy Precision Recall F1 score

1D-CNN 0.997 0.997 1.000 0.998

SVM (Extracted features) 0.956 0.958 0.955 0.956

DT (Extracted features) 0.947 0.948 0.948 0.948

DT (Raw data) 0.786 0.783 0.784 0.783

SVM (Raw data) 0.586 0.620 0.577 0.572

reported accuracy to date, Table 2. Furthermore, the proposed 1-D
CNN model also outperformed the competing benchmark mod-
els based on a Support Vector Machine (SVM) and a Decision
Tree (DT) model, which are shown in Table 3.

Adv. Sensor Res. 2024, 2300159 2300159 (8 of 10) © 2024 The Authors. Advanced Sensor Research published by Wiley-VCH GmbH
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3. Conclusion

This research work has demonstrated the successful develop-
ment and testing of a wearable 3C-SiC thermal flow sensor for
real-time respiration monitoring. The developed sensor exhibits
impressive sensitivity, boasting a TCR of −5, 200 ppmK-1, and
also demonstrates long-term stability, owning to the high perfor-
mance of the 3C-SiC material under various thermal, humidity,
and chemical conditions. Given its accuracy the proposed senor
could perhaps excel in terms of its future application to swiftly
adapt to various breath rates, making it a powerful tool for de-
tecting abnormal breathing conditions, such as sleep anpea. Fur-
thermore, when integrated with a 1D-CNN model to classify its
underlying signals, the present study showed that the deep learn-
ing model achieved a remarkable classification accuracy approxi-
mately of 99.7% for accurately identifying the diverse breath pat-
terns. In accordance with the findings, the proposed wearable
3C-SiC thermal flow sensor can potentially establish a promis-
ing protocol for early picking up any respiratory issues, effec-
tively better self-managing their conditions on day-to-day basis,
ultimately alleviating the burden on public healthcare systems.
Therefore the present work paves the way for a transition from
a disease-centric healthcare model to one that prioritizes person-
alized care and management in the era of the Internet of Medi-
cal Things.

4. Experimental Section
Growth of SiC on Si Substrate: A 300 nm thick 3C-SiC nanofilm was epi-

taxially grown on a silicon wafer substrate using the LPCVD method at a
temperature of 1000°C. Before this process, the p-type Si (100) wafer with a
concentration doping level of 5× 1014cm−3 was polished utilizing the stan-
dard technique, RCA (Radio Corporation of Americal) to avoid contamina-
tion. Here, two precursors, namely silane (SiH4) and propylene (C3H6)
were utilized to supply the (Si) and (C). Trimethylaluminum (TMAl) was
used as a compound precursor to form a heavily doped p-type 3C-SiC. The
carrier concentration of the nanofilm is about 5 × 1018cm−3.

Device Fabrication Process: The 3C-SiC respiration sensor was fabri-
cated following the design with the width, length, and thickness of the 3C-
SiC layer were 4, 5.5, and 300 nm, respectively. The size of aluminium was
0.6 mm x 2.5 mm. Following the growth process, the conventional pho-
tolithography method was employed to pattern the shape of aluminium
electrodes using a mask. Here, the spin-coating technique was used to
apply a positive photoresist layer onto the aluminium surface at a speed
of 3,500 rpm. Before exposing the positive photoresist layer to UV light
to create the desired electrode shape, it was heated at a temperature of
110°C for a duration of 100 s. The Al electrodes were created using an
Al wet etching technique. The strips were then diced for the proposed
devices. Lastly, the 3C-SiC sample was attached to a stretchable Poly-
dimethylsiloxane (PDMS) substrate and interconnections were bonded by
a wire-bonding machine (MDB-2575 thin wire Wedge Bonder).

The Fabrication of the PDMS Substrate: To fabricate the PDMS sub-
strate, the curing agent and the elastomer were mixed in a weight-to-
weight ratio of 1:10 for 5 min at room temperature. Subsequently, the so-
lution was poured into the mold and stored in the desiccator for approx-
imately 30 min allowing any remaining bubbles to dissipate. The mould
was then left at room temperature for 48 h. Lastly, the PDMS slab was
diced to make a single substrate.

Characterization and Measurement: The hot chamber was used to
evaluate the thermoresistive characterization of the p-3C-SiC nanofilm.
The sample was placed on top of the hot plate (Linkam HSF600E-PB4),
and probe tips were applied to the aluminium electrodes to connect the
nanofilm electrically. The sweep voltage from -2 to 2V is applied, and the

I–V curve was recorded at temperature ranges from 26 to 80°C with an
increment of approximately 9°C.

The resistance data were recorded utilizing a Keithley 2450 Source Me-
ter connected to Kickstart software. The temperature of the sensor was
evaluated by capturing images with a thermal imager (Fluke FLK-PTi120
9Hz) by applying the voltage of 5V.

Deep Learning for Breath Patterns Classification: The 1D-CNN architec-
ture was constructed with three convolution layers and two FC layers for
data feature extraction and automatic recognition input recorded breath
signals. The data used for training and testing contained four different
types of breathing, which were acquired from the 3C-SiC sensor.

Four breathing types were continuous collected using the developed
sensor using a source meter (Kithey 2450). The raw respiration signal was
the analog resistance signal. The signal was loaded into the memory, re-
arranged, and segmented to be suitable with algorithm using excel and
labview 2020 software. This segment data were then label in four differ-
ent types using python 3.8 with sample size of 166 time-steps. A total of
1800 observations (450 for each breath status) were randomly split into
the training and testing set with the rate of 8:2; 80% of the data was used
to train the proposed model, and then 20% of the data to evaluate the
model. For each training epoch, the accuracy and loss function were as-
sessed to find the optimal classification accuracy and robustness. In this
experiments, high breath pattern classification was achieved after 50 train-
ing epochs. An analysis of classification accuracy and loss function was
then conducted.

Informed Consent Statement: All experiments on monitoring human
breath were conducted in accordance with applicable laws and institu-
tional guidelines and approved by the Human Ethics Committee (HREC)
of the University of Southern Queensland (H22REA036).
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