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Abstract: Phenol formaldehyde was filled with Envirospheres SLG to increase the 

strength and impact toughness of the composite for structural applications by the 

Centre of Excellence in Engineered Fiber Composites (CEEFC), University of 

Southern Queensland (USQ).  In order to reduce costs, the Centre wishes to fill as 

much SLG as possible subject to maintaining sufficient strength and impact toughness 

of the composites in structural applications.  This project varies the percentages by 

weight of the SLG in the composites which are then subjected to tensile tests.  The 

results show that composite with 10 % by weight of the SLG produces the highest 

yield, tensile strengths and Young’s modulus combined with a reasonable fluidity for 

casting. 

 

Keywords:  Yield strength, tensile strength, Young’s modulus, phenol formaldehyde, 

phenolic resin, envirospheres and SLG. 

 

1. Introduction 

 

Phenolic thermosetting materials were the first major plastic material used by 

industry.  They are still among the most widely used thermosets because they are 

some of the lowest-cost engineering material on a cost-per-volume basis.  Phenolics 

are formed from the condensation of polymerization reaction between phenol and 

formaldehyde.    The condensation reaction for phenolics can be carried out under two 

different conditions, resulting in two different intermediate materials.  One of the 

intermediates is called resoles and the other novolacs [1, 2]. 

 



The novolacs are formed by reacting phenol and formaldehyde in an acid solution but 

with insufficient formaldehyde to complete the reaction at 100 oC (the opposite of 

forming resoles).   About one mole of phenol is reacted with 0.7 to 0.85 mole of 

formaldehyde. This is the first stage of the reaction and a brittle thermoplastic resin is 

produced which can be melted but cannot crosslink to form a solid network.  The 

addition of hexamethylenetetramine (hexa), a basic catalyst, to the first stage phenolic 

resin makes it possible to create methylene crosses linkages to form a thermosetting 

material.  When heat and pressure are applied to the hexa-containing novolac resin, 

the hexa decomposes, producing ammonia which provides methylene cross linkages 

to form a network structure.  On account that hexa, a second material, must be added 

to novolacs, they are called two-stage resins.  The temperature required for the cross-

linking of the novolac resin ranges from 120 to 177 oC.  The various fillers used can 

vary from 50 to 80 % by weight.  The fillers reduce shrinkage during molding, lower 

cost and improve strength.  They are also used to improve electrical and thermal 

insulating properties and chemical resistance [1-4]. 

 

This research project is to investigate the yield strength, tensile strength and Young’s 

modulus of phenol formaldehyde composites reinforced with varying percentages by 

weight of Enviro spheres, the filler, with a view to finding out the optimum 

percentage by weight of the Enviro spheres used in the composites.   

 

2. Phenol formaldehyde 

 

The commercial resole resin used in this study was J2027and manufactured by 

Borden Chemical Pty.  Its official name is now Hexion Cellobond J2027L because the 



company had been taken by Hexion [5].  The catalyst used to crosslink the resin is 

phenolic resin hardener catalyst produced by the same company.  The official name of 

the catalyst is Hexion Phencat 15 [6].  The ratio by weight of the resin to hardener is 

50: 1, which may be changed when the resin is supplied by other manufacturer.   

 

Most molded phenolic parts are made from novolacs.  Without filers or 

reinforcements, the parts are brittle and have high shrinkage in the mold because of 

the crosslinked nature of the cured resin.  The most common filler is wood flour.  

Other common fillers and reinforcements are cotton fibres, fiberglass, chopped 

thermoplastic fibres, e.g. nylon. 

 

The high number of OH groups in the resin gives it excellent adhesive qualities.  

However, this adhesive nature of phenolics causes molding problems.  They tend to 

stick to the molds.  Release agents have to be sprayed into the mold surface to solve 

this problem.  The nonflammability of the resin leads to its wide applications.  When 

phenol formaldehyde resin is subjected to a flame, they char rather than melt or burn. 

They are therefore widely applied in situations where avoiding flammability and 

smoke is vital.  Furthermore, the char has a very low thermal conductivity so that 

surrounding materials are protected by the decomposed phenolic.  Low thermal 

conductivity of the resin promote its used as bases for toasters and knobs for 

appliances.  Most phenol formaldehyde parts are dark because the dark color is 

inherent to it and this also limits its use in some applications.  A dark pigment is 

usually added to the resin to standardize the color and to decrease its sensitivity to UV 

light.  Its high electrical resistance wins its applications in electrical switches and 

circuit breakers.  The abrasive nature of the phenolic formaldehyde makes its 



machining difficult; they are therefore molded to near net shape.  The resin is cured 

by condensation polymerization which results in the evolution of water as a by-

product of the curing process and extensive microvoiding within the matrix.  The 

microvoids have little effect on the composite properties except that significantly 

higher water absorption is observed.  High water content can cause structures to 

delaminate when exposed to heat [3-4]. 

 

3. The Envirospheres 

 

The Enviroshperes (E-spheres) SLG, is a mineral additive that can improve product 

by reducing product's weight, improving its performance and lowering its cost.  E-

spheres are white microscopic hollow ceramic spheres that are ideal for a wide range 

of uses.  The particle size of this general purpose E-spheres ranges from 20 – 300 µm 

with approximate mean of 130 µm.   The relative density of E-spheres is 0.7. E-

spheres are a combination of Silica, SiO  (55-60%), Alumina, Al O  (36-44%), Iron 

Oxide, Fe O  (0.4-0.5%) and Titanium Dioxide, TiO  (1.4-1.6%).  E-sphere is an inert 

material similar to talc, etc (E-spheres, undated). The material may be prone to 

dusting in use. Grinding, milling or otherwise generating dust may create a respiratory 

hazard. In high dust areas the use of goggles and a National Institute of Occupational 

Health and Safety (NIOSH) approved dust respirator is recommended.  

2 2 3

2 3 2

 

They are used in a variety of manufacturing applications because of their unique 

properties and they are [7]: 

• extreme heat resistance; 

• high compressive strength; 



• pure, clean and white. 

In addition to these unique features, E-spheres provide all the benefits you would 

expect from a microsphere.   The typical applications in composites include casting, 

spray-up, hand lay-up, cold/hot press molding, resin transfer molding and syntactic 

foam. 

4. Stress and strain curve 

 

In the tensile test, the force and extension of the test pieces were recorded. Figure 1 

shows a typical curve for the specimen undergoing the test. This graph gives the 

information of tensile force versus tensile elongation. 

 

4.1 Yield Strength 

 

It is the strength at which a definite amount of plastic strain has occurred. Figure 1 

shows that 0.2 % proof load could not be determined because line passing the 0.2 % 

elongation and parallel to the most approximated linear portion of the curve will never 

cut the curve.  The gauge length used should be the separation of the grips and 105 

mm because the elongation of non-ductile material, e.g. this phenolic composite, 

when subjected to tensile force will spread along the sample evenly and not restricted 

to the conventional gauge length of 50 mm [9, 10].  Figure 1 also illustrates how the 

0.1 % proof load was determined.  

 

When the intersection was projected to the y-axis, the load found was 355 N which is 

the 0.1 % offset yield load. Yield strength is calculated using the relationship below 

[8]: 



                             Yield strength =
areationalcrossOriginal

loadYield
sec−

                      (1) 

For example, the yield strength of the sample illustrated in Figure 1 

 =  
areationalcrossOriginal

loadoffset
sec

%1.0
−

 = 
8.38.14

355
x

 = 6.31 (MPa) 

 
 

4.2 Tensile strength 

 

This tensile strength can be calculated by dividing the maximum load with the 

original cross sectional area of the specimen as follows [8]: 

                         Tensile strength =
areationalcrossOriginal

loadMaximum
sec−

                       (2) 

or                                                           
oA

Pmax=σ                                                       (3) 

where Pmax is the maximum load in Newton and Ao is the original cross-sectional area 

in mm2. 

For example, the tensile strength of sample illustrated in Figure 1 

= 
80.38.14

370
x

= 6.58 (MPa). 

 

The tensile strength is most sought after result of a tensile test. It is easy to determine 

and has become a familiar property and is useful for the purposes of specifications 

and quality control of a product.   

 

 

 

 



4.3 Young’s modulus 

 

The Young’s modulus (E) or modulus of elasticity is to measure the stiffness of the 

material. The Young’s modulus can be calculated by calculating the slope of the 

initial linear portion of the stress-strain curve.  As the force-extension curve of the 

material does not posses a perfectly linear portion (Figure 1), the Young’s modulus 

quoted is the secant modulus at a strain of 0.1 percent [11, 12]. The Young’s modulus 

[8]:         

                                                         E=
strain
stress =

ε
σ                                                      (4) 

From (1) and (2), (6) becomes            E = 

o

o

L
L

A
F

Δ
                                                           (5) 

For example, the Young’s modulus of sample illustrated in Figure1 was calculated 

using the data provided from Figure 2, in which a portion of the most linear part of the 

curve was selected; after projecting the top point of the selected linear portion into the 

x- and y- axis respectively, the force (= 250 N) and the extension (= 0.186 mm) were 

obtained and used in the calculation. 

E = 

105
0186.0
8.38.14
0250

−

−
x  = 2509.40 (MPa) = 2.509 (GPa). 

                                                     
5. The Composite Samples  

 

The reinforcer was E-sphere slg (ceramic hollow sphere) particulates and they were 

made 0 % to 35% by weight in the cured phenol formaldehyde composite PF/E-

SPHERES (X %), where x is the percentage by weight of the filler.  As the raw 



materials of the composites are liquid and ceramic hollow spheres, the tensile test 

specimens were cast to shape. The resin is a dark brownish liquid and is first mixed 

with the dark brownish catalyst.  After that the E-sphere slg is added to the mixture 

and they are then mixed to give the uncured composite.  Table 1 shows the mass in 

grams of resin, catalyst and slg required respectively to make 1000 grams of uncured 

composite of 30 % by weight of slg.   

 

The mixture of SLG, resin and accelerator was blended with mechanical blender to 

ensure a more homogenous mixture.  The upper and lower plates and the mould were 

illustrated in Figure 3.  They were clamped by nine screws and springy plastic clamps 

as illustrated in Figure 4.  This proved to be effective and no seeping of the slurry 

took place when the samples were cured under ambient conditions.    The screwed and 

tightened mould combination was slightly vibrated to facilitate the escape of the gases 

and this will certainly reduce the porosity of the specimens.  Finally, before pouring 

the uncured composite into the mould, the upper surface of the lower plate, the 

cavities of the mould, the two faces of the mould and the lower surface of the upper 

plate were sprayed with more releasing agent (canola oil) to enable easy release of the 

samples after curing. The uncured composite was then cast into the moulds (Figure 3) 

curing in ambient conditions.    

 

An MTS 810 Material Testing Systems was used for the tests. The rate of extension 

was made at 1 mm per minute.   

 



After initial 72-hour curing when the test pieces were removed from the mould, they 

were post-cured. This was achieved by baking the pieces in an oven. Oven 

temperatures and times were: 

• 4 hours at 50°C 

• 4 hours at 80°C 

• 2 hours at 100°C 

 

During the initial baking process of 4 hours at 50°C, it was observed that a number of 

test pieces were developing a bow in middle. This bowing was between 1mm and 

4mm in the middle of the piece and seemed to be exacerbated by the higher 

temperature baking processes.  To counteract this, after they were removed from each 

baking session, all test pieces were subject to an approximate 2kg load while between 

two pieces of toughened glass. The time for this weighting was approximately 16 

hours as they cured overnight.  The test pieces were then tested. 

 

6. Results and Discussion 

 

Figure 5 illustrates the yield strengths of varying percentage by weight of E-sphere 

(SLG) reinforced phenol formaldehyde matrix composite.   The yield strength of the 

neat resin was 13.00 MPa.  At 10 percent be weight of SLG, the yield strength was 

highest at 15.80 MPa; after this SLG reinforcement lowered the values of yield 

strength; it dropped dramatically from 9.05 to 4.00 MPa when the percentage by 

weight of SLG were 15 % to 20 % respectively.  From 20% to 35 % by weight of 

SLG, the yield strength values did not vary much but were relatively low and the 



composite will not be suitable for most applications.  Table 2 shows the values of 

yield strength mentioned above with their standard deviation in brackets.   

 

Figure 6 shows the tensile strengths of phenolic composite with varying SLG by 

weight.  The tensile strength of the neat resin was 15.00 MPa.  At 5 percent by weight 

of SLG, the tensile strength was highest at 13.4 MPa and at 10 percent by weight of 

SLG, the tensile strength was still at 13.3 MPa; after this SLG reinforcement dragged 

the values of tensile strength down; it dropped dramatically from 13.30 to 3.00 MPa 

when the percentage by weight of SLG were 10 % to 15 % respectively. The variation 

of tensile strength with respect to percentage by weight of SLG is the same as that of 

yield strength. Table 2 shows the values of tensile strength mentioned above with 

their standard deviation in brackets.   

 

Figure 7 shows the Young’s moduli of varying by weight of E-sphere reinforced 

phenol formaldehyde matrix composite. The Young’s modulus of the neat resin was 

2.51 GPa and it decreased slowly as the percentage by weight of SLG increases (up to 

15 %) and dropped significantly to 1.39 when the percentage by weight of SLG was 

20 %; after that the values did not change much. The values found seem to be 

reasonable when they are compared with those of phenolic formaldehyde (2.76 – 4.83 

GPa) [13].  However, the Young’s modulus of pure phenolic resin in this study is 2.51 

GPa, which is 13.5 % lower than that found by a group of researchers for pure 

phenolic resin (2.9 GPa). The same team used ICI Fiberite resol-type CMXR-6055 

phenolic formaldehyde resin; this research used Chemwatch Borden (Hexion) 

Cellobond J2027L phenolic formaldehyde resin.  On top of it, they did not mention 

the temperatures and duration of soak when they cured the resin and its filler [14].   



They used ceramic particles of diameters between 300 – 600 µm with a specific 

gravity of 1.05 g/cm3; no other details of the filler were mentioned [14].  In this study, 

the diameters of the ceramic particles were between 20 -300 µm.  In general, the 

smaller diameters of the ceramic particles (SLG) can be wetted by and mixed with the 

resin better and this may result in Young’s modulus but this is not the case.  More 

study has to be carried out to remedy this.    Table 2 shows the values of Young’s 

modulus mentioned above with their standard deviation in brackets.   

 

Figure 8 shows the scanning electron microscopy image of phenolic resin post-cured 

for 4 hours at 80 oC at a magnification of 3,500 times.  Voids are found left by the 

evaporation of water formed during condensation polymerization of phenol 

formaldehyde. Despite the voids, its tensile strength was high because the structure is 

better than that shown in Figure 8, which illustrates the scanning electron microscopy 

image of phenolic resin reinforced by 20% by weight of SLG and post-cured for 4 

hours at 80 oC at a magnification of 25,000 times.  It can be found that the voids were 

partially filled by the SLG but the reinforcer did not fuse with the matrix and a gap 

was found between them.  The lack of fusion brought about failure of the composite 

by cutting through the weak SLG when tensile load was applied.     To improve the 

fusion between the reinfoircer and the matrix, other fillers or resin will have to be 

added and this will also be research focus of the Centre of Excellence for Engineered 

Fibre Composites in the near future.   

 

7. Conclusions  

 



This study has evaluated the yield strength, tensile strength and Young’s modulus of 

varying percentage by weight of SLG reinforced phenolic resin; in all cases, the 

fluidity of the slurry composite was high and could be cast easily into moulds.  The 

values with no filler had also been compared with those found by other studies and 

they agreed with each other very well.    It can be argued that when the fusion 

between phenolic resin (matrix) and SLG (reinforcer) is improved by adding some 

other fillers and resins to the composite, its flexural strength will be improved.  The 

best percentage of SLG by weight that can be added to the phenolic resin to give 

maximum yield and tensile strengths is about 10 percent.  The Young’s modulus is 

largest with neat resin.  Also from table 2, it can be found that the standard deviations 

of the yield and tensile strengths, and the Young’s modulus are small and can be 

argued that the values of those mechanical properties are reliable. 
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                              Figure 1: Load against extension of a sample showing the 0.1% proof load 

 
 
         Figure 2: Graph showing how to get data for calculating Young’s modulus in phenolic  
         composite 
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                                                 Figure 3: Moulds for the specimens                           
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                             Figure 4: Screwing and clamping of mould, upper and lower plates 
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                   Figure 5: Yield strength of phenolic composite reinforced with varying SLG by weight 
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           Figure 6: Tensile strength of phenolic composite reinforced with varying SLG by weight 
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             Figure 7: Young’s modulus of phenolic composite reinforced with varying SLG by weight 
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            Figure 8: Phenolic resin post-cured for 4 hours at 80 oC at a magnification of 3,500 times 
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Figure 9:  PF/E-SPHERE (20%) post-cured for 4 hours at 80 oC at a magnification of 25,000 times 

 
 
 

 

 

 

 

 

                                                      



          
Table 1: Weight of materials required to make 1000 g of PF/E-SPHERE (30%)          

 

 Materials Resin 
(R) 

Catalyst 
(C) 

R + C Slg Composite 

Parameters       

Percentage by weight  20 1 --- --- --- 
Percentage by weight  --- --- 7 3 --- 

Weight of materials in 
300 g of PF/SLG (10%) 

 686(g) 14 (g) 700 (g) 300 (g) 1000 (g) 

 
Table 2:  Yield strength, tensile strength and Young’s modulus of phenolic composite reinforced 
with SLG 
 

Mechanical  
properties  

 Percent    
weight 
of SLG 

0 5 10 15 20 25 30 35 

0.1 % Yield strength 
(MPa) 

13.00 
 

15.25 
(2.02) #

15.80 
(1.16) 

 9.05 
(0.54) 

4.01 
(0.302)

3.85 
(0.89) 

5.49 
(0.39) 

5.24 
(0.44)

Tensile strength (MPa) 15.00 
 

16.08 
(3.84) #

15.50 
(1.34) 

 13.57
(1.27) 

6.07 
(0.55) 

 5.84 
(1.45) 

7.95 
(0.71) 

7.94 
(0.97)

Young’s modulus 
(GPa) 

2.27 
(0.08) #

2.97 
(0.27) 

 

2.77 
(0.05) 

 2.52 
(0.12) 

1.69 
(0.14) 

 1.63 
(0.23) 

 2.10 
(0.21) 

2.19 
(0.87)

 

#standard deviation 
 
 
 
                                                            

               

                              


