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Abstract

Next basket recommendation is a critical task in market basket data analysis. It is particularly

important in grocery shopping, where grocery lists are an essential part of shopping habits of

many customers. In this work, we first present a new grocery Recommender System avail-

able on the MyGroceryTour platform. Our online system uses different traditional machine

learning (ML) and deep learning (DL) algorithms, and provides recommendations to users in

a real-time manner. It aims to help Canadian customers create their personalized intelligent

weekly grocery lists based on their individual purchase histories, weekly specials offered in

local stores, and product cost and availability information. We perform clustering analysis to

partition given customer profiles into four non-overlapping clusters according to their grocery

shopping habits. Then, we conduct computational experiments to compare several tradi-

tional ML algorithms and our new DL algorithm based on the use of a gated recurrent unit

(GRU)-based recurrent neural network (RNN) architecture. Our DL algorithm can be viewed

as an extension of DREAM (Dynamic REcurrent bAsket Model) adapted to multi-class (i.e.

multi-store) classification, since a given user can purchase recommended products in differ-

ent grocery stores in which these products are available. Among traditional ML algorithms,

the highest average F-score of 0.516 for the considered data set of 831 customers was

obtained using Random Forest, whereas our proposed DL algorithm yielded the average

F-score of 0.559 for this data set. The main advantage of the presented Recommender Sys-

tem is that our intelligent recommendation is personalized, since a separate traditional ML or

DL model is built for each customer considered. Such a personalized approach allows us to

outperform the prediction results provided by general state-of-the-art DL models.
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1 Introduction

Grocery shopping is a common activity that involves several important factors such as time,

budget, and purchasing pressure [1]. In this context, well-conceived grocery lists can be an effi-

cient planning and budgeting tool. Several studies have indicated that a majority of modern

customers rely on a written, mental, or digital grocery list [2, 3] in order to assist them in their

shopping. Furthermore, the same studies have also revealed that consumers generally had

growing interest in applications that helped them interactively manage their grocery lists,

while informing them about products prices and special offers.

Typically, grocery retailers propose new specials every week to attract new customers and

improve sales and profits. For example, Walters and Jamil [4] have shown that in a regular gro-

cery shopping trip involving cross-category products, 39% of the items in a customer’s basket

were special offers. These authors also concluded that about 30% of surveyed customers were

highly influenced by different coupons and specials.

While special prices sometimes allow customers to make significant savings, thousands of

them are usually released every week, often leading to huge information overload. This makes

the task of selecting the most advantageous offers for a given customer an extremely challeng-

ing one [5].

With the development of online shopping, recent advancements in machine learning tech-

niques, and favorable reactions of many customers to user-friendly applications aiming at

improving their shopping experience, the development of an online recommender grocery

shopping system able to provide valuable individual recommendations seems to be a very rele-

vant task. MyGroceryTour (http://mygrocerytour.ca) is a good example of such a recom-

mender system. MyGroceryTour is a Canadian shopping database and website that allows

users to manage their grocery lists based on available weekly promotions in most major gro-

cery stores located in their area [6].

One of the main purposes of our study is to present a new ML-based recommender system

for grocery shopping based on the MyGroceryTour users’ purchase histories, profiles, prefer-

ences and available weekly specials in order to assist them in creating cost-effective personal-

ized weekly grocery lists (see Fig 1).

Our main contributions are the following:

1. We present our novel personalized Recommender System available on the MyGroceryTour

platform;

2. We perform a clustering analysis to partition Canadian customers into non-overlapping

clusters according to their grocery shopping habits;

3. We define the quantity-based fidelity ratio and the price-based fidelity ratio features to

characterize the customer’s shopping behaviour;

4. We describe and apply a new deep learning RNN-GRU model (i.e. an extended multi-class

DREAM model) to predict whether a given product should be included in the user’s multi-

store basket, and to recommend the store where the purchase should be made (if any);

5. Our clustering and supervised machine learning analyses suggest that different prediction

models (i.e. traditional ML models or DL models) should be used for different groups of

customers.

The paper is organized as follows: We first summarize the related work in the field. Then,

we present the main features of the MyGroceryTour platform and the associated customer-

based recommender system. This is followed by the data and methodology descriptions,
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including the application of clustering, traditional machine learning, and deep learning algo-

rithms. Our main results are then described and discussed in the Results and Discussion sec-

tion, which is followed by our main conclusions.

2 Related work

Recommender systems (RS) [7] have been an increasingly important field of study since the

first research papers on Collaborative Filtering in the mid-90s [8–10], and the expansion of e-

commerce and online shopping [11]. Recommender systems include algorithms and software

aiming at providing users with personalized items recommendations to help them overcome

the data overload issue and to assist them in decision-making processes. The recommended

items represent the output of the recommender system while their nature may vary depending

on the context; among others, the items can include movies, songs, retail products, or online

documents [7, 12].

Nowadays, several strategies to build recommender systems have been described in the lit-

erature. Here, we present the most popular of them, and those related to our case of study.

In their work, Melville and Sindhwani [13] classified RS techniques into three major

categories:

• Collaborative filtering (CF) approaches;

Fig 1. Home page of the MyGroceryTour website. Specials from different stores located near a specified postal code or

address (in Canada) can be added to the user’s basket.

https://doi.org/10.1371/journal.pone.0278364.g001
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• Content-based filtering (CB) approaches;

• Hybrid approaches.

Collaborative filtering is one of the most popular and efficient RS techniques [14, 15]. It is

based on the word-of-mouth concept and admits that a user trusts another user with similar

reasoning and taste. It also makes the assumptions that two similar users have similar interests,

and that two similar items have similar ratings [16]. The most common limitations faced by

CB methods are the cold start and sparse matrix issues [17]. The cold start issue is characterized

by the lack of initial information regarding a newly introduced user or item, whereas the sparse

matrix issue typically occurs when a given user tends to interact with a few items only out of

the massive amount of available products [12, 18, 19].

Content-based filtering, on the other hand, tends to recommend items whose features and

characteristics are similar to other items in which a given user showed positive interest in the

past [20]. This approach requires the use of metadata relative to each considered item what

can sometimes represent a challenge.

In an attempt to overcome the limitations of the collaborative filtering and content-based

filtering techniques, hybrid approaches, trying to combine both of them, have been intro-

duced. The works of Adomavicius et al. [21] as well as, more recently, Lu et al. [12] reviewed

different methods used in the field of RS, highlighting their pros and cons and giving insight

into the future developments in the field.

Recently, several important extensions of traditional RS approaches have been introduced

[22–24]. The main of them are as follows:

• Knowledge-based recommender systems (KBRS);

• Context-aware recommender systems (CARS);

• Demographic-based recommender systems (DBRS).

Knowledge-based recommender systems [25, 26] can be efficiently used for recommending

highly customized products (i.e. real estate or automobiles). Unlike classical methods such as

CF or CB, KBRS looks to obtain explicit user requirements by the direct solicitation, allowing

the user to have more control over the recommendation while building interactive feedback.

Context-aware recommender systems [24, 27] rely on multiple sources of information to

identify a certain context and to generate more accurate recommendations (e.g., recommend-

ing swimsuits instead of winter coats in summer).

Finally, demographic-based recommender systems [28] group users based on their available

demographic attributes (i.e., age, gender, location), assuming that people within the same

group (neighborhood) rate items similarly. This approach has originally been introduced to

improve the quality of recommendations but, it has also proved to be useful for solving the

cold start problem [29].

Let us now recall some recent works addressing the issue of next grocery basket recommen-

dation. Yu et al. [30] introduced an efficient model, called Dynamic REcurrent bAsket Model

(DREAM), based on recurrent neural networks. One of the main advantages of DREAM is

that it is not only able to learn a dynamic representation of a user but also takes into account

global sequential features among baskets. However, the original DREAM model of Yu et al.
was designed to perform binary classification only. For each available product, the model gen-

erates a probability score accounting for the probability that this product will be included in

the next basket purchased by a given customer. Nevertheless, DREAM cannot provide predic-

tions in a multi-store (i.e. multi-class) context, consisting in predicting the store where the rec-

ommended product should be bought. Moreover, in their work, Yu et al. did not consider
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some important features such as product prices, product availability, and weekly specials

offered in local stores. This motivated us to generalize the original DREAM model to a multi-

class classification task to predict both whether a given product should be included in the cus-

tomer’s next basket and in which store the purchase should be made (for more details, see the

Materials and methods section).

Che et al. [31] described a new prediction method using attention-based recurrent neural

networks to detect and model both inter- and intra-basket relationships. The authors proposed

to consider all available user’s baskets to model his/her long-term preferences, whereas the

intra-basket attention model was intended to act on the item level in his/her most recent bas-

kets to predict the user’s behavior and current short-term preferences. Through their adaptive

attention mechanism, Che et al. were able to outperform state-of-the-art methods for next bas-

ket recommendation, although their method applies only in a binary classification context.

Faggioli et al. [32] used the recency factor to predict the consumer’s next grocery basket

applying a CF-based prediction method under a general top-n recommendation framework.

To show the efficacy of their method, the authors compared it with some state-of-the-art CF

models.

Content-based recommendations were also shown to be effective in the field of next basket

and grocery coupon recommendation. In this context, Xia et al. [33] proposed a tree-based CB

model for coupon recommendations. These authors streamlined the coupon selection process

in order to personalize the recommendation and increase the clickthrough rate. Using the ran-

dom forest and XGBoost classifiers, Xia et al. were able to improve the estimated coupon click

rate from 1.20% to 7.80%.

Moreover, Prokhorenkova et al. [34] described and tested a new statistical method based on

the Yandex CatBoost model to predict whether a given customer is sensible to purchase some

selected products. Dou [35] considered real unbalanced shopping data from an e-commerce

platform and used the CatBoost model to predict whether customers will buy or not some

available products. The method proposed by Dou was able provide the prediction accuracy of

88.51%.

Lee et al. [36] proposed to use recurrent neural networks instead of collaborative filtering

techniques to create a multi-period product recommender system related to an online food

market. The system introduced by Lee et al. is able to recommend products by multiple peri-

ods in a time sequence. The authors showed that the proposed recommender system provided

a higher performance in accuracy and diversity in a multi-period perspective than CF-based

systems. Moreover, the proposed system also showed a robust behavior in terms of consumers’

purchasing orders and repetitive purchase patterns.

Zheng and Ding [37] proposed a personalized recommendation system based on an

Immersive Graph Neural Network (IGNN), which is intended to increase the marketing quan-

tity of various commodities, to improve users’ shopping experience, promote sales, and thus

motivate the market development. The authors considered an immersive marketing environ-

ment using deep learning and graph neural network models. However, as suggested by the

authors, the proposed recommendation system was not verified in practical applications.

Thus, the impact of the presented model on real users was not assessed.

Finally, Tahiri et al. [6] have recently proposed to use both recurrent and feedforward neu-

ral networks that were combined to non-negative matrix factorization and gradient boosting

trees in order to build intelligent grocery baskets for the users of the MyGroceryTour platform.

Tahiri et al. considered different features and much less real customers (compared to our

study) to describe the behavior of the MyGroceryTour users. Their best F-score result of 0.37

was obtained when their general prediction model was applied to an augmented dataset. How-

ever, in their work, Tahiri et al. did not perform any clustering analysis and did not consider
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different categories of customers. As we will see in the next sections, this kind of analysis is

very important for improving the prediction performance. Moreover, Tahiri et al. did not

compare the results generated by their DL model with those provided by traditional ML algo-

rithms. Such a comparison is crucial when the data set at hand is rather small. Finally, the DL

model introduced by these authors is not personalized as the same model architecture was

used for all customers considered.

In their paper, Gupta and Shrinath [38] presented a Collaborative Filtering-based model

tailored to overcome the cold start problem. To achieve that, the authors propose to compute

the weighted sum of four different features. The first of them is the items rating obtained using

Weighted Non-negative Matrix Factorization, followed by Affinity Propagation technique.

The three other ratings are graph-related similarity measures based on the users metadata as

well as on their purchasing habits. Gupta and Shrinath reported that their model outperformed

the existing approaches based on Hit Ratio and Normalized Discounted Cumulative Gain.

Li et al. [39] suggested several novel metrics to measure the repetition/exploration ratio and

performance of next basket recommender systems. They compared and analyzed the results of

state-of-the-art next basket recommendation models on three real-world datasets. Their study

was conducted with a focus on their new metrics in order to help illustrate the scope of the cur-

rent state of research and explain the progress provided by the existing approaches as well as

the reasons behind the achievements claimed by the studied methods. Li et al. indicated that

future research on next basket recommendation should consider an analysis of repetition and

exploration behavior to gain useful insights and help to design unbiased models.

Le et al. [40] proposed a framework to model user’s basket sequences. Their hierarchical

network model, called Beacon and based on an LSTM architecture, consists of three main

components, taking as input a basket sequence and a correlation matrix. The basket encoder

component produces correlation-sensitive basket representations after capturing intra-basket

item correlations. The sequence of basket representations is then used as input for a sequence

encoder to extract inter-basket sequential associations. The output from this component is

associated with the correlation matrix, and both are used by the predictor component to pro-

duce the correlation-sensitive next basket. Therefore, Le et al. took into account the correlative

dependencies between items to enhance the representation of individual baskets as well as the

overall basket sequence.

3 Materials and methods

3.1 Mygrocerytour website

MyGroceryTour is a Canadian grocery information platform available in English and French.

The main purpose of MyGroceryTour is to provide users with up-to-date information on the

best grocery deals offered by major grocery retailers in their area, allowing them to compare

the available products and to create personalized weekly grocery lists based on the provided

insights.

The main features of the MyGroceryTour platform are as follows. It allows users to:

1. Search and compare grocery deals in the user’s favorite local grocery stores;

2. Create, save, manage and print weekly grocery shopping lists (see Fig 2);

3. Display a map of local grocery stores and pharmacies available for a given postal code or

address;

4. Compare the price of a selected product in local stores over a 3-month period (see Fig 3);

5. Find popular Canadian coupons;
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6. Display the optimal shopping path based on the user’s shopping list (see Fig 4);

7. Receive email alerts when the user’s favorite products go on sale;

8. Create personalized intelligent grocery lists following a recommendation by machine learn-

ing algorithms (see Fig 5). This recommendation is based on the user’s purchase history,

the availability of the user’s favorite products and the weekly specials offered in local gro-

cery stores and pharmacies.

A MyGroceryTour feature allow customers to compare prices of a selected product at dif-

ferent stores, making it much easier to identify real specials and opportunities. Customers

have the possibility to change their search area depending on their geographical position and

their needs while displaying the available grocery products (the 1 to 20 kilometer distance,

from the user’s home, can be specified). Moreover, the users of MyGroceryTour can easily cre-

ate, manage and save their grocery lists, and then access them at any time.

While users cannot purchase items from retailers directly through the website, they can add

products from different stores to their baskets. Once a weekly grocery list is organized, the sys-

tem will recommend to the user the optimal shortest path starting at the user’s home, passing

by all selected grocery retailers or pharmacies, and ending at the user’s home as well. An effi-

cient algorithm for solving the Generalized Travelling Salesman Problem (GTSP) by Tasgeti-

ren et al. [41] has been implemented by our team, taking into account the real-time local

traffic information provided by Google Maps API and the geographical position of the closest

stores belonging to selected retailers (several stores for a selected retailer can be available in a

given area).

Fig 2. Example of a customer’s grocery shopping list on the MyGroceryTour website.

https://doi.org/10.1371/journal.pone.0278364.g002
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The uniqueness of MyGroceryTour is due to the use of the intelligent recommender system

allowing the registered users to get personalized weekly grocery recommendations based on

the use of the Random Forest and extended RNN-GRU-based DREAM algorithms which

yielded the best prediction results in our experiments (see the Results and discussion section).

A test account with the following coordinates (login: test@test.com; password: 123456) has

been set up. It can be used to test our ML-based recommender system integrated into the

MyGroceryTour platform.

Fig 3. Price comparison for a selected product (Pepsi 2l) in local stores of Montreal over a 3-month period displayed on the MyGroceryTour website. Red dots

represent the best weekly deals for the product selected. Blue dots represent other prices of the product available during a given week. Additional price and store

information becomes available when touching a dot.

https://doi.org/10.1371/journal.pone.0278364.g003
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3.2 Data description

In this section, we present the dataset which was used in our study. We considered 831 users

of the MyGroceryTour web platform with varying amounts of saved weekly grocery lists (vary-

ing between 3 and 99). All real data considered here were anonymized. The data are available

at: https://drive.google.com/file/d/1q-LkWMx5ar-OGlPPLFwSDi-IbLe7ZaIo/view?usp=

sharing. The data collection and analysis method complied with the terms and conditions for

the source of the data. Grocery lists used in our experiments included grocery products the

users planned to buy during a given week (the time period from January 2017 to June 2021

was covered). The following features (i.e, explanatory variables) from the original dataset have

been considered in our experiments:

• user_id (numerical): unique user identifier;

• list_id (numerical): unique shopping list identifier;

• product_id (numerical): unique product identifier;

• category (categorical): category of the product;

• price (numerical): the price of the product;

• special (numerical): discount on the product (in %) compared to its regular price;

Fig 4. An optimal real-time shopping path, based on the user’s weekly shopping list, displayed on the

MyGroceryTour platform.

https://doi.org/10.1371/journal.pone.0278364.g004
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• distance_avg (numerical): average distance between the user’s home and all stores where the

product was available;

• availability (binary): availability of the product at different stores.

We completed this list of features by an additional total_bought feature that represents the

total number of times a given product has been bought by all users.

3.3 Data normalization

Data normalization is a common practice and an important step in both unsupervised and

supervised machine learning [42], and data mining [43]. Data normalization has been proved

theoretically and empirically to be an essential step to obtain better predictions from a model

[44–46]. Normalization allows one to bring all features to the same scale, making them mutu-

ally comparable, thus ensuring stabler learning process and providing better results for both

clustering and supervised learning methods, and specifically for gradient-based algorithms.

Prior to feeding the data to our models, we also applied a standardization method to our con-

tinuous feature (i.e., product’s category), converting it into a numerical vector. We used the

feature_hasher class from scikit-learn [47, 48] to encode the category feature. This class takes

strings as input and converts them into numerical vectors using a hash function.

In our study, we used two popular data normalization techniques: z-score and MinMax

rescaling [49].

Fig 5. Interface of the MyGroceryTour recommender system.

https://doi.org/10.1371/journal.pone.0278364.g005
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Z-score normalization is a rescaling of data so that the normalized data have a mean of 0

and a standard deviation of 1 (Eq 1):

zðxf Þ ¼
xf � mf
sf

; ð1Þ

where z(xf) is the normalized value, and xf is the observed original value of feature f at a given

observation, μf is the mean of f, and σf is the standard deviation of f.
The MinMax normalization is carried out using the following formula (Eq 2):

x0f ¼
xf � minðxf Þ

maxðxf Þ � minðxf Þ
; ð2Þ

where x0f is the normalized value and xf is the observed original value of feature f at a given

observation, min(xf) is the minimum value of feature f over all observations, and max(xf) is the

maximum value of feature f over all observations.

3.4 Clustering methods

Clustering is part of data analysis aiming at finding homogeneous groups of objects in data.

Clustering algorithms are divided according to input data formats and output cluster structure

formats. A generic data format is the so-called object-to-feature matrix X = (xif), in which the

rows xi (i = 1, 2, . . ., N) correspond to given objects (customers in our case) and columns f
(f = 1, . . ., F) correspond to features characterizing those objects (e.g., product’s price, prod-

uct’s rebate (if on special), product’s category in our case). A generic cluster structure format is

a partition of the set of objects in non-overlapping clusters S1, S2, . . ., SK. The number of clus-

ters Kmust be 2 or more, but not too many, so that usually K� N and clusters are aggregate

representations of the data matrix X.

Two data clustering methods, K-means [50] and Ward’s [51] algorithms, have been applied

in our study.

The cluster structure in K-means [50, 52] is specified by a partition S of the set of objects

into K non-overlapping clusters, S = {S1, S2, . . ., SK}. Each partition S is characterized by

the list of objects belonging to each of its clusters Sk (k = 1, . . ., K) and the cluster centroids

ck = (c1, c2, . . ., cK). The problem is to find a partition S = {S1, S2, . . ., SK} and cluster centroids

ck = (c1, c2, . . ., cK) that minimize the sum of squares criterion. The K-means algorithm follows

the so-called alternating minimization scheme for finding a K-cluster partition that minimizes

Criterion (3):

WðS; cÞ ¼
XK

k¼1

X

xi2Sk

XF

f¼1

ðxif � ckf Þ
2
; ð3Þ

where xif is the value of feature f at object xi, and ckf is the value of feature f at centroid ck.
Starting with a random initial partition and a set of centroids c, it tries to find an optimal

partition S that minimizes the sum of squaresW(S, c) for a given c, and then finds the vector c0

that minimizes W(S, c). The procedure is repeated till convergence, that is, till c0 coincides with

c. In practice, the method converges fast to a local minimum which depends a lot on the choice

of the starting partition.

The Ward clustering algorithm [51, 53] follows the so-called agglomerative hierarchical

approach. At each step, this algorithm considers a current partition S = {S1, S2, . . ., SK} with K
clusters and their centers c = {c1, c2, . . ., cK}, and merges two clusters, Sk and Sl, into a new clus-

ter Skl = Sk[Sl, with its center c(k, l) = (Nkck + Nlcl)/(Nk + Nk), where Nk and Nl are the
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cardinalities of clusters Sk and Sl, respectively. The clusters to be merged are selected so that

the increase in the value of Δ(k, l) (Eq 4) reaches its minimum over all k and l (such that k 6¼ l):

Dðk; lÞ ¼WðSðk; lÞ; cðk; lÞÞ � WðS; cÞ; ð4Þ

where S(k, l) denotes the new partition withm − 1 clusters obtained from S by merging Sk and

Sl (i.e. Skl = Sk[Sl), and c(k, l) denotes the centroid of this new partition. The quantities Δ(k, l)’s
are all positive because the value of Criterion (3) decreases as the number of clusters K grows,

so that it becomes zero at K = N. It is not difficult to derive the following formula explicitly

expressing Δ(k, l) through clusters being merged:

Dðk; lÞ ¼
NkNl

Nk þ Nl
dðck; clÞ; ð5Þ

where d(ck, cl) is the Euclidean distance between centroids ck and cl. This formula shows that

the square error criterion tends to merge those clusters whose centers are nearest and whose

sizes are most unbalanced. The generic Ward clustering algorithm starts with a trivial partition

consisting of all singletons being their center, and then merges one by one clusters with the

lowest Ward distance (Eq 5) between them till all objects fall into the unique cluster compris-

ing all of them.

3.5 Supervised machine learning algorithms

In this section, we present the main characteristics of supervised traditional machine learning

and deep learning algorithms used and compared in our work. Their scikit-learn and PyTorch

implementations were used in our computation experiments. The obtained results are pre-

sented in the Results and Discussion section. Importantly, all machine learning algorithms

were applied in a personalized fashion, i.e., a separate machine learning model was constructed

for each of the 831 real users considered in our experiments.

Decision Trees (DT): Decision trees are hierarchical models based on a succession of simple

decision rules [54]. Each decision tree comprises of a root, nodes, branches and leaves. Each

node represents a test of a given attribute, while branches represent the outcome of that test. A

decision is taken upon reaching a leaf that corresponds to the predicted class. The decision

rules are inferred based on the training data, and the features. A popular approach to building

a decision tree is the impurity minimization at each node based on the Gini impurity measure

(Eq 6) that aims at reducing the probability of making errors during the classification. The

Gini impurity measure is defined as follows:

GiniðZÞ ¼ 1 �
XK

k¼1

Pk
2; ð6Þ

where Z is a learning ensemble containing K classes, k is a given class, and Pk is the proportion

of objects belonging to class k.

Random Forest (RF): Random Forest is an ensemble learning algorithm processing several

decision trees [55]. Each decision tree is built on a sub-sample of the training ensemble with

replacement, following a meta-algorithm known as a bootstrap aggregation that aims at mini-

mizing the variance and helping avoid the overfitting. The final decision for an observation is

taken based on a majority vote between the outcomes of all decision trees. The main advan-

tages of the Random Forest algorithm is that it is known to be resistant to potential outliers as

well as to be easily parallelizable.

Gradient Boosting Tree (GBT): Gradient Boosting Trees are an ensemble learning method

using decision trees as weak learners and gradient descent optimization (similarly to neural
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networks) to achieve the best solution for either classification or regression problems [56, 57].

Unlike Random Forest, which relies on bagging, GBT is based, as indicated by its name, on

boosting. The algorithm is iterative. It tries to minimize the loss function by sequentially fitting

a new tree at each step and correcting the prediction error from the previous steps. There exist

different implementations of GBT, and some of them often perform better than others in prac-

tice. In this study, we used the scikit-learn, XGBoost and Catboost implementations of the

GBT algorithm [58–60]. Previous works in both classical and deep learning literature have

shown that ensemble methods (boosting and bagging) of multiple weak learners can drastically

improve the performance upon the baseline algorithm. Moreover, boosting tends to outper-

form bagging on datasets which contain uneven data coverage, hence our choice of XGBoost

and CatBoost algorithms.

Naive Bayes (NB): Naive Bayes is the simplest form of a Bayesian network. This probabilistic

approach is based on Bayes’ theorem (Eq 7), defined as follows:

PðyjXÞ ¼
PðyÞPðXjyÞ
PðXÞ

; ð7Þ

where y is the class and X is the set of features. One of the main drawbacks of Naive Bayes is

that it makes the strong assumption that all considered features are independent, which rarely

occurs in real-life scenarios. Nonetheless, Naive Bayes has been known to provide competitive

results in some cases, especially in spam detection and in sentiment analysis [61, 62].

Support Vector Machines (SVM): A Support Vector Machine algorithm attempts to separate

a given dataset using a hyperplane. While an infinity of different hyperplanes may exist for

that task, SVM chooses the one maximizing the margin between representative observations

belonging to each class. These observations are called support vectors [63]. SVM introduces

the concept of soft margin to deal with outliers or non-linear data, and it permits the algorithm

to choose a hyperplane while allowing a few mistakes to obtain a better final separation [64].

However, the data are often not linearly separable even when soft margins are used. In this

case, it is possible to transform the data, considering a higher dimensional space which allows

for a better class separation. This is achievable through the use of kernel functions such as the

radial basis function (rbf) (Eq 8) defined as follows:

Kðxi; xjÞ ¼ expð� gjjxi � xjjj
2
Þ; ð8Þ

where γ is the kernel function coefficient set by the user beforehand [65, 66]. The choice of the

most appropriate kernel function is usually guided by trial and error.

Logistic Regression: Logistic Regression is a simple classification model using a logistic func-

tion (Eq 9) to model the probability of all outcomes of a single trial [67]. It is usually of the fol-

lowing form:

f ðxÞ ¼
1

1þ e� ðx� mÞ=s
; ð9Þ

where μ is a location parameter and s is a scale parameter proportional to the variance.

Multilayer Perceptron (MLP): The perceptron is a binary classifier, and the simplest type of

neural network [68]. A perceptron’s classification is obtained by calculating the scalar product

of the input data (x1, x2, . . ., xn) and the weights (w1, w2, . . ., wn), and by adding a bias b to the
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result. The perceptron then acts as a threshold function providing the final prediction (Eq 10):

f ðxÞ ¼

(
1; if w � xþ b � 0;

0; otherwise:
ð10Þ

The training phase of the perceptron consists of finding the optimal values of the weights

through an iterative process of comparing the expected output y to the predicted output y0

until the algorithm converges for the whole dataset.

A Multilayer Perceptron (MLP) is an artificial neural network with an input layer, a hidden

layer, and an output layer consisting of interconnected neurons (or perceptrons). Whereas a

simple perceptron is only capable of performing binary classification and linear separation of

the data, a Multilayer Perceptron is able to capture complex relationships and perform multi-

class classification. The data are fed through the input layer, then processed through the hid-

den layer, while the final output layer gives the final decision. The MLP training phase is simi-

lar to that of a simple perceptron—it is also an iterative process aimed at finding the optimal

vector of weights w by comparing the predicted class y0 with the real class y. However, consid-

ering its more sophisticated nature and the presence of a hidden layer, the MLP relies on back-

propagation to handle the errors during the training phase [69].

Proposed RNN-GRU model: A recurrent neural network (RNN) is a deep learning network

designed to embed sequential time-dependent data. In this study, we used a gated recurrent

unit (GRU) RNN architecture to represent users’ baskets. Precisely, we generalized the

DREAM (Dynamic REcurrent bAsket Model) model proposed by Yu et al. [30] to predict the

next basket content. Moreover, we used some additional features such as product prices, prod-

uct availability, and weekly specials offered in local stores, which were not considered by Yu

et al. We applied some important modifications to the original DREAM model to adapt it to a

multi-class classification (only a binary classification problem is considered in [30]). Specifi-

cally, we embedded each available product using an Embedding layer in PyTorch, which was

concatenated with the rest of the features passed through a two-layer perceptron; thus, each

product was represented by an augmented vector (see Fig 6 for a schematic view of the pro-

posed model’s architecture).

Precisely, our RNN architecture contained 2 GRU layers of 64 neurons each. The parameter

optimization was carried out by the RMSProp optimizer in PyTorch. We selected the optimal

Fig 6. Architecture of our extended DREAM RNN-GRU model for next basket prediction using the Bayes Personalized Ranking (BPR) loss function.

https://doi.org/10.1371/journal.pone.0278364.g006
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learning rate using 5-fold cross-validation. To prevent overfitting, we trained the model with a

drop-out rate of 0.1.

Since, in this work, we study the benefits of training a single model per user, no explicit

user embedding needs to be constructed. Each basket bi was treated as an arbitrary permuta-

tion of products bi = {pi,1, .., pi,n} encoded within the augmented feature space, which was then

summarized by the GRU cells into hi,t. The hidden embedding hi,t acts as an implicit user

representation, since it stores information regarding the user’s shopping baskets.

To obtain the product’s affinity score, i.e. the score proportional to the probability of the

product pi,t to be included in a basket containing the products pi,1, ..pi,t−1, pi,t+1, .., pi,n, we mul-

tiplied the product embedding matrixM by the hidden embedding hi,t (Eq 11):

oi;t ¼ MThi;t: ð11Þ

A higher score oi,t indicates that the user is more likely to purchase the corresponding item.

The Bayesian Personalized Ranking (BPR) loss was used to approximate and maximize the fol-

lowing probability (Eq 12):

pðbi; v � v0Þ ¼ sðoi;v � oi;v0 Þ; ð12Þ

where v denotes a positive item included in the basket bi, v0 denotes a negative item not

included in the basket bi, and σ(x) is the logistic activation function to map onto probability

space. To implement this objective, we sampled a number of negative items that were absent

in the current basket bi (in our experiment, the number of negative items was equal to the

number of positive items in bi), and maximized the expectation probability over all products

and baskets (Eq 13):

‘RNN ¼ Ebi
½Ev;v0 ½pðbi; v � v0Þ��: ð13Þ

To process sequential data, for example for market basket recommendation, it is common

to use recurrent prediction mechanisms (e.g. LSTM, GRU or vanilla RNN). While other alter-

natives exist, they either tend to underperform in recommendation tasks (e.g. Causal 1d con-

volutions), or require a large amount of good-quality data (e.g. self-attention and transformer

mechanisms). Since our data does not require the prediction of extremely long sequences,

using a GRU cell is a suitable design choice which balances out predictive performance with

training speed.

3.6 Parameters optimization and cross-validation

Parameters tuning is a decisive step when building a machine learning model since most of the

models are heavily reliant on their selected parameters and provide substantially better perfor-

mance when properly optimized. Ignoring the optimization of parameters can lead to the

selection of a sub-optimal solution at the end of the experimentation.

There exist several methods to optimize the model’s parameters such as Grid Search, Ran-

dom Search or Bayesian optimization [70, 71].

Grid search takes a grid of parameters and carries out exhaustive testing with all parameter

combinations in order to ultimately select the one that yields the best results for the data at

hand. In this study, we used Random Search as the parameter optimization technique for the

models listed in the subsection 3.5. Similarly to Grid Search, Random Search considers a grid

of parameters and values. However, Random Search conducts trials on random combinations

of parameters instead of performing exhaustive search. This allows one to use distributions

instead of specific values for continuous settings and ensures a better time and resource man-

agement (the running time is not necessarily related to the amount of parameters/values as the
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number of parameter combinations to be tested can be fixed by the user). Random Search

has been shown to outperform Grid Search in terms of both the results and the running time

[70].

While using Random Search, we carried out cross-validation (k-fold) to ensure that the best

selected model does not overfit the data [72, 73]. K-fold cross-validation is a common model

validation technique in machine learning which consists in dividing the data into k equally

sized sub-samples. A single sub-sample is then retained for validation purposes as the model is

trained on the rest of the data (i.e. on the remaining k − 1 sub-samples). This process is

repeated k times using each sub-sample exactly once for validation. The final evaluation of the

model is the average of the k results. In our experiments, we set k = 5 (which is a commonly

used number of sub-samples) [74]. Using this methodology we were able to optimize the

parameters of the 10 machine learning described in the subsection 3.5, making sure that the

results presented in Tables 1–3, are not due to data overfitting and correspond to real-case

scenarios.

Table 1. F-scores provided by supervised ML/DL methods for all users of the MyGroceryTour website as well as for each of the four identified clusters of users. The

best overall results are highlighted in bold.

ML/DL method All Users Cluster 1 Cluster 2 Cluster 3 Cluster 4

831 users 278 users 276 users 214 users 63 users

Decision Tree 0.418 0.473 0.306 0.487 0.425

Random Forest 0.516 0.583 0.355 0.643 0.508

Gradient Boosting Tree 0.435 0.496 0.313 0.509 0.444

CatBoost 0.465 0.534 0.288 0.619 0.414

XGBoost 0.438 0.501 0.312 0.521 0.431

Naive Bayes 0.268 0.352 0.203 0.221 0.347

SVM-RBF 0.514 0.579 0.337 0.662 0.482

Logistic Regression 0.503 0.562 0.363 0.616 0.470

MLP 0.437 0.489 0.296 0.547 0.454

RNN (GRU) 0.559 0.568 0.506 0.605 0.597

Average F-score 0.455 0.514 0.328 0.543 0.457

https://doi.org/10.1371/journal.pone.0278364.t001

Table 2. Recall / Sensitivity provided by supervised ML/DL methods for all users of the MyGroceryTour website as well as for each of the four identified clusters of

users. The best overall results are highlighted in bold.

ML/DL method All Users Cluster 1 Cluster 2 Cluster 3 Cluster 4

831 users 278 users 276 users 214 users 63 users

Decision Tree 0.602 0.625 0.481 0.714 0.596

Random Forest 0.689 0.738 0.497 0.872 0.665

Gradient Boosting Tree 0.627 0.653 0.503 0.749 0.609

CatBoost 0.605 0.661 0.390 0.824 0.530

XGBoost 0.633 0.671 0.503 0.755 0.598

Naive Bayes 0.564 0.587 0.529 0.556 0.611

SVM-RBF 0.588 0.661 0.383 0.758 0.557

Logistic Regression 0.643 0.701 0.490 0.778 0.576

MLP 0.587 0.648 0.413 0.719 0.599

RNN (GRU) 0.729 0.723 0.648 0.834 0.754

Average Recall 0.626 0.666 0.483 0.755 0.609

https://doi.org/10.1371/journal.pone.0278364.t002
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3.7 MyGroceryTour recommender system

In order to determine the products to be recommended to a given user by the MyGroceryTour

recommender system, we classify all the products based on the user’s purchase history, current

specials information and products availability in each of local grocery stores considered. In

order to be able to classify the products efficiently, the use both positive and negative feedbacks

is necessary. One personalized machine learning model (i.e. one model per user) is built and

weekly updated in our system.

While we consider the products bought by a given user as positive feedback, we regard as

negative feedback all the products that were available to this user at the time of the order but

not acquired by him/her. For an order of size S, if T is the total number of products available

to the user at the time of the order, then the negative feedback N for that order is N = T − S.

Typically, N represents thousands of products, while S usually varies from 5 to 50. This dif-

ference in size between positive and negative feedback leads to unbalanced training data and

may result in a significant loss in performance. Similarly to Xia et al [33], we decided to use an

undersampling method to balance the user’s data instead of considering negative feedback all

available and disregarded items. Undersampling methods have proven to be efficient for both

binary and multi-class classifications [75, 76].

As the number of products recommended by the machine learning models is often greater

than an average grocery list size, Su, calculated for a given user u, for the final recommendation

only the Su items with the highest confidence scores were retained. Typically, the confidence

score was calculated as the probability estimate for the predicted class for a given observation;

it can for instance be obtained using the predict_proba function in scikit-learn.

4 Results and discussion

4.1 Clustering analysis

As mentioned above, we first used clustering to identify the profiles of the users of MyGrocery-

Tour. To do so, we considered the following features:

• avg_price (numerical): the average price of products bought by a specific user;

• avg_special (numerical): the average discount percentage on products bought by a specific

user;

Table 3. Accuracy (in %) provided by supervised ML/DL methods for all users of the MyGroceryTour website as well as for each of the four identified clusters of

users. The best overall results are highlighted in bold.

ML/DL method All Users Cluster 1 Cluster 2 Cluster 3 Cluster 4

831 users 278 users 276 users 214 users 63 users

Decision Tree 40.5 46.5 30.1 44.8 42.4

Random Forest 49.3 55.6 33.3 60.9 48.9

Gradient Boosting Tree 41.5 47.5 30.1 47.4 42.9

CatBoost 47.4 54.8 29.8 60.3 45.3

XGBoost 41.8 48.4 29.5 48.0 42.4

Naive Bayes 34.7 42.0 26.2 35.9 40.7

SVM-RBF 50.3 56.6 33.6 63.8 46.8

Logistic Regression 47.3 53.1 33.9 57.2 44.4

MLP 42.1 47.3 29.5 50.0 44.9

RNN (GRU) 53.3 54.1 48.4 57.1 57.8

Average Accuracy 44.8 50.4 32.4 52.5 45.6

https://doi.org/10.1371/journal.pone.0278364.t003
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• avg_list_size (numerical): the average size of the shopping list of a specific user;

• pca_category (numerical): this feature accounts for the category of products selected by a

specific user. Here, we built a 831 × 24 matrix (831 is the number of users and 24 is the num-

ber of available categories) reflecting the user’s choice of different categories of products.

Each value of this matrix represents the number of items of a given category acquired by a

specific user. We carried out the PCA analysis to reduce the matrix dimension and to deter-

mine the percentage of variance accounted by the main principal axes. The first (principal)

PCA axis accounted for 72.6% of the total variance, the second axis for 12.1%, whereas the

variance explained by the remaining axes was negligible. We decided to keep for our cluster-

ing analysis a single transformed feature representing the product’s category. The new trans-

formed feature corresponds to the normalized values of the first principal axis. This allows

us to give the same weight to all features considered by clustering algorithms.

• avg_fidelity_ratio (numerical): the average of the quantity-based fidelity ratio (QFR) and the

price-based fidelity ratio (PFR) defined in Eqs (14) and (15), respectively. Here, avg_fru =

(QFRu + PFRu)/2, where u is a given user, avg_fru is the average fidelity ratio, QFR is the

quantity-based fidelity ratio and PFR is the price-based fidelity ratio.

The quantity-based fidelity ratio (QFR) and the price-based fidelity ratio (PFR) defined

below are both meant to give insight on the customer’s fidelity to his/her favorite store.

The QFR value close to 1 indicates that a given consumer tends to do his/her grocery shop-

ping in the same (favorite) store, whereas the QFR value close to 0 indicates that the customer

tends to do his/her grocery shopping in many different stores. The quantity-based fidelity

ratio is defined as follows:

QFRu ¼

Xmax;u
Xtotal;u

¼ 1; if n ¼ 1

Xmax;u �
1

ðn � 1Þ

Xn

i¼2
Xi;u

Xtotal;u
; if n > 1

8
>>>>>><

>>>>>>:

ð14Þ

where u represents a given user, n is the total number of stores where the user u (n 2 N�)
bought at least one product, Xmax,u is the total number of products acquired by the user u in

his/her favorite store (i.e. where he/she made most of his/her purchases), and Xtotal,u
(Xtotal;u ¼ Xmax;u þ

Pn
i¼2
Xi;u) is the total number of products purchased by the user u over all

the stores where he/she bought at least one product.

Similarly, the price-based fidelity ratio (PFR) depends on a total price of the products

acquired by the customer in his/her favorite store. The price-based fidelity ratio is defined as

follows:

PFRu ¼

Pmax;u
Ptotal;u

; if n ¼ 1

Pmax;u �
1

ðn � 1Þ

Xn

i¼2
Pi;u

Ptotal;u
; if n > 1

8
>>>>>><

>>>>>>:

ð15Þ

where u represents a given user, n is the total number of stores where the user u (n 2 N�)
bought at least one product, Pmax,u is the total price of all products acquired by the user u in
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his/her favorite store, and Ptotal,u (Ptotal;u ¼ Pmax;u þ
Pn

i¼2
Pi;u) is the total price of all products

purchased by the user u over all the stores where he/she bought at least one product.

The input data for clustering analysis consisted of a matrix of 831 observations (i.e. corre-

sponding to the 831 selected users of MyGroceryTour) and 5 features. Prior to performing

clustering, we normalized the data at hand. We tested both Z-score and MinMax normaliza-

tions. The results presented below have been obtained using MinMax normalization as it pro-

vided slightly better clustering results than Z-score. The clustering analysis was carried out

using both the Ward algorithm [51], which is one of the most popular hierarchical clustering

algorithms, and K-means [50], which is certainly the most popular partitioning algorithm,

through their scikit-learn implementations. The default scikit-learn parameters of the Ward

and K-means algorithms were used.

We used the popular Silhouette [77] and Davies-Bouldin (DB) [78] cluster validity indices

to determine the number of clusters in our dataset.

The Silhouette width is defined as follows. Given a partition P of a data set X with N objects,

the Silhouette width s(xi), for object xi 2 X, represents the degree of correspondence between

xi and the partition. The average distance from object xi to its cluster Ck can be defined as fol-

lows (Eq 16):

aðiÞ ¼
1

jCkj

X

j2Ck

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dðxi; xjÞ

q
; ð16Þ

and the distance to a nearest object in another cluster as follows (Eq 17):

bðiÞ ¼ min
Ck:xi=2Ck

f
1

jCkj

X

j2Pk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dðxi; xjÞ

q
g: ð17Þ

The Silhouette width for an object s(xi) is defined as the relative difference between a(xi)
and b(xi) (Eq 18):

sðxiÞ ¼
bðxiÞ � aðxiÞ

maxfaðxiÞ; bðxiÞg
: ð18Þ

The global Silhouette width value is then defined as follows (Eq 19):

sðPÞ ¼
1

N

X

xi2X
ðxiÞ: ð19Þ

It represents the extent of consistency of partition P. The maximum value of s(P) corre-

sponds to the “right” number of clusters.

The Davies-Bouldin index is the average similarity between each cluster Ci for i = 1, . . ., k
and its most similar counterpart Cj. It is calculated as follows (Eq 20):

DB ¼
1

k

Xk

i¼1

max
i6¼j

Sij; ð20Þ

where Sij is the similarity value between clusters, calculated as (di + dj)/δij, where di are dj are

the the mean distances between the objects in cluster Ci and Cj, respectively, and the cluster

centroids, and δij is the distance between the centroids of clusters Ci and Cj. The minimum

value of the DB index corresponds to the “right” number of clusters.

While the highest value of the Silhouette and the lowest value of the Davies-Bouldin indices

were found for the solution with K = 2 clusters, we present here the most interesting solution

found for K = 4 clusters (see Fig 7). This solution corresponds to the highest local maximum of
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the Silhouette and the lowest local minimum of the Davies-Bouldin indices (see Fig 8). We

used the t-distributed Stochastic Neighbor Embedding (tSNE) [79] as a dimensionality reduc-

tion method to visualize the clustering solution provided by the Ward algorithm (see Fig 7).

During our experiments, we used the perplexity of 30 and the learning rate of 925 as

Fig 7. Clustering results: Clustering solution provided by the Ward algorithm for K = 4 clusters (i.e best number

of clusters according to the Silhouette and Davies-Bouldin cluster validity indices). Dimentionality reduction after

clustering was performed by t-SNE (for visualization purposes). The 4 clusters of customers found by hierarchical

Ward-based clustering are represented by different colors (Cluster 1 of 278 users—in red, Cluster 2 of 276 users—in

green, Cluster 3 of 214 users—in blue, Cluster 4 of 63 users- in yellow.

https://doi.org/10.1371/journal.pone.0278364.g007

Fig 8. Silhouette and Davies-Bouldin cluster validity scores variation with respect to the number of clusters.

https://doi.org/10.1371/journal.pone.0278364.g008
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parameters for the tSNE method, whereas the tSNE initialization parameter was based on prin-

cipal component analysis [80] in order to preserve the general shape of the data.

It is worth mentioning that the clustering solution provided by K-means (for K = 4 clusters;

this solution is not presented here) was similar, but had a slightly more important cluster over-

lap, compared to that found by Ward. The four user profiles shown in Fig 7 are as follows:

• Cluster 1 (in red in Fig 7) includes customers who are moderately sensible to specials and

usually buy their groceries in the same store (i.e, have high fidelity ratios);

• Cluster 2 (in green in Fig 7) is the most diverse cluster that consists of customers buying

their groceries in different stores (i.e., have low fidelity ratios). The members of this cluster

are usually, sensitive to specials;

• Cluster 3 (in blue in Fig 7) comprises customers who usually purchase the same (or similar)

products in the same store (i.e. have high fidelity ratios), almost not reacting to specials;

• Cluster 4 (in yellow in Fig 7) includes customers who are very sensitive to specials and buy

their groceries in the same store (i.e., have high fidelity ratios).

4.2 Application and comparison of supervised machine learning algorithms

To assess the performance of the 10 traditional machine learning and deep learning algorithms

considered in our study, we used F-score, which is a popular and reliable metric used to evalu-

ate classification methods [81–83]. F-score is the harmonic mean of the precision and recall. It

is defined as follows (Eq 21):

F ¼
2� Precision� Recall
Precisionþ Recall

; ð21Þ

where the recall is defined as TP
TPþFN and the precision as TP

TPþFP, and TP are true positives (cor-

rectly classified positive samples), TN are true negatives (correctly classified negative samples),

FP are false positives (negative sample classified as positives), and FN are false negative (posi-

tive samples classified as negatives).

4.3 Results

The F-score results for the traditional machine learning and deep learning algorithms consid-

ered in our study are presented in Table 1. In this table, the overall average F-score results

(obtained over all 831 users of MyGroceryTour) are presented along with cluster

performances.

We can observe that three algorithms stand out by outperforming the rest of the methods,

providing the best F-score performance for at least one cluster of users. The best overall result

consisting in F-score of 0.559 was yielded by our RNN-GRU model. This model also provided

the best average results for the users from Cluster 2 (with F-score of 0.506) and those of Cluster

4 (with F-score of 0.597), whose behavior is the most difficult to predict. Random Forest

returned the best results for the users of Cluster 1 (with F-score of 0.583), whereas the radial

basis SVM provided the best results for the users of Cluster 3 (with F-score of 0.662; the behav-

iour of the users from this cluster was the easiest to predict). We can also notice that baseline

algorithms such as Naive Bayes and Decision Tree consistently underperformed across all

clusters.

These promising performance of the generalized RNN-GRU DREAM model, which learns

a dynamic representation of a given user and captures global sequential characteristics existing
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among the user’s baskets, best suited to personalized basket recommendation task. It is capable

of modeling the behaviour of the most diverse group of users, i.e., those forming Cluster 2,

who buy their groceries in different stores and are sensitive to specials.

Tables 2 and 3 present respectively the Recall and Accuracy results provided by the ML and

DL algorithms considered in our study. These results are usually concordant with the F-score

results reported in Table 1 as in both cases the RNN-GRU algorithm outperforms the other

methods for the whole set of 831 users.

Figs 9 and 10 illustrate the impact of the number of baskets and the average basket size on

the prediction performance of Random Forest (the best traditional machine learning algo-

rithm) and RNN-GRU (the best deep learning algorithm), respectively. We can observe that

both Random Forest and RNN-GRU work best for users with high numbers of baskets (75 and

greater), although the impact of the number of baskets is more important for Random forest

(see Fig 9a).

On the other hand, a larger average basket size does not always results in a better prediction

performance. For example, Random Forest (see Fig 9b) is less effective for users with an aver-

age basket size over 20 items than for those with an average basket size varying from 16 and 20

items. This could be due to complex relationships between items within the baskets. The per-

formance of RNN-GRU seems to be less affected by the basket size, although this algorithm

works better for users having more than 5 items in their baskets on average.

5 Conclusion

In this paper, we presented a novel personalized Recommender System included in the

MyGroceryTour web platform, which is designed to suggest the best weekly grocery deals to

Canadian customers. Our system applies the most appropriate ML or DL prediction model

(see Fig 11) to provide a given customer with a weekly grocery list that suits him/her best as

well as the list of stores in which the customer should purchase each product being recom-

mended. Our system takes into account several features related to the customer’s purchase his-

tory as well as features related to the current price and availability of products in local grocery

stores. One of the advantages of our Recommender System is that it can recommend to each

Fig 9. Boxplots constructed for the Random Forest prediction results: (a) F-score variation with respect to the number of baskets; (b) F-score variation with

respect to the number of products per baskets.

https://doi.org/10.1371/journal.pone.0278364.g009
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customer the products he/she has never bought before, which can be helpful to discover new

relevant products or be aware of limited-time deals.

Our results demonstrate that different ML and DL methods should be applied for different

clusters of users (see the results in Tables 1–3). To identify these groups of users according to

their shopping behavior, we carried out two representative clustering algorithms, K-means

(partitioning algorithm) and Ward (hierarchical clustering algorithm), which are known for

their simplicity and speed. Our clustering analysis, conducted using Ward’s algorithm, divided

the entire group of 831 Canadian customers considered in this work into four clusters accord-

ing to their shopping habits. In this study, we also introduced the average fidelity ratio feature

used in our clustering analysis. This feature was defined as the average of the quantity-based

fidelity ratio and the price-based fidelity ratio (PFR) introduced via Eqs (14) and (15), respec-

tively. We then used different traditional machine learning and a new deep learning models to

provide next basket recommendations. Interestingly, the average F-score values obtained for

users from different clusters were quite different (see Table 1). They varied from 0.328 (for

users of Cluster 2—who buy their groceries in different stores, and are sensitive to specials) to

0.543 (for users of Cluster 3—who usually purchase the same, or similar, products in the same

store, and are not very sensitive to specials). We can also observe that some of ML methods

were much better than others in recommending items for a specific cluster of users. Thus, it

would be plausible to apply different prediction methods for different groups of customers:

Random Forest for customers from Cluster 1, RNN-GRU for customers from Clusters 2 and 4,

and SVM-RBF for customers from Cluster 3. Overall, the best results were provided by our

RNN-GRU implementation. In terms of the average F-score, it outperformed Random Forest,

the second best performing model, by 0.043. RNN-GRU also yielded the most consistent

results across all clusters. The flowchart presented in Fig 11 provides a general overview of our

Recommender System.

The superiority of the proposed RNN-GRU model indicates that in a grocery shopping con-

text, temporal behaviour of the user, which reveals the user’s dynamic interests at different

times, and sequential characteristics of shopping baskets, which reflect interactions between all

user’s baskets over time, are two crucial prediction factors for next basket recommendation.

Our promising prediction results can be explained by the nature of the data: indeed, grocery

Fig 10. Boxplots constructed for the RNN (GRU) prediction results: (a) F-score variation with respect to the number of baskets; (b) F-score variation with

respect to the number of products per baskets.

https://doi.org/10.1371/journal.pone.0278364.g010
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data are often very repetitive as users tend to buy a core of similar items (such as first necessity

products) regularly, thus developing constant habits.

It is important to note that in terms of F-score our personalized RNN-GRU model outper-

formed the recent general LSTM-based model proposed by Tahiri et al. [6] by 0.339 when we

used the new data available on the MyGroceryTour platform. Furthermore, for the augmented

data considered by Tahiri et al., our F-score result was 0.189 higher than that of Tahiri and co-

authors. The model introduced in our study is personalized (i.e. the model’s parameters are

tuned for each user). Specifically, our current model is equivalent to training a single aggregate

model (as that of Tahiri et al.) for all users, and conditioning the inputs on the user embedding.

Thus, in our current model, the implicit user embedding is the ground-truth one-hot vector.

This explains its superior performance compared to the aggregate model of Tahiri et al. The

LSTM models tend to be heavier for inference and training needs than GRUs, which is a limit-

ing factor in our use-case. However, it is indeed possible to swap out one for the other in most

practical setting, when the sequence length is not too large.

Fig 11. Overview of the proposed recommendation framework.

https://doi.org/10.1371/journal.pone.0278364.g011
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Table 4. Comparison of the performance of some recent ML and DL models used for next basket recommendation.

Study Year Classification type Model Accuracy F-

score

Recall nDCG Data

Yu et al. (Ta-Feng) 2016 Binary DREAM N/A 0.070 N/A 0.086 Two real-world

Yu et al. (Ta-Feng) 2016 Binary TOP N/A 0.045 N/A 0.072 datasets

Yu et al. (Ta-Feng) 2016 Binary NMF N/A 0.054 N/A 0.075 (Ta-Feng1, T-mall2)

Yu et al. (Ta-Feng) 2016 Binary MC N/A 0.052 N/A 0.075

Yu et al. (Ta-Feng) 2016 Binary FPMC N/A 0.059 N/A 0.082

Yu et al. (Ta-Feng) 2016 Binary HRM N/A 0.069 N/A 0.084

Yu et al. (T-mall) 2016 Binary DREAM N/A 0.073 N/A 0.173

Yu et al. (T-mall) 2016 Binary TOP N/A 0.018 N/A 0.040

Yu et al. (T-mall) 2016 Binary NMF N/A 0.043 N/A 0.110

Yu et al. (T-mall) 2016 Binary MC N/A 0.024 N/A 0.048

Yu et al. (T-mall) 2016 Binary FPMC N/A 0.057 N/A 0.130

Yu et al. (T-mall) 2016 Binary HRM N/A 0.069 N/A 0.159

Xia et al. 2017 Binary RF N/A 0.850 0.780 0.969 Anonymized coupon

Xia et al. 2017 Binary XGBoost N/A 0.800 0.830 0.857 data

Che et al. (Ta-Feng) 2019 Binary IIAAN N/A 0.134 0.159 0.158 Three real-world

Che et al. (Taobao) 2019 Binary IIAAN N/A 0.022 0.034 0.021 datasets (Ta-Feng1,

Che et al. (JingDong) 2019 Binary IIAAN N/A 0.164 0.295 0.157 Taobao3, JingDong4)

Tahiri et al. (MyGroceryTour data) 2019 Binary LSTM, NNMF, GBT 27% 0.220 0.510 N/A MyGroceryTour data (for

Canada, 2019)

Tahiri et al. (augmented

MyGroceryTour data)

2019 Binary LSTM, NNMF, GBT 49% 0.370 0.700 N/A Augmented MyGroceryTour

data (2019)

Le et al. (Ta-Feng) 2019 Binary LSTM N/A 0.064 N/A N/A Three real-world

Le et al. (Delicious) 2019 Binary LSTM N/A 0.050 N/A N/A datasets (Ta-Feng1,

Le et al (Foursquare). 2019 Binary LSTM N/A 0.036 N/A N/A Delicious5, Foursquare6)

Lee et al. (Instacart) 2020 Binary LSTM-CUMMP N/A 0.194 N/A N/A Instacart7 (2017)

Faggioli et al. (Dunnhumby) 2020 Binary UP-CF N/A N/A N/A 0.212 Two real-world grocery datasets:

Faggioli et al. (Instacart) 2020 Binary UP-CF N/A N/A N/A 0.429 Dunnhumby8 and Instacart7

(2017)

Zheng and Ding (Book-Crossing) 2022 Binary IGNN N/A N/A 0.275 N/A Three real-world datasets:

Zheng and Ding (Yelp) 2022 Binary IGNN N/A N/A 0.149 N/A Book-Crossing9,

Zheng and Ding (Foursquare) 2022 Binary IGNN N/A N/A 0.204 N/A Yelp10, Foursquare6

Our study (MyGroceryTour data) 2022 Multi-class (multi-

store)

RNN-GRU (extended

DREAM)

53.3% 0.559 0.729 N/A MyGroceryTour data11 (for

Canada, 2022)

1 Ta-Feng dataset url: https://www.kaggle.com/datasets/chiranjivdas09/ta-feng-grocery-dataset
2 Tmall dataset url: https://tianchi.aliyun.com/dataset/dataDetail?dataId=53
3 Taobao dataset url: https://www.kaggle.com/datasets/pavansanagapati/ad-displayclick-data-on-taobaocom
4 JingDong dataset url: https://www.datafountain.cn/competitions/247/datasets
5 Delicious dataset url: https://grouplens.org/datasets/hetrec-2011/
6 Foursquare dataset url: https://sites.google.com/site/yangdingqi/home/foursquare-dataset
7 Instacart dataset url: https://www.kaggle.com/c/instacart-market-basket-analysis
8 Dunnhumby dataset url: https://www.kaggle.com/datasets/frtgnn/dunnhumby-the-complete-journey
9 Book-Crossing dataset url: http://www2.informatik.uni-freiburg.de/~cziegler/BX/
10 Yelp dataset url: https://www.yelp.com/dataset
11 MyGroceryTour dataset url: https://drive.google.com/file/d/1q-LkWMx5ar-OGlPPLFwSDi-IbLe7ZaIo/view?usp=sharing

https://doi.org/10.1371/journal.pone.0278364.t004
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Table 4 reports the prediction performances of the most important recent ML and DL mod-

els used in the field of next basket recommendation. We can see that it’s difficult to compare

directly our results to those provided by most of the existing studies (as well as to compare the

results of the existing studies among them) because most of these studies have been conducted

using different datasets and different evaluation metrics. The only direct comparison can be

done with the work of Tahiri et al. (2019), as these authors also analyzed MyGroceryTour data

(see above). One of the main contributions of our study, in the addition to the use of clustering,

is that we work in the multi-class (i.e. multi-store) classification context, while all previous stud-

ies considered the case of binary (i.e. one-store) classification, i.e. when a product can be recom-

mended or not without suggesting the store where it should be bought (if recommended).

The Python implementation of all clustering and machine learning algorithms used in our

work as well as the described anonymized 831-user data set are available in our GitHub reposi-

tory at: https://github.com/Achrafb11/Smartshopping.

One of the limitations of our approach lies within the platform itself. Indeed, MyGrocery-

Tour does not allow people to buy the products directly. Thus, we have no assurance that the

users actually bought the items included in their grocery lists. We also cannot track stocks in

different stores to potentially notify the users of shortages prior to adding products to their

grocery lists. Our Recommender System is also sensitive to the cold start problem and it is not

yet able to predict the exact quantity of each item recommended for inclusion to the user’s

next basket. We plan on addressing these limitations in our future work, in which we will also

explore the impact of seasonality on grocery shopping habits, which could lead to improved

recommendations as well.
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