
I

ADAPTIVE FAULT DIAGNOSIS AND RESOLUTION

SYSTEM FOR ENTERPRISE DATA REPLICATION

SYSTEM USING DEEP REINFORCEMENT LEARNING

Submitted by

Chee Keong Wee

BSc (Hons) in Computing & IS

Master of Business in IT

Oracle Certified Professional Database Administration

Graduate Cert in Australian Migration Law

For the award of

Doctor of Philosophy

2021

II

ABSTRACT

Modern business IT systems in large organisations have high levels of

collaboration and interoperability to support various business functions. In

heterogeneous IT systems, data is one of the most important entities that are constantly

exchanged. The method of data exchange or transfer among these collaborating IT

systems can occur in near real-time or in batches, and they are arranged in either

hierarchical or mesh structure relationships. There are several ways of conducting

these data transfers and one of the methods is to use data replicating software.

Maintaining both the business IT system and the data replication services is always a

challenge to the IT administrators, and with mission-critical systems that demand 24x7

uptime, the data replicating services are expected to have a high level of operational

standards and services to the organisation with minimum downtime.

The job of the IT administrator is to maintain and support all the IT systems and

infrastructure to meet the expected service level agreement (SLA). This includes

monitoring the IT systems and data replications for anomalies or defects and rectifying

them as soon as possible to minimize downtime. However, humans need rest, are prone

to fatigue, and are unable to scale their operational work effectively. Therefore, an

alternative is needed to overcome these limits.

It is the goal of this thesis to meet this challenge by developing a novel

autonomous and adaptive system in monitoring and proactively rectifying any

technical problems encountered in the data replicating environment. This novel

approach utilizes the research in the domain of deep learning and reinforcement

learning that can take appropriate actions to rectify faults encountered in the data

replication environment to maximize the concept of cumulative rewards. The proposed

system will go through a series of learning cycles starting by learning through trial-

and-error by interacting with the data replicating environment, then gradually move to

learn to predict the course of faults’ resolution actions and their associated scores of

successes. It will refine and build up its knowledgebase incrementally and for any

faults that it cannot resolve, it will need an IT administrator to help it out, which enrich

its knowledgebase at the same time. The approach is novel as there has been no

precedence in the use of Reinforcement learning in the domain of software’s fault

III

diagnosis and resolution for Near real-time Data replication before. The result will be

an autonomous fault diagnostics and rectifying system that can function at near

human’s IT level troubleshooting skills to support the data replicating environment. It

is evaluated based on the results of the cost functions from the fault diagnosis and

resolution of intelligent agents, against the guiding software routines that perform

similar activities.

The contribution that this thesis makes can be classified into two main groups:

adaptively intelligent fault diagnosis and resolutions. The first group is to develop an

adaptive self-learning approach that can learn to diagnose the service outage across the

multitudes of software services which cannot be ascertained by manual IT system

administration. This feature has significant benefits as it defies the traditional rule-

based diagnostic procedures which are limited to the set of pre-assigned rules that they

are strictly designed for. It has the flexibility to scale and augment its coverage

adaptively. For the second group, the self-learning approach is used to resolve specific

software faults adaptively discovered in the diagnosis phase. This gives an edge over

the rule-based procedures of fault resolution which depend on predefined rules and

conditions to act, and they have the limitation of scalability and adaptiveness. Given

the complexity of a large enterprise data replication setup with tens of thousands of

software’s configuration and parameters, including a high volume of statistics and logs

outputs, this thesis can contribute a significant value to the IT support and management

community to automate their operations intelligently.

IV

CERTIFICATION OF THESIS

I, Chee Keong Wee, declare that the PhD Thesis entitled, Adaptive Fault Diagnosis

and Resolution System for Enterprise Data Replication System Using Deep

Reinforcement Learning, is not more than 100,000 words in length including quotes

and exclusive of tables, figures, appendices, bibliography, references, and footnotes.

The thesis contains no material that has been submitted previously, in whole or in part,

for the award of any other academic degree or diploma. Except where otherwise

indicated, this thesis is my own work.

Signed: Date: 25-11-2021

Endorsed by:

Principal Supervisor: Associate Professor Xujuan Zhou

Associate Supervisor: Professor Raj Gururajan

Associate Supervisor: Associate Professor Xiaohui Tao

Student and supervisors’ signatures of endorsement are held at the University

V

LIST OF PUBLICATIONS

During the research, several research papers were published. I was the primary author

of the following co-authored papers:

1. Wee, C.K., Zhou, X., Gururajan, R., Tao, X. and Wee, N., 2022, February.

Adaptive Fault Resolution for Database Replication Systems. In International

Conference on Advanced Data Mining and Applications (pp. 368-381).

Springer, Cham.

2. Wee, C.K. and Wee, N., 2021, June. Outlier Detection for GP Referrals in

Otorhinolaryngology. In International Conference on Artificial Intelligence in

Medicine (pp. 444-451). Springer, Cham.

3. Wee C.K., Wee N. (2021) Adaptive Fault Diagnosis for Data Replication

Systems. In: Qiao M., Vossen G., Wang S., Li L. (eds) Databases Theory and

Applications. ADC 2021. Lecture Notes in Computer Science, vol 12610.

Springer, Cham.

4. Wee, C.K. and Nayak, R., 2020, December. Adaptive Data Replication

Optimization Based on Reinforcement Learning. In 2020 IEEE Symposium

Series on Computational Intelligence (SSCI) (pp. 1210-1217). IEEE.

5. Wee, C.K. and Nayak, R., 2019, December. Data replication optimization

using simulated annealing. In Australasian Conference on Data Mining (pp.

222-234). Springer, Singapore.

6. Wee, C.K. and Nayak, R., 2019, August. Adaptive database’s performance

tuning based on reinforcement learning. In Pacific Rim Knowledge

Acquisition Workshop (pp. 97-114). Springer, Cham.

7. Wee, C.K. and Nayak, R., 2019. Adaptive load forecasting using reinforcement

learning with database technology. Journal of Information and

Telecommunication, 3(3), pp.381-399.

8. Wee, C.K. and Nayak, R., 2019. A novel machine learning approach for

database exploitation detection and privilege control. Journal of Information

and Telecommunication, 3(3), pp.308-325.

VI

9. Wee, C.K. and Nayak, R., 2018, November. An approach to compress and

represents time series data and its application in electric power utilities. In

Australasian Conference on Data Mining (pp. 107-120). Springer, Singapore.

10. Wee, C.K. and Nayak, R., 2018, February. An alternate approach to Time

Series reduction. In 2018 International Conference on Soft-computing and

Network Security (ICSNS) (pp. 1-4). IEEE.

11. Wee, C.K. and Nayak, R., 2018. A novel load forecasting system leveraging

database technology. In Modern Approaches for Intelligent Information and

Database Systems (pp. 491-503). Springer, Cham.

12. Wee, C.K. and Nayak, R., 2018. A novel database exploitation detection and

privilege control system using data mining. In Modern Approaches for

Intelligent Information and Database Systems (pp. 505-516). Springer, Cham.

Under review:

13. Wee, C.K, Zhou, X., Gururajan, G., Tao, X. and Wee, N. (2021) Automated

Triaging Medical Referral for Otorhinolaryngology using Data Mining and

Machine Learning Techniques. IEEE Access (Q1). Under second round

review.

VII

ACKNOWLEDGEMENTS

This dissertation is the result of my six years of part-time study with the

University of Southern Queensland and the Queensland University of Technology. I

would like to express my appreciation to my supervisory team, Dr XuJuan Zhou, Dr

Xiaohui Tao, Dr Raj Gururajan at USQ and Dr Richi Nayak at QUT, for their

invaluable contribution and advice throughout my higher degree study journey of six

years duration that spanned across QUT and USQ.

I want to thank Vince Currie, my database team leader, who encouraged me to

take on this academic journey. His leadership, enthusiasm and vision have shaped my

professional outlook and motivated me to upgrade my professional and academic

pursuits.

I want to thank especially my family, Clara and Nathan, who has been a great

pillar of support in my life. They gave me the purpose and the perseverance to endure

15 years of part-time study while working full-time across multiple jobs with factories

and small companies. A special thanks to Comsertrac and Informatic Computer school,

for giving us poor working adults in Singapore a chance to upgrade ourselves and earn

tertiary qualifications. The Singapore Government had set a cap on the number of local

students eligible to study at the local 23%

(https://wikileaks.org/plusd/cables/07SINGAPORE394_a.html). Without these

private education institutes, I wouldn’t be able to have the necessary qualifications to

upgrade my profession, let alone qualified for my emigration to Australia, and PhD

study.

A special thanks to the Australian government, for believing in me and

supporting my PhD study through the provision of research training grants. To me,

education is a privilege and that is something I learnt to cherish dearly from an early

age. My sincere gratitude to my parents, Wee Chin Tiong and Tay Keng Moi, both had

gone through arduous hardship and difficulty to raise my siblings and me up.

VIII

TABLE OF CONTENTS

ABSTRACT ... 2

CERTIFICATION OF THESIS ... 4

LIST OF PUBLICATIONS ... 5

ACKNOWLEDGEMENTS ... 7

TABLE OF FIGURES ... 11

TABLES OF TABLES .. 13

CHAPTER 1: INTRODUCTION ...1

1.1. Motivation .. 1

1.2. Problem Statement ... 3

1.3. Research Question ... 4

1.4. Research Objectives ... 6

1.5. Research Contribution .. 7

1.6. Research Significance .. 8

1.7. Outline of The Thesis ... 9

CHAPTER 2: LITERATURE REVIEW ... 11

2.1. Fault Detection and Diagnosis ... 11

2.2. Anomaly Detection (AD) ... 14

2.2.1. Anomaly detection techniques ... 15

2.2.2. Clustering-based techniques .. 18

2.2.3. Classification based techniques ... 19

2.2.4. Other techniques .. 20

2.3. Organization IT Infrastructure ... 20

2.3.1. Data Replication System - Shareplex ... 20

2.3.2. Relational database management system (RDBMS) - Oracle 23

2.3.3. Energy Queensland’s Data Replication System ... 25

2.3.4. System Anomalies detection in DRE ... 30

 2.4. Reinforcement learning .. 31

2.4.1. Markov Decision Process (MDP) – model-based .. 33

2.4.2. Q-learning – Model-free .. 36

2.4.3. Actor-Critic Reinforcement Learning .. 36

2.4.4. Artificial Neural Network .. 37

2.4.5. Deep Reinforcement Learning ... 40

2.5. Research Gap and Summary .. 41

CHAPTER 3: RESEARCH METHODOLOGY & DESIGN .. 44

3.1. Overview .. 44

IX

3.2. Data Input and Analysis Phase ... 45

3.2.1. Environment Dataset .. 46

 3.2.2. Evaluation Procedure .. 47

3.3. Classification And Learning Phase .. 50

3.4. Fault Diagnosis Phase .. 51

 3.4.1. Defining Data Source for System Anomalies .. 51

3.5. Faults Resolution Phase ... 53

 3.5.1. Development of Fault Diagnosis and Resolution Process 54

3.6. Integration/Process Learning Phase ... 57

3.7. Develop an Intelligent Fault Resolution System .. 58

3.8. FDR’s RL Agent Learning Process ... 61

3.9. Approximation Between State and Actions ... 64

3.10. Scoring the Environment’s State .. 65

3.11. Action for the Environment ... 67

CHAPTER 4: DESIGNING THE FAULT DIAGNOSTIC (FD) MODULE 69

4.1. The Current Approach Toward DRE’s Fault Diagnosis .. 69

4.2. Problem Formulation ... 72

4.3. Adaptive Fault Diagnosis (FD) Module Design .. 73

4.3.1. Information Acquisition (IA) module .. 75

4.3.2. Diagnostic Reinforcement Learning (DRL) for FD Module 75

4.4. System Diagnostic (SD) Module ... 77

4.5. Data Replication Environment (DRE)’s State Representation 78

4.6. DRE’s Action of Diagnostic Prediction ... 81

4.7. Approximation Between DRE’s Symptoms-States and Diagnosis-Actions 81

4.8. FD’s Algorithm .. 82

4.9. Empirical Analysis ... 85

4.9.1. Software used for FDR tests .. 86

4.9.2. The experimental set-up ... 88

4.9.3. True Negative test results ... 91

4.10. Evaluation Criteria and Benchmarking .. 92

4.10.1. Test results ... 93

4.10.2. Service outage Classification results .. 95

4.10.3. Service Outage prediction accuracy ... 95

4.10.4. FD’s DRL-NN performance results ... 96

4.11. FD’s Conclusion .. 99

CHAPTER 5: DESIGNING THE FAULT RESOLUTION (FR) MODULE 101

X

5.1. Adaptive Fault Resolution (FR) Module Design ... 101

5.1.1. Diagnostic Reinforcement Learning (DRL) for FR Module 103

5.1.2. System Correction (SC) module .. 105

5.1.3. Representation and correlation of diagnosed faults to corrective actions 107

5.1.4. Prioritization of the software groups’ action .. 109

5.1.5. Cost function and Q-Values for FR module .. 111

5.2. FR’s Algorithm .. 113

5.3. Empirical Analysis ... 119

5.3.1. Software setup .. 120

5.3.2. Experiment setup and goal ... 120

5.4. Evaluation Criteria ... 126

5.4.1. Test results ... 127

5.4.2. FR module - SC’s results ... 127

5.4.3. FR module – NN performance and result .. 130

5.4.4. FR’s efficacy test results .. 132

5.5. FR’s Conclusion ... 136

CHAPTER 6: FDR – FD AND FR INTEGRATION .. 137

6.1. Background of integration testing .. 137

6.2. FDR Test Analysis ... 138

 6.2.1. Usage of Software .. 138

6.2.2. Experiment setup and goal ... 139

6.2.3. Test analysis procedures .. 139

6.3. Test results and analysis ... 142

6.3.1. FDR modules performance results ... 142

6.3.2. FDR integration test outputs and findings ... 142

CHAPTER 7: CONCLUSIONS ... 146

7.1. Research Contribution .. 146

7.2. Comparison of FDR to other diagnostic and resolution methods 148

7.3. Future works and Enhancement ... 151

7.4. Conclusion ... 153

References ... 154

XI

TABLE OF FIGURES

Figure 1 - Classifications of anomaly detection techniques ... 15

Figure 2 - Shareplex data replication flow [28] ... 22

Figure 3 – Shareplex’s SP_CTRL status and EVENT_LOG output with error messages..... 23

Figure 4 - Oracle RDBMS architecture [33] .. 24

Figure 5 - Energy Queensland’s Shareplex and oracle integration overview 27

Figure 6 - Current architecture of EQ’s enterprise data replication 29

Figure 7 - Reinforcement learning's Agent processes .. 32

Figure 8- Actor-Critic Reinforcement Learning .. 37

Figure 9- Diagram of a neural network with 5 inputs, 1 hidden layer and one output 38

Figure 10 – Neuron’s transfer and activating function diagram. ... 39

Figure 11- Deep Reinforcement Learning ... 41

Figure 12 - Research plan .. 44

Figure 13 – Faults Diagnosis and Resolution (FDR) workflow .. 54

Figure 14 – Direct and complex fault goals’ resolution workflow .. 56

Figure 15 – Hierarchical relationship of DRE’s software systems and their components 57

Figure 16 – DRE’s Fault Diagnosis and Resolution (FDR) System model 59

Figure 17 - The detailed process of the FDR model .. 60

Figure 18 - Different learning stages of RL agent ... 61

Figure 19 - NN function approximation between states versus predicted reward and actions

 ... 64

Figure 20 – RL agent’s action state-action flow .. 65

Figure 21 – Relationship between Services, metrics and DRE’s sub-systems 73

Figure 22 – Adaptive Faults Diagnosis overview ... 74

Figure 23 – Faults diagnosis agent’s architecture and workflow .. 75

Figure 24 - Different phases of reinforcement learning in the RL agent. 76

Figure 25 – MASE score of True and positive predicted results ... 96

Figure 26 - Accuracy results of the SD's DRL-NN with different epoch/batch size 98

XII

Figure 27 - Time spent between FD-SD and FD-NN for fault injection, reversal and

diagnosis on DRE .. 99

Figure 28– Adaptive Faults Resolution overview .. 102

Figure 29 – Faults Resolution agent’s architecture and workflow 103

Figure 30 – DRL different phases of learning for the FR module 104

Figure 31 – FR-SC progress results against various faults .. 128

Figure 32 – NN’s performance with varying epoch and batch size against different activation

functions and optimizers .. 132

Figure 33 – Corrective action cycles results between SC and NN....................................... 135

Figure 34 – Comparison of time taken to find corrective actions between SC and DRL-NN

 ... 135

Figure 35 – Time taken by FD to diagnose, FR to resolve faults using SC and NN unit 142

XIII

TABLES OF TABLES

Table 1 - Shareplex configuration table on EPM data warehouse ... 27

Table 2 - Typical Shareplex configuration file sample .. 27

Table 3 – DRE’s software stats and logs queries ... 66

Table 4 – list of system commands for DRE’s software and functions 67

Table 5 – Fault Diagnosis Method (low 1 to high 10) ... 72

Table 6 - Memory and logs checks .. 80

Table 7- Faults induction and restoration on DRE software’s component services (service

status flag: 0 – good, 1 – faults) ... 87

Table 8 - Detailed Test for Fault Diagnostic module, with break-fix routines 88

Table 9 - Results of service outage prediction & scores against DRE’s state 93

Table 10 – Outputs from SD’s simulated tests .. 94

Table 11- Confusion matrix of the classification of the service outage’s prediction 95

Table 12 – Example of diagnosed faults correlation to corrective actions 108

Table 13 – Association of software corrective actions to diagnosed faults for specific

software elements. .. 108

Table 14 – Sequence of actions’ consideration for series of faults 112

Table 15 – List of DRE’s software groups service outage fault and their corrective actions

 ... 120

Table 16 – SC’s results in response to injected faults .. 128

Table 17 – SC’s results in response to injected faults .. 133

Table 18 – FR module’s efficacy test results ... 134

Table 19 - Test scenario and increase the number of simultaneous occurring faults for each

case ... 140

Table 20 - Results from FR integrated testing ... 143

Table 21 - Benchmarking FDR against other methods of fault diagnosis/resolution 149

XIV

TABLE OF ABBREVIATIONS

Abbreviation Description

3NF Third Normal Form

ACID Atomicity, Consistency, Isolation, and Durability

ACL Access Control List

ADAM Adaptive Moment Estimation

ADDM Automatic Database Diagnostic Monitor

ADR Automatic Diagnostic Repository

ASM Automatic Storage Management

AWR Automatic Workload Repository

DBA Database Administrator

DBW Database Writer Process

DDL Data Description Language

DES Data Encryption Standard

DLL Dynamic-Link Library

DML Data Manipulative Language

DNS Domain Name System

DNN Deep Neural Network

DR Disaster Recovery

DRL Deep Reinforcement Learning

DRE Data Replication Environment

DSS Decision Support System

EDW Enterprise Data Warehouse

ELU Exponential Linear Unit

ETL Extract, Transform, Load

FD Fault Diagnostics

FTP File Transfer Protocol

FR Fault Resolution

FDR Fault Diagnostics and Resolution

GIS Geographic Information System

HDD Hard Disk Drive

HTTP Hypertext Transfer Protocol

IDE Integrated Development Environment

XV

IT Information Technology

IP Internet Protocol

KB Knowledge Base

LDAP Lightweight Directory Access Protocol

LGWR Log Writer Process

LOB Large Binary Object

MASE Mean Average Squared Error

ML Machine Learning

NFS Network File System

NI Network Interface

NIC Network Interface Card

NN Neural Network

NRT Near Real-Time

NW Neural Network

ODBC Open Database Connectivity

OLTP Online Transaction Processing

OracleDB Oracle Database

OS Operating System

PGA Program Global Area

RAID Redundant Array of Inexpensive Disks

RAM Random Access Memory

RDBMS Relational Database Management System

RMAN Recovery Manager

RELU Rectified Linear Unit

SAN Storage Area Network

SCN System Change Number

SD System Diagnostics

SC System Correction

SO Service Outage

SGA System Global Area

SGD Stochastic Gradient Descent

SID Oracle System Identifier

SLA Service Level Agreement

XVI

SNMP Simple Network Management Protocol

SOAP Simple Object Access Protocol

SPLX Shareplex

SQL Structured Query Language

SSH Secure Shell

SSL Secure Sockets Layer

TCPIP Transmission Control Protocol/Internet Protocol

TNS Transparent Network Substrate

XML Extensible Mark-up Language

VM Virtual Machine

1

CHAPTER 1: INTRODUCTION

This chapter gives an overview of the research and its various aspects such as

background, questions, and goals, including its significance and limitation. The

structure of the thesis is described at the end of this chapter.

1.1. Motivation

In the modern world of Information Technology (IT), there are numerous

heterogeneous types of computer systems that work cohesively to deliver a multitude

of services to organizations and individuals[1]. One of the main driving forces behind

these IT services is the acquisition, manipulation, dissemination, and consumption of

data. Contemporary systems and machines, together with the proliferation of modern

electronic devices, generate several types of data at exceptionally high volumes and

rates. As IT systems do not function in isolation, data transfer or information

propagation is vital for sharing data across multiple platforms. It is also imperative that

the data is sent and received with minimum delay, and that the mode of transportation

must guarantee data accuracy, reliability, privacy, and security[1, 2].

A common data transfer system to transfer data from one system’s database

backend to another is the data replicating tool [2]. This is popular among large

organizations for transferring their data between IT systems. Some data transfers may

be direct, while others require additional manipulation and processing before, they can

be accepted. A data replicating requirement is to have the data at Near Real-Time

(NRT) where a certain record, which has been changed on one system, can be seen

almost instantaneously on the receiving ends at other target IT systems. This NRT data

replicating capability is dependent on several factors such as the features of a

replicating tool, the fast-processing capability of the databases, and the amount of

network bandwidth available. Everything must work together harmoniously to support

the data replication process [3].

The number of resources required to keep the IT systems and infrastructure in

full operation is usually high. It incurs high commitment in terms of human resources,

labour, time, expertise, and investment. Apart from the operational and administrative

2

support, another labour-intensive and complex task that IT administrators face is

detecting and fixing problems that arise in the data replication environment. Therefore,

a major part of their work revolves around monitoring, detecting faults, diagnosing the

faults, and resolving them to keep the systems operational. However, there is a limit

to the period of their IT administration’s working hours as well as their operational

scale and size. Another further consideration is the risk of human error which is

common especially in an environment where work fatigue sets in[1].

It will be desirable to have systems or support that can complement human

labour in the domain of fault detection and resolution to maintain the continued

operation of data replication services. Such a system should be able to monitor the

suite of heterogeneous software participating in the data replicating service for faults,

identifies and fixes them before they cause further delays and service outages.

Additionally, the (semi-)autonomous system should be able to work with IT

administrators, absorbing more information and bolster its knowledgebase much like

a human trying to learn a trade until it reaches a level of competency that it can function

independently.

Commercial software vendors and academic researchers have attempted to

develop new ways to automate the administration works using statistical and heuristic

algorithms, creating an expert system to reduce the load on human administrators.

These implementations are specific to individual software that remains proprietary to

the software vendors. Heuristics, rule-based or decision trees are the most common

algorithms that are used in these systems. However, these supporting software tools

are both restrictive and well-defined, thus they are unable to adapt to a fast-changing

environment. As such, their capacity to grow and cater to new changes is heavily

restricted.

Current research in artificial intelligence application toward fault diagnosis and

resolution is geared towards root cause fault analysis as applying fixes to software

poses a significant risk to the system’s stability and carries liability and litigation risk.

The Data Replicating Environment (DRE) is an enterprise software setup that is

common among large IT setup, and it comprises of specialised software that read data

changes in databases before forwarding them to other designated databases at (NRT)

speeds. It interacts with a series of other software and network environments such as

3

the Operating system and network protocol. Despite its critical importance to many

organisations, most developments in DRE have been kept exclusive to software

vendors, and scientific literature on the topic is scarce. At the time of writing, the use

of artificial intelligence to manage DREs has not been reported in industry or the

literature.

1.2. Problem Statement

This thesis attempts to address the challenges as listed in the previous section of

diagnosing the various DRE software’s faults and correct them intelligently using

Reinforcement learning by proposing a novel autonomous, self-learning Fault

Diagnosis and Resolution (FDR) approach. The approach is based on Reinforcement

Learning which has gained significant popularity in recent times where researchers

have applied it to solve complex problems with high permutations of choices. This

novel reinforcement learning-based approach is designed to 1) monitor the events in

the data replicating environment and detect for any anomalies, 2) analyse if the

anomalies are temporary or a genuine defect, 3) do root cause investigation and fault

diagnosis, 4) apply the appropriate actions to resolve the faults and 5) retain the

knowledge plus re-action for future faults.

Identifying the root cause of the software’s potential faults and defects is a

complex task that requires a series of investigative actions and intrusive probing before

the real fault can be identified. While a set of prior knowledge can help to prepare the

baseline for the defects-to-faults identification, there is still a multitude of other

potential causes that may not be able to surface until they can be investigated more

thoroughly. A fault diagnosis system should complement the humans where

troubleshooting to find the faults can be a team effort. Once the faults have been

identified, the next logical step is to resolve these errors in the least interruptive manner

in an IT system. A fault resolution system should have the basis of intelligence to learn

by interacting with the data replicating environment to rectify the faults with actions.

It must be intelligent enough to know what action works and do not work and rate

those actions accordingly based on their level of usefulness. It must be able to initiate

the learning phase by assessing its level of competency first; if it does not have much

knowledge of fixing the faults, then it should learn by trial-and-error to build up its

4

core competency. And when it reaches a level of skill, it should be able to predict the

action and potential score from its knowledge base for a fault.

A fault diagnosis and resolution (FDR) system is expected to identify the faults

as well as not just resolve the faults correctly initially, but to learn adaptively from past

experiences, to derive the optimum series of actions to maximize the rewards, reaching

eventually the goal of an intelligent agent at an expert level that is competent enough

to manage the DRE independently. It should be intuitive to interact through trial-and-

errors for its initial learning and then slowly gain more expertise in applying the

appropriate actions to find and resolve the detected and diagnosed software faults.

The objective of the research is to develop a novel fault diagnosis and resolution

method, based on Reinforcement Learning, that is similar to an IT system apprentice

where its skills to deduce and fix the potential software faults is derived from learning

to interact with the DRE through trials-errors and feedbacks from guiding diagnostics-

resolving libraries that have been built to assist as its training wheels [4-6].

1.3. Research Question

This research proposes an intelligent and adaptive FDR system that can diagnose

the faults that arise in each Data Replicating Environment (DRE) and able to resolve

them interactively through the guidance of supporting software modules that have been

custom-built to assist in its learning process. The proposed system must start its

learning journey with little or no a-prior knowledge against the environment, so it

relies on a series of trials and errors to learn to differentiate the course of actions that

are relevant to the DRE’s fault scenarios.

This thesis proposes to answer the following questions:

1. What type of software anomalies be detected in DRE and under what

circumstances do these anomalies are considered as defects?

a. What type of approach can be used to detect software errors or anomalies?

What are the methods that can be used to ascertain anomalies from a multi-

faceted software service's perspective, and the various techniques to conduct

the identification of the detection processes?

5

b. What type of strategies should the DRE software’s logs and statistics be

analysed once the software anomalies are detected to support both domains

of faults diagnosis and resolutions within the proposed Fault Diagnosis and

Resolution (FDR) system?

2. What is the strategy for the DRE's software anomalies to be presented from a

system-wide holistic point of view? There are tens and thousands of

components and configurations that work based on their inter-connectivity and

operation to deliver a common service. The report of the fault diagnosis should

be consolidated at the service level instead of on the detailed component.

a. What are the methods required for the system diagnostics to identify these

software’s subcomponent and interoperative errors, and extend them to

predict the overall service outage diagnostics, instead of an individual

specific fault?

3. What is the approach that the proposed FDR system needs to take the

appropriate fault resolving actions to mitigate the defects?

a. What type of techniques can the FDR system be designed to be intelligent

enough to learn by itself to discover the appropriate actions to resolve

specific faults successfully?

b. What type of techniques can it use to act intelligently and select the

optimum corrective action for any given identified fault? What kind of

algorithms can fix the faults across different software groups?

c. What type of initial problem-solving routine can allow Deep

Reinforcement Learning (DRL) to build up the experience before it can be

used to prescribe accurate remedial actions?

4. How effect the proposed FDR system is as compared to the other methods of

fault diagnosis and resolutions? How can its performance be measured

quantitatively and qualitatively? What type of metrics can be used to assess its

performance and effectiveness on its usage?

6

1.4. Research Objectives

From the research questions listed above, the research’s main objectives have been

identified as followed.

1. Develop a strategy to understand the DRE software and acquire their

operational statistics. This is for the first research question 1a, the anomalies

encountered across the series of DRE's software are explicit, with each error or

exception being reported or shown by the operating system, replicating

software and databases. In-depth research is required into these software

technologies and familiarized with their operation, including the usual type of

exceptions and errors that can be encountered. So, a series of different DRE's

configurations is set up and evaluated in the test environment. For question 2,

a list of external OS batch scripts is to be developed to read or acquire the DRE

software's statistics via their log files and by the command-line interface.

2. Develop a fault diagnosis system that can learn the anomalous status of the

DRE and diagnose the data replication environment’s faults intelligently, with

assistance from a comprehensive system-wide statistic querying module.

Addressing question 3, the current fault diagnosis methods are commonly rule-

based methods that are restrictive and confined within the designed

specification. Those that are based on machine learning approaches require a

substantial amount of a-prior knowledge for model training. This proposed

method seeks to overcome the limitation of rule-based approaches and the

prerequisite of large a-prior information for supervised machine learning-based

approaches. The expected task is to guide the agent to learn via trial-and-error

with the assistance of a guiding module that acts as a teacher, starting by

depending on it for the initial phase of the environment’s interaction, then learn

to predict the best action based on the accumulated experiences to maximise

the rewards.

3. Create a fault resolution system that learns by interacting with the DRE to find

out what actions work well to resolve the faults. For research question 3a, the

intelligent agent to be used here follows a similar approach in research question

2, using reinforcement learning with a guiding module to teach it how to

resolve the faults initially, trying out all combinations of correcting paths and

7

their scores through trial and errors. The knowledge of fault, actions and

rewards are then accumulated into the knowledgebase until it reached the final

threshold of the training set. By this stage, it will have a knowledgebase that is

comprehensive enough to determine what action is most appropriate and what

is not relevant. This satisfies question 3b. For question 3c, the knowledgebase

is used to train the agent's RL model to know what the best action is to take for

a given environment's state and fault encountered. The fault resolutions

approach available in current research for DRE faces a similar limitation as

described in the previous goal which is to overcome the rule-based processes’

limitation in scopes, and the machine-learning models’ needs for a large a-prior

dataset.

4. Establish the list of benchmarking and measurement techniques for the FDR to

assess the models’ effectiveness and efficiency in identifying the DRE’s faults

and resolutions. The efficiency on the model’s training and the provision of the

knowledge base to support it is also measured. There are two groups of

measurement: quantitative and qualitative. Each group of benchmarking is

based on the type of outputs from the model that is to be used, either in

categorical form or in numerical metrics. The research will compare the FDR

against the other research in fault resolution in software’s fault management

domain.

1.5. Research Contribution

There are several contributions that this thesis makes. The first is to introduce a

fault diagnosis and resolution system in the domain of near real-time data replication

setup which involves multiple software such as databases, data replication and other

IT services operating in a complex interconnecting and interdependent configuration.

The second contribution is to overcome the current limitations of rule-based faults’

diagnosis and resolutions approaches which are pre-designed, and the constraints of

the need for a large a-prior training dataset for machine-learning-based approaches.

Reinforcement learning is branch of machine learning in the area of semi-

supervised learning [7]. In recent times, there is a surge in the number of research that

use it to manage complex problems that have exceptional high computational

complexity where there is a large permutation of system states, choice of actions and

8

scores on the results. The domain of fault diagnosis and resolution for complex IT

systems has similar complexity that most conventional rule-based expert systems may

not have the capability to manage [8]. So, this thesis utilizes the current research of

reinforcement learning to develop an intelligent and adaptive system to meet this

challenge. From the initial literature survey, there has yet to have any publication that

utilizes model-free reinforcement learning for fault resolution on real-time data

replication systems on a multi-tier data replicating setup environment.

1.6. Research Significance

The proposed research has the potential to support IT administrators in managing

the data replication environment, providing fast fault detection, diagnosis, and

resolution support around the clock and can scale to manage more systems than a

human can. Another advantage of the proposed fault diagnosis and resolution system

is that it is non-intrusive and complements any existing IT applications. It will not

require modification of their codes, change in any products, or invoke new licenses or

options. It will run in parallel on top of the existing systems, complementing the human

administrators and apply the learnings that can troubleshoot and resolve the system’s

problem. This will free up the human administrators from the laborious work of

overseeing the IT application so that they can focus on the different areas of work. It

will also increase the human administrators’ ability to manage even more IT systems,

be it heterogeneous or homogeneous systems.

The research in the domain of fault detection and diagnosis has been focused on

the use of rule-based and heuristic algorithms, together with machine learning models

for a wide range of applications toward machinery and software but few have

embarked on the use of reinforcement learning for software fault management. Both

the rule-based approaches and deep learning models have some constraints in terms of

the extent of their usage which is confined to the scope they are intended for, and the

presence of available dataset or knowledge to support the models training. Such

constraints are not acceptable especially in the field of complex software operation

where both the boundary of faults’ considerations is highly dynamic that cannot be

confined and, the a-prior information may not be readily available. The proposed

system in this thesis takes into consideration and mitigate it with an adaptive method

in acquiring knowledge dynamically and be aware of the choices for optimum actions

9

selection as it interacts with the data replication software. This is synonymous with the

analogy of how a junior IT administrator will learn on the job and acquire the

knowledge to manage the system progressively over time through trial-and-errors,

where certain events of fault occurrence will require a series of corresponding

corrective actions to be taken. Another paper that showed similar intelligent fault

diagnosis and repair is the research made to implement fault repair for the network use

reinforcement learning which served as one of the inspirations [9].

1.7. Outline of The Thesis

This section provides an overview and structure of the thesis. Chapter 2 covers

the literature review on the essential knowledge that is required for the thesis. They

are software technology, faults and anomalies, various type of reinforcement learning

models, neural network, optimization, and control, including the real-world setup of

an enterprise IT environment in a Queensland energy utility company (called

Energex).

Chapter 3 describes the research methodology and design of the proposed Fault

Diagnostics and Resolution system (FDR) that comprises of two mains modules: Fault

Diagnostic Module (FD) and Fault Resolution Module (FR). They require a set of

knowledge such as software technology, machine learning algorithms and faults

management. For the software technology part which is the DRE that has both database

and replicating tools, there is a need to research in detail their properties,

characteristics, operation, and services.

Chapter 4 describes the construct and implementation of the Fault Diagnosis

Module (FD). This is where the scripts, modules construction, cost functions and

algorithms are set. Tests have been conducted to ascertain the validity and accuracy of

the models.

Chapter 5 describes the design of the Faults Resolution Module (FR), its

methodology and setup, action scripts, library builds, design, and test strategies,

together with the test strategies and results.

10

Chapter 6 described the integration of both Diagnostics and Resolution modules

together and the testing conducted to validate their outcome. It is the final aggregation

where both FD and FR need to perform the task as per the thesis’ objective.

Chapter 7 concludes the research of this thesis. It discusses the potential

shortcoming that has been discovered on the proposed FDR design as well as future

enhancement that have been identified.

11

CHAPTER 2: LITERATURE REVIEW

This chapter presents the literature review that has been guided by the research

objectives on the knowledge acquisition of anomaly detection, fault diagnosis and

resolution in the contemporary field, covering the techniques and models used by the

researchers. This is followed by the survey on Energy Queensland Limit’s Data

Replication Environment (DRE)’s setup and their respective software which include

Oracle relational database management system and Shareplex data replicating tool.

2.1. Fault Detection and Diagnosis

Referring to the series of papers on fault detection and diagnosis by

Venkatasubramanian et al [4-6], a fault can be defined as a deviation from the

acceptable state or value that is associated with a process/function/system that doesn’t

perform as what it is designed for [4]. The cause of this abnormality is called a basic

event or root cause which is referred to as malfunction or failure. Different types of

faults can be classified according to their ability of recoverability, the number of

damages caused, the severity of the faults and their impact. They can also be

considered as both structured and unstructured uncertainties [4, 5, 10]. The fault

diagnosis approach which is used to identify the various causes or sources of failures

can generally be grouped into several classes:

1. Gross parameter changes in the model. Failure occurs when a disturbance

enters the process and disrupts its work, causing it to deviate from its parameter

of operations and thereby malfunctioned[11].

2. Structural changes. The process fails when the supporting entities that the

process depends on have altered or become unavailable. That results in

disruption to the resources available to the process which eventually halt its

function[11].

3. Malfunctioning sensors or detectors. Systems that interact with other systems

require transmission and reception of signals, especially in software where

signals of transmission and acceptance form the basis of communication

between points. When there is a fault that hinders the process from transmitting

12

or receiving the signals properly, communication will be impeded which

eventuates malfunction in the process[11].

The process of fault detection transiting to the final decision-making process can

be generally summarized in the following flow[11-13];

Measurement Space → Feature Space → Decision Space → Class Space

In the Measurement Space, raw data are gathered from sensors, logs, meters, and

other data reading devices. This data is acquired without prior knowledge. At the

Feature Space, the function of measurement is obtained or derived with the usage of

a-prior problem knowledge to obtain features that can be used to support decisions. At

the Decision Space, the obtained features are mapped to the decisions based on an

objective function such as indiscriminate or threshold functions. In the Class space,

the categorization of faults is executed based on the results produced at Decision Space

[4, 5, 10].

Numerous fault diagnosis techniques have been developed. They are generally

grouped into three categories: quantitative-based methods, qualitative based methods,

and process history methods [4, 5, 14]. For the quantitative-based methods, analytical

processes are used to generate results or residuals that can be used to isolate the fault;

this is where all the sensors or log data must be present. The method will derive a

decision concerning a-prior problem knowledge [4, 10, 14]. For the qualitative based

methods, they focus on contexts, topographic or symptomatic searches to determine

the fault with a priori problem knowledge [4, 10]. For the process history-based

methods, it is assumed that a large amount of historical data is present and can be used

to extract features or build models using machine learning or statistical algorithms. It

can also be a combination of quantitative and qualitative approaches[4].

While the three approaches defer in their techniques and field of use, from a

global perspective, fault diagnosis processes can be decomposed into a series of feature

extraction and classification stages before submitting to a decision stage. Under the

classification stage, there are three subgroups; pattern recognition, model-based

reasoning, and model-matching, in which all three are key factors under the three

different fault diagnosis models mentioned above [15].

So, whenever a fault is detected in a process, the diagnostic model will have a

classifier that can draw up a set of hypotheses or assumptions that can explain the

13

reason behind the anomaly. It is questionable how complete is the diagnostic classifier

and how accurate is the hypothesized faults versus the real fault? The difference will

need to be as small as possible. Venkatasubramanian et al [4-6] proposed a list of

desirable features that a good fault diagnosis system should have.

1. Quick detection and diagnosis. A fast and accurate response is required for

mission-critical machines and people cannot afford to wait around for a

resolution when services are unavailable [4, 5, 14].

2. Ability to Isolate. It can distinguish the different failures that occur in the

process and can detect symptoms that are specific to specific faults without

getting confused with other faults that are not occurring [4, 5, 14].

3. Robustness. It must be strong enough to withstand and accommodate different

environments that the process is working in. and able to withstand a range of

external environment factors and have some resilience to hardware faults [4,

5, 14].

4. Novelty identifiability. It should be able to distinguish the process conditions

and determine whether it is running normally or abnormally [4, 5, 14].

5. Classification error estimate. All classification models will give a certain

degree of error, but this must be accurate enough to be of use and able to give

the user confidence in the detection system [4, 5, 14].

6. Adaptability. It must be able to adapt whenever the process or environment

changes and persist in its function while exempting its sensors from the

external disturbance, from single to heterogeneous multi-site setup [4, 5, 14].

7. Explanation facility. Besides detecting the fault, it should be able to explain

the fault’s origin including the cause/effect symptoms [4, 5, 14].

8. Modelling requirements. The classifiers and other feature mining tools require

time to train their models. So, it is desired that the time needed for this effort

should be kept to a minimum [4, 5, 14].

9. Computational requirement. It should be computationally cheap to maintain

with average hardware consumption needs [4, 5, 14].

10. Multiple fault identifiability. It should have the ability to detect multiple faults

simultaneously. Most of the systems in use are non-linear so the interaction

will be almost spontaneous and ad-hoc, so the system must be able to combine

14

those single fault detecting models to form a more comprehensive multi-fault

detecting one [4, 5, 14].

2.2. Anomaly Detection (AD)

The fault diagnosis methods discussed in the previous section need to extract

meaningful features to establish the decision of anomaly detection concerning a-prior

knowledge. The information produced by the feature extraction algorithm can

contribute to posterior knowledge. Anomaly refers to the data that do not conform to

a typical expected behaviour or pattern. It can be considered as outliers, exceptions,

abnormal or deviation from the norm [16].

Referring to figure 1, the type of anomaly detection methods is determined by

several criteria, namely the type of data, anomalies, models and software area that the

AD is intended for [16]. There are three types of anomalies: point, contextual and

collective anomalies. Point anomalies refer to an individual data point that is

anomalous concerning the rest of the data and this can be detected by using a threshold

setting. The contextual anomalies refer to the data point that is anomalous to the

specific context of the data, but it is not anomalous if it occurs in a different time,

region, or group. This can be detected by focusing on the data set by segments.

Collective anomalies refer to the group of data points’ relationship that is anomalous

concerning the rest but not to individual values. This type of anomaly has two variants:

the occurrence of an event in an unexpected order or, unexpected combination of data

values. It requires the use of collective anomaly techniques on a specific segment of

data individually [17].

There are various forms of anomaly detection; for a given dataset D, the method

will find those data points of 𝑥 ∈ 𝐷 with a score higher than a threshold t or score

within the extreme top or bottom-n of the dataset. The other form tests the data point

of its anomaly score concerning the dataset D that contains normal data such as

distance or score [16].

A typical anomaly detection method depends on the type of data, the anomaly

type (point, contextual or collective), the type of anomaly detection used, the presence

of administrators’ supervision and the detection results [16]. Relating the knowledge

learned from the literature review on intrusion detection based on network research

16

For unsupervised methods where labels are not readily available, an assumption

is made that the abnormal test instance is very extraordinary as compared to the mass

normal data and their occurrence is rare. The approach here is to build a set of data

(i.e. clusters) that are deemed as normal and this normal model is used to compare with

the sample data to test whether they are normal or not [20]. For a clustering-based

method, the assumption is that most of the normal data tend to group in clusters

whereas anomalous ones will either be out of the group or form their unique group.

Methods may require post-processing to determine the data points’ distance from the

cluster and that in turn determines the degree of normality or anomaly [16]. One of the

strengths of clustering-based methods is that no supervision is required and can be

adapted to near real-time or incremental mode of data changes. The downside is the

amount of computation needed to compute the model. Also, it heavily relies on the

ability of normal data to form a cluster or else it will fail, especially in high dimension

data where the concept of distance to distinguish data points diminishes, thus

obfuscating the separation of normal data from anomalous one [16].

In a point anomaly detection method, the process is simple. It determines an

anomaly by measuring a single data point concerning the rest of the data using a

threshold or deterministic rule. Should the data exceed the threshold, it is considered

anomalous. For a contextual anomaly detection method, it assumes that all data

instances, within a context, will exhibit similar patterns and attributes whereas

anomalous data behaviour will be different. It will use a set of contextual attributes to

validate a new data instance to see if it is normal or anomalous. The advantage of this

method is that it can detect anomalies that may not appear as a point anomaly, but it is

anomalous when it is detected against a higher plane of perspective [16] [19].

However, this method requires pre-processing; the contextual attributes will need to

be defined as well as the context in which these attributes will relate to. The attributes

are used to segment data and then apply a point outlier concerning the attributes to that

specific context [21].

A collective anomaly detection method tests the relationship among the given

set of data points for anomalies within a segment from a global perspective. The set of

data points may not be anomalous if they stand alone, but in comparison to a wider

17

perspective of the data series, this specific set’s behaviour may not comply with the

wider dataset’s pattern.

Both the context and collective detection methods cover context and collection

of data instances that are of the spatial, graph, sequential or profile nature. They rely

on the correlation to determine the nature of the abnormal operation or symptom for

the given segment. But comparing these methods to the point detection approach, it

will not be able to yield much information to determine the real root cause or fault

[22].

Data in the present world is produced at an enormous pace and volume. The

definition of data normality here is not static and it changes through time. The

challenge here is to detect anomalies over a large volume of data and update the

definition of what is considered as normal data constantly at frequent intervals.

Therefore, the data that is streamed into the system are examined within a certain time

segment to derive the normal profile, which in turn will be used in the next time

segment for data detection. Incremental Local Outlier Factor (LOF) algorithm is

commonly used in this context [22].

In distributed anomaly detection, data come from numerous sources, and they

come in the various form of speed, volume, and variety. They form the most difficult

challenge where detection must be performed not only across the various sources but

also correlating them to detect anomalies from a global perspective. Multiple aspects

such as timing, the relationship of specific data’s outliers to other data sources can

result in different outcomes and anomaly categorization. Because the data sources

come in multiple forms and high volume, higher computational throughput and quicker

turnaround time are needed.

There are several approaches for distributed anomaly detection. The first

approach is the simple data exchange where all the data instances from multiple

sources are merged into a single location and processed. The second approach is to use

distributed nearest neighbours such as k-nearest neighbour algorithm to find one data

instance per distance computation. The third method relies on the exchange of data

mining or statistical models for the near data source of a certain level of similarity and

then combine to form an over-arching detecting process to find anomalies from a

global perspective [19]. Finding the root cause problems that occur within a distributed

18

data replicating system is complex as well as tedious; there is usually more than one

origin where multiple sources of events and logs are present. To make things

complicated, these data are generated from their sources based on their functions or

services, e.g., time or event triggered. It makes it more difficult to consolidate all this

widely scattered information to extract the necessary features for the analysis. There

are numerous methods available for anomaly detection, each developed to meet

specific field’s needs across different but not limited to scientific, engineering,

business, or financial sectors, and they are described as follows.

2.2.2. Clustering-based techniques

Clustering-based techniques can be segregated into the following groups.

1. Grid-based techniques. These techniques use a graph technique of hypercube

or cells across the set of data points and group them based on specifications of

the domain of interest [20].

2. Centroid-based techniques. These techniques assume that anomalous data

points will not be part of the clusters of normal data. They measure the distance

of the data point to the centres of all cluster centroids. If the distance is longer

than what the other data points’ have, then it is considered anomalous [20].

3. Density-based techniques. The data points are grouped based on their

proximity to one another while forming density within regions. These

techniques compute the regions’ density across the dataset and those that are

in low-density regions are considered as anomalies whereas those in high-

density regions are considered as normal [16, 20].

4. Nearest neighbour-based techniques. This type of method assumes that all

normal data points should be close to one another whereas the anomalous

points will be a certain distance away [16, 20]. It finds the distance of each

data point to its k-th nearest neighbour, sort the data points based on the

computed distance and find the top-n groups of data points that have the largest

distance. These are then considered outliers or anomalies. However, the nearest

neighbour approach has some limitations as it cannot detect anomalies from

both contextual or collective contexts [23].

19

2.2.3. Classification based techniques

There are numerous classification techniques such as the following.

1. Deviation detection is where the amount of data that belongs to a certain class

is over or under-represented so that in the class distribution, the ratio of normal

data will exceed those anomalous, then it uses the misclassification that is

based on that cost ratio. Synthetic Minority over-sampling technique is one

example [16].

2. Rule-based such as Association rules like A-priori or Frequency Pattern (FP)

growth algorithm. It creates association rules among the items or data points

that have higher support higher occurring normal data with higher support as

compared to rare but anomalous ones [16].

3. Cost-sensitive classification uses the method of misclassification on a data

point that must be labelled with the use of a cost matrix and then works out a

classification based on the data point’s cost. So when the cost of the data is

derived against the cost matrix and fall below the threshold, it is regarded as

anomalous [16].

4. The use of machine learning models such as support vector machines, decision

trees, random forest, neural networks, and many others.

Support Vector Machine (SVM) is a supervised machine learning model that can

be used for both classification and regression. [24] The concept is to find a hyperplane

that can divide a given dataset into classes. So data points that are closest to the

dividing hyperplane are called support vectors, which are considered as important

elements as they can affect the hyperplane’s position [24, 25]. It has been used in

research for anomaly detection across a broad sector [26]. A decision tree model

builds a classification tree in a hierarchical tree structure form that splits a dataset into

smaller groupings. Each split of the leaves is branched into a decision node that

represents a classification or decision. A benefit of using a decision tree is that it can

manage both categorical and numerical data [27]. A neural network comprises multiple

units called neurons and they are interconnected and arranged in multiple layers, with

each subsequent layer taking inputs from the previous one as a vector. For each neuron,

it takes in all the inputs, applies a nonlinear function, and transfer the output to the next

layers of neurons in a cascading flow [10]. Weights are applied to the signals which

20

pass among the neurons and these weights are adjusted by the training phase. This

model will be covered in greater detail as it will play great importance in the

candidate’s thesis [27]. K-nearest-neighbours takes a set of labelled points to learn

how to label new data points by assessing the surrounding labelled points that are

closest to the new point and take voting from the neighbouring point. Whichever label

has the most significant presence will influence the new points and transfer their labels

to them [27].

2.2.4. Other techniques

There are several other techniques inherited from areas other than machine

learning like Information Theory which assume that anomalies have high information

content due to the irregularities. They perform an investigation to find the subset of

data points that have the highest irregularities [16]. Dimension reduction assumes that

normal data can be expressed clearly in a lower dimension after the dimension

reduction technique is applied, where anomalous data will be difficult to express [16].

Graph analysis depicts the interaction among the data points as a relationship graph,

which is used to verify the data to determine the normality [16].

2.3. Organization IT Infrastructure

The next section is the study conducted against the organization’s data

replication environment and its setup. The organization is Energy Queensland (EQ)

and it is Queensland’s state-wide power distribution utility. With an asset of more than

$2.4 billion and 4.8 million customers, it is one of the largest utility companies in

Australia. The database team of EQ’s digital Office provided a study ground with

access to its non-production system together with its system operating procedures and

software documentation. The software that this research focuses on will be on the data

replicating tools and relational databases.

2.3.1. Data Replication System - Shareplex

Shareplex is a common data replicating tool developed by Quest software for

both commercial and open-source databases [28]. Data replication is an essential

business requirement where data are copied to other systems to maintain high

availability, data reporting, business consolidation, workload sharing as well as

21

support disaster recovery standby nodes with redundancy in data sources. High

availability refers to the continuity of the application services should the hardware or

software that provide the service accidentally fail. Another server that is a duplicate of

the primary server and has the latest copies of the data will start up and take over the

services. The most widely used database platform that Shareplex support is Oracle

databases. However, Oracle database technology has its data replicating technology

such as Oracle Streams, Materialized Views, Data Guard or GoldenGate. Both

solutions have their strength and weakness and it becomes a customers’ choice to use

a solution-driven by cost, complexity or license options [29].

Shareplex runs in the background without interrupting the business processes

that occur in the database and it replicates only the changes as they occur by the means

of reading the Oracle’s redo log and archive logs constantly [28]. Oracle redo logs

record all the committed transactions that occur in the database and Shareplex reads

these redo logs periodically to acquire all the commit SQL statements. It then performs

the data capture and replication in near real-time, sending changes to targets that are

specified. The Shareplex framework comprises several components apart from the

source and target databases that they run against with the processes of data capture,

read, export, import, and post. Figure 2 shows the various Shareplex components and

illustrates how the changes are captured and transported from the source to the target

databases [29].

Capture process – it runs against the source database, constantly reading Oracle’s

redo logs and sometimes archived logs for changes, then sending the change to the

capture queue. The capture process is called sp_ocap [30].

Queues – all the queues are dynamic data repositories that hold the temporary

data for the duration of data capture, transmission, and reception through the process

of data replication. The order of the queue’s relationship follows from the capture

queue to the reader’s queue, to the export, then to the target side’s import which

connects to the post queue.

22

Figure 2 - Shareplex data replication flow [28]

The major components and subsystems of Shareplex are as follows:

Read process – this runs only at the source side; it reads the data from the capture

queues and processes it by repackaging them with information for network

transmission. The processed data is then stored in the export queue.

Export process – this runs at the source side, and it reads the processed replicated

data from the export queue and transfers it to the target across the network. The process

name is sp_xport and it can send over the data changes information to single or

multiple target systems.

Import process – this runs at the target side, and it intercepts all transported

replicated data sent out by the export process and stores them in the import queue. The

process is named sp_import.

Post process – this process runs at the target side and transforms the data read

from the import queue into relevant SQL statements before they can be executed

against the target database [29].

Replication configuration: The replication can be set up or controlled by a

configuration file that defines the list of tables that need to participate in the data

replication and the information is split into two sections, the source, and the target. For

the source side, there are the schema and table names, while on the target side, the

intended schema and object names to which the data is replicated to. This is followed

by the routing information which defines how the relationship between the source and

the target are linked in the following format of (target_system:named_queue@

o.Target_oracle_sid) [31].

23

Shareplex filesystem: Shareplex operates from two main directories; product

directories where all the binaries are stored and executed from as well as a variable

data directory where template files, licenses, parameters, logs and trace files are stored.

It also stores all the temporary data files that are used by the queues as well as the

associated network routing information that is associated with them [29].

Shareplex operation: Shareplex system runs under a specific UNIX user account

that shares the same admin group as the Oracle database group which was used to

install the Oracle binaries. There are several Unix’s environment shell parameters;

$ORACLE_SID, $ORACLE_HOME. $SP_SYS_VARDIR, $SP_SYS_HOST_

NAME, $SP_COP_TPORT and $SP_COP_UPORT. Once Shareplex is installed on

both the source and target systems, the administrator will activate a configuration file

to initiate the data replication. All information, including debug and errors, are

captured and stored into event_logs under $SP_SYS_VARDIR/logs directory. In the

event should some tables are out of sync, Shareplex has a compare/repair feature that

allows the administrator to fix the replication tables and bring them back into

synchronization [29]. Figure 3 is a screen log of how the status of shareplex’s

processes show in within the SP_CTRL console, plus a copy of the Shareplex’s

event_log with the indication of operational anomalies via warning and error

messages.

Figure 3 – Shareplex’s SP_CTRL status and EVENT_LOG output with error messages

2.3.2. Relational database management system (RDBMS) - Oracle

Oracle database is an object-relational database management system developed

by Oracle Corporation. It consists of an instance and data storage. The instance

24

comprises a set of processes and memory structures that interact with the data storage.

The primary processes are processed monitor, system monitor, database writer, log

writer with other secondary processes that support it. Oracle instance is also a shared

memory domain that has several areas like System Global Area (SGA) that holds

information on data, users, programs or SQL statements, dictionaries, data, and others.

Figure 4 shows an overview of an oracle RBDMS architecture depicting the memory

structure and interaction with its various data storage [32].

Figure 4 - Oracle RDBMS architecture [33]

The smallest entities in the Oracle storage system are called a block which

corresponds to a specific number of bytes of database physical space on the hard disk

storage. The next level is an extent which is a collection of contiguous data blocks.

The next storage group is called a segment that holds a set of extents, and they are used

to store both data and index. The RDBMS consists of multiple logical storage units

called tablespaces which store the entire database’s data. Each tablespace consists of

data files which are physical structures that are actual files on the operating system,

and they are made up of segments. The RDBMS has a series of primary files that are

essential to its functionality and they are described as followed [32];

1. Data files – physical files that hold both user and system data permanently as

well as other system information.

25

2. Redo logfiles – stores logs of transaction activities that have been written out

from the redo log buffer memory.

3. Archived logfiles – these are archives of redo logfiles that will be used in data

recovery.

4. Temp-files – this file holds the temporary transactions that occur in the

database as well as sorting made by both the users and the system.

5. Control-files – these are files that hold the essential background information

that is critical to the database system operation and it stores change control

sequence, the location of the files, parameter setting plus other fundamental

details [34].

Memory structures are.

1. System Global Area (SGA) – the primary memory structure that comprises the

redo log buffer, shared pool, large pool, buffer cache, java pool, and stream

pool

2. Library Cache – stored the shared SQL, execution plans for all the executed

SQL statements.

3. Data Dictionary Cache – stored the information about the database’s logical

and physical attributes such as file location, user details, and various database

objects information.

4. Program Global Area (PGA) - keeps track of all the Oracle server and

background processes’ information [34].

The above are the primary components that all Oracle databases have. However,

the list of services listed above are the main core to the database’s operation, and there

is a wide range of other value-added enterprise options such as partitioning,

encryption, data analytics, spatial, Java and XML support. However, these options are

beyond the research scope and will not be discussed here.

2.3.3. Energy Queensland’s Data Replication System

The following section reviewed Energy Queensland’s (EQ) data replication

setup between Shareplex and Oracle, which will form the basis and test subject for this

research [35].

Shareplex is a data replicating system that is used by EQ to copy changing data

that occur in IT systems over to a different location or system [18]. It is common to

27

Figure 5 - Energy Queensland’s Shareplex and oracle integration overview

For this setup, all the instances at the target side will be administered and

launched from the same Unix user account, e.g., qxedw1ut, with a menu option to

choose and set up the environment that corresponds to the specific Shareplex instance.

The environment variables that need to be set up are SP_SYS_TPORT,

SP_SYS_UPORT and SP_SYS_HOST_NAME. Each of the Shareplex instances has

its unique product directory and variable directories which store their binary,

configuration, parameters, and queue data. Figure 5 depicts the two such Shareplex

instances set up on the EDW’s system and their inter-connectivity relationship and

Table 1 contains the details of their setup including the port that they operate on and

their designated home directories [29]. Table 2 is an example of the configuration file

that Shareplex uses to set up the replication for individual tables from the source to the

target and that includes the routing map which has the source/target hostnames well as

the desired queue plus the databases.

Table 1 - Shareplex configuration table on EPM data warehouse

Source

Unix

user

Source Qxedw1pr’s MDIR Qxedw1pr’s VDIR Source Target

Server port Server port

qxellipr,

qxel2ipr

ellipse

/db/SharePlex/XEDW1PR/splxprod/

oh1/8.5

/db/SharePlex/XEDW1PR/splxvardir1/oh1/8.5/XEL

LIPR1/2210

cds12a 2104,

2310

cbns1db01,

cbnf1db02

2104,

2310

qxnetwpr,

qxne2wpr

netsys

/db/SharePlex/XEDW1PR/splxprod/

oh2/8.5

/db/SharePlex/XEDW1PR/splxvardir1/oh2/8.5/XNE

TWPR1/2220

cds14a/14b 2100,

2320

cbns1db01,

cbnf1db02

2100,

2320

qxff1hpr ffah

/db/SharePlex/XEDW1PR/splxprod/

oh3/8.5

/db/SharePlex/XEDW1PR/splxvardir1/oh3/8.5/XFF

AHPR1/2230

xbneuv03 2330 cbns1db01,

cbnf1db02

2330

qxmk1spr peace /db/SharePlex/XEDW1PR/splxprod/

oh4/8.5

/db/SharePlex/XEDW1PR/splxvardir1/oh4/8.5/XM

KTSPR1/2240

xbneuv40

2340 cbns1db01,

cbnf1db02

2340

qxes1fpr esafe

/db/SharePlex/XEDW1PR/splxprod/

oh5/8.5

/db/SharePlex/XEDW1PR/splxvardir1/oh5/8.5/XES

AFPR1/2250

cds12a 2350 cbns1db01,

cbnf1db02

2350

Table 2 - Typical Shareplex configuration file sample

datasource:o.XFFAHPR2

#source tables target tables routing map
E X A D A T A P R O D C O N F I G

QLAG_OWNER.Q30 (QNAME,QTIME1) QLAG_OWNER.Q30 (QNAME,QTIME1) db-xffahpr2:exa30*cbns1db01-vip@o.XEDW1PR

VSS_HDB.AREA_NODE EDW_LDG_OWNER.AREA_NODE_SV db-xffahpr2:exa30*cbns1db01-vip@o.XEDW1PR

VSS_HDB.ASN_ASSIGNMENT EDW_LDG_OWNER.ASN_ASSIGNMENT_SV db-xffahpr2:exa30*cbns1db01-vip@o.XEDW1PR

VSS_HDB.ASN_VISIT_T EDW_LDG_OWNER.ASN_VISIT_T_SV db-xffahpr2:exa30*cbns1db01-vip@o.XEDW1PR

VSS_HDB.LAB_BUSINESS EDW_LDG_OWNER.LAB_BUSINESS_SV db-xffahpr2:exa30*cbns1db01-vip@o.XEDW1PR

VSS_HDB.LAB_RESOURCE EDW_LDG_OWNER.LAB_RESOURCE_SV db-xffahpr2:exa30*cbns1db01-vip@o.XEDW1PR

VSS_HDB.LAB_USER EDW_LDG_OWNER.LAB_USER_SV db-xffahpr2:exa30*cbns1db01-vip@o.XEDW1PR

VSS_HDB.ORD_ACTIVITY EDW_LDG_OWNER.ORD_ACTIVITY_SV db-xffahpr2:exa30*cbns1db01-vip@o.XEDW1PR

VSS_HDB.ORD_ACTIVITY_CUST_DATA EDW_LDG_OWNER.ORD_ACTIVITY_CUST_DATA_SV db-xffahpr2:exa30*cbns1db01-vip@o.XEDW1PR

VSS_HDB.ORD_JOB_CODE EDW_LDG_OWNER.ORD_JOB_CODE_SV db-xffahpr2:exa30*cbns1db01-vip@o.XEDW1PR

VSS_HDB.ORD_ORDER EDW_LDG_OWNER.ORD_ORDER_SV db-xffahpr2:exa30*cbns1db01-vip@o.XEDW1PR

VSS_HDB.ORD_ORDER_CUST_DATA EDW_LDG_OWNER.ORD_ORDER_CUST_DATA_SV db-xffahpr2:exa30*cbns1db01-vip@o.XEDW1PR

VSS_HDB.SR_REPORT EDW_LDG_OWNER.SR_REPORT_SV db-xffahpr2:exa30*cbns1db01-vip@o.XEDW1PR

VSS_HDB.ORD_ORDER_STATE EDW_LDG_OWNER.ORD_ORDER_STATE_SV db-xffahpr2:exa30*cbns1db01-vip@o.XEDW1PR

29

Figure 6 - Current architecture of EQ’s enterprise data replication

After the fault has been diagnosed, the next stage is problem resolution. The

problem resolution or treatment requires an iterative task of applying recommended

actions and observing the effects or change state. While most recommendations work

in a deterministic environment with assured controlled parameters settings, certain

abnormal events do occur during the data replication operation which may be caused

by unforeseen direct or indirect circumstances which impact the IT infrastructures. The

resolution task must be adaptable to interact readily with the environment on the fault

issue. It should be able to try all possible solutions that are closely related to the

existing fault and its recommended fixes and find the optimum solution. As such, this

domain of problem resolution is considered stochastic as the real world is complex and

dynamic, which makes the treatment of the problems difficult to identify. Because of

this complexity, state-space must be abstracted for a problem-solving attempt that

replaces the real state with the abstract state, the complex real actions with the abstract

action and a real path to a solution in the real world with an abstract solution.

Data replication problems can be grouped into the following three categories:

(1) Deterministic where agent knows what the data replication’s state is in and the

solution to restore its functionality is a sequence; (2) non-observable which is a

conformant problem where the agent doesn’t know what state the data replication state

is in or if any solution is available or not, and (3) Non-deterministic which is a

30

contingency problem that may be partially observable and the agent only can receive

new information about the current state and solution is another new contingency policy

that needs interleave of search and execution process. The unknown state-space of the

data replication where the problem to solution mapping are not defined created an

exploration challenge since nothing is known about the state [36-38] [39].

2.3.4. System Anomalies detection in DRE

This section describes the general type of anomalies that can be encountered in

the DRE software which occur in their configuration and operation. The anomalies

relating to the DRE can be regarded as explicit and implicit. The explicit DRE

anomalies can show that there is an immediate and present problem among the DRE

software, and this is generally on configuration or absent of services [32]. While the

implicit DRE anomalies are more related to performance issues which are caused by

numerous factors such as slow connection or services or impeding system resources

constraint. These DRE anomalies and errors can be classified into quantitative and

qualitative groups [30, 32].

For the Quantitative related anomalies these are related to statistical information

that are generated by the various DRE to indicate issues that are developing, and they

involve metric readings of software's operation and configuration parameters [28].

Some values are direct indication of functional and configuration anomalies while

others have values that exceed certain acceptable operational thresholds. The first

group is on explicit error that indicate a clear and present outage, such as software of

the database and data replication services are either not running or unavailable, while

the other group may show the queue of the data replication processes have some

performance bottleneck or operational contention problems [29] [30]. The following

are some examples from the extensive list of possible DRE explicit quantitative

anomalies.

- Absence or failure of process id in the OS environment, Operating system's

resource issue such as disk storage or memory full.- Network’s ping value return error

value [28].

31

- Backlogs of records that are present in the queue for the capture, export, read,

import, write queue, abnormal value can indicate some issue with the overall data

replication transfer process and will require some attention [28].

This is quite significant within the DRE as the Oracle database and Shareplex

must remain in peak condition to support an efficient replication process [30].

For the Qualitative group of DRE anomalies, there are human-readable texts that

describe certain software issues that pertain to the DRE's Shareplex, oracle or the OS

[30, 32]. Each software has its own specific error messages that have been developed

by their vendors and they offer concise and accurate description on their anomalies

encountered. These messages are delivered in two forms; the first is the list of

associated event and error log files which the software constantly update them. The

other form is only available when the IT admin initiate a console to explicit interact

with the software and extract the error messages. Some examples of the qualitative

anomaly are follows:

- User's accounts are denied or password is invalid.

- Services such as Oracle database, Shareplex instance, network connectivity is

not available.

- Certain software processes that have been stopped due to specific errors that

arise.

There is an extensive list of DRE anomalies which shows whether the issue is

isolated or specific to each software’s domain or they are related to the inter-

operability among the various software [29, 30, 32]. Their detection is done via

consistent scanning of the software's logs and probing on their statistics via their

console programs. For this research, the challenge is to develop all the routines that

can perform these specific tasks of acquire the necessary information about the DRE'

software anomalies so that they can be used for the training of the models.

2.4. Reinforcement learning

In the context of artificial intelligence, one of the approaches to resolving a

complex problem task is the use of dynamic programming. In dynamic programming,

the method to solve a complex problem is to break it down into a group of simple sub-

33

The agent accepts actions that are more favourable in yielding better rewards. All the

encountered events and actions, including the calculated rewards, are stored in a

knowledgebase. So eventually when the agent reached a matured state with high

interaction of encounters with the environment, it would have accumulated the

experiences and knowledge on the environment’s states versus relevant actions and

which of them can yield positive outcomes. By this stage where the agent has reached

certain advancement or maturity, it will start to exploit or use the knowledgebase as

compared to performing more exploration of trial-n-errors. So it is said that the agent

balance the changes of choosing exploration of alternate actions versus exploitation of

its knowledgebase is hinged on an ε-greedy action-selection algorithm with a random

number between 0 and 1. So for a given n number of interactions, the initial phase of

the RL, the greedy algorithm favours exploration over exploitation since there is little

or no knowledgebase. But when the number of environment’s interactions increases,

the greedy algorithm will decrease its preference on choosing exploitation and

emphasize more toward exploitation of the knowledgebase as it has accumulated more

as the number of interactions accumulates [39, 41-44].

2.4.1. Markov Decision Process (MDP) – model-based

Markov Decision Process (MDP) is model-based reinforcement learning. It

models the environment in which the agent operates as a sequential decision-making

problem. It has a tuple, (s,a,r,p), which comprises of state, s, action a, reward r, and

transition possibility p. An MDP must meet the Markov property, that is, the effect of

an action taken in a state is dependent only on that state and not influenced by its

history. The entities of MDP are described as followed [39, 44].

State, st, is the state of the environment at time t which may be observable or

hidden to the agent. Action, at, is the action that the agent performs against

environment, which is at state, st, at time t and then the environment yielded a new

state environment, st+1. State transition model, p(st+1| st,at), describes how the

environment changes from a current state, st, to a new state, st+1, with the action a. The

reward model, p(rt+1|st,at) is a reward that the agent receives from the environment

after it receives the action, at, when it reached time, t+1. Discount factor, 𝛾, which

controls the importance and influences of future rewards to the current reward [45].

34

The policy defines the behaviour of the agent’s action to achieve the maximum

cumulative reward over time. The learning task is to run actions in the environment to

see the reward. Not to be influenced by its history, the learning policy is denoted as;

π: s → a where s is the state and a is the action [41].

There are two types of learning environments; the first one is the deterministic

environment where both the transition and reward models are deterministic functions.

When the agent repeats a given action for a given state, the new state and new reward

are the same each time. This type of environment is easier to solve as the agent knows

how to plan its activities with great certainty. The other environment is the stochastic

environment where there is some uncertainty about the action effect. When the action

repeats the same action for the given state, the new state and new reward may not be

the same each time. This environment is both dynamic and volatile, making it harder

to solve [41].

Value Function

The state value function vπ(s), shows how good is a state for the agent to be in. It is

equal to the expected total reward starting from the state, s, and it is dependent on the

policy that the agent picks the action to do. The function of this value function is

denoted as followed [41];

𝑉𝜋(𝑠) = ∑γ𝑖−1

𝑇

𝑖=1

𝑟𝑖

Where, s is the state, 𝛾 is the discount factor, π is the policy, r is the reward, i is the

iteration to all steps T.

For all the value functions, there is an optimal value function. The function is denoted

with an asterisk, *.

𝑉∗(𝑠) =
𝑚𝑎𝑥
𝜋

𝑉𝜋(𝑠)

To achieve this optimal value function, there will be an optimal policy π*.

𝜋∗ = 𝑎𝑟𝑔
𝑚𝑎𝑥
𝜋

𝑉𝜋(𝑠)

Apart from the state value function, there is another function called Q-function which

pairs both the state and the actions as Q*(s,a). It is a normalized value that signifies

the preferential in weights for the algorithm to select. So, when the agent starts from

the state, s, and pick an appropriate action, a, based on the Q value and behave

35

optimally afterwards. It also indicates how good it is for an agent to pick action a while

in the state, s. As V*(s) is the maximum expected reward that the agent expects to start

from the state, s, it will be the maximum of Q*(s,a) for all possible actions. Therefore,

both Q*(s,a) and V*(s) relationship is expressed as follows [42, 45] in eq(1);

𝑉∗(𝑠) =
𝑚𝑎𝑥
𝑎

𝑄∗(𝑠, 𝑎) (1)

The optimal policy can be expressed after the optimal Q-function, Q*(s,a) is

known in eq(2).

𝜋∗(𝑠) = 𝑎𝑟𝑔
𝑚𝑎𝑥
𝜋

𝑄𝜋(𝑠, 𝑎) (2)

The next important equation is Bellman’s equation, eq (3), which is used in

reinforcement learning especially in the dynamic programming domain, provides a

recursive definition for an optimal Q-function. Q*(s,a) is equal to the summation of

reward after the agent performs an action, a, while in state s and the discounted

expected future reward after moving to the next state, s’ [45].

𝑉∗(𝑆) =
𝑚𝑎𝑥
𝑎

[𝑅(𝑠, 𝑎) + 𝛾 ∑ 𝑝(𝑠′|𝑠, 𝑎)𝑠∈𝑆 𝑉∗(𝑠′)] (3)

where,

R(s,a) is the reward from the state, s, after receiving action a.

P(s’|s,a) is the transition model for all states.

V*(s’) is the optimal state value function.

𝛾 is the discounted factor.

Model-based learning such as MDP requires the agent to interact with the

environment and attempt to approximate the environment state transition and rewards

based on its history of interactions. When it has learned the model, the agent uses

value-iteration or policy-iteration to find the optimal policy. However, there several

challenges within the model-based reinforcement learning. One of them is that it

requires the real-world environment to be modelled clearly. This task is difficult and

prior domain knowledge may be required. Furthermore, transition state models or

probability value is not readily available or difficult to define; therefore, they are hard

to control. The next learning that will be explored is model-free training. Q-learning

is one of the most popular algorithms [45]. Unlike model-based approaches, the agent

in model-free learning will not try to learn the models of the environment state

37

derives the optimal policy through policy improvement from the evaluation of policies

that are based on previous value functions. It is suitable for continuous and stochastic

environments as it can give a good approximation of the value function. Its strength is

that it works directly in the policy space, and it has better learning performance with

new updates. For its drawback, it is susceptible to high variance and sample

inefficiency, plus it tends to converge to local maxima. The Actor RL is policy-based,

and it decides what action to take for the state. The Critic RL method is value-based

and it tells the actor how good its action taken was and how it should adjust [47]. The

Actor-Critic (AC) algorithm as shown in figure 8, combines the best of both methods,

the actor's policy gradient method and the critic's value function method. So now, both

the actor and critic complement each other; the actor produces the action for a given

state from the environment, and the critic gives feedback and criticizes the actor's

action.

Figure 8- Actor-Critic Reinforcement Learning

The critic can reduce the variability of approximation and provide an update to the

actor's policy. The actors learn from policy and use it to apply actions continuously.

Given that the policies are parametric on the state-action features, the AC model can

work well in continuous state-action spaces that have feature vectors representation

and they are used with Neural Network (NN) for their action and value function

approximations [47, 48]. But Reinforcement learning by itself will not be adequate to

tackle our research questions. Another method is required to perform the function

approximation between the various state inputs from the environment to the

anticipated actions and the preferred algorithm for this is a Neural network (NN) [49].

2.4.4. Artificial Neural Network

Supervised learning is another form of machine learning task where the learning

maps inputs to outputs based on pairs of input-output dataset [50]. NN is supervised

39

Figure 10 – Neuron’s transfer and activating function diagram.

The combined function is in eq (5).

𝑍𝑗 = 𝑏𝑗 + ∑ 𝑤𝑖,𝑗 𝑋𝑖
𝐼
𝑖=1 (5)

Where z is the combined value, w is the weight, x is the input, i is the input

number, j is the layer, b is the bias. The combined value is then changed by a non-

linear function like a sigmoid as in eq (6) to reduce and prep it as input for the next

layer[50].

𝑠(𝑧) =
1

1+𝑒−z2 (6)

The final output of y will be the trained result. However, the trained result will

not be the same as the actual data as the NN guess with the current weights, therefore

the weights will have to be adjusted to minimize the error. This is done by calculating

the error followed by propagating the adjustment of the weights in the opposite

direction as in eq (7). To do this; First, the error is calculated for a given set of training

data tj and output layer of Oj [24],

𝐸 =
1

2
∑ (𝑂𝑘 − 𝑡𝑘)

2
𝑘∈𝐾 (7)

Then calculate the rate of change on the connective weight to minimize it in eq (8);

𝜕𝐸

𝜕𝑊𝑗𝑘
𝑙

So, for the output layer node 𝑘 ∈ 𝐾

𝜕𝐸

𝜕𝑊𝑗𝑘

= 𝑂𝑘𝛿𝑘 (8)

Where 𝛿𝑘 = 𝑂𝑘(1 − 𝑂𝑘)(𝑂𝑘 − 𝑡𝑘)

And at the hidden layer node, eq (9); node 𝑗 ∈ 𝐽

𝜕𝐸

𝜕𝑊𝑖𝑗

= 𝑂𝑖𝛿𝑗 (9)

Where 𝛿𝑗 = 𝑂𝑗(1 − 𝑂𝑗)∑ 𝛿𝑘𝑘∈𝐾 𝑊𝑗𝑘

So, in summary, the back-propagation algorithm is as followed [24]:

1. First, run the network forward with input data to get network output

2. Each output node computes 𝛿𝑘 = 𝑂𝑘(1 − 𝑂𝑘)(𝑂𝑘 − 𝑡𝑘)

41

Figure 11- Deep Reinforcement Learning

The neural network used in the DRL will be based on deep learning with multiple

hidden layers to capture the intricacy of the complex states to action relationship, and

it can generalise the complex problems [40, 53, 54].

There does not exist a large amount of work on automated problem resolution.

Farivar and Admadabadi [43] proposed the use of RL for controlling fault-tolerant on

non-linear systems to ensure stability. The neural network model was used to perform

Lyapunov’s function to prove the stability of the equilibrium for the ordinary

differential equations that are developed for the Fault tolerance control system, then

use the RL to interact and learn to optimize the value functions to control the situation

like a Cart pole game. This research is an excellent foundation to which this thesis

referred [43]. Another paper was from Cao [55] who proposed the use of RL to identify

the faults in the network and diagnose the root cause. The agent is comprised of a fault

diagnosis module, a learning module, and a diagnosis knowledge base. The RL is used

in the learning and fault diagnosis module which interacts with the network to identify

the fault and reference the fault back to the knowledgebase to extract the root cause

problems which in turn are delivered to the users via the user interface.

2.5. Research Gap and Summary

There is a substantial body of knowledge in the domain of anomaly detection,

fault diagnosis as well as other machine learning models that have been briefly covered

in the literature review. Methods such as SVM and ANN have been used to detect

intrusion (or anomaly) in a complex environment such as computer networks, crowd

movement and IT security. These machine learning models have been used to develop

intelligent expert systems in the engineering and medical field in anomaly detection

and prognosis. However, this research has applied the machine learning models to very

specialized and complex environments, be it medical, IT or engineering. Most of them

achieved great in-depth analysis in the subject matter and develop bespoke algorithms

to meet the challenge; however, major changes and customization are required to adopt

these anomaly detecting algorithms and processes to a multi-tier data replicating

environment (DRE) such as this.

42

The DRE itself has several software modules and each of them have their own

unique operating functionalities, operations, and parameters. To establish a proper

operating setup, each of the modules has specific expectations or dependency on the

adjacent ones. This complexity has introduced a level of challenges that most of the

literature on anomaly detection has described multi-source events, but not for software

such as DRE.

Another challenge lies in the task of pinpointing the exact root cause of the

defects that may occur in the DRE. In its course of operation, there will be anomalies

appear among the events and finding the real defect among the noise of anomalies

prove to be difficult. While the literature on multi-view data may be compatible with

this requirement, it is still difficult to define all the conditions which can pre-mediate

the default cause and the fault associated with it. the gap here is to bridge the

complexity between the DRE’s potential anomalies, defects, and faults. That is a task

which this thesis needs to undertake, to formulate an aggregating routine that can

acquire the anomalies and deduce the defects, followed by faults systematically. The

whole routine will have to be assessed and tested rigorously to affirm its operating

expectations. One potential model that can assist in this setup is deep learning.

Recently neural network-based deep learning methods have become popular to learn

from a wide variety of data and it is a powerful and popular model to be used for fault

diagnosis in many fields such as transformers, oil refineries [5, 10, 56].

This study is intended to model after organizations such as Deepmind [57] and

OpenAI [58], where they build an intelligent system based on deep reinforcement

learning (DRL) to tackle games with extremely high computational complexity such

as Go and Multi-player battle arena. These projects only surface in recent times and

although DRL theory is not new, such implementations are. As such, in the space of

FDR system and DRL, there is currently limited research or project in development.

While the candidate is confident that this type of project will take off eventually and

reach the mainstream, it is the data replicating environment (DRE) which he has an

immense interest in to support and therefore, take this opportunity to apply this domain

of RDL to the tackle the fault diagnosis, detecting, and resolution of the DRE.

So how can this thesis go about defining the state and action for the data

replicating environment? There is limited research conducted to date in the usage of

43

DRL for software fault diagnosis and resolution particularly in interconnectivity

among enterprise relational databases. Furthermore, there are not many types of

research made in the domain of data replication, particularly around ETL. While some

research papers discuss the method of optimizing workflow, there is no precedence on

software such as near-real-time data replicating tools like Shareplex.

Some research can place the causal relationship between defects and faults

through decision trees, but this is feasible if the system’s scope is simple and well-

defined. If we have an environment with extreme high complexity that cannot be

defined, then a more dynamic approach is required. The relationship of defects to faults

and to resolving actions are complicated and may not be accurate in the first version,

and constant revisions or corrections are required to recalibrate them.

To define the state of the DRE model, the initial design set the model to accept

hundreds of system-wide defining inputs as variables in the DRE, and with these

inputs, a strategy is required to build up function approximations on them to deduce

the potential defects. Likewise, for the defects to the hundreds or thousands of potential

actions that may be required for both statistical information query and real system

corrective actions. It is important to note that some of the DRE’s defects are usually

inter-related, some are compound, or hierarchical whereas others are isolated. This is

the type of complex condition that the candidate faces and there is no existing research

available for him to refer to. A new strategy must be methodically designed to address

this gap. Furthermore, resolutions for the faults are not straightforward and it will

require multiple cycles before it can reach the final resolution. The proposed system

must be able to reiterate to its best ability to search for a solution before giving up to

the IT administrator for help.

To the best of our knowledge, this is the first research to utilise deep

reinforcement learning for fault diagnosis and resolution for database replication

technology as there is no precedence of similar work in this fields.

45

of key success factors. These factors will design the goals and deliverables that each

following phase in the research process must be met.

3.2. Data Input and Analysis Phase

Followed by the establishment of the architectural design of the proposed model,

the next stage is to analyse the data that need to be managed. This is an important phase

as all the sources of data pertaining to the various DRE software’s operation,

integration, configuration and inter-operability requirement are discovered. This is in

preparation to meet the research question 2 and 3. In this phase, only analysis of the

target systems that need to be managed will be conducted. This is to gain an insight

into the intended managed system’s modes of operation; their configuration, activity

and status information output, interaction as well as a series of operational functions

that normal IT administrators would do regularly. A review of EQ’s database team’s

operational procedures and manuals will be conducted to gain an insight into their IT

administration work, together with the documented faults that had been encountered

and as well as the resolution techniques that had been used. This will give the research

an initial application on the landscape of knowledge before formulating the attack

plans.

Each domain of IT systems will generate a wide variety of data that have

different functions and attributes. There are challenges in how to manage the data and

the types of expected outcomes that should be required. While the data cleansing

process here will be limited, they will be done to clarify those data that will impact the

research. The next stage is to analyse the data meaning and their implication to the

impending system that this proposed model will manage. Referencing the fault

diagnosis literature [6], some faults can be easily identified through simple univariate

anomaly detection, whereas others will require multitudes of data to support the

diagnosis. In other cases, there will be incomplete data that require further

investigation against the managed system via upstream, downstream, or adjacent in

the fault-finding process. On some occasions, shifting to a different domain to gather

more information will be required but that will require the learning phase to conduct

trial-and-error information gathering. The information gathered will be categorized

following their groups and hierarchies; what is classified as system, functions,

operational process, expected outputs, potential faults, root cause, and resolutions

46

technique. An initial graph database and a spreadsheet will be used to map this

knowledge. This forms the basis on which the next phase of classification and learning

will refer to.

Question.

1. What privileges does our agent require to access the relevant files under

various directories that belong to different software owners; Shareplex and

Oracle?

2. What are the output files that are required and how will the agent go about

finding them repeatedly with minimum error?

3. What kind of content do each of the log files have and how can we gather

features from them?

4. What type of method can we use to ensure that the patterns of information

recorded in these files are consistent?

5. What other information can we gather from the OS environment and how can

we correlate them with the details gathered from the logs?

3.2.1. Environment Dataset

The required data will be provided by Energy Queensland’s database

department. There will be a mixture of raw data; from systems’ log files to the streams

of time series data that will be obtained from the production IT systems. There are

different varieties of data in this raw output and logs, so there will be an ample set of

testing opportunities to be practised on them. The researcher has obtained the approval

of using this data. There are two avenues of obtaining information about the target

software; Shareplex and Oracle, and they are in explicit and implicit forms. For the

explicit form, it is by reading through the event and alert logs that are generated by the

software progressively, logging every event, information, error, or alert. The implicit

form is done via a persistent search for information through interaction with the

software to acquire their statistics. Such activities involved here are by the usage of

OS commands or through the software’s console such as SQLPLUS or SP_CTRL. One

of the challenges here is that we need to know the exact commands to invoke so that

it can query the appropriate information or statistics that the software will respond to.

The information or statistics that are returned cannot be interpreted readily and require

in-depth background knowledge before their meaning can be derived. For the Oracle

47

database, the common alert log is named as alert_<Oracle_SID>.log and they are

located at $ORACLE_HOME/diag/RDBMS/ /PROD/trace. For the Shareplex, the log

file is called Event_log and it is located at $VARDIR/log.

3.2.2. Evaluation Procedure

This is progressive research, and each phase has significant importance to the

next one, so accuracy in building and testing the proposed methods in each phase will

be imperative. The evaluation process covers the breadth of the research project in

terms of independent and inter-operational process capability, as well as the depth of

the specific ML models. While the research wants to mimic the entire fault

management process that the IT engineers have, it is open to the research on

redesigning or optimizing the process flow should the need arises. For all the ML

models that will be used, the evaluation process will cover the following aspects.

Test harness occurs at the initial stage, and it involves the acquisition of data that

represents the problem which will be used as both training and testing set for the ML

algorithms. it prepares the foundation of each ML formulation by assessing how

learnable the problem is through analysing the data, and whether the data structures

are suitable for the models and if not, how much transformation will be required to

alter them.

Performance measurement covers the evaluation of the solution to the problem

by calculating the prediction made by a trained model against a test dataset. There is a

list of performance measures available, and they are generally relevant based on the

type of problem and solution required, be it a classification, regressing or clustering.

Some give a generic score; others can give a more meaningful answer to the problem's

solution.

Cross-validation is also part of the test harness, and its approach is to split a

dataset that presents the problem environment. The training data set is used to train the

model whereas the testing data set is for evaluating the performance of the model.

Evaluating algorithms. Once the problem has been defined and the test harness

is prepared, the next stage is to shortlist a series of ML algorithms that will be relevant

to the problem; most of the ideal models have been mentioned in the literature review.

These models will be trained and tested against the dataset prepared at the test harness

48

stage and their results will be measured and compared with one another. An assessment

will be made on the chosen model against the problem environment to determine if

they are relevant or practical. Each one of them will be also measured in terms of

performance using the ratio of both loss and cost functions.

The next section describes the evaluation methods that need to be performed

against each phase that has been designed in this research.

Evaluation of data input and analysis phase - The requirement is to assess the

ability of the pre-processing routines are in removing data inconsistencies and

redundant content as well as the quality of the final processed data. Each log and data

input, e.g., event_logs, alert_log, syslog and system stats will have their unique

features that need special consideration to clean out the unwanted or erroneous

information in preparation for the analysis phase, so the measurement here is to gauge

the completeness of data cleansing that this phase can cover. The routines will be

developed against the sample data from the IT environment and once the logic has

been established, testing data set from another batch will be used to validate against

the routine to test its efficiency as well as its effectiveness. Each batch will comprise

information from the enterprise combination of the software systems, e.g. Shareplex,

UNIX, Oracle DB, with different varieties. This will be tested in several batches to

ascertain the thoroughness of the pre-processing routines whether they can handle a

bigger load of data with a wider range of errors.

Evaluation of classification and learning phase - in this phase, the test is to

evaluate how relevant the result from the phase of data re-working via reduction,

conversion and symbolically altered, is to the DRL downstream. the data from various

DRE's sub-systems (OracleDB, Shareplex, Unix, network) must be evaluated and

tested via the DRL agent and validate the result. Normalization is included in this

process which changes all the respective hashed value of the error message and helps

to speed up the DRL’s NN convergence process. This phase is tightly connected to the

next phase. The measurement of the NN’s accuracy is also related to this.

Evaluation of fault diagnosis phase - the next phase is to test the fault diagnosis

routine on its ability to use the features and anomalies acquired to identify the root

cause. This will be achieved by training the fault diagnosis model by using a labelled

dataset to train and test like the classification phase above. the model’s accuracy can

49

be measured using a ROC curve and confusion matrix, both will show the performance

of the ML models against the set of test data. Also, in this phase, the routine will need

to work with the knowledgebase which will be stored in a database. The fault diagnosis

routine will be evaluated on its ability to interact with it in a timely and accurate

manner, matching the classified faults that have been identified by the model to the

knowledgebase and extract the root cause information.

Evaluation of faults resolution phase - In this phase, the reinforcement learning

model works with the fault diagnosis model; the latter will feed the information to the

RL model and that in turn will interact with the system or known as the environment.

The RL model will be assessed on its ability to find the optimum solution; the number

of iteration and the results that the applied actions from the RL model can yield. While

the evaluation here does not focus on speed and accuracy at the beginning, it is still a

major factor that needs to be observed in the long run. The main critical success factor

here is to interact with the next process learning phase when a certain number of

iterations has been exhausted and the optimum solution is not available. at the same

time, new knowledge will be acquired for the knowledgebase from the external

interface, so it is expected that once there is an accumulation of new knowledge, the

RL model should have a greater chance of resolving the faults through less and less

iteration. So, the measurement here is gradually, and the expectation level will increase

over each epoch of trial-and-error-and-learn.

Integration/Process learning phase - This is the governing phase that controls the

fault resolution phase with the users. Once the RL model has exhausted the moves in

the knowledgebase, the IT administrator or user will have to assess the problems and

input their expertise into the system, thus enhancing the knowledgebase and its

capability. The measurement here is on the workflow that will be built into this phase

model, which can allow the interaction between the system and the user. As each

knowledge that has been entered by the IT administrator, this phase’s model must

transfer the updates accurately back to the knowledgebase so the RL model can refer

to it without any hindrance. Both the evaluation of this phase and the fault resolution

phase are interleaved.

50

3.3. Classification And Learning Phase

After establishing the knowledge about the managed systems’ behaviour, the

next task is to identify the features that will be required from the raw data to support

the fault diagnosis and define what is considered normal or anomalous. Referring to

research paper on the survey of anomaly detection [16], some anomalies can be

regarded as point anomalies that can be detected easily, others will be more difficult

to acquire namely the contextual and collective anomalies. So, based on the faults

listed in the survey from the previous phase, the raw data feature to support the

diagnosis will be decided. For the classification and learning phase, the impact is to

acquire the knowledge of the DRE's software service services from different aspects

of each software' sub-systems; DB's component listed in the DB architecture diagram

must maintain a certain level of error-free activity to serve other adjacent DB's sub-

systems to serve the overall DB's function. The DB's function is, in turn, serve as a

sub-system, integrated closely to other software and IT technology to support the

DRE's mission, in a hierarchical arrangement of software and technology

dependencies. To know the different state of the DRE's software, there are various

sources that the information can be acquired; through 1) event, trace, or diagnostic

logs, 2) statistics acquired from software’s support console, commands or utility, 3)

extracting features from other sub-grouping of statistics. They reflect both point and

group anomalies across hundreds of parameters and variables. They are then

aggregated into logical grouping at the service level of the individual software's sub-

system such as connectivity, security, operation status, process control etc. This

derives a unique matrix that represents the DRE's entire service level structure,

indicating holistically the logical group and their respective service level so an IT

administrator can briefly know the nature of the anomaly and where they have been

affected. Most of the anomaly that occurs within the tightly integrated software in DRE

will not be isolated but have a ripple effect that impacts others. This matrix of service

anomalies can capture and illustrate the landscape of service anomalies encountered.

This information will be logged into the research which will then be used to support

the next phase.

51

3.4. Fault Diagnosis Phase

Using the information and results acquired in the classification/learning phase,

the next phase is to map the different knowledge acquired to the identified faults that

are listed in the survey conducted beforehand. This will enable the research to establish

a hierarchy of managed system’s operation, faults encountered, root cause, and source

of faults. Referencing Chen and Patton’s model based on fault diagnosis [59], the

research here will build a fault diagnosis model based on the information and

knowledge acquired through the previous few stages. The proposed fault diagnosis

sub-model will be expected to support some basic fault diagnosis initially and it will

be augmented progressively to handle a wider range of other faults. A series of

validation tests will be conducted on this model to access its accuracy and the logic

used to diagnose the problem. The result will be studied, and corrections will be made

to adjust or change the structure. Once the fault diagnosis sub-section is complete, the

next step is to develop the fault resolution part. This phase covers the decision to the

class space under fault diagnosis’s hierarchy method, and the challenge here is to

handle different types of faults. Therefore, the main challenge is to customize the

concept of DRL in deriving both the DRE’s environment state and action in

conjunction with the concept of DRL. However, there are some customizations

required with regards to the policy-based approach of the model-free DRL, using an

alternate set of sub-algorithms to complement it.

3.4.1. Defining Data Source for System Anomalies

The initial phase learnt the entire setup of all the software modules that operate

inter-dependently; the configuration that is required to be set up in each of them before

they can start operation. Keeping the data replication process going between the

databases and the Shareplex requires an in-depth understanding of the construct of

Shareplex’s requirement and its demand for the database’s operation so that its data

replication can function at an optimum level. Apart from getting the entire

environment to work, there are several aspects of these software modules that give the

candidate insight into the internal operation which includes the information, statistics,

and errors that they encounter throughout their services. These specific tasks have been

identified as followed.

52

1. From the text logs and system statistics of both Shareplex and Oracle, machine

algorithms such as text mining and anomaly detection are applied to detect

faults and errors.

2. Classification of text between normal and erroneous.

3. Anomaly detection of erroneous sessions and process among the client

sessions’ and system backgrounds’ attributes.

4. Classify each type of detected error into different categories of IT subsystem

in a hierarchical order.

5. Data involved are mainly text, time series and scalar.

6. Error detected can be point and contextual. Point anomalies are easy to detect

as they are an outlier. Contextual errors are harder to find.

7. Time series data in utility companies are ubiquitous among all business

operations and functions in Energy Queensland, its fundamentals and must be

understood including current practices.

One of the main challenges in this thesis is to define the environment of the

complex multiple software systems that not only need to operate cohesively but can

function at the optimum level with a minimum adverse effect on the overall data

replicating functionality as each software has its own set of parameters, operating

commands and control, performance statistics, processes, output logs. It is needed to

determine the list of events that are important to this software from which they are also

dependent on by the other software. Event logs’ outputs can be determined explicitly

and implicitly through constant mining of the logs or run certain commands against

the software to acquire the statistics. However, not all events from a system can be

correlated to the events on another system. A complex mesh of relationships will have

to be determined in categorical form and in a hierarchical structure which will be

covered in the next phase.

So, for each event, there will be a threshold or limits in which their values are

regarded as either normal or anomalous. If the specific event is deemed anomalous, it

must have an equivalent diagnostic process that can acquire the necessary statistics

and then based on them to decide and define the real cause of the problem. Based on

causal models, some of the simple root-cause problems can be determined straight

away, others require inputs from multiple sources before the root cause can be

53

determined. Once the root-cause problem is determined, the next step is to find the

possible action that has the highest chance of resolving the problem.

There are several approaches and one is to build an expert knowledge-base of

problem-actions so that the system can refer and apply the appropriate actions, but this

is not the case in reality as there are numerous environmental factors that increase the

difficulty of this research, namely; 1) The constant changes in all the dependent

software in term of a software upgrade, control parameters, command syntax, statistics

value alteration and, 2) the list of problem-action combinations is extremely large and

dynamic.

Therefore, this thesis builds the system to be adaptive so that it can learn to

observe what actions is the most appropriate for a given state through trial-and-error,

plus it should also learn in collaboration with a human IT administrator. His/her

knowledge and experience will help the system to build up its knowledgebase and at

the same time, a source for it to seek external help if it has exhausted its entire means.

This begs the following definition questions.

1. The environment of the setup.

2. Environment’s state.

3. Action for the environment.

4. The reward for the action is applied to the environment.

5. Is it a single goal, multiple goals or a hierarchical set of goals that need to be

accomplished before the final goal is achieved?

3.5. Faults Resolution Phase

Referring to figure 13, fault resolution is a process where the solution is applied

to fix a problem and this phase covers the intelligent agent that will interact with the

environment to find and apply the optimal solution. Based on the fault diagnosis’

results, the proposed series of solutions can be identified. The agent will reference the

diagnosed faults and prescribe a series of solutions to rectify the faults. The process

does not end there as the model will check the actual results and compare them with

its knowledge of the expected outcomes. If there is a discrepancy between the actual

and the expected results, this is classified as a miss. The model will be expected to

route back to the starting phase and work through a different route of data analysis;

55

clear up within a short period. But there are occasions where anomalies are genuine

defects that have surfaced in the environment and that sort of defects are hindering or

preventing it from performing its designed function. Therefore, identifying the actual

faults to the defects in the next stage which requires intrinsic analysis to determine the

exact reason why the default occurs and where the fault lies. The next stage will be the

resolution to the fault. Finding the best possible method to resolve the fault is another

domain of knowledge that requires a vast amount of product familiarity and systematic

logic of problem-solving skills, which are at times, difficult to pinpoint and identify

unless a very skilled IT administrator that has years of experience in this area of

specialisation can resolve it.

Here is one example; an event has surfaced where the backlogs of one of the post

queues are building up. This event is highly unusual, and it is defined as an anomaly

from the usual system functionality. It is now classified as a defect and requires a more

detailed investigation. The defect found in the DRE is the inability to insert new data,

and the fault that lies with this defect is with the permission issue on the database. Each

entity bears the many-to-many relationship to the next and this adds more complexity

to the thesis’ scope of the challenge.

Applying this knowledge to the proposed DRE fault resolution model in

combination with reinforcement learning, two streams of decision-making workflow

have been defined. The first one is based on a simple or direct goal where the a priori

faults-resolution knowledge has been well defined. The next one is of the complex

structure where 1) there is no a priori knowledge, 2) need to perform some trial-and-

error tests to assess the environment’s state versus the action, 3) start to learn from past

mistakes and refine the learning path towards an optimum resolution. The following

figure 13 describes the detailed steps involved in the simple and complex goal

approaches.

61

Figure 18 - Different learning stages of RL agent

3.8. FDR’s RL Agent Learning Process

The RL agent starts with little or no knowledge about the environment and it has

only equipped with a basic reference of a list of actions that are grouped into their

respective categories under the software; OS, Shareplex and Oracle. As shown in

figure 18, the fault resolution process is a progression of learning that is grouped into

3 stages in which the agent functions according to the availability of knowledge about

the environment. The following describes the stages in greater detail.

Non-to-low knowledge: The RL agent starts with the premise that it has no prior

knowledge of the data replicating environment (DRE). What it has is a basic guideline

of general faults’ categories and the associated actions of software’s console or

commands to operate. What it must do first is learn through trial-and-error with

random actions to test if the actions can be able to resolve the faults and the feedback

that it receives. Through the initial learning state, the RL agent builds up its knowledge

base about the cause-and-effect between the states, actions, and rewards. It builds up

the Q-table that sets the Q-score among the state, actions, and rewards. learning and

exploration rates are two control that decides the probability of performing actions that

are within the agent’s knowledge base versus the chance of trying something random.

For example, the learning rate, it is set at a very high value of 1.0 at the start and force

the RL agent to explore all means and ways. But this rate will be decreased slowly

62

over time using a decay factor of 0.995 until a threshold of 0.4 is reached. By the time

it has reached the 0.4 value, it also means that the RL agent has gained some experience

to do more exploitation of its build-up knowledgebase and can rely less on exploration.

But it still leaves some room for exploration though, but the chances will be much

lesser.

Medium-to-high knowledge: Once it builds up an initial knowledge on the

environment’s states to various actions, the candidate applies the Q-learning algorithm

to fault resolution technique by building a deep network neural (NN) model that

predicts the possible score and actions for a given state. The NN model is trained with

the already built-up knowledgebase to find the best reward and action for a given state

from the environment. At this stage, there may not be enough past data to train the NN

model accurately and so the trained NN model may not give accurate predictions in its

first few attempts, but the agent will run the NN model repeatedly over several

iterations internally until the predicted rewards reach an acceptable threshold, after

which the best NN prediction is sent to back to the RL agent. The agent will validate

the prediction against the data replicating environment; if the predicted action achieves

positive feedback or reward, it will log it as a Q’s tuple of state, action, rewards in its

Q-table as well as adding the new information to its knowledgebase, enriching the

dataset for the next round of NN training. But if the prediction is not accurate, the RL

agent will correct the information and do the knowledgebase’s enrichment. The agent

will go back to repeat predictions and validation until the reward meets or exceeds the

desired threshold, thus finding the argmax(Q(sn, an)) of rewards [7]. This process is

repeated until the learning rate has decayed to a value such that it can be ascertained

that the agent has acquired sufficient knowledge about the environment. It is now

supposed to be competent to apply the action to a state that the environment can

produce.

Very high-to-expert knowledge: Toward the end of RL’s iteration, the RL agent

has accumulated enough information for it to exploit any states that it encounters from

the data replicating environment. In its knowledgebase, it will have a sizable volume

of states, actions, and Q-value. from there, it can be considered that the RL agent has

attained a high proficiency in solving all the faults with accurate and optimum actions.

But the algorithm will not allow the RL agent to be conceded and be closed off to other

63

possibilities. Instead, it will allow a small room of chance that it will attempt to balance

the choice of exploring for other new actions through randomization of chance.

Algorithm 2 described the process in detail.

Algorithm 2 – FRD’s agent training process based on different learning phases

routine 1 - apply a preconfigured fault initiating procedure.

routine 2 - reset to DR environment to baseline

Input: The state of DRE statistics and computed rewards

Output: The action of new parameters’ value for the database

Initialization 1: set value for learning, reward preference and exploration rate, threshold for exploration,

learning, and exploitation.

Initialization 2: initialize memory, Q-table collection, and respective counters

Apply a baseline reset of the DR environment

Acquire the state of the DRE from stats report

Set exploration rate to 1

Set the learning rate to zero, med_learning to 30%, high_learning to 90%

Loop the iteration process

 Check the learning rate.

 /* low learning phase */

 If learning <= med_learning, do the exploration phase

 /* exploration phase */

 initiate random fault initiation routing

 Apply the action to the DRE environment to get a new state

 Find the reward/penalty = Δ new state vs current state

 Add the knowledge of state, action, reward-penalty, and new_state to minibatch’s training data

 /* medium learning phase */

 If learning is > med_learning and < high_learning, then do

 /* learning phase */

 If run=1, apply a baseline reset of the DRE environment

 Get the current state of the DRE environment.

 Find best future reward and action based on new_state;

 Loop until the reward is higher than 0.05

 Train the NN model using knowledgebase as minibatch, with state as input and reward plus action

as an output.

 Call the NN model to predict the possible new reward and action.

 Validate the action against the environment and get a new reward

 Add the information to the memory and minibatch

 Find the q-value for the state and action with consideration from gamma, then add them to Q-table

 /* high learning phase */

 If learning > high_learning, do exploitation phase.

66

operations' statistics of Shareplex, OracleDB, OS and interconnectivity are denoted

here as sp, db, nw and os. Under each group, there are three summarized grouped

variables; the first indicates the operational status of the software's attributes, e.g.

processes are running or not. The second covers the performance statistics related to

each software's attributes, e.g. CPU load at 60%. The third is the difference or

variation between the current and previous values for the software’s attributes, e.g.

CPU load difference between previous and current periods. The iteration of the

training period is denoted as t. But some statistics such as sp are more important and

need more emphasis. So, weight is associated with them to augment their importance.

𝑠𝑡 = [∑ 𝑠𝑝𝑖
𝑘
𝑖=1 𝑤𝑘 , ∑ 𝑠𝑝𝑖

𝑙
𝑖=1 𝑤𝑙 , ∑ 𝑠𝑝𝑖

𝑚
𝑖=1 𝑤𝑚, ∑ 𝑑𝑏𝑖

𝑘
𝑖=1 𝑤𝑘 , ∑ 𝑑𝑏𝑖

𝑙
𝑖=1 𝑤𝑙 , ∑ 𝑑𝑏𝑖

𝑚
𝑖=1 𝑤𝑚,

∑ 𝑛𝑤𝑖
𝑘
𝑖=1 𝑤𝑘, ∑ 𝑛𝑤𝑖

𝑙
𝑖=1 𝑤𝑙 , ∑ 𝑛𝑤𝑖

𝑚
𝑖=1 𝑤𝑚, ∑ 𝑜𝑠𝑖

𝑘
𝑖=1 𝑤𝑘, ∑ 𝑜𝑠𝑖

𝑙
𝑖=1 𝑤𝑙 , ∑ 𝑜𝑠𝑖

𝑚
𝑖=1 𝑤𝑚] (11)

Table 3 – DRE’s software stats and logs queries

DRE’s software Status(k) – Task’s purpose Perfstat(l) - information source

Shareplex (sp) Query for process up or running

Test if sp_cop is responsive

Check if queue is stopped

Check if config file is active

Check response is proper

Check if capture process is running

Check if read process is running

Check if export process is running

Check if import process is running

Check if post process is running

Shareplex’s Parameter setting

Shareplex’s Process’s Status

Shareplex’s Queue status via sp_ctrl

Shareplex’s directories information

Shareplex’s $Pdir and v$vdir directories

OracleDB

(db)

Query for Oracle instance, DB1, is up

Query for Oracle instance, DB2, is up

Test if sqlplus can connect to DB1

Test if sqlplus can connect to DB2

Check if DB1 is in open mode

Check if DB2 is in open mode

Check if listener1 is running

check if theres any invalid SPLX's objects on DB1

check if theres any invalid SPLX's objects on DB2

check if tablespace is full on DB1 (100%)

check if tablespace is full on DB2 (100%)

Oracle DBs’ Processes

DB Operational stats

DB’s tablespaces

Oracle’s command console

Oracle DB’s system views

OracleDB’s trace logs

Oracle’s AWR reporting tool

network

(nw)

Check if DB1 can connect to DB2

Check if DB2 can connect to DB1

Check if network is available between DB1 and DB2

Check if DB1 can be resolved via tnsnames

Check if DB2 can be resolved via tnsnames

Check network card

Listener.ora file

Tnsnames.ora file

Lsnrctl command console

Listener’s stats

Listener logs

Operating

system(os)

Check if the user account SPLX exists

Check if the user SPLX belong to SPLX group

Check if user account splx’s permission is correct

Check if user account oracle’s permission is correct

Check if server name is in /etc/hosts

Check if Oracle unix account is in /etc/passwd

Check if SPLX unix account is in /etc/passwd

Check if Oracle is in Dba group in /etc/groups

Check if Splx is in dba group in /etc/groups

Disk space availability via df command

System based file; /etc/passwd, /etc/shadow,

/etc/hosts, /etc/group

Network card is up

Vmstat’s for cpu, memory

67

Where software components' critical status is k, Performance statistics is l,

statistics variation between previous iteration and current is m, the time is t. the weights

for wk, wl and wm are 1. The rationality for the default value of 1 is that each state

representation has equal importance to their purpose in the DRE and require similar

attention. Table 3 shows the list of the status purpose’s description, their corresponding

tasks and the result that are derived from the tasks. All the commands, scripts and

utilities used for the tasks are available in the appendix.

Table 4 – list of system commands for DRE’s software and functions

DRE’s software System Remedial actions Query action

Shareplex (sp) Start Capture on splx1

Stop Capture on splx1

Start Read on splx1

Stop Read on splx1

Start Export on splx1

Stop Export on splx1

Start Import on splx2

Stop Import on splx2

Start Post on splx2

Stop Post on splx2

Startup sp_cop on host1, 2

Shutdown sp_cop on host1, 2

Query for process up or running

Test if sp_cop is responsive

Check if queue is stopped

Check if config file is active

Check response is proper

Check if capture process is running

Check if read process is running

Check if export process is running

Check if import process is running

Check if post process is running

OracleDB(db) Startup Oracle instance, DB1

Shutdown oracle instance DB1

Startup Oracle instance, DB2

Shutdown oracle instance DB2

Startup listener on host1,2

Shutdown listener on host1,2

Change database, DB1, to open mode

Change database, DB2, to open mode

Compile invalid objects on DB1

Compile invalid objects on DB2

Re-grant specific privileges to SPLX on DB1

Re-grant specific privileges to SPLX on DB2

Increase tablespace size for SPLX on DB1

Increase tablespace size for SPLX on DB2

Query for Oracle instance, DB1, is up

Query for Oracle instance, DB2, is up

Test if sqlplus can connect to DB1

Test if sqlplus can connect to DB2

Check if DB1 is in open mode

Check if DB2 is in open mode

Check if listener1 is running

check if theres any invalid SPLX's objects on DB1

check if theres any invalid SPLX's objects on DB2

check if tablespace is full on DB1 (100%)

check if tablespace is full on DB2 (100%)

Network (nw) Enable network card status

Disable network card status

Restore $oracle_home/network/tnsnames.ora on host1,2

Restore $oracle_home/network/sqlnet.ora on host1,2

Restore $oracle_home/network/listener.ora on host1,2

Check if DB1 can connect to DB2

Check if DB2 can connect to DB1

Check if network is available between DB1 and

DB2

Check if DB1 can be resolved via tnsnames

Check if DB2 can be resolved via tnsnames

Check network card

Operating

system(os)

Unlock user account SPLX

Change permission on oracle’s directories

Change permission on splx’s directories

Restore /etc/host.orig

Restore /etc/groups.orig

Check if the user account SPLX exists

Check if the user SPLX belong to SPLX group

Check if user account splx’s permission is correct

Check if user account oracle’s permission is

correct

Check if server name is in /etc/hosts

Check if Oracle unix account is in /etc/passwd

Check if SPLX unix account is in /etc/passwd

Check if Oracle is in Dba group in /etc/groups

Check if Splx is in dba group in /etc/groups

3.11. Action for the Environment

The FDR system needs to carry out a series of remedial actions in response to

the faults that have been detected to resolve them. the actions comprise of a series of

commands and custom-built scripts that run on the OS, DB and Shareplex console to

68

change their parameters, configuration, manipulate UNIX based files and alter OS'

components. These actions are referred to as actions under the FDR's Fault Resolution

(FR) module and to select and activate the required action, they are referenced via a

vector that is mapped to the entire list of commands, segregated into their respective

software and functions as shown in table 4.

69

CHAPTER 4: DESIGNING THE FAULT

DIAGNOSTIC (FD) MODULE

This chapter presents the Fault Diagnostic (FD) module with its design

architecture and operations, testing, and results analysis.

4.1. The Current Approach Toward DRE’s Fault Diagnosis

The current common method of implementing fault diagnosis for complex IT

systems for both academia and industry is to use machine learning models such as

Random Forests or Bayesian Network [60, 61]. Both require well-designed models

that are specifically tailored to the intended IT systems where the fault detection and

diagnosis procedures need to be performed. The premise for the design of such

complex and well-defined fault detection and diagnosis (FDD) model has complete

knowledge of every sub-system, component, relationship, and operation including data

exchange in the IT system. The limitation with this approach is that every

implementation of these complex IT systems is not generic and are tailored to specific

business IT requirement. So, having a rigid and well-defined FDD agent will not have

the adaptiveness nor flexibility to meet the range of different system setups. it will

require numerous customization which is time-consuming and laborious. Another

downside with this approach is the coverage of the FDD models, as they are designed

based on the IT human’s expert knowledge. If there are new anomalies occur in the

systems and the diagnosis model in the FDD agent may not have the information to

mitigate it, then these new anomalies will be set as blind spots for the agent

permanently unless the IT administrators take note of this and provide corrective

actions to the FDD model like updates or upgrades. This is also applicable to situations

where the IT system’s setup must be altered to meet new business requirements, and

that may render the static FDD model invalid. Therefore, the FDD models must be

constantly updated to keep up with the changing environment.

One of the most important components for proactive fault detection is highly

competent monitoring software that can monitor all the software used in a complex

setup. However, most of the monitoring systems available are built to monitor specific

70

software which is commonly used in the industry. They usually include other common

supporting technology and software such as OS, but most require additional add-on or

patches to enable them. But they do not cater for uncommon products such as Data

replicating or ETL software. The only option is to either use the replicating software

vendor's customized monitoring tool or the IT administrator must write scripts to

function as basic monitoring. But all of them fill the monitoring needs on a vertical

basis, meaning they are primarily focus on the overall functionality of the software

alone, but rarely monitor the inter-operability or relationship from a holistic

perspective of a multitude of software functioning as an integrated system. Another

shortcoming with the existing FDD approach is the need for every iteration of the

diagnosis task, it will require an exhaustive execution of detailed checks on every

component and attribute of the IT systems, followed by passing statistics into the FDD

model and deducing the faults. While some checks may be instantaneous, others will

take a longer time to validate and acquire their statistics. This is time-consuming and

computationally intensive which may significantly delay the overall fault diagnosis.

This delay is not desirable especially when the IT system is mission-critical and

requires a very fast turnaround time in its fault diagnosis and resolution process.

What is required here is a new approach where the FDD model can be made

general-purpose enough to suit any combination of software for the IT systems; be it

database, web application, firewall or network. It should minimize unnecessary steps

of detailed check procedures and be able to deduce the diagnosis quickly simply by

looking at the symptoms and refer to its knowledge just an experienced IT

administrator. It should be flexible to extend or correct its existing model to cover any

new alteration that occurs in the IT system’s environment. In other words, we consider

the new FDD model as a new mechanic apprentice that needs to learn on the job to

perform the checks and deduce the faults from the gathered information under the

guidance of his supervisor. We expect it to learn in both detecting and diagnosing

adaptively, starting from an early stage where it will do extensive checks on every

aspect of the IT system, but once it reaches a certain level of maturity, it should be able

to determine from its expert knowledge that the certain symptoms or events exhibited

in the IT system can be related to certain sub-domain of the system’s setup with great

confidence, similar to the skill difference between an inexperienced and an expert IT

administrator.

71

There are several common contemporary practices to the approach of Data

replication’s Fault Diagnosis in academia and industry and they are listed in Table 5

with their complexity and effort of implementation rated, and this is based on feedback

from experienced IT administrators from the industry using Delphi method[62].

Manual approach- this is the basic task where all IT administrators need to do

especially for the junior staff that is not familiar with the system. They must go through

a checklist that stipulates the attributes of sub-systems that need to be checked,

including the corresponding script commands or shell's interface that they need to

interact with. information or statistics are collected slowly from each sub-system and

then tally them to determine the cause of the faults. This is a time consuming and

laborious manual process that is unproductive, but it is still the baseline of any software

fault finding procedures.

Best practice - another option is following a well-defined checklist that was well-

prepared by experts. By associating with the symptoms and service errors found, the

checklist can narrow down the possibility and guide the IT administrator to perform

only those checks that have the closest relation to the potential faults group. This can

cut down a significant amount of labour and save time, but it is still a tedious manual

task, and it is difficult to scale.

Decision rule-based scripting - another option is to script the process of the above

checks and run it whenever the faults surfaced. the IT administrator will run the

specific scripts to check the sub-systems' components, thus automating some of the

parts of the manual query processes and increase the turnaround time. This approach

has higher scalability, but it still requires human intervention and expert knowledge to

decide the exact type of scripts to run and be able to interpret the results to deduce the

faults.

Machine learning models (SVM, decision-tree, deep-learning) - researchers have

used this approach to implement fault diagnosis on various types of machinery and

other hardware with success[63-66]. It can automate the detection and diagnosis of the

machinery's faults process, giving a fast and accurate response. However, the pre-

requisite for implemented these supervised learning is that the environment must be

stable with limited variability. Besides this, the models' pre-requisite is a large set of

labelled data for its training. Another approach is to engineer the features from

72

unlabelled samples to lead the training which is a significant amount of preparation

works. on top of that, their designs are usually meant for well-defined systems and

should thereby any variation in the system's structure or operation, then they must be

redesigned and recalculated which is laborious.

Table 5 – Fault Diagnosis Method (low 1 to high 10)

Method Complexity Effort Remark

Manual[67] 3 9 Require medium IT knowledge and skill. Go through a prescribed checklist. Manual,

inefficient, time consuming, laborious, not scalable. low productivity, cannot cater for

unforeseen or bespoke setup.

Best practice,

decision rule-

based[67]

4 8 Require medium level skill, a checklist has a decision flowgraph. Improve

troubleshooting time. still manual, inefficient laborious and time-consuming but superior

to a manual approach.

Bayesian network

model

7 4 Require a med-high level of knowledge and skill. The target system’s model must be

pre-known. tightly customized. Rigid design. Difficult to enhance or correct. Need

redesign. Less time consuming, limited scalability, higher productivity. Require IT

admin intervention to correct. No research available for DRE

Machine learning

model

5 4 Require a higher level of knowledge and skill. The target system’s model must be pre-

known. Tightly customized. Less rigid design. Difficult to enhance or correct. Need

redesign. Less time consuming, scalable, higher productivity.

No research available for DRE

4.2. Problem Formulation

DRE has several systems working together and each system has a list of

subsystems that comprise of other individual components or smaller sub-system that

serve the function of the higher sub-system. The diagnosis of the fault is linked closely

to each of the systems’ hierarchically related sub-systems, and the finer the sub-set,

the more accurate the diagnosis will be. The diagnosis process and their granularity

are determined or limited by several factors such as the 1) availability of the data, 2)

resources to collect them, 3) additional requirements by the IT administrators.

Referring to the AC reinforcement learning model in section 2.4.3 under chapter 2, the

set of all the software systems in DRE is represented as, S, and the individual software

system and their sub-system are represented as sn and snm, respectively. n is the number

of software and m is the number of sub-systems that software, sn, has.

The sub-systems have metrics associated with them, where M refers to this set

of all the metrics is. Each of the metrics is linked to one sub-system’s attribute, m ∈

M. The set of all service models is represented by C, and each model, c, is a logical

model that group those sub-systems together. They support similar services and can

have multiple metrics. The metric has n-to-1 mapping to a sub-system α: M → S and

the set of all their mapping is A. The metric has n-to-1 mapping to the models; β: M

→ C and the set of all their mapping is B. The model has n-to-n mapping to the sub-

77

trained by using the DRE knowledgebase gathered from the earlier learning phase as

its minibatch. There is a high chance that the neural network will make predictions. In

such an event, the RL's Critic will run the validation process through the SD module

which corrects the Q-value and assigns it to the state-action pairs stored in the Q-table,

as well as updating the knowledgebase. The gradual build-up of the knowledgebase

will improve the accuracy of DRL’s NN prediction.

3) High learning phase: By this stage, the DRL agent will have learned all the states-

symptoms that is associated with the faults in the DRE and can predict the best actions-

diagnosis with high accuracy. This is regarded as the exploitation of the DRL’s rich

build-up of knowledge where it can provide a very quick turnaround time by

identifying the faults’ matrix without performing excessive checks or validation

through the SD module. However, the agent also performs a probability-based decision

between exploitation versus exploration at this time; Exploitation where the DRL

decides to refer to its knowledgebase to respond to the best action for the DRE’s state,

and Exploration where the DRL decides to run detailed checks through the SD module

to get the diagnosis instead of relying on the NN’s prediction. At the low learning

phase, the probability of exploration will be high. However, this diminishes over time

when it reaches the high learning phase, where the exploration rate has decayed over

iterations and the preference shifts towards knowledge exploitation.

4.4. System Diagnostic (SD) Module

The DRE comprises of different software and technology working together to

provide the service. Each software and technology have a unique list of

configurations, checks, operations, and attributes. Therefore, the SD Module has

several groups of check routines that target this software, and within each group are

sub-routines that query specific areas in the software like privileges, permission,

process status, usage statistics, for example. Referring to figure 22, the DRL agent

gives instructions to the SD module to perform the checks against the DRE’s

environment, ranging from comprehensive top-down checks to selective ones. This is

analogous to junior workers who need to perform every check to make sure, compared

with a senior worker who can deduce the exact areas to verify before deducing the root

cause of the error. The SD module then performs the detailed checks by running a long

list of command queries and scripts against the DRE’s software. Some of the details

78

collected are the 1) states of their system processes, 2) space availability of directories

in which the systems' binary files reside and their information are processed, 3) current

privileges of the system's process, files, accounts that they operate from, 4) details in

their configurations and parameters that they are using, operating or initializing from,

5) network connectivity that is required for their operation, 6) statistics of specific

operations like process backlogs, connectivity delays, abnormal system values. Others

contain a summary of software-wide statistics which range in the thousands. The result

is then consolidated and sent back to the RL agent. It is a matrix that presents the

multiple sub-areas under the DRE across different software about their functional

status from a high-level perspective. Further details can be made available from the

diagnostic module upon request, but the vast number of details will be too

overwhelming for its administrators to go through. The following is a tabulation of the

output in which each command performing the specific information extraction from

the various software.

The SD provides its diagnosed results of the DRE’s software status on the

participating server hosts, n, at their service group level instead of the technical

attributes. This is to give an overview of the DRE software’s availability from a

general administrative perspective, taking into consideration their 1) process

availability, 2) filesystem’s attributes and permissions, 3) responsiveness to

administrative interaction, 4) communication functionality, 5) data transfer and input-

output capability, and 6) software’s function and operation status. The specific

software details can be made available, and they will be connected to the future Fault

Resolution agent. The four diagnosed service groups in Eq (12) are as follows:

Database service, sdbsn, Shareplex replication service, srpln, Network and

communication services, snetn,, supporting the OS environment, sosen

𝐷𝑅𝐸′𝑠 𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑒𝑑 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑚𝑎𝑡𝑟𝑖𝑥 = [

𝑠𝑑𝑏𝑠1 𝑠𝑟𝑝𝑙1 𝑠𝑛𝑒𝑡1 𝑠𝑜𝑠𝑒1

𝑠𝑑𝑏𝑠2 𝑠𝑟𝑝𝑙2 𝑠𝑛𝑒𝑡2 𝑠𝑜𝑠𝑒2

… … … …
𝑠𝑑𝑏𝑠𝑛 𝑠𝑟𝑝𝑙𝑛 𝑠𝑛𝑒𝑡𝑛 𝑠𝑜𝑠𝑒𝑛

] (12)

4.5. Data Replication Environment (DRE)’s State Representation

It is challenging to define the DRE’s state due to its complex multi-tier software

setup and the characteristics of the IT applications under its service. Therefore, a direct

79

method is needed to identify a state in a database without time properties, where each

software’s operation information is mined continuously for anomalies and errors. In

this research, the use of a matrix is proposed to capture a list of events and process

statuses of the DRE’s software across multiple sources and target instances, n.

Therefore, the two sections in the state’s matrix contain information from both their

logs and process statuses. For the logs, the attributes are a numerical representation of

the encountered error messages in their respective logs, which are concatenated to 10

characters long and hashed using Secure Hash Algorithm 1 (SHA1). The following is

the list of the software’s logs location and their respective variables assigned.

1. Oracle database’s alert logs with the prefix of ORA-XXX, files exist in the

location; $ORACLE_BASE/diag/rdbms/DB1/trace/alert_DB1.log, as oralogn.

2. Shareplex replication’s event_logs with the initial string of “Error”, files available

in the location at; $VARDIR/log/event_log, as splxlogn.

3. Network-related Listener’s logs with the prefix of LSNR-XXX, available in

$ORACLE_HOME/diag/network/log/.log as nwlogn.

4. OS’s error with the string, err, in /var/log/syslog, as oslogn.

For the process’s status, the status shows the presence of the DRE’s software

main processes in the VM host’s background as well as the reachability of remote VM

from the current VM. The representation is; 1) Oracle DB’s primary process, smon, as

orastatn. 2) Shareplex replication’s main process, sp_cop, as splxstatn. 3) Oracle’s

listener's processes and network, lsnrctl, as nwstatn. 4) Ping status from both UNIX

nodes to one another, as osstatn.

The services under the different software are represented as; 1) Oracle DB’s as

orasvcn. 2) Shareplex replication as splxsvcn. 3) Oracle’s listener and network, as

nwsvcn. 4) Operating system and host’s, as ossvcn.

Therefore, the final matrix represent the DRE’s state in eq (13).

𝐷𝑅𝐸′𝑠 𝑠𝑡𝑎𝑡𝑒 =

[

𝑜𝑟𝑎𝑙𝑜𝑔1

𝑜𝑟𝑎𝑙𝑜𝑔2

𝑠𝑝𝑙𝑥𝑙𝑜𝑔1

𝑠𝑝𝑙𝑥𝑙𝑜𝑔2

𝑛𝑤𝑙𝑜𝑔1

𝑛𝑤𝑙𝑜𝑔2

𝑜𝑠𝑙𝑜𝑔1

𝑜𝑠𝑙𝑜𝑔2]

[

𝑜𝑟𝑎𝑠𝑡𝑎𝑡1
𝑜𝑟𝑎𝑠𝑡𝑎𝑡2
𝑠𝑝𝑙𝑥𝑠𝑡𝑎𝑡1
𝑠𝑝𝑙𝑥𝑠𝑡𝑎𝑡2
𝑛𝑤𝑠𝑡𝑎𝑡1
𝑛𝑤𝑠𝑡𝑎𝑡2
𝑜𝑠𝑠𝑡𝑎𝑡1
𝑜𝑠𝑠𝑡𝑎𝑡2]

[

𝑜𝑟𝑎𝑠𝑣𝑐1

𝑜𝑟𝑎𝑠𝑣𝑐2

𝑠𝑝𝑙𝑥𝑠𝑣𝑐1

𝑠𝑝𝑙𝑥𝑠𝑣𝑐2
𝑛𝑤𝑠𝑣𝑐1
𝑛𝑤𝑠𝑣𝑐2

𝑜𝑠𝑠𝑣𝑐1

𝑜𝑠𝑠𝑣𝑐2]

 (13)

80

Table 6 describes the specific software validation and checks that need to be

performed to acquire the DRE’s collective status together with the associated details

that depict their respective software components including the checks are performed

against them. Each of the software is checked by different OS scripts which have

encapsulated commands to interrogate them on their respective service groups of logs,

processes, and services. For various software logs check, the scripts are

check_alert_log_err.sh, check_event_log_err.sh, check_os_log_err.sh on OracleDB

with listener, Shareplex and OS. As for the DRE’s software processes checks,

check_all_processes.sh is used. The last group check is done by check_all_services.sh

which validates their specific services.

Table 6 - Memory and logs checks

DRE’s

software

Service Group

checks

Software attribute. Area

of focus

Detail checks/description Name of Process, logs,

system views

OracleDB Process check Process’ stats DBs’ memory process in the OS Smon, pmon
Process check Operation’s stats DB’s mode of operation V$instance
Service check Tablespace’s stats Tablespaces have enough space on DBs V$freespace, v$tablespace
Service check Session’s stats No existing blocking session on both

DBs

V$locked_session

Service check Users’ stats User accounts are open and accessible on

DBs

V$users

Service check Object’s stats objects’ validity on DBs Dba_objects

 Alert Log error

check

Alert logs Check for exception and errors in both

alert logs

Alert_<oracle_sid>.log

Shareplex Service check Parameter setting parameters are valid in Shareplex

instances

Show param

Process check

Service check

Process’s Status and

operation

Shareplex’s memory process in the OS Sp_cop, sp_<processes>

Process check

Service check

Queue’s status and

statistics

Shareplex’s various queues status on both

nodes

Capture, export, post ….

Service check Directory’s stats Both directories, $pdir and $vdir, have

enough free spaces

$PDIR, $VDIR

 Log error check Shareplex logs Shareplex exception in both event logs

on two nodes

$VDIR/log/Event_log

Network Process check Listener Process stats Oracle’s listener process on both nodes Lsnrctl
Process check

Service check

Listener.ora availability,

and stats

Listeners’ availability for service on both

nodes

Lsnrctl

Process check

Service check

Listener’s stats – error or

available

Listeners’ operations are valid and not in

error

Lsnrctl status

 Log error check Listeners’ logs Exception and error in logs for both

listeners

Listener.log

 Service check DBs reachability Able to connect to each DBs from

opposite side

Tnsping <DB1>

 Service check Hosts reachability Able to reach each VM host from

adjacent node

Ping <host1>

OS Service check Disk space Free space availability on OS for both

nodes

Df -m

Service check Primary conf files Validate /etc/passwd, /etc/shadow,

/etc/hosts, /etc/group files

Os: ls -lt /etc

Process check Network card operation Network card status and availability Os: ifconfig
Service check CPU resource CPU usage not full Os: sar

81

Service check Memory resource memory usage not high Os: free -m

 Log error check System log Check for error on system logs Os: check /etc/log/syslog

4.6. DRE’s Action of Diagnostic Prediction

The DRE’s state information in 5.5 are the summarized raw inputs that the FDR

takes in, and part of its diagnostic routine is to show its ability to predict or estimate

the possible faults with the DRE’s software. Part of the outcome of the FDR is to

produce the diagnostics report that shows the status of the DRE’s operation at a high

service level which indicates the software’s respective sub-group and level of errors it

has, concerning the DRE’s environment state. The outcome is a series of tuples that

signify the status or condition of the software group and their sub-group services in

the arrangement of <software_typ> and <software_sub-service_grp>. Their statuses

are derived from a custom-built script which contains a list of OS commands that

extract and aggregate all the statistics from the various DRE software into their

respective sub-system service groups, to show the service outage based on the state’s

matrix from the environment in the previous chapter. The process of showing the

service-level exceptions will be later handled by the DRL's NN.

DRE’s service level diagnosis = {dba, dbb, dbc, dbd, spa, spb, spc, spd, spe, spf, nwa,

nwb, nwc, osa, osb, osc, osd}

where,

1. for OracleDB, dba = DB’s memory process, dbb = DB’s Status, dbc = DB’s

Account security, dbd = DB’s storage space.

2. for Shareplex, spa = Splx’s main processes, spb = splx’s console availability,

spc = splx’s queues operation, spd = splx’s configuration validity, spe = splx’s

queues’ backlogs, spf = Splx’s DB accessibility.

3. for the networks, nwa = Network connectivity of Databases’ listeners, nwb =

Splx’s network connectivity, nwc = VM hosts interconnectivities.

4. for the OS, osa = hosts’ OS unix account status, osb = hosts’ file storage space,

osc = hosts’ network card status, osd = hosts’ resource availability.

4.7. Approximation Between DRE’s Symptoms-States and

Diagnosis-Actions

It is not practical for the optimal policy to be used due to the large problem and

solution space of both the DRE’s states and the actions for diagnosis prediction. This

82

is regarded as a typical curse dimensionality problem and to mitigate this issue, Neural

Network is used by the DRL-Actor to the DRE’s states as input and then predict the

best possible action of diagnosis [7]. Although the dataset used for the NN training

comes from the knowledge base, there is not be enough data initially to train the NN

model competently as it starts with little or no a-prior knowledge about the DRE’s

environment. Therefore, knowledge must be accumulated by investing in the initial

phase of RL through multiple iterations of trial-and-error. The predicted action, apredict,

from the DRL-Actor NN is compared with the actual action, aactual, that the DRL-Critic

has validated with the SD module.

In a typical DRL model, the agent will try to find the best values based on the

policy, including predicting the potential rewards and actions for the input states.

Whereas in the Actor-Critic RL model, the Critic has a separate NN to validate the

Actor’s predicted action toward the environment and get the real score, before

correcting the actor’s policy. In this thesis, it is proposed that the SD module acts as

the optimal policy for the DRL which the Critic uses directly. The difference between

the predicted versus Actual actions forms the mean square error function for the NN

for optimization. The Critic also assigns the Q-value, which is the maximized reward

for the state-action pairs and is a normalized value of the MSE value. Section 3.15 has

described this in detail.

4.8. FD’s Algorithm

Algorithm 3 describes the process of how the FD’s SD unit works both as a

procedure to gather and process information from the DRE’s state, plus the execution

of the external script to derive the detailed system diagnostics and convert them into

service outage information. The procedure, p_complete_diagnosis, uses the same

process but against a list of faults to build up the knowledgebase required for the FD’s

NN training.

Algorithm 4 describes the FD’s process from a holistic point of view. This Fault

Diagnostics is inspired by reinforcement learning but with some customization. The

DRE is a highly complex software integrated with many parameters and configurations

that can affect the stability of the system. Therefore, the implementation for the

research has some deviation from the typical reinforcement learning method.

However, the principle of learning from experience to build up the knowledge and its

83

exploitation at the latter phase remains. It is a policy-based reinforcement learning and

the SD's output is a definitive certain goal for each state, taking the SD's service outage

and diagnostics as the product of its immediate rewards with no consideration for any

future rewards. The Q-value that defines the state and action are certain with no room

for any alternate consideration. The usual reinforcement learning's parameters that

control exploitation-exploration will not be used. This follows the work rules where

the IT administrator trainee is not allowed to perform the diagnosis independently until

the Senior IT supervisor has watched over all their tests before allowing them to

perform the first duty.

The initial, early and middle learning phases of the FD uses the SD unit

aggressively to build up the knowledge to a sufficient level for the NN to competently

predict them. The SD runs the procedure, p_complete_system_diagnosis, which runs

through the simulated faults of both true positive and negative scenarios that were

planned in the previous section, followed by running a list of external routines which

contain a series of system-related commands to gather all the information from various

sources, including the software's log, processes, and internal operation statistics. It then

aggregates the information and represents the DRE’s state for that period after the fault

is injected in. Another external file, system_matrix.txt, is then executed against the

DRE. This file contains all the system commands that interact with various DRE's

software elements and service their statistics. This, in turn, is processed and aggregated

to form the logical representation of the DRE's service outage. At this point, there are

three types of information: (i) DRE's state, (ii) service outage and (iii) system

diagnostics. These are considered knowledge and are stored in an external file. Once

this phase of learning is complete, the next phase of using the NN of handling the

diagnostics process takes over. This occurs while looping through the simulated fault

list: inject each fault, acquire the DRE's state, use the NN to predict the service outage

and lookup from the knowledge on the closest matching system diagnostics

information based on the service outage details. The loop ends with the execution of

the fixes to restore the services.

Algorithm 3 – System diagnostics, for individual and batch run

###this System Diagnostics routine is for single run

Input: The state of the DRE

Output: Service outage and system diagnostics

84

def p_single_system_diagnosis():

 all_process_err = execute(check_all_process.sh) #gather stats on dre software processes

 all_services_err= execute(check_all_services.sh) #gather stats on dre software services

 ora_log= execute(check_alert_log.sh) #scan oracle log for anomaly

 splx_log= execute(chec_event_log_err.sh) #scan shareplex log for anomaly

 lsnr_log= execute(check_listener_log_err.sh) #scan listener log for anomaly

 os_log= execute(check_os_log_err.sh) #scan os log for anomaly

 all_log_err=aggregate(ora_log, splx_log, lsnr_log, os_log) #combine all scanned log anomalies

 system_diagnostics=execute(system_matrix.txt) #this run a list of external sys cmds #run list of syscmds to

gather all DRE stats

 dre_state=join(all_log_err,all_process_err,all_service_err) #join up all the errors/anomalie to form dre's

current state

 service_outage=aggregate(system_diagnostics)

 knowledgebase.write(dre_state,service_outage,system_diagnostics)

 return(dre_state, service_outage, system_diagnostics)

###this run through the whole scenario of pre-planned faults to buildup knowledgebase

Initialization1: learning, Knowledgebase, breakfix_file

Set the learning rate to zero, med_learning to 80%

breakfix_file =fault_breakfix.txt

def p_complete_system_diagnosis():

 Loop the iteration,i, of reading(breakfix_file):

 break_cmd = f<breaki>

 fix_cmd = f<fixi>

 Check the learning rate.

 execute(break_cmd) #inject fault

 all_process_err = execute(check_all_process.sh) #gather stats on dre software processes

 all_services_err= execute(check_all_services.sh) #gather stats on dre software services

 ora_log= execute(check_alert_log.sh) #scan oracle log for anomaly

 splx_log= execute(chec_event_log_err.sh) #scan shareplex log for anomaly

 lsnr_log= execute(check_listener_log_err.sh) #scan listener log for anomaly

 os_log= execute(check_os_log_err.sh) #scan os log for anomaly

 all_log_err=aggregate(ora_log, splx_log, lsnr_log, os_log) #combine all scanned log anomalies

 system_diagnostics=execute(system_matrix.txt) #this run a list of external sys cmds #run list of syscmds to

gather all DRE stats

 dre_state=join(all_log_err,all_process_err,all_service_err) #join up all the errors/anomalie to form dre's

current state

 service_outage=aggregate(system_diagnostics)

 knowledgebase.write(dre_state,service_outage,system_diagnostics)

 end loop

Algorithm 4 – Fault diagnosis, using SD and NN units

85

Input: The state of the DRE

Output: Service outage and system diagnostics

Initialization1: learning, Knowledgebase, breakfix_file

Set the learning rate to zero, med_learning to 80%

breakfix_file= fault_breakfix.txt

Loop the iteration,i, of reading(breakfix_file):

 break_cmd = f<breaki>

 fix_cmd = f<fixi>

 Check the learning rate.

 execute(break_cmd) #inject fault

 ###exploration phase - use SD unit

 If learning < med_learning, do the exploration phase

 dre_state, service_outage, system_diagnostics= p_system_diagnosis()

 ##Knowledge exploitation phase - use NN unit

 If learning is > med_learning then do

 ##Train NN with data from knowledgebase

 NN_model=NN_build(knowledgebase)

 service_outage=round(NN_model.predict(DRE_state))

 system_diagnosis=search_knowledgebase(DRE_state,service_outage)

 print(dre_state, service_outage, system_diagnostics)

 learning rate +=1

 execute(fix_cmd) #fix fault

loop

4.9. Empirical Analysis

This section describes the tests conducted for the FD module. The purpose of

experiments is to determine the effectiveness of the proposed FD method in producing

the best diagnosis for the DRE under simulated faults situations. Before each

experiment's iteration, the testing environment DRE's services are restored to the

baseline where all the DRE’s services are functioning normally. Not all errors

introduced can result in a service’s disruption. The goal is to ascertain the diagnosis of

those faults that can disrupt the services and less toward those that are either too minor

or ineffective to cause major issues to the replication services. However, the test scope

is limited to faults that are recoverable and not catastrophic failures. In the event of a

catastrophic failure, the DRE service is irrecoverable and can only be solved by an

entire system rebuild.

86

4.9.1. Software used for FDR tests

This section describes the setup, arrangement, and configurations of the

respective software in the DRE test environment.

Database: two Oracle DBs are installed on two VMs and each of them houses

the Test schema that owns 10 tables. One of the DB serves as the source site where

SQL updates are applied against the Test Schema’s tables. The other DB on the other

VM serves as the target where it receives the data changes from the source via

Shareplex. The Test schema tables' structure is identical between the DBs for the

replication to occur. While the target DB requires no special setup, the source DB must

have several features enabled, including both archive log mode and supplemental log

data. The archive log mode enables the DB to archive their redo log files, which

contain the information of all the DML and DDL operations that had occurred in the

DB, into a specific file location. The supplemental log data feature enforces the DB to

log additional information about the DML and DDL which the Shareplex needs for its

reading operation. The Shareplex requires superuser level privileges on both DBs to

work properly, with the privilege not only to read system views but also to make

changes to the table structures.

Replication tool: The Shareplex were installed on each VM host using the common

accounts on both the UNIX and Oracle DB. They share the same names for their

installation directories, as well as privileges in the OS and DB. There are three main

directories to store the relevant files and attributes: 1) product directory for the

software binaries and libraries, 2) variable directory for the dynamic or volatile data,

logs and operational information and, 3) maintenance directory for the administration

scripts. Both the source and target Shareplex instance operates on TCP port 2100 and

under the specific hostname set as an environment variable in the start-up scripts. A

configuration file has been created and activated at the source Shareplex to support the

replication of the 10 tables from the source DB to the target via one queue.

Network: the two guests VMs reside on the common host, and they are configured to

communicate via TCPIP protocol. The addresses used by the VMs are static IP

addresses that belong to the 192.168.1.X subnets, and they can reach each other on the

internal network. The next network connectivity required is between the DBs and via

TNS resolution and managed by the listener. For each of the installed Oracle’s

87

binaries, two network configurations need to be set. The first binary is the listener.ora

which resolves incoming connection requests to the listener for the Oracle DB. The

second binary is the tnsnames.ora which informs the oracle client of the address where

the DB's listener is at. On each VM, the Shareplex instance uses the Oracle client to

connect to the local Oracle DB to perform its required services and tasks. It does not

directly connect to the remote DBs using the TNS connectivity, but it is also important

that both DBs can contact one another through the Oracle network in this experiment.

Operating system: Both VMs are running on Oracle Linux and their internal activities,

such as CPU, memory, and storage, are monitored. While hardware failure is

considered catastrophic, therefore it falls beyond the scope of this thesis, some other

aspects like excessive usage of the CPU, memory or storage volume are of significant

concern. This is because they cause both software to seize up or suffer significant

delays. Furthermore, part of the OS's security involves the management of user and

group accounts, and each software requires access to the OS to operate their service.

Therefore, they need to be assessed in the event of locked user accounts or changes to

permissions.

Table 7- Faults induction and restoration on DRE software’s component services (service status flag: 0

– good, 1 – faults)

Software Component/Services Target for Faults Fault inducing action Service restoring action

Databases Memory process PMON, SMON processes availability Kill off PMON process

Kill off SMON process

Start oracle instance (which start

both PMON and SMON)

 Status DB operational and service status Shutdown and start in mount

mode

Open DB for use

 Account security DB’s System and splx accounts’ status.

Splx has quota on splx tablespace

Lock up system and splx DB

account.

Splx user has no quota on

tablespace to write

Unlock system and splx DB user

account

Splx has quota to write on

tablespace

 DB storage space Amount of free space in system and splx

tablespaces.

Shrink tablespace to 100%

full

Increase tablespace space to have

20% of free space

Shareplex

replication

Mmain processes Shareplex main processes availability.

Sp_cop, Capture, Read, Exp, Imp, Post

processes

Kill off individual processes

Restart sp_cop to resume all

processes

 Queues’ operation Capture, Export, Import, Post and

Read’s queues

Stop the queues’ operations Start the queues’ operations

 DB accessibility DB connection using splx Unix account

from current and opposite VM hosts

Lock DB user account Unlock DB user account

Network

connectivity

Oracle listeners Source & target Listeners

Source & target host connect to target DB

via sqlplus

Stop the listener process to

stop user from connecting to

on-site DBs

Start the listener process to allow

user to connect to on-site DBs

 Oracle network files Essential files availability; tnsnames.ora,

listener.ora

Delete off network files Restore network files

 VM hosts Each VM host can reach the opposite node Disable sshd service Enable sshd service

Host OS Unix account status splx and oracle’s Unix accounts

Lock the Unix user accounts Unlock the Unix user accounts

 Essential OS system

files

Essential Unix files like /etc/hosts

Delete the /etc/hosts file Restore /etc/hosts file

 Network card status Network service on enps03network cards

on both hosts

Disable network card Enable network card

88

4.9.2. The experimental set-up

The objective of the test is to ascertain the accuracy of the FD module in

detecting and diagnosing the DRE fault. This is done by simulating a series of software

component faults that impact the DRE’s systemic service. The outage of a specific

software service has repercussions for other software component functionality, leading

to a partial or complete service outage among the software in the DRE. Each of the

specific simulated faults is induced by running one or more commands either against

the OS or through their interactive utility. The FD module will interact with the DRE

under these fault simulations to build up its competency and its diagnosing competency

will be assessed after its training routines. Table 7 below lists the various DRE

software’s core services or components, the intended functionalities to target, together

with the corresponding actions to induce and restore their specific faults. The

experiments are run on two VM running on Linux OS and both have Oracle DB and

Shareplex installed on them. Each VM has 4GB of RAM and 100GB of hard disk

storage. The OS of the Shareplex is Oracle 12 Enterprise edition, version 9.1. The

network protocol that both VMs use is TCPIP.

Table 8 - Detailed Test for Fault Diagnostic module, with break-fix routines

Software Function Attributes Commands Break fix

Databas

es

memory

process

PMON

SMON

Ps -ef|grep smon|grep DB1|grep -v

grep

Ps -ef|grep smon|grep DB2|grep -v

grep

export ORACLE_SID=DB1 && echo

"shutdown immediate;"|sqlplus -s

"sys/password as sysdba"

export ORACLE_SID=DB2 && echo

"shutdown immediate;"|sqlplus -s

"sys/password as sysdba"

export ORACLE_SID=DB1 && echo

"startup;"|sqlplus -s "sys/password as

sysdba"

export ORACLE_SID=DB2 && echo

"startup;"|sqlplus -s "sys/password as

sysdba"

 Status DB’s mode is open, not

restricted

DB available for use

Select open_mode from v$database;

 Account

security

System, splx account not

locked

Splx has quota on splx

tablespace

Select username, account_status from

dba_users where

account_status!=’OPEN’;

Select username, tablespace_name,

max_bytes from dba_ts_quotas where

username=’SPLX’;

echo "Alter user splx account

lock;"|sqlplus -s

"system/password@DB1"

echo "alter user splx quota 0 on

USERS;"|sqlplus -s

"system/password@DB1"

echo "Alter user splx account

unlock;"|sqlplus -s

"system/password@DB1"

echo "alter user splx quota unlimited on

USERS;"|sqlplus -s

"system/password@DB1"

 storage

space

System Tablespace’s free space

>20%

Splx tablespae’s free > 20%

--refer to script ?? Alter tablespace USERS datafile ‘XXX’

autoextend on 100m; (??)

Shareple

x

main

processe

s

Sp_cop is running

Exp, imp,post are running

ps -ef|grep sp_cop|grep -v grep

ps -ef|grep sp_ocap|grep -v grep

ps -ef|grep sp_opst_mt|grep -v grep

ps -ef|grep sp_xport|grep -v grep

ps -ef|grep sp_ordr|grep -v grep

ps -ef|grep sp mport|grep -v grep

echo password|su - splx -c

$MDIR/shutdown.sh

echo password|su - splx -c

$MDIR/startup.sh

 queues

operatio

n

Capture, export, import, post,

read status = Running

echo "show capture"|sp_ctrl

echo "show export"|sp_ctrl

echo "show import"|sp_ctrl

echo "show post"|sp_ctrl

echo "show read"|sp_ctrl

echo "stop capture"|sp_ctrl

echo "stop export"|sp_ctrl

echo "stop import"|sp_ctrl

echo "stop post"|sp_ctrl

echo "stop read"|sp_ctrl

echo "start capture"|sp_ctrl

echo "start export"|sp_ctrl

echo "start import"|sp_ctrl

echo "start post"|sp_ctrl

echo "start read"|sp_ctrl

 DB

accessibi

lity

Source Splx can connect to

source DB

Target Splx can connect to

target DB

splx@host1> echo "select 1 from

dual;"|sqlplus splx/splx@DB1

splx@host2> echo "select 1 from

dual;"|sqlplus splx/splx@DB2

export ORACLE_SID=DB1 && echo

"shutdown immediate;"|sqlplus -s

"sys/password as sysdba"

export ORACLE_SID=DB2 && echo

"shutdown immediate;"|sqlplus -s

"sys/password as sysdba"

export ORACLE_SID=DB1 && echo

"startup;"|sqlplus -s "sys/password as

sysdba"

export ORACLE_SID=DB2 && echo

"startup;"|sqlplus -s "sys/password as

sysdba"

Network

connecti

vity

Databas

es’

listeners

Source Listener is running

Target listener is running

Source host connect to target

DB via sqlplus

Target host connect to source

DB via sqlplus

oracle@host1> ps -ef|grep lsnr|grep -v

grep

oracle@host1> tnsping DB2

oracle@host2> tnsping DB1

$ORACLE_HOME/bin/lsnrctl stop

#break listener without proper db entries

Rm

$ORACLE_HOME/network/admin/listen

er.ora_bak

mv

$ORACLE_HOME/network/admin/listen

er.ora listener.ora bak

$ORACLE_HOME/bin/lsnrctl start

#restore listener services

cp

$ORACLE_HOME/network/admin/liste

ner.ora.orig listener.ora

Lsnrctl restart

89

Lsnrctl restart

#break tnsnames.ora

Rm

$ORACLE_HOME/network/admin/tnsna

mes.ora_bak

mv

$ORACLE_HOME/network/admin/tnsna

mes.ora tnsnames.ora_bak

#restore tnsnames.ora

mv

$ORACLE_HOME/network/admin/tnsn

ames.ora_orig tnsnames.ora

 Replicati

on tool

Socket_test from source to

target

Socket_test from target to

source

splx@host1> ssh host2

splx@host2> ssh host1

Host1>Echo “password” | sudo systemctl

stop ssh.service

Host2>Echo “password” | sudo systemctl

stop ssh.service

Host1> Echo “password” | sudo

systemctl start ssh.service

Host2> Echo “password” | sudo

systemctl start ssh.service

 VM

hosts

Host 1 can ping host 2

Host 2 can ping host 1

oracle@host1> ping host2

oracle@host1> ping host1

Host1> ifconfig enpsp03 down

Host2> ifconfig enpsp03 down

Host1> echo password| su -c “shutdown -

h now”

Host2> echo password| su -c “shutdown -

h now”

Host1> ifconfig enpsp03 up

Host2> ifconfig enpsp03 up

Manual power on host1 or host2

Host OS unix

account

status

Unix account are open & not

locked on host1

Unix account are open & not

locked on host2

root@host1> passwd --status splx

root@host1> passwd --status oracle

root@host2> passwd --status splx

root@host1> passwd --status oracle

root@host1> passwd -l splx

root@host1> passwd -l oracle

root@host2> passwd -l splx

root@host1> passwd -l oracle

root@host1> passwd -u splx

root@host1> passwd -u oracle

root@host2> passwd -u splx

root@host1> passwd -u oracle

 storage

space

/ has free space > 10% on host1

/ has free space > 10% on host2

oracle@host1> df -h |grep /u01|awk

‘{print $5}’

oracle@host2> df -h |grep /u01|awk

‘{print $5}’

--not tested --not tested

 network

card

status

Ifconfig enps03 is up on host1

Ifconfig enps03 is up on host2

oracle@host1>ifconfig enps03|grep -i

up

oracle@host2>ifconfig enps03|grep -i

up

Host1> ifconfig enpsp03 down

Host2> ifconfig enpsp03 down

Host1> ifconfig enpsp03 up

Host2> ifconfig enpsp03 up

 memory

utilizatio

n

Vmstat < 95% used on host1

Vmstat < 95% used on host2

oracle@host1> free | grep Mem | awk

{print $4/$2 * 100.0}'

oracle@host2> free | grep Mem | awk

{print $4/$2 * 100.0}'

 ???

Table 8 lists the details for the fault inducing and resolving routines for all the

DRE’s software various services and components. For the DBs, the simulated faults

will impact Oracle’s primary memory process such as SMON and PMON. A failure

in one of these processes will cause the DB service to stop. The script will then perform

a root level kill to simulate the DB outage and a start-up command via DB’s admin

level is required to restore it.

Another feature is the operational status of the DB. If the database is open, then

users can log in and interact with it. However, if it is brought down to mount mode,

then the DB service will no longer be available. A script will start the DB in mount

mode, and another will change it to open. The user account, SPLX, that the Shareplex

requires for interacting with the DB is critical to the overall operation. If the account

is not open or locked, then Shareplex’s replication service can no longer function. The

fault-inducing and correcting scripts will modify the user account status to be in open

or locked mode.

The Shareplex also require a user account to have a list of DB level privileges to

function, so scripts that simulate the absence and presence of these privileges were

prepared. Likewise, for the schema objects that the user account owns and access, the

Shareplex creates a list of DB objects under the user account during installation and

continues to use them for its operation. Should there be any changes to their

90

accessibility to the user account or the validity of the object, the Shareplex will

malfunction. Scripts were written to simulate this error. Another factor to note is the

availability of free space within DB for the Shareplex to operate on. If there is

insufficient space, the Shareplex will not be able to write data into the DB, resulting

in the suspension of its service. Scripts that constrict and free up the storage space were

written.

For the Shareplex’s fault simulation, it follows a similar pattern to the DB, with

the focus on their instance’s primary processes that run on the OS. Their service

disruption and restoration are done by scripts that execute system-level commands

against their console. Similar actions are performed against the Shareplex queues in

altering their status and operations for inducing and reverting the faults. The Shareplex

also needs to be able to connect to the DBs from different nodes in the DRE setup. and

this is done via network and oracle’s essential network files setup. The fictitious faults

on the setup are simulated with scripts to disable and enable the network cards, remove,

and reinstate the tnsnames.ora and listener.ora, as well as shutting down and starting

up the listener processes.

For the network inter-connectivity, there are two main areas in which the fault

can be induced for this setup: 1) the connection via the TCPIP protocol at the OS level

between the two VM hosts and, 2) the ability of the software’s client to connect to the

current and remote DBs through the oracle’s network grid which comprises of listener

services, OCI library, and oracle-related network files setup. The scripts that perform

the opposing functions of fault induction and restoration target the network card’s

status, the listener process availability and status, the presence and validity of the

network configuration files, as well as the OS’ network files under the /etc folders.

Finally, in the OS, the emphasis is on 1) the Unix user accounts that Oracle and

Shareplex need to use throughout their services, 2) the availability of free space on the

disk partitions that their home and operational directories are installed on, 3) the

resource availability in the OS which both Oracle and Shareplex can operate under and

4) status of the network card. In the first group, their scripts that can lock up and revert

the Unix account’s status were written. In the second group, a script to simulate an

error by changing the permissions of the Unix accounts, thereby suspending their

ability to write, was written. Finally, in the third group, a script was written to shut

91

down or restore the network connectivity services by disabling and re-enabling the

network card. For each of the software’s core functionalities, two of its attributes will

be assessed and a metric measuring their service normality is associated with them. A

value of 0 indicates a normal state whereas >0 indicates an abnormality. The following

tables 9 and 10 lists all the software components and the respective commands that can

simulate and restore their faults.

These tests do not include malicious or terminal faults to the software as they are

either irreversible or require a substantial amount of effort to restore. Examples of such

faults are the corruption or deletion of the software’s binaries or libraries, deletion of

DB's repository, file-based data store and erasure of OS’ disk mount-point. The neural

network that the RL used for its rewards-action prediction is made up of 3 hidden

layers of 30 nodes. It is trained with data in 50 batches and 500 epochs. Different

configurations and combinations of neural networks have been tested, and this setup

was selected based on the better results with the least fluctuations.

4.9.3. True Negative test results

Apart from the data obtained from the faults-inducing scripts in the previous

section, another group of scripts have been created to induce software faults that have

no impact on their DRE’s software functionalities and services. This is to form a set

of true negative data to support and enrich the dataset for the NN’s training so that the

NN can be competent enough to recognize the environment’s state data that can cause

service disruption.

For the script to induce this group of faults, research has been made across the

DRE’s software to identify faults that have a high chance of occurring, but do not have

a direct consequential effect on the entire software’s stability or create an outage on

the DRE’s functionalities. This is verified by the SD module which confirms the

presence of a service disruption. For this group, the service disruption matrix values

should all be zero. Once these faults are induced, the software will capture their

exceptions and events in their event or trace logs, which in turn are detected by the FD

module. Table 9 lists the faults on the DRE software that are considered to have no

direct impact on the DRE’s services.

92

4.10. Evaluation Criteria and Benchmarking

This section describes how the FD module is evaluated and the criteria used in

its assessment. The faults statistics cover the four main DRE's software: Database,

Replication, Network, operating system, and service level. They are represented by a

vector with each element representing the service. Within each element is a scalar

value from 0 to 1. Values >0 indicate the presence of a fault, with greater values related

to greater severity of the fault, while a value of 0 means that all components are

operating normally.

The vectors form the basis for the primary evaluation criteria. The statistical

differences among fault diagnosis of DRE's states can indicate the progress of the

DRE's overall service. Each diagnosis is correlated to the detailed diagnostic statistics

that were generated by the FD module which will be vital for the next module of fault

resolution. There are two groups of evaluation criteria for the FD’s diagnosis: the

quantitative and qualitative criteria. The quantitative criteria measure the level of the

severity value of the faults under the software's service group within a normalized

range, between the prediction and the actuals. The mean square error test applies to

this group. The qualitative criteria are on the group classification of the software's

service's faults. It is regarded as a binary classification too; with zero indicating normal

operation, and values greater than 0 to indicating the presence of faults. The binary

classification test applies to this group, and it measures the performance in terms of 1)

sensitivity: the measure of how good the model is in detecting the positives, 2)

Specificity: if it can avoid the false positives, and 3) Precision: the number of True

Positive it can find that are relevant. A receiver operating characteristic (ROC) graph

is plotted between the sensitivity and specificity to evaluate the quality or performance

of the diagnostic tests. The formula for the statistical measurement of the FD’s

classification test is listed in eq (14). The prediction results are also summarized into

a Confusion matrix.

Sensitivity/recall = sum (TP) / [sum (TP) + sum (FN)] (14)

Specificity = sum (TN) / [sum (TN) + sum (FP)]

Precision = sum (TP) / [sum (TP) + sum (FP)]

93

where TP is True-Positive, FP is False-Positive, TN is True-Negative, FN is

False-Negative.

 For the quantitative assessment, the accuracy of the FD module’s DRL-NN

prediction is measured against the output from the SD module. Both vectors’

difference is calculated using the Mean Average Square Error (MASE) to assess their

accuracy. This is used to evaluate if the NN needed to be re-organized and optimized

for improved performance.

4.10.1. Test results

This section describes the results obtained from the FD module after it has

completed the training and is subjected to the evaluation test processes. By this stage,

the FD module has been trained thoroughly and it is regarded to have achieved the

expert level of fault diagnostic capability. The minimum expectation of its prediction

accuracy internally is expected to reach 85% accuracy or greater. A sample of the

DRE’s states, including both the predicted and actual service outage results, is shown

in Table 9.

1) The DRE state data is derived from the information gathered against the

DRE’s software components from their logs, internal system statistics, and monitoring

after a fault is simulated.

2) The FD module predicted the service outage results after it has received the

DRE input based on its learned NN.

3) The SD module produced detailed results by running a list of diagnostic

routines against the DRE environment to derive and aggregate the actual statistics.

4) The classification of the outage results is derived by comparing the sum of the

predicted results’ values against the actual service outage results.

5) The MASE score is calculated based on the difference in the vectors’ values

between the predicted and actual results. Table 10 shows the raw output from the

simulated test.

Table 9 - Results of service outage prediction & scores against DRE’s state

DRE State Service outage Predicted Service outage Actual with

rounding

Classes MASE

[0,64655058,76223968,0,0,0,0,643513

81] [1,0,1,0,0,0,0,0] [1,0,0,0,0,0,0,0]

[[6,1,0,1,3,1],[2,2,1,1,0,0],[1,0,0,0,0,0],[0

,0,0,0,0,0],[0,0,0,0,0,0]]

[[6,1,0,1,3,1],[2,2,1,1,0,0],[1,0,0,0,0,

0],[0,0,0,0,0,0],[0,0,0,0,0,0]]

TP 0.6

94

[46968001,0,0,0,0,0,0,64351381]

[0,1,0,0,0,0,0,0] [0,1,0,0,0,0,0,0]

[[0,0,0,1,0,2],[2,2,2,1,0,0],[1,0,0,0,0,0],[0

,0,0,0,0,0],[0,0,0,0,0,0]]

[[0,0,0,1,0,2],[2,2,2,1,0,0],[1,0,0,0,0,

0],[0,0,0,0,0,0],[0,0,0,0,0,0]]

TP 0.3

[46968001,0,0,0,0,0,0,64351381]

[0,1,0,0,0,0,0,0] [0,1,0,0,0,0,0,0]

[[0,0,0,1,0,2],[2,2,2,1,0,0],[1,0,0,0,0,0],[0

,0,0,0,0,0],[0,0,0,0,0,0]]

[[0,0,0,1,0,2],[2,2,2,1,0,0],[1,0,0,0,0,

0],[0,0,0,0,0,0],[0,0,0,0,0,0]]

TP 0.2

[46968001,0,0,0,0,0,0,0]

[0,0,1,0,0,0,0,0] [0,0,0,0,0,0,0,0]

[[6,1,0,1,3,0],[0,0,0,0,0,0],[0,0,0,0,0,0],[0

,0,0,0,0,0],[0,0,0,0,0,0]]

[[6,1,0,1,3,0],[0,0,0,0,0,0],[0,0,0,0,0,

0],[0,0,0,0,0,0],[0,0,0,0,0,0]]

TP 0.1

[46968001,0,0,0,0,0,0,64351381]

[0,1,0,0,0,0,0,0] [0,1,0,0,0,0,0,0]

[[0,0,0,1,0,2],[2,2,2,1,0,0],[1,0,0,0,0,0],[0

,0,0,0,0,0],[0,0,0,0,0,0]]

[[0,0,0,1,0,2],[2,2,2,1,0,0],[1,0,0,0,0,

0],[0,0,0,0,0,0],[0,0,0,0,0,0]]

TP 0.6

[0,0,0,0,0,0,0,64351381]

[0,1,0,0,0,0,0,0] [0,1,1,0,0,0,0,0]

[[2,0,3,0,0,1],[2,2,1,1,0,0],[1,0,0,0,0,0],[0

,0,0,0,0,0],[0,0,0,0,0,0]]

[[2,0,3,0,0,1],[2,2,1,1,0,0],[1,0,0,0,0,

0],[0,0,0,0,0,0],[0,0,0,0,0,0]]

TP 0.0

[46968001,0,0,0,0,0,0,0]

[0,0,0,0,0,0,0,0] [0,0,1,0,0,0,0,0]

[[4,0,4,1,0,1],[0,0,1,0,0,0],[0,0,0,0,0,0],[0

,0,0,0,0,0],[0,0,0,0,0,0]]

[[4,0,4,1,0,1],[0,0,1,0,0,0],[0,0,0,0,0,

0],[0,0,0,0,0,0],[0,0,0,0,0,0]]

TP 0.3

[46968001,0,0,0,0,0,0,0]

[0,0,0,0,0,0,0,0] [0,0,1,0,0,0,0,0]

[[4,0,4,1,0,1],[0,0,1,0,0,0],[0,0,0,0,0,0],[0

,0,0,0,0,0],[0,0,0,0,0,0]]

[[4,0,4,1,0,1],[0,0,1,0,0,0],[0,0,0,0,0,

0],[0,0,0,0,0,0],[0,0,0,0,0,0]]

TP 0.0

[0,0,0,0,0,0,0,0] [0,0,0,0,0,0,0,0]

[0,0,1,0,0,0,0,0]

[[3,0,4,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0],[0

,0,0,0,0,0],[0,0,0,0,0,0]]

[[3,0,4,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,

0],[0,0,0,0,0,0],[0,0,0,0,0,0]]

TP 0.1

[0,0,0,0,0,0,0,0] [0,0,0,0,1,1,0,0]

[1,1,0,1,1,1,0,0]

[[0,0,0,0,0,2],[0,4,2,2,0,0],[3,2,1,0,0,0],[0

,0,0,0,0,0],[0,0,0,0,0,0]]

[[0,0,0,0,0,2],[0,4,2,2,0,0],[3,2,1,0,0,

0],[0,0,0,0,0,0],[0,0,0,0,0,0]]

TP 0.2

…. …. …. … ….

[0,0,0,0,0,0,0,0] [0,0,0,0,1,1,0,0]

[1,1,0,0,1,1,0,0]

[[0,0,0,0,0,2],[0,4,2,2,0,0],[2,2,0,0,0,0],[0

,0,0,0,0,0],[0,0,0,0,0,0]]

[[0,0,0,0,0,2],[0,4,2,2,0,0],[2,2,0,0,0,

0],[0,0,0,0,0,0],[0,0,0,0,0,0]]

TP 0.0

[58729172,0,0,0,0,0,0,0]

[0,0,0,0,0,0,0,0] [0,0,0,0,0,0,0,0]

[[0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0],[1

,0,0,0,0,0],[0,0,0,0,0,0]]

[[0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,

0],[0,0,0,0,0,0],[0,0,0,0,0,0]]

TN 0.2

[0,0,0,0,0,0,0, 28387490]

[0,0,0,0,0,0,0,0] [0,0,0,0,0,0,0,0]

[[0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0],[0

,0,0,0,0,0],[0,0,0,0,0,0]]

[[0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,

0],[0,0,0,0,0,0],[0,0,0,0,0,0]]

TN 0.0

[34823972, 58729172,0,0,0,0,0,0]

[0,0,0,0,0,0,0,0] [0,0,0,0,0,0,0,0]

[[0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0],[0

,0,0,0,0,0],[0,0,0,0,0,0]]

[[0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,

0],[0,0,0,0,0,0],[0,0,0,0,0,0]]

TN 0.1

[0, 82736461,0,0,0,0,0,0]

[0,0,0,0,0,0,0,0] [0,0,0,0,0,0,0,0]

[[0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0],[0

,0,0,0,0,0],[0,0,0,0,0,0]]

[[0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,

0],[0,0,0,0,0,0],[0,0,0,0,0,0]]

TN 0.1

Table 10 – Outputs from SD’s simulated tests

*** break **** export ORACLE_SID=DB1 && echo "shutdown immediate;"|sqlplus -s "sys/password as sysdba"

DRE log stats,DRE proc stats,DRE srvc stats = [0,64655058,76223968,0,0,0,0,0] [1,0,0,0,0,0,0,0] [1,0,0,0,0,0,0,0]

Diag service fault= [[0,0,0,1,0,1],[2,2,1,1,0,0],[1,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0]]

DRE diagnose metrics= [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0]

*** break **** export ORACLE_SID=DB2 && echo "shutdown immediate;"|sqlplus -s "sys/password as sysdba"

DRE log stats,DRE proc stats,DRE srvc stats = [0,0,0,0,0,0,0,0] [0,1,0,0,0,0,0,0] [0,1,0,0,0,0,0,0]

Diag service fault= [[0,0,0,0,0,1],[2,2,1,1,0,0],[1,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0]]

DRE diagnose metrics= [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0,0,0,0,0,0,0,0]

*** break **** echo "Alter user splx account lock;"|sqlplus -s "system/password@DB1"

DRE log stats,DRE proc stats,DRE srvc stats = [0,0,0,0,0,0,0,0] [0,0,0,0,0,0,0,0] [0,0,0,0,0,0,0,0]

Diag service fault= [[0,0,0,1,0,1],[0,0,1,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0]]

DRE diagnose metrics= [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]

*** break **** echo "alter user splx quota 0 on USERS;"|sqlplus -s "system/password@DB1"

DRE log stats,DRE proc stats,DRE srvc stats = [0,0,0,0,0,0,0,0] [0,0,0,0,0,0,0,0] [0,0,0,0,0,0,0,0]

Diag service fault= [[0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0]]

DRE diagnose metrics= [0,0]

*** break **** echo password|su - splx -c $MDIR/shutdown.sh

DRE log stats,DRE proc stats,DRE srvc stats = [0,0,0,0,0,0,0,0] [0,0,1,0,0,0,0,0] [0,0,0,0,0,0,0,0]

Diag service fault= [[6,1,0,1,3,0],[0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0]]

DRE diagnose metrics= [1,1,1,1,1,1,1,0,0,0,0,0,0,1,1,1,1,0]

*** break **** echo "stop capture"|sp_ctrl && echo "stop export"|sp_ctrl

DRE log stats,DRE proc stats,DRE srvc stats = [0,0,0,0,0,0,0,0] [0,0,0,0,0,0,0,0] [0,0,1,0,0,0,0,0]

Diag service fault= [[3,0,2,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0]]

DRE diagnose metrics= [0,1,0,1,0,1,0,1,0,1,0]

*** break **** echo "stop capture"|sp_ctrl && echo "stop import"|sp_ctrl

DRE log stats,DRE proc stats,DRE srvc stats = [0,0,0,0,0,0,0,0] [0,0,0,0,0,0,0,0] [0,0,1,0,0,0,0,0]

Diag service fault= [[3,0,2,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0]]

DRE diagnose metrics= [0,1,0,1,0,1,0,1,0,0,1,0]

*** break **** echo "stop capture"|sp_ctrl && echo "stop post"|sp_ctrl

DRE log stats,DRE proc stats,DRE srvc stats = [0,0,0,0,0,0,0,0] [0,0,0,0,0,0,0,0] [0,0,1,0,0,0,0,0]

Diag service fault= [[2,0,2,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0]]

DRE diagnose metrics= [0,1,1,0,0,0,0,1,0,0,0,1,0]

*** break **** echo "stop capture"|sp_ctrl && echo "stop read"|sp_ctrl

DRE log stats,DRE proc stats,DRE srvc stats = [0,0,0,0,0,0,0,0] [0,0,0,0,0,0,0,0] [0,0,1,0,0,0,0,0]

Diag service fault= [[2,0,3,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0]]

DRE diagnose metrics= [0,1,0,0,1,0,0,1,1,0,0,0,1,0]

*** break **** echo "stop export"|sp_ctrl && echo "stop import"|sp_ctrl

DRE log stats,DRE proc stats,DRE srvc stats = [0,0,0,0,0,0,0,0] [0,0,0,0,0,0,0,0] [0,0,1,0,0,0,0,0]

Diag service fault= [[2,0,2,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0]]

DRE diagnose metrics= [0,0,0,1,0,1,0,0,0,1,1,0]

95

*** break **** echo "stop export"|sp_ctrl && echo "stop post"|sp_ctrl

DRE log stats,DRE proc stats,DRE srvc stats = [0,0,0,0,0,0,0,0] [0,0,0,0,0,0,0,0] [0,0,1,0,0,0,0,0]

Diag service fault= [[3,0,2,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0]]

DRE diagnose metrics= [0,0,1,1,0,1,0,0,0,1,0,1,0]

*** break **** echo "stop capture"|sp_ctrl && echo "stop export"|sp_ctrl && echo "stop import"|sp_ctrl

DRE log stats,DRE proc stats,DRE srvc stats = [0,0,0,0,0,0,0,0] [0,0,0,0,0,0,0,0] [0,0,1,0,0,0,0,0]

Diag service fault= [[3,0,3,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0]]

DRE diagnose metrics= [0,1,0,1,0,1,0,1,0,1,1,0]

…..

4.10.2. Service outage classification results

The test is conducted with 80 fault inducing scripts. 30 of them have a direct

effect on the software’s functionalities which impact the DRE’s software services, and

50 of them do not. It is expected that the FD module can predict accurately for both

groups. The results are split into qualitative and quantitative groups. Table 11 is the

tabulation of the prediction’s result classes in a confusion matrix. The results showed

that the SD module can predict the group of service outages concerning the

information received from the DRE’s environment. While it has a high capability in

recognizing most of the induced faults that can affect the DRE’s software

functionalities, it fares less well when it comes to the detection of those in the other

groups. Based on the result, the FD’s sensitivity is 0.87, specificity is 0.98, precision

is 0.871. The SD module has been shown to be accurate enough that its prediction can

produce the correct category of service outage for the given environment state’s data

input. Compared to the other published research works, the FD’s results are

comparative in acceptable term for the respective domain of application [68-70]. It has

the competency to differentiate if the inputs are related to DRE’s service

functionalities. In the next section, the accuracy of true-positive predictions is

discussed.

Table 11- Confusion matrix of the classification of the service outage’s prediction

N=80

Predicted: Yes

Predicted: No

Actual: Yes

27(TP) 4(FN)

Actual: No

1(FP) 49(TN)

4.10.3. Service outage prediction accuracy

For this test, The SD module forms the baseline against which the FD’s

predictions are measured against. Each value in the service outage results produced by

both the FD and SD is calculated using the MSE approach, and they are summed up

100

better as it progresses with the iterations of interactions produce more data for its NN’s

training minibatch and thereby, improves its prediction accuracy rate. By the end of

its learning phase, it has achieved an expert level and is able to recognize the state

input to predict the service outage. The results from the experiments had proven its

capability. The entire content of this chapter has been published with the Australasian

Database Conference 2020[71]. In the next chapter, the next module called fault

restoration is discussed.

101

CHAPTER 5: DESIGNING THE FAULT

RESOLUTION (FR) MODULE

Chapter 5 presents the Fault Resolution (FR) module with its design architecture

and operations, testing, and results analysis.

5.1. Adaptive Fault Resolution (FR) Module Design

The Fault Resolution (FR) module performs the act of resolving the faults

against DRE after it receives the inputs from the SD module on the service outages,

and it uses the same architecture as the FD module which has the objective of creating

an expert medium that can able to decipher the possible software's service outages

based on the DRE input without the need of running through a time-consuming,

resource-intensive and fine-grained system diagnostics every time throughout its

production's operation. It also serves as a repository of correlating the specific list of

outages to the respective group of diagnostic information that has been gathered and

curated, for the FR module to follow up. The FR module has a similar setup but serves

another function, which is to decipher the service outage matrix to the required actions

that can resolve the faults to restore the service. Once the FR module is trained fully,

it can prescribe a series of corrective actions for the DRE's service outages that are

obtained via the SD module. The DRE responds to the SD module with its new state.

if the SD's analysis on the DRE and decides that it no longer acknowledge any DRE's

related outages, it completes the fault diagnostics and resolution cycle. Else it will keep

to the FR module for the next course of action.

The FR is based on the following outlines: 1) there is a finite number of corrective

actions that can be taken to resolve a finite number of faults within the DRE. The DRE

has several software require configuration setting perfectly tuned to interoperate

harmoniously. So, a single fault can not only cause one direct outage, but it will affect

other and create a cascading effect. Fixing the cascaded service faults requires some

insights into the software element's attributes and function, where a series of

appropriate actions is chosen by the FR module to restore the elements' function. 2) it

may take one or more correction iteration before the faults can be resolved. it is

105

in providing solutions quickly without invoking any action on the SC module. this is

considered exploitation of its rich expert knowledgebase. However, it also performs a

probability calculation to determine whether it should continue to rely on its

knowledgebase or take a chance to explore for potential newer actions.

 Like the FD module's DRL, the balance between exploitation vs exploration is

mutually inverse. For the exploration phase, in this DRL setup, it is referred to as the

use of FR and SC module to ascertain the corrective actions. for the exploitation phase,

the module relies on its build-up knowledgebase as a reference. this is to minimize the

chance of getting stuck in local optima. Through the learning phase from low, medium

to expert, the probability of the exploration starts high whereas the exploitation rate is

low. As the learning interaction goes, both phases decrease and increase respectively

till they reach the end of the expert phase. By the end of the phase, the module favours

the use of its knowledgebase instead of exploring new ones.

5.1.2. System Correction (SC) module

To guide the FR's DRL in its path to find the appropriate action to respond to the

information generated by the SD module, the system correction (SC) module serves as

the guide. The SC's purpose is to search through its repository for the appropriate

actions to correct the SD module's predicted service outages, using the service outage

related system diagnostics statistics. The SC module serves only as the passive

reference to validate the FR module's output and it doesn't play the proactive role as

the intent of the FR module is to be trained up to a level that it knows the corrective

actions to take for any given service outages event. For a certain software element's

faults, there are multiple corrective solutions to use and at times, it requires more than

one corrective action before their faults can be resolved. However, instead of randomly

running through every combination of the corrective actions, the SC module chooses

the appropriate actions, much like the equivalent of having an expert IT administrator

guiding the junior on the appropriate action to take for a given identified fault.

Referring to figure 28, the SC module receives the FD module's service outage

matrix, and it can use the knowledgebase to lookup for the corresponding system

diagnostics detailed statistics. each entity in the system diagnostics statistics is related

to a vector of corrective action (CA) for that software element's attributes and function.

the correlations have pre-determined like an IT troubleshooting guide except that the

106

guide recommends a series of checks to determine the actions whereas the fault-

correction matrix bypasses the checks and prescribe the actions. This is like an

experienced IT administrator who knows what to do when he sees a certain faulty

situation.

The SC module comprises a multitude of libraries of external OS-based

commands that interact with the software elements and make changes. These libraries

are comprehensive and are maintained in accordance with each software's groups

domain such as Oracle DB, Shareplex, network and OS. each of the scripts that are

intended to make the corrective changes have been crafted as a response specifically

for each unique software element's functions and they are indexed for reference. The

rationality of mapping the diagnosed faults to specific actions is derived from the fact

that in any typical fault resolving scenario, the troubleshooting workflow passes the

system information through various conditions and checks to decide whether a certain

course of actions is to be taken and what specific commands or changes are needed.

But when such system faults arise, the end goal is to use one or more appropriate

corrective actions against the software element in the hope to rectify them or restore

their function, it is a 1:n relationship between faults and corrective actions.

Examples of some of the actions incurred are; 1) altering the state of the system

processes through start-up or shutdown, 2) increase space availability for the system's

directories, 3) correcting the setting of the privileges of the system's process, files,

accounts that they operate from, 4) setting the values of the configurations and

parameters that they are using, operating or initialize from, 5) ensuring network card

operations' status for network connectivity, 6) unlocking the user accounts or

regranting the appropriate privileges, 7) restoring the original baseline copy of the

system and network files onto the Unix's /etc folders and, 8) enabling the replication

queues back to operation. This holds the flags of activation to match the library of

corrective action scripts in a 1:m relationship as shown in the matrices in eq (15). This

will be discussed in greater detail in the next section.

𝐷𝑖𝑎𝑔𝑛𝑜𝑠𝑡𝑖𝑐𝑠 𝑚𝑎𝑡𝑟𝑖𝑥 [

𝑜𝑟𝑎𝑓1
𝑜𝑟𝑎𝑓2

…
𝑜𝑟𝑎𝑓𝑛

] [

𝑠𝑝𝑥𝑓1
𝑠𝑝𝑥𝑓2

…
𝑠𝑝𝑥𝑓𝑛

] [

𝑛𝑤𝑓1
𝑛𝑤𝑓2

…
𝑛𝑤𝑓𝑛

] [

𝑜𝑠𝑓1
𝑜𝑠𝑓2
…

𝑜𝑠𝑓𝑛

], (15)

𝑐𝑜𝑟𝑟𝑒𝑡𝑖𝑣𝑒 𝑚𝑎𝑡𝑟𝑖𝑥 = [

𝑜𝑟𝑎𝑉1

𝑜𝑟𝑎𝑉2

…
𝑜𝑟𝑎𝑉𝑛

] [

𝑠𝑝𝑥𝑉1

𝑠𝑝𝑥𝑉2

…
𝑠𝑝𝑥𝑉𝑛

] [

𝑛𝑤𝑉1

𝑛𝑤𝑉2

…
𝑛𝑤𝑉𝑛

] [

𝑜𝑠𝑉1

𝑜𝑠𝑉2

…
𝑜𝑠𝑉𝑛

]

107

Where, the ora, spx, nw, and os identify the software groups as Oracle DB, Shareplex,

network, and operating system. The suffix, f, identifies the specific software’s

diagnosed faults and, V, refers to the corrective actions vectors that have m dimensions.

Following the Actor-Critic Reinforcement learning model outline which is described

in section 2.4.3 under chapter 2, the state, s, is the diagnostics matrix while the

corrective matrix is the action, a. The reward, r, is the number of faults that the action,

a, can resolve.

5.1.3. Representation and correlation of diagnosed faults to

corrective actions

For the FDR design, a software element can have multiple types of faults and

there is a list of corresponding corrective actions. Starting from the FD module, it

produced the predicted outcome of the service outage (SO) information of the DRE’s

state for both the users and the FR module. Each SO has its corresponding System

Diagnostic (SD) statistics which has all the specific errors found. The FR module is

then based on the SO information to predict the course of corrective actions for the

troubled DRE, and the corrective actions are obtained from the external library that

has a list of pre-built system commands and OS scripts for the various software

elements. it is important to map each specific software elements’ fault to those

corrective actions that have been predetermined to restore their function. For example,

the oracle DB user account may have been locked or lack the system privilege, so the

appropriate list of actions is a multitude of commands that range from unlocking the

account, granting additional space quota, granting system privilege, to recreating the

account. Table 12 illustrates the relationship between the two state-space of diagnosed

faults and corrective actions.

Sometimes, a single software entity outage can cause multiple faults. For

example, Oracle instance outage can attribute to other problems such as loss of

database to the Shareplex, inability to read Oracle DB’s logfiles by the Capture

process, and Oracle DB’s account checks. The table below illustrates this complex

relationship hypothetically. The level of inter-correlation is high but for this thesis, the

scope is narrowed down to the major and more significant form of changes that the

corrective actions are developed for, which involves in services’ start-stop, parameters,

and configuration changes, plus privilege and resources allocation. The reduction in

108

the scope is to improve the manageability of the proposed system’s complexity as well

as prediction’s reliability.

However, a future enhancement to this thesis can include a more complex route

to enhance its capability. All these corrective actions’ scripts have been crafted through

numerous consultations with experienced IT experts and technical research.

Table 12 – Example of diagnosed faults correlation to corrective actions

 Corrective actions

 \

Diagnosed faults

 OracleDB Shareplex Network Linux OS

S
er

v
ic

e

fa
u
lt

#

A
ct

io
n
1

(s
cr

ip
t1

.c
m

d
)

A
ct

io
n
2

(s
cr

ip
t2

.c
m

d
)

A
ct

io
n
3

(s
cr

ip
t3

.c
m

d
)

A
ct

io
n
1

(s
cr

ip
t4

.c
m

d
)

A
ct

io
n
2

(s
cr

ip
t5

.c
m

d
)

A
ct

io
n
3

(s
cr

ip
t6

.c
m

d
)

A
ct

io
n
1

(s
cr

ip
t7

.c
m

d
)

A
ct

io
n
2

(s
cr

ip
t8

.c
m

d
)

A
ct

io
n
3

(s
cr

ip
t9

.c
m

d
)

A
ct

io
n
1

(s
cr

ip
t1

0
.c

m
d

)
A

ct
io

n
2

(s
cr

ip
t1

1
.c

m
d

)
A

ct
io

n
3

(s
cr

ip
t1

2
.c

m
d

)

OracleDB

Fault1(process, servces) 2 1 0 0 0 0 0 0 0 0 0 0 0

Fault2(operation, privileges) 3 0 0 1 0 0 0 0 0 0 0 0 0

Fault3(configuration,

parameters)
4 0 0 0 0 0 0 0 0 0 0 0 0

Shareplex

Fault1(process, servces) 2 0 0 0 1 1 0 0 0 0 0 0 0

Fault2(operation, privileges) 1 0 0 0 0 0 1 0 0 0 0 0 0

Fault3(configuration,

parameters)
3 0 0 0 0 1 0 0 0 0 0 0 0

Network

Fault1(process, servces) 6 0 0 0 0 0 0 0 0 1 0 0 0

Fault2(operation, privileges) 1 1 0 0 0 0 0 0 0 0 0 0 0

Fault3(configuration,

parameters)
2 0 0 0 0 0 0 1 0 0 0 0 0

Linux OS

Fault1(process, servces) 4 0 0 0 0 0 0 0 0 0 1 0 0

Fault2(operation, privileges) 2 0 0 0 0 0 0 0 0 0 0 0 1

Fault3(configuration,

parameters)
1 0 0 0 0 0 0 0 0 0 0 0 0

The software DRE is segregated into 4 tiers of importance; OS being the highest,

followed by the network, database, and lastly Shareplex. This is because one software

technology provides a more foundational service to the others which are dependent on

it. Because of this, the DRL can dictate the choice of actions to take, especially when

it comes to multiple types of actions available for one fault. So, like a typical

troubleshooting workflow where the conditions direct the tacit consideration to the

most appropriate course of action. The DRL uses the Q-value is used to define the best

course of corrective action matrix.

Table 13 – Association of software corrective actions to diagnosed faults for specific software

elements.

Oracle’s diagnosed faults ID and

description

Oracle DB corrective actions flag

array

Corresponding action vector to

external commands

1= locked user account

2= incorrect password

3= not enough space

[1,0,0,0,0]

[0,0,0,1,0]

[0,1,0,0,0]

Unlock user account.

Grant space quota.

Grant more privilege.

109

4= insufficient privilege

5 = user does not exist

[0,0,1,0,0]

[0,0,0,0,1]

Reset password.

Create the user account.

Referring to Table 13, for an example of resolving a common fault like a locked

DB account, only the action of unlocking will be required. Therefore, the action for

the fault with the vector of actions is required to enable the necessary activation of the

commands to unlock it. the following table illustrates this relationship. Each array has

a tuple of <action flag, script id> where action flag stipulates for activation, and the

script id identifies the commands for the software element.

Therefore, the initial representation of the detailed diagnosed information to the

corrective actions can be depicted as followed where the diagnosed matrix is changed

to a vector to show the relationship to the respective vector of arrays that hold the

tuples of corrective action information.

 (16)

This can be summarised as; dtn = atnm

Where d is the diagnosed faults, t is type software group, n is the number of

software element faults, a is the corrective action array, m is the number of array’s

action flags position, d ∈ D and a ∈ A, where d is the element of all diagnosed faults

of set D, a is the element of all corrective actions of set A. the array of corrective action,

a, is a list of tuples, each with an identification and a numerical reference to the specific

entries in the correction external libraries of scripts and OS commands.

5.1.4. Prioritization of the software groups’ action

Not all the software in the DRE is regarded equally. Some can function

independently without the need of others while others depend heavily on others to

conduct their purpose and service. There is different level of dependencies stacked

[

𝑜𝑟𝑎1

𝑜𝑟𝑎2

…
𝑜𝑟𝑎𝑛
𝑠𝑝𝑥1

𝑠𝑝𝑥2

…
𝑠𝑝𝑥𝑛
𝑛𝑤1

𝑛𝑤2…
𝑛𝑤𝑛
𝑜𝑠1

𝑜𝑠2

 …
𝑜𝑠𝑛]

[(𝑜𝑟𝑎𝑎11, 𝑜𝑟𝑎𝑠11), (𝑜𝑟𝑎𝑎12, 𝑜𝑟𝑎𝑠12), … , (𝑜𝑟𝑎𝑎1𝑚, 𝑜𝑟𝑎𝑠1𝑚)]
[(𝑜𝑟𝑎𝑎21, 𝑜𝑟𝑎𝑠21), (𝑜𝑟𝑎𝑎22, 𝑜𝑟𝑎𝑠22), … , (𝑜𝑟𝑎𝑎2𝑚, 𝑜𝑟𝑎𝑠2𝑚)]

….
[(𝑜𝑟𝑎𝑎𝑛1, 𝑜𝑟𝑎𝑠𝑛1), (𝑜𝑟𝑎𝑎𝑛2, 𝑜𝑟𝑎𝑠𝑛2), … , (𝑜𝑟𝑎𝑎𝑛𝑚, 𝑜𝑟𝑎𝑠𝑛𝑚)]
[(𝑠𝑝𝑥𝑎11, 𝑠𝑝𝑥𝑠11), (𝑠𝑝𝑥𝑎12, 𝑠𝑝𝑥𝑠12), … . , (𝑠𝑝𝑥𝑎𝑚, 𝑠𝑝𝑥𝑠1𝑚)]
[(𝑠𝑝𝑥𝑎21, 𝑠𝑝𝑥𝑠21), (𝑠𝑝𝑥𝑎22, 𝑠𝑝𝑥𝑠22), … . , (𝑠𝑝𝑥𝑎2𝑚, 𝑠𝑝𝑥𝑠2𝑚)]

….

[(𝑛𝑤𝑎11, 𝑛𝑤𝑠11), (𝑛𝑤𝑎11, 𝑛𝑤𝑠11), , … . , (𝑛𝑤𝑎1𝑚, 𝑛𝑤𝑠1𝑚)]
[(𝑛𝑤𝑎21, 𝑛𝑤𝑠21), (𝑛𝑤𝑎22, 𝑛𝑤𝑠22), , … . , (𝑛𝑤𝑎2𝑚, 𝑛𝑤𝑠2𝑚)]

…..
[(𝑛𝑤𝑎𝑛1, 𝑛𝑤𝑠𝑛1), (𝑛𝑤𝑎𝑛2, 𝑛𝑤𝑠𝑛2), , … . , (𝑛𝑤𝑎𝑛𝑚, 𝑛𝑤𝑠𝑛𝑚)]

[(𝑜𝑠𝑎11, 𝑜𝑠𝑠11), (𝑜𝑠𝑎12, 𝑜𝑠𝑠12), , … . , (𝑜𝑠𝑎2𝑚, 𝑜𝑠𝑠2𝑚)]
[(𝑜𝑠𝑎21, 𝑜𝑠𝑠21), (𝑜𝑠𝑎22, 𝑜𝑠𝑠22), , … . , (𝑜𝑠𝑎2𝑚, 𝑜𝑠𝑠𝑛𝑚)]

…..
[(𝑜𝑠𝑎𝑛1, 𝑜𝑠𝑠𝑛1), (𝑜𝑠𝑎𝑛2, 𝑜𝑠𝑠𝑛2), , … . , (𝑜𝑠𝑎𝑛𝑚, 𝑜𝑠𝑠𝑛𝑚)]

Detailed diagnostic stats corrective actions for each software element’s configurations and functions

110

hierarchically, starting from the top where one Shareplex operates on top of all the

software and IT infrastructure, followed by the oracle DB that requires both networks

and operating systems to support its service, but it is not dependent on Shareplex. The

Operating system is considered as a platform on which all the other software depends,

but it can function without any of the above software. The next in line is the network

connectivity which sees the connectivity and communication among the hosts plus

software elements that require this feature to talk to one another. Therefore, any faults

that occur in the software that has the higher importance in this hierarchical order of

dependencies, will cascade down the errors down to the other software, causing

multiple faults among the other software groups. Likewise, when the fault is resolved

at the top, the other faults that developed due to the faults may get fixed subsequently

without any intervention. With this in the plan, the prescription of corrective actions

to resolve faults in the DRE should start with the most important software in the

hierarchical order first, then observe the cascading of the problem fixed across other

software groups.

In the DRE’s fault resolution process, there are two extreme scenarios. In the

best-case scenario, the fault is a minor and isolated incident that can be resolved by

single action. Such as the database account for Shareplex is locked the only corrective

action needed is to unlock it. The service outage information to represent this will be

a straight vector that contains no errors except with one value to depict the specific

error, e.g. service outage information = [0,1,0,0…..0,0,0,0]. So, the action required is

the corresponding array of software elements’ corrective actions array which points to

the respective external system commands. But in the worst-case scenario, this happens

when a major software element in the DRE fails and that impact the rest of the other

elements that depend on it. For example, when the network card status is disabled or

has the wrong IP configuration at the OS level, this will cause an outage on the

connectivity and communication. This has a direct impact on the DRE’s network

services, which in turn affect the Oracle DB service and eventually the operation of

the Shareplex. In this scenario, the service outage information to represent this DRE’s

state will be [1,2,2,1,0,0,…1,2,3,1,1] and the corresponding fault resolution

information is a large matrix of corresponding corrective actions.

111

However, referring to the previous section on how the hierarchical importance

of software impact the others, we proposed that we only perform corrective actions

only to the most important groups of the software elements from the top level down,

and observe the effect on the rest of the other discovered faults. It is a sequence of

succession in solving each software group in stages. This problem-solving process is

not a single one-off but requires several iterations to assess just how effective the

change will be against the problematic DRE before the next course of action is decided.

The process can be simplified as followed.

1. It will require the FD module to sample and diagnose the level of service

outages if there is any that arise from the above set of corrections. In the event,

if the entire service outages which had been previously reported, have turned

up all negatives, then the fault resolution process is then considered to be

successful.

2. If the service outage information is still positive with all sector’s faults as

active, then the FR module will try to activate the other corrective actions based

on their output to resolve them.

3. If the service outage information’s section for that specific software group, e.g.,

OS, is clear, that means the problem-solving routine is a success. The next

course of action is to move and focus on the rest of the other software groups’

elements such as network, Oracle DB, and Shareplex in a hierarchical

sequential order.

4. A counter is used to keep track that in the event where the problem-solving

process iterates and there is no success, then it will notify the IT administrator

for help.

5.1.5. Cost function and Q-Values for FR module

The accuracy measurement of each DRL’s NN prediction is derived from finding

the absolute differences in value between the predicted corrective actions values

against those that are produced by the SC modules. Refer to eq (17), if the cost values

of the predictions are high, then more work is required in building up the

knowledgebase and retrain the NN for the DRL. It also determines the confidence

112

level in the FR module to predict the corrective action accurately and this reduces the

dependency on the SC module.

Cost = |apredict – aactual| (17)

For a given input state of the service outage and based on the consideration of

the software group’s priority plus the best number of actions needed, the DRL will

select the best course and how it does that is based on the reward that takes in the

software group’s priority and the number of actions it should take, given the

assumption that the corrective actions can indeed resolve the faults as in eq (18).

Q-values = gs * hs (18)

where g is the software group’s priority in which the faults have occurred, h is

the total actions used, s is the service outage state’s identification.

For example, if there are faults in the SO matrix [<OracleDB>, <Shareplex>,

<network>, <OS>], then the best choice of action is to resolve the OS’ fault first based

on its priority. Once the action has resolved the OS’s fault, the focus is turned onto the

Network’s, and this keeps repeating onto the OracleDB and eventually the

Shareplex’s. However, if the applied action for a particular software group managed

to resolve one set of faults but the DRE’s state return with another fault of the same

group, then the FR module’s focus will not move and keep trying to resolve. Therefore,

the values for g are 1 = Shareplex, 2 = OracleDB, 3 = Network, 4 = OS. Table 14

illustrated this sequence of considerations. As it resolved them, it calculates the cost

or reward for the action to the state and builds up a hierarchical structure of actions vs

service outage states like figure 18. Algorithm 6 shows the FR module’s process in

solving each of the software groups’ faults in the proposed hierarchical order and

algorithm 7 shows describe the procedure of how the direct corrective actions are

obtained for each of the software element’s fault from the external libraries of pre-

scripted commands that have been duly prepared by the IT administrators.

Table 14 – Sequence of actions’ consideration for series of faults

Run State of Service outage information

[<OracleDB> <Shareplex> <Network>

<linuxOS>

Prescribed corrective actions [<OracleDB>

<Shareplex> <Network> <linuxOS>]

Description

1 [1,2,1,0][1,0,1,2][2,3,1,0][3,0,1,0] [0,0,0,0][0,0,0,0][0,0,0,0][0,0,A1,0] Resolve OS fault as priority

2 [1,2,1,0][1,0,1,2][2,3,1,0][0,0,0,0] [0,0,0,0] [0,0,0,0][A1,A2,A3,0][0,0,0,0] OS fault resolved, attempt to fix network faults

113

4 [1,2,1,0][1,0,1,2][0,0,0,0][0,0,0,0] [A1,0,A2,A3][0,0,0,0][0,0,0,0][0,0,0,0] Both OS and network faults resolved, try fixing

OracleDB

5 [0,0,0,0][1,0,1,0][0,0,0,0][0,0,0,0] [0,0,0,0] [A1,0,A2,0][0,0,0,0][0,0,0,0] OS, Network & DB faults resolved, remain

Shareplex faults, attempt to fix

6 [0,0,0,0][0,0,2,0][0,0,0,0][0,0,0,0] [0,0,0,0] [0,0,A1,0][0,0,0,0][0,0,0,0] 2nd faults in Shareplex found, attempt to fix

7 [0,0,0,0][0,0,0,0][0,0,0,0][0,0,0,0] [0,0,0,0][0,0,0,0][0,0,0,0][0,0,0,0] All faults have been fixed

5.2. FR’s Algorithm

The algorithm for Fault Resolution follows the same design as FD's in using

defining the amount of iteration for solution exploration to build up the knowledgebase

for the latter phase of exploiting them via NN prediction as shown in algorithm 5. In

this phase, both the current and new state refers to the DRE as the system diagnostics

details, unlike the FD. There is a separate iteration of the fault simulation and

correction routine which employ the use of the SC unit to identify and correct the

simulated faults with corrective actions that are described in algorithm 6. This routine

updates the information and the reward associated with the actions in a knowledgebase

file, which will be used in the next phase. The next routine performs against the

simulated faults again and it can contain another set of simulated faults. The process

is split into two distinct sections between the exploration and the exploitation phase.

Similar to the first routine, the exploration phase in the second routine also assesses if

the learning rate is in the favour of the exploration. If so, the SC unit is performed, and

the information is added to the knowledgebase. If the learning rate favours

exploitation, the NN unit is used to predict the corrective action against the state, and

then use the p_single_element_corrective_action procedure to execute them one by

one. The new state plus all the information is added to the knowledgebase file

alongside their rewards. This enriches it and bolsters the NN’s training competency.

The NN is to map the large state space between the diagnostic information about the

DRE's state and the corrective actions that are required to resolve the faults.

Referring to algorithm 5, the System Correction (SC) unit is the foundation of

the FR where it takes in the system diagnostics information and device the array of

corrective actions. Referring to algorithm 6, the SC unit has its algorithm where the

software groups are prioritized following their group's hierarchical level of importance

in the order of OS, network, OracleDB and Shareplex, respectively. The SD unit then

iterates through each of the element's corrective actions as flagged as active in the sub-

group from the start to the end individually, finding the corresponding system

114

commands from the external library and execute them against the DRE. Using the SD

unit's procedure, p_single_system_diagnostics, as previously mentioned in chapter 5.8,

the SC unit queried and build up the information of the DRE's new state after the

corrective action has been applied, together with its diagnostics information which

determines the progress of the fault resolution. If the new state is the same as the old

state, then that signifies that the corrective action is either not effective or the cause of

the fault for that specific software element is not isolated, but a cause from other

adjacent software. Therefore, the SC unit moves on to the next corrective actions in

line until it completes the whole sub-group of flagged corrective actions. By the end

of it, the SC unit achieves two outcomes, either it succeeds or failed in the fault

resolution task for the software sub-group. If it succeeds, the SC unit moves to the next

software sub-group to resolve its problem. If it fails, then it should stop the

troubleshooting effort and notify the IT administrator for attention. The information is

captured and stored in the knowledgebase; stipulating the system diagnostics details,

versus the corrective action and the outcome which is the equivalent of the result. if

there is a change between the current and new state and for the better, the reward is set

to 1, else it is zero. So, in the knowledgebase, there is a list of DRE current state,

system diagnostics, corrective action, new state, and the respective reward.

Algorithm 5 – Main algorithm of FR

Input: DRE_state, system_diagnostics

Output: corrective_actions

Initialization1: learning, Knowledgebase, breakfix_file

Giveup_limit=10

115

Fault_count=0

breakfix_file =fault_breakfix.txt

kb_file=frkb.txt

loop through all the simulated fault, fix up, build up kb

Loop the iteration,i, of reading(breakfix_file1):

 break_cmd = f<breaki>

 fix_cmd = f<fixi>

 execute(break_cmd) #inject fault

 dre_current_state = p_single_system_diagnostics()

 fault_count+=1

 while sum(dre_current_state) >=1 and giveup<giveup_limit:

 kb=[]

 corrective_action = p_system_corrective_action(dre_curent_state)

 execute_single_element_corrective_action(corrective_action) #loop through one by one action

 dre_new_state = p_single_system_diagnostics()

 #append all the info to the kb array

 kb=append_to_kb(dre_current_state,dre_new_state, single_element_corrective_action)

 if dre_current_state = dre_new_state then #compare current state vs new state

 reward =0

 giveup +=1

 tries+=1 #try next element corrective action in position

 else

 reward=1 #made some progress, +ve reward

 tries =0

 dre_current_state = dre_new_state #new state become current state

 if sum(single_element_corrective_action)==0 and sum(dre_current_state)>=1 then

 print “no more solution. Giveup”

 break

 kb.append_to kb(reward)

 write_to_kb_file(kb_file, kb)

 end loop

#####################################

simulate individual fault, using SC and NN

####################################

Loop the iteration, j, of reading(breakfix_file2):

 break_cmd = f<breakj>

 fix_cmd = f<fixj>

 Check the learning rate.

 execute(break_cmd) #inject fault

116

 ###exploration phase - use SD unit

 If learning < med_learning, do the exploration phase

 dre_current_state = p_single_system_diagnostics()

 fault_count+=1

 while sum(dre_current_state) >=1 and giveup<giveup_limit:

 kb=[]

 corrective_action = p_system_corrective_action(dre_curent_state)

 #loop through one by one action

 execute_single_element_corrective_action(corrective_action)

 dre_new_state = p_single_system_diagnostics()

 #append all the info to the kb array

 kb=append_to_kb(dre_current_state,dre_new_state, single_element_corrective_action)

 if dre_current_state = dre_new_state then #compare current state vs new state

 reward =0

 giveup +=1

 tries+=1 #try next element corrective action in position

 else

 reward=1 #made some progress, +ve reward

 tries =0

 dre_current_state = dre_new_state #new state become current state

 if sum(single_element_corrective_action)==0 and sum(dre_current_state)>=1 then

 print “no more solution. Giveup”

 break

 kb.append_to kb(reward)

 write_to_kb_file(kb_file, kb)

 ##Knowledge exploitation phase - use NN unit

 If learning is > med_learning then do

 NN_model = NN_build(knowledgebase) ##Train NN with data from knowledgebase

 corrective_actions = round(NN_model.predict(dre_current_state))

 p_execute_corrections(corrective_action)

 dre_new_state = p_system_diagnostics()

 if sum(system_diagnostics) = 0 then

 print("all faults are fixed")

 else

 print("unable to fix faults. notify IT admin")

 email "iteadmin@domain" < dre_state,system_outage

 learning rate +=1

 execute(fix_cmd) #fix fault

117

end loop

Algorithm 6 – FR module finding corrective actions for DRE based on system diagnostics input and

software group’s priorities

Input: system diagnostics input S

initialize1: software element’s corrective action array, A, external libraries X

Initialize2: learning rate, l. predict_threshold, p=0.8, retry_count, r

intialize3: input from FD module, S, 1st element in the software group, g,

 last element in the group, e

Result: corrective actions, A

Def p_system_corrective_action:

g =1, r = 0, e = g+3

l +=0.01

if sum[S[*]] != 0 then #Check for any faults

#loop through software groups based on hierarchy via index

/* Attempt to fix OS faults */

 if sum(S[g:e])>0 then: #check on faults between index range for group

 if r > 2 then: #if retries exceed 2, call for IT admin

 sp_alert_IT_administrator (S[g:e], S)

 r:=0

 break

 if l < p then: #check if l has exceeded p threshold

 for i in range (g..e): #loop through all faults that belong to g

 corrective_action_OS += sp_find_solution(S[i]) #accumulate actions from SC module

 else:

 corrective_action_OS += NN_predict(S[i]) #accumulate actions from DRL module

 r +=1

 Apply_action_on_DRE(corrective_action_OS) #apply actions to DRE

g=e+1, e=g+3 #shift to next group

/* Attempt to fix Network faults */

 if sum(S[g-4:e-4])=0 and sum(S[g:e])>0 then: #check on faults between index range for group

 if r > 2 then: #if retries exceed 2, call for IT admin

 sp_alert_IT_administrator (S[g:e], S)

 r:=0

 break

 if l < p then: #check if l has exceeded p threshold

 for i in range (g..e): #loop through all faults that belong to g

 corrective_action_Nw += sp_find_solution(S[i]) #accumulate actions from SC module

 else:

 corrective_action_Nw += NN_predict(S[i]) #accumulate actions from DRL module

 r +=1

 Apply_action_on_DRE(corrective_action_Nw) #apply actions to DRE

118

g=e+1, e=g+3 #shift to next group

/* Attempt to fix OracleDB faults */

 if sum(S[g-8:e-8])=0 and sum(S[g-4:e-4])=0 and sum(S[g:e]) > 0 then: #check on faults between index

range for group

 if r > 2 then: #if retries exceed 2, call for IT admin

 sp_alert_IT_administrator (S[g:e], S)

 r:=0

 break

 if l < p then: #check if l has exceeded p threshold

 for i in range (g..e): #loop through all faults that belong to g

 corrective_action_DB += sp_find_solution(S[i]) #accumulate actions from SC module

 else:

 corrective_action_DB += NN_predict(S[i]) #accumulate actions from DRL module

 r +=1

 Apply_action_on_DRE(corrective_action_DB) #apply actions to DRE

g=e+1, e=g+3 #shift to next group

/* Attempt to fix Shareplex faults */

 if sum(S[g-12:e-12])=0 and sum(S[g-8:e-8])=0 and sum(S[g-4:e-4])=0 and sum(S[g:e]) > 0 then:

 # Check if all the previous faults have been resolved before proceeding

 if r > 2 then: #if retries exceed 2, call for IT admin

 sp_alert_IT_administrator (S[g:e], S)

 r:=0

 break

 if l < p then: #check if l has exceeded p threshold

 for i in range (g..e): #loop through all faults that belong to g

 corrective_action_SP += sp_find_solution(S[i]) #accumulate actions from SC module

 else:

 corrective_action_SP += NN_predict(S[i]) #accumulate actions from DRL module

 r +=1

 Apply_action_on_DRE(corrective_action_SP) #apply actions to DRE

Algorithm 7 – the procedure to find the corresponding action for each software element’s fault from

the external library of pre-scripted commands

Input: section of service outage input, s

initialize1: External corrective action library, X. fault index, f. action index, a.

Result: corrective action, c

119

Def Sp_find_solution (s):

 Count:=1

 with open(X) as f: #search external library for corresponding corrective actions to faults

 for line in f:

 if found s[count] in line[f,]:

 c += line[, a] #where line[,a] return a reference to external scripts and commands

 Return c

From this knowledgebase, the FR's NN unit routine picks out all the entries with

the positive rewards and use them to train the NN. Once it has achieved a good

performance, the NN unit can take in any known DRE state-system diagnostics and

provide the best corrective action with the sub-group that has the priority to fix,

meaning if the system diagnostics contains faults in the OS group, then the most

appropriate corrective actions will be from the knowledgebase that applied the relevant

actions to the OS sub-group. when the OS group's fault is resolved, the system

diagnostics information will not contain any faults for that sub-group. the future

rewards hyperparameter that the common reinforcement learning is not included here

as the current reward is sufficient for the algorithm to determine the best choice. also,

there is no probability to contemplate between exploration versus exploitation as this

FR's routine has defined it clearly.

5.3. Empirical Analysis

This section describes the test for the FR module against the DRE. The purpose

is to determine the effectiveness of the proposed FR module in prescribing the best

corrective actions for the DRE based on the service outage information that the FD

module has determined about the DRE under simulated faults. For this to work, the

FD module should have achieved sufficient accuracy in its service outage predictions

in the previous phase where it has been properly trained and tested to a certain

expectation. Like the FD module testing phase, the test starts with the DRE's baseline

where all its software is functioning normally. Then each fault is injected into the DRE,

causing abnormalities across the DRE's software elements, which are in turn acquired

by the FD module and the service outages information is released. The FR module

received the SO details and predicted the course of actions, which are then applied to

the DRE and incur a new state. if the state is fixed, then the fault resolution process is

considered a success. If the faults are not clear, the FR module iterates for the next

120

round of prescribing corrective actions for the new DRE's state. This repeats for a

specific number of loops before it can be regarded as an unsuccessful attempt. Before

each iteration test can start, the DRE must be reinitialized to the baseline to ensure a

clean slate where all the software is fully functional. The goal is to assess the capability

and accuracy of the FR module in prescribing the relevant corrective actions for the

detected service outage in the DRE. The scope of the test is confined to those

recoverable failures and those catastrophic ones are excluded.

5.3.1. Software setup

The setup for the DRE software is the same as what was described in section

5.8.1. The test environment which had been used for the FD module testing is now

used for the FR module test. There is no deviation on the underlying DRE setup and

operation. Only the FR module is added together with the external libraries of

resolution.

5.3.2. Experiment setup and goal

For the FR module experiment setup, the DRE test environment is used with the

same DB and Shareplex configuration as well as the DB schema and objects in place,

all of which have been described in section 5.8.2. There is no deviation nor alteration

required. The only pre-requisite here is the FD module that needs to be trained and

tested before proceeding on with the FR module test.

The DRE is set to the baseline where all the software work as per norm. Each

fault that belongs to the specific software is introduced in the DRE which will then

yield information that the FD module will detect and predict the possible service

outage, which in turn, is input into the FR module that will predict the best possible

corrective actions based on its trained knowledge to score the best rewards. The FR

module is expected to prescribe action for the following software element's faults in

response to the service outage input concerning its associated system diagnostics

information. Table 15 contains the test case with a list of common faults, and the

corresponding action to rectify them. The priority for the FR module is to resolve the

OS, followed by the network, OracleDB, and Shareplex in a hierarchical inter-

dependent arrangement.

Table 15 – List of DRE’s software groups service outage fault and their corrective actions

121

Function Attributes Commands Reason and Corrective

actions

Corrective actions Diagnosed

Fault

vectors

Corrective

action

vectors

 OracleDB = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

memory

process

0~0~0

Check for

DB1's smon

Check for

DB2's smon

Check for

DB1's pmon

Check for

DB2's pmon

if [$(ps aux|grep -i ora_smon_DB1|grep

-v grep|wc -l) -eq 1]; then echo 0; else

echo 1; fi

if [$(ps aux|grep -i ora_pmon_DB1|grep

-v grep|wc -l) -eq 1]; then echo 0; else

echo 1; fi

if [$(ps aux|grep -i ora_smon_DB2|grep

-v grep|wc -l) -eq 1]; then echo 0; else

echo 1; fi

if [$(ps aux|grep -i ora_pmon_DB2|grep -

v grep|wc -l) -eq 1]; then echo 0; else echo

1; fi

Oracle instance is not

active, start it up

Pmon, smon are

together. Either both are

up or both are down

DB1 and 2

export

ORACLE_SID=DB1

&& echo

"startup;"|sqlplus -s

"sys/password as

sysdba"

export

ORACLE_SID=DB2

&& echo

"startup;"|sqlplus -s

"sys/password as

sysdba"

[1,1,0,0,0,0

,0,0,0,0,0,0

]

[0,0,1,1,0,0

,0,0,0,0,0,0

]

[1,0,0,0,0,0,

0,0,0,0,0,0]

[0,0,1,0,0,0,

0,0,0,0,0,0]

Status

0~1~0

if DB1 is open

if DB2 is open

(DB’s mode is

open, not

restricted

DB available

for use)

Check any

session

blocking on

DB1

Check any

session

blocking on

DB2

if [$(echo -e "SET PAGESIZE 0

FEEDBACK OFF; \n select

instance_name from v\$instance;"|sqlplus

-s system/password@DB1|head -n1) ==

'DB1']; then echo 0; else echo 1;fi

if [$(echo -e "SET PAGESIZE 0

FEEDBACK OFF; \n select

instance_name from v\$instance;"|sqlplus

-s system/password@DB2|head -n1) ==

'DB2']; then echo 0; else echo 1;fi

if [$(echo -e "SET PAGESIZE 0

FEEDBACK OFF; \n select

ltrim(count(*)) from v\$session where

blocking_session is not NULL;"|sqlplus -

s system/password@DB1|head -n1)

2>/dev/null -eq 0]; then echo 0; else

echo 1;fi

if [$(echo -e "SET PAGESIZE 0

FEEDBACK OFF; \n select

ltrim(count(*)) from v\$session where

blocking_session is not NULL;"|sqlplus -

s system/password@DB2|head -n1)

2>/dev/null -eq 0]; then echo 0; else

echo 1;fi

Oracle database could

have been mounted but

not available; open the

DB for use

Presence of blocking

sessions in DB; kill all

blocking session

export

ORACLE_SID=DB1

&& echo "alter database

open;"|sqlplus -s

"sys/password as

sysdba"

export

ORACLE_SID=DB2

&& echo "alter database

open;"|sqlplus -s

"sys/password as

sysdba"

./kill_blocked_sess.sh

DB1

./kill_blocked_sess.sh

DB2

[0,0,0,0,1,0

,0,0,0,0,0,0

]

[0,0,0,0,0,1

,0,0,0,0,0,0

]

[0,0,0,0,0,0

,1,0,0,0,0,0

]

[0,0,0,0,0,0

,0,1,0,0,0,0

]

[0,0,0,0,1,0,

0,0,0,0,0,0]

[0,0,0,0,0,1,

0,0,0,0,0,0]

[0,0,0,0,0,0,

1,0,0,0,0,0]

[0,0,0,0,0,0,

0,1,0,0,0,0]

Account

security

0~2~0

~SPLX account

is available on

DB1

~SPLX account

is available on

DB2

System, splx

account not

locked

Splx has quota

on splx

tablespace

if [$(echo -e "SET PAGESIZE 0

FEEDBACK OFF; \n select

ltrim(decode(account_status,'OPEN',0,1))

from dba_users where

username='SPLX';"|sqlplus -s

system/password@DB1|head -n1)

2>/dev/null -eq 0]; then echo 0; else

echo 1;fi

if [$(echo -e "SET PAGESIZE 0

FEEDBACK OFF; \n select

ltrim(decode(account_status,'OPEN',0,1))

from dba_users where

username='SPLX';"|sqlplus -s

system/password@DB2|head -n1)

2>/dev/null -eq 0]; then echo 0; else

echo 1;fi

DB account for SPLX is
locked; unlock the
account

SPLX’s DB account
does not have enough
quota space, increase its
quota

echo "Alter user splx
account unlock;"|sqlplus
-s
"system/password@DB
1"
echo "Alter user splx
account unlock;"|sqlplus
-s
"system/password@DB
2"

echo "alter user splx

quota unlimited on

USERS;"|sqlplus -s

"system/password@DB

1"

echo "alter user splx

quota unlimited on

USERS;"|sqlplus -s

"system/password@DB

2"

[0,0,0,0,0,0

,0,0,1,0,0,0

]

[0,0,0,0,0,0

,0,0,0,1,0,0

]

[0,0,0,0,0,0,

0,0,1,0,0,0]

[0,0,0,0,0,0,

0,0,0,1,0,0]

storage

space

0~3~0

~check USERS

TBLSP free

space on DB1

~check USERS

TBLSP free

space on DB2

if [$(echo -e "SET PAGESIZE 0

FEEDBACK OFF; \n select case when

(1-used_percent) > 0.1 then ltrim(0) else

ltrim(1) end from

dba_tablespace_usage_metrics where

tablespace_name='USERS';"|sqlplus -s

system/password@DB1|head -n1)

2>/dev/null -eq 0]; then echo 0; else

echo 1;fi

if [$(echo -e "SET PAGESIZE 0

FEEDBACK OFF; \n select case when

(1-used_percent) > 0.1 then ltrim(0) else

ltrim(1) end from

dba_tablespace_usage_metrics where

tablespace_name='USERS';"|sqlplus -s

system/password@DB2|head -n1)

User Tablespace has

reached max size;

extend the datafile size;

Alter tablespace USERS

datafile

‘/u01/oradata/DB1/user

01.dbf’ autoextend on

100m;

Alter tablespace USERS

datafile

‘/u01/oradata/DB2/user

01.dbf’ autoextend on

100m;

[0,0,0,0,0,0

,0,0,0,0,1,0

]

[0,0,0,0,0,0

,0,0,0,0,0,1

]

[0,0,0,0,0,0,

0,0,0,0,1,0]

,0,0,0,0,1]

122

2>/dev/null -eq 0]; then echo 0; else

echo 1;fi

 Shareplex = [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1]

main

processes

1~0~0

Check if

sp_cop process

is up

Check if

sp_ocap

process is up

Check if

sp_opst_mt

process is up

Check if

sp_xport

process is up

Check if

sp_ordr process

is up

Check if

sp_mport

process is up

if [$(pidof -s sp_cop) > 1]; then echo 0;

else echo 1; fi

if [$(pidof -s sp_ocap) > 1]; then echo 0;

else echo 1; fi

if [$(pidof -s sp_opst_mt) > 1]; then

echo 0; else echo 1; fi

if [$(pidof -s sp_xport) > 1]; then echo 0;

else echo 1; fi

if [$(pidof -s sp_ordr) > 1]; then echo 0;

else echo 1; fi

if [$(pidof -s sp_mport) > 1]; then echo

0; else echo 1; fi

When sp_cop is down,

all the rest will be done

too; start up sp_cop

echo password|su - splx

-c $MDIR/startup.sh

[1,1,1,1,1,1

,0,0,0,0,0,0

,0,0,0,0,0,0

,0]

[1,0,0,0,0,0,

0,0,0,0,0,0,

0,0,0,0,0,0,

0]

Splx

console

1~1~0

Check if

sp_cop is

responsive

if sp_ctrl status 2> /dev/null|grep -q

"Running" ; then echo 0; else echo 1; fi

If sp_ctrl is not response;
restart the sp_cop

echo password|su - splx
-c $MDIR/startup.sh

[0,0,0,0,0,0
,1,0,0,0,0,0
,0,0,0,0,0,0
]

[1,0,0,0,0,0,
0,0,0,0,0,0,
0,0,0,0,0,0]

queues

operation

1~2~0

Check if

capture state is

running

Check if read

state is running

Check if export

state is running

~Check if

import state is

running

~Check if post

state is running

Capture, export,

import, post,

read status =

Running

if [$(sp_ctrl status 2>/dev/null|tail -

n+5|head -n-5|grep -i capture|awk '{ print

$2 }'|grep -i stopped|wc -l) 2>/dev/null -

eq 0]; then echo 0; else echo 1; fi

if [$(sp_ctrl status 2>/dev/null|tail -

n+5|head -n-5|grep -i read|awk '{ print $2

}'|grep -i stopped|wc -l) 2>/dev/null -eq

0]; then echo 0; else echo 1; fi

if [$(sp_ctrl status 2>/dev/null|tail -

n+5|head -n-5|grep -i export|awk '{ print

$2 }'|grep -i stopped|wc -l) 2>/dev/null -

eq 0]; then echo 0; else echo 1; fi

if [$(sp_ctrl status 2>/dev/null|tail -

n+5|head -n-5|grep -i import|awk '{ print

$2 }'|grep -i stopped|wc -l) 2>/dev/null -

eq 0]; then echo 0; else echo 1; fi

if [$(sp_ctrl status 2>/dev/null|tail -

n+5|head -n-5|grep -i post|awk '{ print $2

}'|grep -i stopped|wc -l) 2>/dev/null -eq

0]; then echo 0; else echo 1; fi

If the capture, read,
export and post status
are stopped; start them
up

echo "start
capture"|sp_ctrl
echo "start
export"|sp_ctrl
echo "start
import"|sp_ctrl
echo "start post"|sp_ctrl

echo "start read"|sp_ctrl

[0,0,0,0,0,0
,0,1,0,0,0,0
,0,0,0,0,0,0
]
[0,0,0,0,0,0
,0,0,1,0,0,0
,0,0,0,0,0,0
]
[0,0,0,0,0,0
,0,0,0,1,0,0
,0,0,0,0,0,0
]
[0,0,0,0,0,0
,0,0,0,0,1,0
,0,0,0,0,0,0
]
[0,0,0,0,0,0
,0,0,0,0,0,1
,0,0,0,0,0,0
]

[0,0,0,0,0,0,
0,1,0,0,0,0,
0,0,0,0,0,0]
[0,0,0,0,0,0,
0,0,1,0,0,0,
0,0,0,0,0,0]
[0,0,0,0,0,0,
0,0,0,1,0,0,
0,0,0,0,0,0]
[0,0,0,0,0,0,
0,0,0,0,1,0,
0,0,0,0,0,0]
[0,0,0,0,0,0,
0,0,0,0,0,1,
0,0,0,0,0,0]

Config

file

1~3~0

Query if config

file is active

1~3~1~if sp_ctrl show config

2>/dev/null|grep -q 'Actid' ; then echo 0;

else echo 1; fi

Echo “activate config

ck.cfg” |sp_ctrl

[0,0,0,0,0,0

,0,0,0,0,0,0

,1,0,0,0,0,0

]

[0,0,0,0,0,0,

0,0,0,0,0,0,

1,0,0,0,0,0]

Queues’

backlogs

1~4~0

~ Check for

post backlog

~ Check for

capture

~ Check for

export backlog

if sp_ctrl status 2> /dev/null|grep -q

"Running" ; then if [$(sp_ctrl

qstatus|grep -A 3 -i post|grep

"Backlog"|awk '{ print $3 }'|awk

'{s+=$3} END {print s}') 2>/dev/null -eq

0]; then echo 0;else echo 1;fi else echo

1; fi

if sp_ctrl status 2> /dev/null|grep -q

"Running" ; then if [$(sp_ctrl

qstatus|grep -A 3 -i post|grep

"Backlog"|awk '{ print $3 }'|awk

'{s+=$3} END {print s}') 2>/dev/null -eq

0]; then echo 0;else echo 1;fi else echo

1; fi

if sp_ctrl status 2> /dev/null|grep -q

"Running" ; then if [$(sp_ctrl

qstatus|grep -A 3 -i post|grep

"Backlog"|awk '{ print $3 }'|awk

'{s+=$3} END {print s}') 2>/dev/null -eq

0]; then echo 0;else echo 1;fi else echo

1; fi

Substantial backlogs

discovered, send email

to IT admin requesting

for attention

mail -s 'Attention

required for DRE –

backlog detected'

ITAdmin@company.co

m

[0,0,0,0,0,0

,0,0,0,0,0,0

,0,1,0,0,0,0

]

[0,0,0,0,0,0

,0,0,0,0,0,0

,0,0,1,0,0,0

]

[0,0,0,0,0,0

,0,0,0,0,0,0

,0,0,0,1,0,0

]

[0,0,0,0,0,0,

0,0,0,0,0,0,

0,1,0,0,0,0]

[0,0,0,0,0,0,

0,0,0,0,0,0,

0,1,0,0,0,0]

[0,0,0,0,0,0,

0,0,0,0,0,0,

0,1,0,0,0,0]

For the OS, the common faults that lie with this group are related to the system

resources, configurations, and privileges. System resources refer to various facilities

123

that the rest of the other software groups need to perform, such as CPU, memory, disk

storage space, and communication facility. The configurations’ part is mainly on the

underlying settings that are present in the system directories that controlled various

aspects of the OS' functionality. For this thesis, the main emphasis on the OS'

configuration is on the security and network portion. The third area is where the

security and privileges govern most of the OS operations.

1. The system resource for CPU and memory are commonly allocated more than

what the overall DRE will needs but, in the event, should there be events that

they are reaching the maximum threshold and the FD module has flagged them

as a potential risk, then the corrective action to take is to turn off some of the

adjacent non-critical processes, removing log files and compressing the DB's

archived log files to free up the resources. The network cards' status must be

brought to active status if they are found to be inactive, plus activating the IP

configuration if they are not accurate.

2. There are several critical system configuration files that the OS depends on,

like networks, hosts lookup, DNS setting, user accounts securities and they

reside in the /etc folder. Faults may arise in the DRE especially when these

files are changed or removed illegally, causing massive outages across the

different software groups. Therefore, to resolve this, the original backed-up

copies of these configuration files must be restored usually from a backup

device or off-site storage. To simplify this task of restoration, a set of backups

has been made on this system configuration files and the FR module will

initiate their restoration to overcome these faults.

3. For the OS' privileges, these refer to the User accounts and their privileges to

specific folders on which they are designated to operate on. if the FD module

finds that they are not available for use or the privileges have some mismatched

permission, then the actions need to rectify them. System commands such as

altering the file and directory privileges, plus unlocking the locked users’

accounts, or resetting their passwords to the original baseline are some of the

actions that can restore their service for the DRE. when there are faults with

the OS, it has a cascading effect on other software groups, therefore, it is

important for the FR module to resolve the OS' fault first.

124

Network service is the next group in line for the FR module to attend to when

the OS service outages are resolved. The network supports the database listeners to

facilitate the network connectivity from sqlplus client connection, and to do that, it

requires the OS' network infrastructure and TCPIP protocol to be active. It operates on

Oracle’s network-related process which needs its own set of configuration files.

1. The common faults identified with this software element related to its

processes and configuration's information, so the corrective actions for it

usually involve restarting the listener process, enabling the listener service

through the lsnrctl command console, including restoring the various oracle

network-related files like listener.ora, tnsnames.ora and sqlnet.ora.

2. The network service is also required for connection among the OracleDB and

Shareplex, so this involves the underlying OS' system configuration files under

/etc and network card configuration, both fall under the scope of OS' fault

management. it is expected the corrective actions should cover as part of the

OS' fault validation and resolution process too.

Once the infrastructure issue is resolved, the next area to focus on is the software

service that operates on them such as the OracleDB and Shareplex.

The Oracle DB's faults cover several areas such as the processes that support the

DB services, the configuration that controls the services, and the security and

privileges that allow both the internal and external clients to operate on. The corrective

actions that the FR module is expected to prescribe are like those that are carried out

for the above software groups, and that is to restart processes, change the

configuration, and restore files.

1. If the essential DB processes are not found, it means that the Oracle instance

is not operational. The solution is to restart the Oracle instance to bring back

all the relevant oracle's essential processes. This is the first and most

fundamental approach which solves most of the current hung operation in any

environment. the restart also cleared out orphaned client processes that can

impose complications that hinder the server's operations too.

2. As for the configurations part, it comprises different parameter settings that

direct and controls the OracleDB's various services. So, any faults with these

125

configurations can arise when the parameters are changed incorrectly or

illegally. The course of action is to correct them in accordance with their pre-

set values to restore their services' purposes.

3. The OracleDB's security concerns with accounts & privileges including

internal operations and other internal DB resourcing that can hamper its

ongoing services. Common issues such as locked user accounts, lack of proper

system or objects privileges and execution rights, availability of free spaces,

and even session that are causing deadlocks. These are some of the most

common and major issues that have a direct impact on the overall DB services

on which the Shareplex is dependent. The FR module must resolve them by

providing solutions that can rectify them via actions such as resetting their

passwords, unlocking the accounts, regranting the permission and privileges,

allocating more space quota to their accounts, or removing blocking sessions

to name a few. The last area for the FR module to focus on is the Shareplex,

once all the rest of the other software groups have been resolved.

The fault categories for the Shareplex are like the OracleDB, covering the

processes and internal configurations. One exception is the account and privileges that

Shareplex needs on the OracleDB, but this should be resolved at the OracleDB's stage

of fault resolution instead.

1. Shareplex has several important memory processes, and all are controlled from

the main process called sp_cop. In the event should any of the other processes,

e.g. capture, read, export, import, and post, died or hung, the recommended

course of action is to shut down the main sp_cop process, kill off any remnant

orphaned processes and restart it. The FR module is expected to prescribe such

a course of action should it receive such service outages.

2. For the configuration, Shareplex depends on one main configuration file to

operate, if the FR module finds that this is either not available or in an

erroneous stage, then it will invoke the action of reconfiguring or reactivating

with a backed-up copy of the config file. This action will cause the Shareplex

to flush out all the active cache and reinitialize new queues under the VARDIR

or variable directory.

126

3. For Internal Shareplex operations where the different queues that belong to the

various processes must remain clear with minimum blockage or backlog. One

of the common corrective actions is to quiesce and restart them. This is the first

level of support intervention required. But in the event, if this action cannot

resolve the fault, then other actions may involve external intervention that

needs more in-depth analysis, which requires IT administrator intervention.

5.4. Evaluation Criteria

This section describes how the FR module is evaluated and the criteria used in

its assessment. for any instance of the DRE's faults, it can occur in either one or all

software groups concurrently. The FR module exploits its knowledgebase and

remediates the DRE with a series of corrective actions. Two evaluation criteria, both

quantitative and qualitative that have been used in section 5.9, are utilized to assess

the FR module’s capability. The qualitative outcome of the FR module is referred to

the effectiveness is on its ability to achieve the goal of resolving the faults. While the

FR module has the flexibility to address a wider range of software faults and service

outages. In this thesis, it is restricted to handle those issues that only impact the DRE.

Also, the control environment set the faults that are to be used for the test, have a

corresponding corrective action that can resolve them. Therefore, the test is to assess

just how effective the FR module can be when it comes to handle various known faults

and recall the relevant actions from its knowledgebase.

There cannot be two outcomes from the FR module that can help the DRE to

reach the objective, whether the corrective actions that have been applied can resolve

the faults or not. The feedback loop from the DRE’s response to the action generates

the new state where the FD module can ascertain if there are more errors to resolve or

not. It is a progressive stepped resolution process that can take several sub-iterations

in the attempt to resolve the faults, be it the outcome is successful or not. There is a

limit on the number of resolution iterations that the FR module can action before the

entire resolution effort is considered unsuccessful.

The next test is the accuracy of the FR’s module DRL-NN. The output from the

SC module serves as the reference where the accuracy of the DRL-NN’s output is

derived using the MASE formula. This is used to validate the degree of errors that the

127

DRL-NN has, and it is useful in optimizing the NN design, including their parameters

and other NN’s related attribute to improve the overall accuracy.

5.4.1. Test results

There are two groups of results that are generated by the FR. One is from the SC

module where it responds to the diagnostics information with a series of corrective

actions and the outcomes of the DRE states. The other is the prediction performance

and outcome of the DRL-NN in response to various diagnostics information from the

DRE. These results are obtained through the process of introducing a series of known

faults into the DRE and the FR module is executed against it.

5.4.2. FR module - SC’s results

The SC is used prevalently when the entire FR’s learning phase is at the early

and middle stages. Table 15 showed the outcomes from the SC when a list of the

known faults is injected into the DRE. The FR module used the diagnosed information

from FD and derive the appropriate corrective actions based on the hierarchical order

of the software group and action planned to solve that software of higher importance

first and work its way down. the result showed the state of the DRE once the faults are

executed and followed by the new state when the corrective action is executed. The

single element corrective action is the information in which the corresponding single

action that the SC refer to run the relevant system commands in the attempt to rectify

the fault. If the first action for that specific software element within the group is

successful, the result will render the software service back to the norm, giving the

DRE’s new state zero through the diagnostics information. Fault run #1 and 6 are such

example. However, if the first action failed, the SC will iterate to the next element’s

action. This goes on until either the fault for the software group is resolved such as in

fault run #8 or it reached the end with no positive outcome, which signifies a failed

attempt of giving up for the troubleshooting effort. This is translated into the routine

where an alert is sent to the IT administrator. Referring to table 16, fault run #1 is a

single fault occurring at the OracleDB which terminated the DB services but that in

turn sets off multiple error flags across the diagnostics information. By default, if the

troubleshooting effort starts from each flag, it will not be practical since the software

elements among the four groups are interdependent. So, once the OracleDB’s fault is

129

DRE_current_state = [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]

index= 27 correct cmd= echo "Alter user splx account unlock;"|sqlplus -s "system/password@DB1"

single_element_corrective_action= [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]

DRE_new_state = [0,0]

CHANGE reward = 1

Resolved

#####################################

fault count= 11 fault cmd= echo "stop capture"|sp_ctrl && echo "stop import"|sp_ctrl

#####################################

DRE_current_state = [0,1,0,1,0,1,0,1,0,0,1,0]

DRE_current_state = [0,1,0,1,0,1,0,1,0,0,1,0]

index= 1 correct cmd= echo "start capture"|sp_ctrl

single_element_corrective_action= [0,1,0]

DRE_new_state = [0,0,0,1,0,1,0,0,0,0,1,0]

CHANGE reward = 1

DRE_current_state = [0,0,0,1,0,1,0,0,0,0,1,0]

index= 5 correct cmd= echo "start import"|sp_ctrl

single_element_corrective_action= [0,0,0,0,0,1,0]

DRE_new_state = [0,0,0,1,0,1,0]

CHANGE reward = 1

DRE_current_state = [0,0,0,1,0,1,0]

index= 3 correct cmd= echo "start export"|sp_ctrl

single_element_corrective_action= [0,0,0,1,0]

DRE_new_state = [0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]

CHANGE reward = 1

DRE_current_state = [0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]

index= 25 correct cmd= /home/oracle/fddr/kill_blocked_sess.sh DB1

single_element_corrective_action= [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]

DRE_new_state = [0,0]

CHANGE reward = 1

resolved

#####################################

fault count= 12 fault cmd= echo "stop capture"|sp_ctrl && echo "stop post"|sp_ctrl

#####################################

DRE_current_state = [0,1,1,0,0,0,0,1,0,0,0,1,0]

index= 1 correct cmd= echo "start capture"|sp_ctrl

single_element_corrective_action= [0,1,0]

DRE_new_state = [0,0,1,0,0,0,0,0,0,0,0,1,0]

CHANGE reward = 1

DRE_current_state = [0,0,1,0,0,0,0,0,0,0,0,1,0]

index= 2 correct cmd= echo "start post"|sp_ctrl

single_element_corrective_action= [0,0,1,0]

DRE_new_state = [0,0]

CHANGE reward = 1

resolved

Figure 31 shows the progress of SC using its algorithms and workflow to resolve

the faults. Each of the faults has a different level of complexity and some can be

resolved by one cycle of applying the appropriate corrective actions. However, some

need more than 1 cycle to resolve them and these are the more complicated faults like

id #8, #15, #21 and #30. The SC did have several unsuccessful attempts to rectify the

faults which are highlighted in orange. And those actions have yielded some positive

changes in the DRE’s diagnostics information are represented in green. The SC

progress is considered rule-based which most decision-based system management

system is based on and it showed the inefficiency involved. But this step is important

to the overall FDR system as it forms the explorative phase where SC experience the

different combination of ordered random actions against the environment’s states,

mapping what actions works against each type of DRE’s state. These experiences are

then stored into the knowledgebase which is then used to build the intelligent phase of

the FR’s DRL where the NN is trained with those datasets from the knowledgebases

that have proven to have positive rewards.

130

5.4.3. FR module – NN performance and result

Once the FR’s learning phase reached the advance or mature stage, it starts to

rely on its NN to predict the corrective action. The advantage of using this is to improve

the overall turnaround time of deriving corrective actions that are effective for a given

DRE state based on its corresponding diagnostics information. While the SC can

iterate through multiple permutations of controlled random actions to states, it incurs

a substantial number of trials and errors before arriving at the best actions. Whereas in

the mature phase where the NN is trained against minibatch that comprised of only

those effective actions against different DRE states, it can cut short of the turnaround

time needed to find the optimum solution.

Prior to the use of the NN, a test is required to determine the optimum

hyperparameters needed against the dataset. The choice of neural network library is

Keras, and it has many hyperparameters to tune but only the major ones are focused

on for this experiment. They are 1) optimizer – it is the iterating learning algorithm

that optimizes the internal parameters within the NN against a performance measure

like MSE based on the use of datasets to train and update the NN model. The most

common optimizers used are stochastic gradient descent (SGD) and Adaptive moment

estimation (Adam). 2) batch size is the hyperparameter that controls the number of

training samples or rows to use before the model's internal parameters are updated. 3)

epoch is the hyperparameter of gradient descent which controls the number of passes

through the training dataset, and finally 4) activation function is part of neural network

and it determines what is deemed to be activated based on the neuron's input. There

are several types of activation functions available but only a few of them are used in

this test.

Figure 32 shows the NN’s performance results from the tests using a

combination of different types of activation functions (RELU, SIGMOID, TANH)

against two optimizers (Adam, Stochastic Gradient Descent (SGD)) against varying

values of epochs and batch-size settings. The legends listed in the charts depict both

the loss and accuracy readings with different epoch-batch size values. There are many

other types of optimizers and activation functions which they have been tested too,

including adjustment of other minor hyperparameters such as dropout rate, model’s

initialization factor, optimizer’s learning rate etc. but the gains or losses are not as

133

that the NN did not choose those corrective actions that yield zero rewards, whereas

the SC did go through iterative as its algorithm dictates it. Therefore, the outcomes

from the NN are more productive and efficient as compared to those from the SC.

Table 17 – SC’s results in response to injected faults

#####################################

fault count= 0 fault cmd= export ORACLE_SID=DB1 && echo "shutdown immediate;"|sqlplus -s "sys/password as sysdba"

#####################################

DRE_current_state = [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0]

index= 19 correct cmd= export ORACLE_SID=DB1 && echo "startup;"|sqlplus -s "sys/password as sysdba"

single_element_corrective_action= [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0]

DRE_new_state = [0,0]

CHANGE reward = 1

resolved

#####################################

fault count= 1 fault cmd= export ORACLE_SID=DB2 && echo "shutdown immediate;"|sqlplus -s "sys/password as sysdba"

#####################################

DRE_current_state = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0,0,0,0,0,0,0,0]

index= 22 correct cmd= export ORACLE_SID=DB2 && echo "startup;"|sqlplus -s "sys/password as sysdba"

single_element_corrective_action= [0,1,0]

DRE_new_state = [0,0]

CHANGE reward = 1

resolved

#####################################

fault count= 2 fault cmd= echo "Alter user splx account lock;"|sqlplus -s "system/password@DB1"

#####################################

DRE_current_state = [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]

index= 27 correct cmd= echo "Alter user splx account unlock;"|sqlplus -s "system/password@DB1"

single_element_corrective_action= [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]

DRE_new_state = [0,0]

CHANGE reward = 1

resolved

#####################################

fault count= 11 fault cmd= echo "stop capture"|sp_ctrl && echo "stop import"|sp_ctrl

#####################################

DRE_current_state = [0,1,0,1,0,1,0,1,0,0,1,0]

index= 1 correct cmd= echo "start capture"|sp_ctrl

single_element_corrective_action= [0,1,0]

DRE_new_state = [0,0,0,1,0,1,0,0,0,0,1,0]

CHANGE reward = 1

DRE_current_state = [0,0,0,1,0,1,0,0,0,0,1,0]

index= 5 correct cmd= echo "start import"|sp_ctrl

single_element_corrective_action= [0,0,0,0,0,1,0]

DRE_new_state = [0,0,0,1,0,1,0]

CHANGE reward = 1

DRE_current_state = [0,0,0,1,0,1,0]

index= 3 correct cmd= echo "start export"|sp_ctrl

single_element_corrective_action= [0,0,0,1,0]

DRE_new_state = [0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]

CHANGE reward = 1

DRE_current_state = [0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]

index= 25 correct cmd= /home/oracle/fddr/kill_blocked_sess.sh DB1

single_element_corrective_action= [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]

DRE_new_state = [0,0]

CHANGE reward = 1

resolved

#####################################

fault count= 12 fault cmd= echo "stop capture"|sp_ctrl && echo "stop post"|sp_ctrl

#####################################

DRE_current_state = [0,1,1,0,0,0,0,1,0,0,0,1,0]

index= 1 correct cmd= echo "start capture"|sp_ctrl

single_element_corrective_action= [0,1,0]

DRE_new_state = [0,0,1,0,0,0,0,0,0,0,0,1,0]

CHANGE reward = 1

DRE_current_state = [0,0,1,0,0,0,0,0,0,0,0,1,0]

index= 2 correct cmd= echo "start post"|sp_ctrl

single_element_corrective_action= [0,0,1,0]

DRE_new_state = [0,0]

CHANGE reward = 1

resolved

Table 18 showed the results from the various efficacy tests, scoring 100% for all

the registered or known faults. While the plan is to anticipate all possible faults that

134

can and will happen in any complex environment, there is always a chance that some

unplanned and unknown faults that can occur and the FR’s fault-corrective action

matrix has no provision for. In this scenario, a feedback process is anticipated so that

in such an event where the FR is unable to handle the fault since it is beyond its

knowledgebase, the even must be sent to the IT administrator to request additional

assistance. This process of acquiring external intervention is necessary so that the FR

module can readapt its SC and reoptimize its knowledgebase against the newly found

knowledge, thus expanding its capacity to handle more faults soon.

Table 18 – FR module’s efficacy test results

Software groups Occurrences/combination/ service

specifics

Total outcomes

network Network files, listeners 2 2 resolved

oracledb privileges, accounts 4 4 resolved

oracledb Oracle processes 4 4 resolved

Shareplex+ oracledb Access, privileges 2 2 resolved

Shareplex Sp_cop processes 5 5 resolved

Shareplex Queues and services 5 5 resolved

shareplex Accounts 2 2 resolved

While the above results have indicated the efficacy of the FR’s SC and DRL-NN

components, the next step is to differentiate the efficiency between the two

components. Figure 33 showed the number of corrective action cycles that each of

them took against the series of faults. For easier faults such as id #1, #3, #5 and #9,

both SC and DRL-NN performed the same number of corrective action cycles.

However, for more complex ones like fault id #8, #18, 21 or #30, the SC had to perform

more cycles following its internal logic before resolving them. The NN, however, can

pick those actions that can yield a positive outcome for the faults and managed to

resolve them under few cycles. Thus, proving that having a deep NN that can learn

from its knowledgebase to pick only those relevant corrective actions for the different

DRE states.

136

been experienced in the trials. So, delaying the diagnostic query with some waits is

needed.

5.5. FR’s Conclusion

The FR module has been tested and can predict the corrective actions based on

the service outage information that is provided by the FD module with good accuracy.

It makes use of the DRL that is based on the Actor-Critic approach where the SC

module plays the role of the critic and forms as a reference for the DRL to develop and

home in its prediction capability while enriching its knowledgebase and build up the

information for DRL's NN minibatch repository. This effort trains up the FR's DRL-

NN slowly over time with minimum or no a-prior knowledge of the environment. By

the end of its learning phase, it has achieved an expert level and is able to recognize

the state input to predict the service outage. But not all DRE faults can be resolved by

the FR module, it should alert the IT administrator about the failed outcome of its fault

resolution.

There are two categories of faults vs actions that the FR module can encounter:

known-known and known-unknown. for those known faults with known solutions, if

the FR module is unable to dispense the proper corrective actions, then the solution is

to optimize and retrain its NN to improve its prediction. For those known-unknown

where there are no known solutions to identified faults, then the IT administrator is

required to assist to evaluate other new possible methods of changes and then write a

new system command routine for the action libraries and then retrain the NN to include

the new routine. So, these are two paths of recourses for failed resolution outcomes.

The concept of using the FR module instead of the SC module is in its transfer

learning where copies of the FR modules can be replicated to other FDR systems to

provide the capacity of an intelligent Fault resolving agent but protect the proprietary

knowledge of the fault-to-resolution expertise. The results from the FR experiments

had proven its capability. In the next chapter, the combined FD and FR module for the

FDR system and their future are discussed.

The entire content of this chapter has been accepted and published with the 17th

International Conference on Advanced Data Mining and Applications (ADMA) [72].

137

CHAPTER 6: FDR – FD AND FR

INTEGRATION

Both FD and FR modules have been designed, developed, and tested against

various simulated DRE faults in the previous two chapters. The next step is to

consolidate them together and run them as a single FDR system. Now the complete

FDR has both modules working together to serve the goal that this thesis has set out,

which is to detect errors within the DRE, predict the specific type of software service's

outage to the user that these faults can affect. It refers to the system diagnostics

information that it has previously captured and stored, then repeatedly searches within

its knowledge to interact with the DRE until the faults are resolved or until it has

exhausted all tries before notifying the IT administrator for assistance.

6.1. Background of integration testing

In software and machine learning testing, there are three types of testing: unit,

regression and integration. The unit testing focus on individual specialised

functionality, the regression testing is to test the reliability of the modules to discover

errors and resolve them. The integration testing combine all the rest of the modules

and test their higher-level operational behaviour of all the various units from the

codebase [73]. The difference between software and ML testing is the nature of inputs

and outputs. For Software testing, data and logic are the inputs into the software

module while the output's desired behaviour is measured. But in ML testing, the inputs

are comprised of the data and desired behaviour, while the output is the logic. The

goal is to observe the operation from a higher perspective when the modules of FD

and FR are integrated, including the addition of other supporting programs and

functions such as OS, networking, Oracle and Shareplex libraries. This is to ensure

that there are no contention or integration issues that can impact the new FDR system’s

functionality.

For the common integration testing of ML models, the common approaches are

offline and online testing [74]. In Offline ML testing, the model has not been deployed

for any use or it is still undergoing training and tuning. For online testing, the ML

138

modules may be currently active in use and the test is conducted to compare and

improve the ML model competency. These methods are common for supervised and

unsupervised learning models deployment. However, the FD and FR are based on

Reinforcement learning which requires iterative interaction with the DRE with their

respective guiding SD and SC modules, and it requires a different approach such as

continuous integration (CI) testing [75]. The basis for the CI is due to the constant and

continuous changes of test cases with the expectation of quick feedback into the

model’s adaptation and time execution constraints [75]. Therefore, the RL-specific CI

testing is conducted at the unit level for FD and FR modules, whereas the integration

testing employed the finished trained models to ascertain their performance and

functionality with no CI process for the FD and FR modules. Should there be new

cases of DRE events, they will be introduced for the modules at their unit testing level.

The CI testing for the FDR as an integrated system will be regarded as part of future

enhancements.

In the FD and FR integration testing process, the objective is to simulate the

ability of the trained FD and FR modules operating in the DRE and observe their

behaviour. its operating capability is measured by the metrics of its outputs to ascertain

if it meets the criteria and checks for errors. However, the FR module played a more

significant role in the combined FDR as it holds the critical function of resolving the

faults, as compared to FD which hold the role of the less critical but still important

service outage reporting. the integration test also covers the performance metrics of

the ML modules using RL to resolve the DRE faults as compared to the rule-based

intelligence that the SD and SR function.

6.2. FDR Test Analysis

This section discussed the test results from the integration testing, together with

the findings.

6.2.1. Usage of Software

There are no changes to the test environment for the integration-test phase and

it is the same setup that we used for chapters 5 and 6. Only the python functions and

other shell scripts that supported the FD and FR are integrated into the common

libraries, bearing labels to differentiate them and the modules that they serve.

139

6.2.2. Experiment setup and goal

The DRE setup for the integration testing remains the same without any changes

from the setup that both FD and FR modules tests were conducted. Configuration of

Shareplex, OracleDB, network and OS retains the exact configurations, parameter

settings and patch level to ensure consistency and stability in the test environment. The

test procedure follows the same protocol which introduces the simulated fault for the

test and is followed by restoration of service through the execution of applying

rollback scripts to restore the various DRE’s functions.

The goal is to observe how the integrated FDR can react under the fault

simulation and derive their outcome plus observing their behaviour when they

integrated to work together. One of the main aspects to observe is the overlapping of

specific software operations between FD and FR against the various software

components in the DRE that potentially can cause conflicts or contention that may

aggravate the fault states to the level where the service restoration scripts may not be

able to perform correctly. The outcome of the integration testing should not have lesser

accuracy as compared to the FR’s unit testing outcomes as the integration testing is

merely to ensure that the two modules can work together seamless without errors.

Table 16 lists the simulated test faults that are injected into the DRE and the

corresponding scripts that restore or revert them for Shareplex, OracleDB, network

and OS. While the faults can be injected at random, the restoration of their services

will require a proper sequence that is based on the hierarchy of the DRE’s software

inter-dependency, where one software’s restoration of service takes precedence of

another that depends on it.

6.2.3. Test analysis procedures

The focus now is to validate the efficiency and effectiveness of the FDR toward

the DRE. Most of the tests have been done at the FR stage and that has concluded most

of the criteria that have been laid out for the FDR, such as the time taken between the

FR's SC unit versus the FR's NN unit which significantly shortens the turnaround time

in producing corrective actions as shown in figure 32. This is the goal of this thesis

which is to develop a new approach in resolving faults in a fast and efficient manner

while able to expand its learning ability and adaptive to an ever-changing DRE.

140

The next area is on the FDR's effectiveness. The faults that are used for both the

training and testing are controlled within the tolerance of the DRE's functionalities.

The slightest deviation of parameters, values, or configuration, including the syntax

on the system commands, can cause chaos to the overall FDR's process and render it

ineffective. The faults that the FDR referred to for training and testing are anticipated

ahead with minimum guesswork available. Its effectiveness is tested against the same

batch of known faults but with a different combination of various software element's

faults to provide a more complex test scenario that can test every combination of

system diagnostics and fault resolution processes available in the FDR are validated.

The FDR's FR module has been proven to handle faults from various elements of

OracleDB, Shareplex, network and OS individually. This current set of tests will

combine them to ascertain how effective the FDR can be after both the FR and FD

modules are merged. Table 19 list out all the test cases with the various combination

of faults tests that span across the various software groups and their respective

elements’ units with the combination that range from 2 to 9, together with the

validation test results. With each test, the FD modules’ outputs are included in and

their responses are tracked in the diagnosed status columns. The FDR’s FR module is

using the DRL-NN unit to predict the corrective actions but the number of iterations

that the FR’s SC unit performs against similar faults are recorded to ascertain the

efficiency of the FDR’s FR modules, comparing the number of iterations it must

perform using both SC and DRL-NN units, as well as the time, is taken.

Table 19 - Test scenario and increase the number of simultaneous occurring faults for each case

Fault

Software Software

groups’ units

impacted

No. Of

Faults

Faults' System Commands Diag

Status

Resolved

Status

FR’s

SC

runs

FR’s

NN

runs

Time

Taken

FD (S)

Time

Taken

FR (S)

Time

Taken

SC (S)

141

1 Oracledb Main

Processes

2 export ORACLE_SID=DB1 && echo "shutdown immediate;"|sqlplus -s

"sys/password as sysdba" && echo password|su - splx -c

$MDIR/shutdown.sh

passed resolved 2 2 10.8 17.2 27

2 Oracledb Process &

Privileges

2 export ORACLE_SID=DB2 && echo "shutdown immediate;"|sqlplus -s

"sys/password as sysdba" && echo "Alter user splx account lock;"|sqlplus -

s "system/password@DB1"

passed resolved 3 2 11.8 23.2 51.2

3 Oracledb Privileges 1 echo "Alter user splx account lock;"|sqlplus -s "system/password@DB1" passed resolved 1 1 10.2 11.2 17.2

4 Oracledb Security 1 echo "alter user splx quota 0 on USERS;"|sqlplus -s

"system/password@DB1"

passed resolved 0 0 11 0 5

5 Oracledb Main

Processes

1 echo password|su - splx -c $MDIR/shutdown.sh passed resolved 1 1 10 12.4 15.2

6 Oracledb Privileges,

Operation

2 echo "Alter user splx account lock;"|sqlplus -s "system/password@DB1"

&& echo "stop capture"|sp ctrl

passed resolved 2 2 11.8 31.2 36.6

7 Oracledb Privilege,

Process,

Operation

2 echo "Alter user splx account lock;"|sqlplus -s "system/password@DB1"

&& echo password|su - splx -c $MDIR/shutdown.sh

passed resolved 2 2 11.4 29.2 25.8

8 Oracledb Privilege,

Operation

2 echo "Alter user splx account lock;"|sqlplus -s "system/password@DB1"

&& export ORACLE_SID=DB2 && echo "shutdown immediate;"|sqlplus -

s "sys/password as sysdba"

passed resolved 3 2 10.6 18.8 53

9 Shareplx,

Oracledb

Operation,

Main Process

5 echo "Alter user splx account lock;"|sqlplus -s "system/password@DB1"

&& echo "stop post"|sp_ctrl && echo "stop capture"|sp_ctrl && echo "stop

export"|sp ctrl && echo "stop import"|sp ctrl

passed resolved 9 6 11.2 64.8 127.4

10 Shareplx,

Oracledb

Operation,

Main Process

4 echo "Alter user splx account lock;"|sqlplus -s "system/password@DB1"

&& echo "stop read"|sp_ctrl && echo "stop import"|sp_ctrl && echo "stop

post"|sp ctrl && echo "stop read"|sp ctrl

passed resolved 9 6 10 64.8 109.4

11 Shareplx,

Oracledb

Operation,

Main Process

3 echo "stop capture"|sp_ctrl && echo "stop export"|sp_ctrl && export

ORACLE_SID=DB1 && echo "shutdown immediate;"|sqlplus -s

"sys/password as sysdba"

passed resolved 2 2 11.2 26.8 34.6

12 Shareplx,

Oracledb

Operation,

Main Process

3 echo "stop capture"|sp_ctrl && echo "stop import"|sp_ctrl && export

ORACLE_SID=DB2 && echo "shutdown immediate;"|sqlplus -s

"sys/password as sysdba"

passed resolved 9 5 10 48 116.6

13 Shareplx,

Oracledb

Operation,

Main Process

3 echo "stop capture"|sp_ctrl && echo "stop post"|sp_ctrl && export

ORACLE_SID=DB1 && echo "shutdown immediate;"|sqlplus -s

"sys/password as sysdba"

passed resolved 3 3 11.4 36.6 41.6

14 Shareplx,

Oracledb

Operation,

Main Process

3 echo "stop capture"|sp_ctrl && echo "stop read"|sp_ctrl && export

ORACLE_SID=DB2 && echo "shutdown immediate;"|sqlplus -s

"sys/password as sysdba"

passed resolved 4 3 10 36 57.8

15 Shareplx,

Oracledb

Operation,

Main Process

3 echo "stop export"|sp_ctrl && echo "stop import"|sp_ctrl && export

ORACLE_SID=DB1 && echo "shutdown immediate;"|sqlplus -s

"sys/password as sysdba"

passed resolved 7 4 11 58.4 91.8

16 Shareplx,

Oracledb

Operation,

Main Process

3 echo "stop export"|sp_ctrl && echo "stop post"|sp_ctrl && export

ORACLE_SID=DB2 && echo "shutdown immediate;"|sqlplus -s

"sys/password as sysdba"

passed resolved 4 3 10 39.6 63.4

17 Shareplx,

Oracledb

Operation,

Main Process

3 echo "stop export"|sp_ctrl && echo "stop read"|sp_ctrl && export

ORACLE_SID=DB1 && echo "shutdown immediate;"|sqlplus -s

"sys/password as sysdba"

passed resolved 3 3 11.6 24 39.2

18 Shareplx,

Oracledb

Operation,

Main Process

3 echo "stop import"|sp_ctrl && echo "stop post"|sp_ctrl && export

ORACLE_SID=DB2 && echo "shutdown immediate;"|sqlplus -s

"sys/password as sysdba"

passed resolved 8 3 11 37.2 118.6

19 Shareplx,

Oracledb

Operation,

Main Process

3 echo "stop import"|sp_ctrl && echo "stop read"|sp_ctrl && export

ORACLE_SID=DB1 && echo "shutdown immediate;"|sqlplus -s

"sys/password as sysdba"

passed resolved 8 4 12 35.2 99.4

20 Shareplx,

Oracledb

Operation,

Main Process

3 echo "stop post"|sp_ctrl && echo "stop read"|sp_ctrl && export

ORACLE_SID=DB2 && echo "shutdown immediate;"|sqlplus -s

"sys/password as sysdba"

passed resolved 4 3 10.8 25.2 65.8

21 Shareplx,

Oracledb

Operation,

Privileges

4 echo "stop capture"|sp_ctrl && echo "stop export"|sp_ctrl && echo "stop

import"|sp_ctrl && echo "Alter user splx account lock;"|sqlplus -s

"system/password@DB1"

passed resolved 8 5 10.2 68 112.2

22 Shareplx,

Oracledb

Operation,

Privileges

4 echo "stop capture"|sp_ctrl && echo "stop export"|sp_ctrl && echo "stop

post"|sp_ctrl && echo "Alter user splx account lock;"|sqlplus -s

"system/password@DB1"

passed resolved 4 4 11.6 54.4 59.4

23 Shareplx,

Oracledb

Operation,

Privileges

4 echo "stop capture"|sp_ctrl && echo "stop export"|sp_ctrl && echo "stop

read"|sp_ctrl && echo "Alter user splx account lock;"|sqlplus -s

"system/password@DB1"

passed resolved 4 4 11 63.2 63.4

24 Shareplx,

Oracledb

Operation,

Privileges

4 echo "stop capture"|sp_ctrl && echo "stop import"|sp_ctrl && echo "stop

post"|sp_ctrl && echo "Alter user splx account lock;"|sqlplus -s

"system/password@DB1"

passed resolved 5 4 11 48 58

25 Shareplx,

Oracledb

Operation,

Privileges

4 echo "stop capture"|sp_ctrl && echo "stop import"|sp_ctrl && echo "stop

read"|sp_ctrl && echo "Alter user splx account lock;"|sqlplus -s

"system/password@DB1"

passed resolved 9 5 11.2 47 109.4

26 Shareplx,

Oracledb

Operation,

Privileges

4 echo "stop capture"|sp_ctrl && echo "stop post"|sp_ctrl && echo "stop

read"|sp_ctrl && echo "Alter user splx account lock;"|sqlplus -s

"system/password@DB1"

passed resolved 4 4 10 33.6 62.6

27 Shareple

x

Operation 3 echo "stop export"|sp_ctrl && echo "stop import"|sp_ctrl && echo "stop

post"|sp ctrl

passed resolved 7 4 12 36 103

28 Shareple

x

Operation 3 echo "stop export"|sp_ctrl && echo "stop import"|sp_ctrl && echo "stop

read"|sp ctrl

passed resolved 6 4 11.4 37.6 99.8

29 Shareple

x

Operation 3 echo "stop export"|sp_ctrl && echo "stop post"|sp_ctrl && echo "stop

read"|sp_ctrl

passed resolved 3 3 10 43.8 39.8

30 Shareple

x

Operation 3 echo "stop import"|sp_ctrl && echo "stop post"|sp_ctrl && echo "stop

read"|sp ctrl

passed resolved 7 5 12 69 112.8

31 Network Configuratio

n

3 mv -f $ORACLE_HOME/network/admin/listener.ora

$ORACLE_HOME/network/admin/ listener.ora.orig &&

$ORACLE HOME/bin/lsnrctl stop && $ORACLE HOME/bin/lsnrctl start

passed resolved 1 1 10.8 12.4 18.2

32 Network Main

Processes

1 $ORACLE_HOME/bin/lsnrctl stop passed resolved 1 1 10.8 11 16.2

33 Network Configuratio

n

1 mv -f $ORACLE_HOME/network/admin/tnsnames.ora

$ORACLE HOME/network/admin/tnsnames.ora.orig

passed resolved 1 1 10 11.4 18.6

34 OS Security 1 echo password|su - root -c "passwd -l splx" passed resolved 1 1 10.2 14.6 18.8

35 OS Security 1 echo password|su - root -c "passwd -l oracle" passed resolved 1 1 12 9.4 18

142

6.3. Test results and analysis

This section discusses the test results from the integration testing, together with

the findings.

6.3.1. FDR modules performance results

Figure 35 shows the time used among the two main FD and FR modules but

FR’s details are split into two using both its SC and DRL-NN unit to form a visual

comparison. Note that the time taken by the FD to produce the service outage report is

fast, occurring in less than 3 secs. For the FR, the time spent is significantly higher as

they need to interact with the DRE’s software as some of them require some time to

start up or enable their services. Figure 34 shows that the time spent using the SC takes

a much longer time to reach the end goal of resolving all the faults as it followed its

algorithm to handle the faults one at a time. The method of using the DRL-NN proves

to be much more efficient and time-saving since it predicts only effective actions that

have been learnt from its knowledge.

Figure 35 – Time taken by FD to diagnose, FR to resolve faults using SC and NN unit

6.3.2. FDR integration test outputs and findings

Table 20 shows some of the results from the validation test using the test cases

from table 18. Each of the faults is printed with the system commands to induce the

faults. The FD performance the query against the DRE retrieving and compiling all the

information and statistics, then predict the service outage information of the DRE

based on the software’s services logical grouping. The diagnostics information is

passed to the FR module, and it is depicted as the current starting state. The FR module

predicted the corrective action, depicted in the table as the single element correction

0

50

100

150

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

ti
m

e
(s

ec
)

Fault case number

Time spent by FD-SD, FR-SC and FR-NN

FD FR by SC FR by NN

143

action to tackle the faults based on its knowledgebase. Then the FR retrieves a new

state from the DRE after it executed the action. If there are some positive changes,

some of the faults that have been previously captured will no longer be there and their

diagnostics will not flag any error. The FR repeats the next iteration and focuses on

the next faults to fix. The positive changes have been indicated with a reward of 1.

But this plays only as a visual indicator unlike in the previous chapter. This keeps on

going until the new state of the DRE return zeros for all the fault indication. Note that

some of the more complex faults with the higher number of faults combination require

a much longer iteration to repair, whereas those with 2 or fewer faults, get fixed up

rather quickly.

Table 20 - Results from FR integrated testing

#####################################

fault count= 0 fault cmd= export ORACLE_SID=DB1 && echo "shutdown immediate;"|sqlplus -s "sys/password as sysdba" && echo

password|su - splx -c $MDIR/shutdown.sh

#####################################

DRE log,process & service stats= [0,64655058,76223968,0,0,0,0,64351381] [1,0,1,0,0,0,0,0] [1,0,0,0,0,0,0,0], SD Service Outage =

[[6,1,0,1,3,1],[2,2,1,1,0,0],[1,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0]]

DRE_current_state = [1,1,1,1,1,1,1,0,0,0,0,0,0,1,1,1,1,1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0]

index= 19 correct cmd= export ORACLE_SID=DB1 && echo "startup;"|sqlplus -s "sys/password as sysdba"

single_element_corrective_action= [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0]

DRE_new_state = [1,1,1,1,1,1,1,0,0,0,0,0,0,1,1,1,1,0], CHANGE reward = 1

DRE log,process & service stats= [0,0,0,0,0,0,0,64351381] [0,0,1,0,0,0,0,0] [0,0,0,0,0,0,0,0], SD Service Outage =

[[6,1,0,1,3,0],[0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0]]

DRE_current_state = [1,1,1,1,1,1,1,0,0,0,0,0,0,1,1,1,1,0]

index= 0 correct cmd= echo password|su - splx -c $MDIR/startup.sh

single_element_corrective_action= [1,0]

DRE_new_state = [0,0], CHANGE reward = 1

resolved

#####################################

fault count= 1 fault cmd= export ORACLE_SID=DB2 && echo "shutdown immediate;"|sqlplus -s "sys/password as sysdba" && echo "Alter

user splx account lock;"|sqlplus -s "system/password@DB1"

#####################################

DRE log,process & service stats= [46968001,0,0,0,0,0,0,64351381] [0,1,0,0,0,0,0,0] [0,1,0,0,0,0,0,0], SD Service Outage =

[[0,0,0,1,0,2],[2,2,2,1,0,0],[1,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0]]

DRE_current_state = [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,0,0,1,1,0,1,0,1,1,1,0,1,0,1,0,0,0,0,0,0,0,0,0,0]

index= 22 correct cmd= export ORACLE_SID=DB2 && echo "startup;"|sqlplus -s "sys/password as sysdba"

single_element_corrective_action= [0,1,0]

DRE_new_state = [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], CHANGE reward = 1

DRE log,process & service stats= [46968001,0,0,0,0,0,0,64351381] [0,0,0,0,0,0,0,0] [0,0,0,0,0,0,0,0], SD Service Outage =

[[0,0,0,1,0,1],[0,0,1,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0]]

DRE_current_state = [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]

index= 27 correct cmd= echo "Alter user splx account unlock;"|sqlplus -s "system/password@DB1"

single_element_corrective_action= [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]

DRE_new_state = [0,0], CHANGE reward = 1

resolved

#####################################

fault count= 18 fault cmd= echo "stop import"|sp_ctrl && echo "stop read"|sp_ctrl && export ORACLE_SID=DB1 && echo "shutdown

immediate;"|sqlplus -s "sys/password as sysdba"

#####################################

DRE log,process & service stats= [0,64655058,0,0,0,0,0,64351381] [1,0,0,0,0,0,0,0] [1,0,1,0,0,0,0,0], SD Service Outage =

[[3,0,3,1,0,1],[2,2,1,1,0,0],[1,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0]]

DRE_current_state = [0,0,0,1,1,1,0,0,1,0,1,0,1,1,0,0,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0]

index= 19 correct cmd= export ORACLE_SID=DB1 && echo "startup;"|sqlplus -s "sys/password as sysdba"

single_element_corrective_action= [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0]

DRE_new_state = [0,0,0,1,1,1,0,0,1,0,1,0,1,0], CHANGE reward = 1

DRE log,process & service stats= [0,0,0,0,0,0,0,0] [0,0,0,0,0,0,0,0] [0,0,1,0,0,0,0,0], SD Service Outage =

[[3,0,3,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0]]

DRE_current_state = [0,0,0,1,1,1,0,0,1,0,1,0,1,0]

index= 4 correct cmd= echo "start read"|sp_ctrl

single_element_corrective_action= [0,0,0,0,1,0]

DRE_new_state = [0,0,0,1,0,1,0,0,0,0,1,0], CHANGE reward = 1

DRE log,process & service stats= [0,0,0,0,0,0,0,0] [0,0,0,0,0,0,0,0] [0,0,1,0,0,0,0,0], SD Service Outage =

[[2,0,1,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0]]

DRE_current_state = [0,0,0,1,0,1,0,0,0,0,1,0]

index= 5 correct cmd= echo "start import"|sp_ctrl

single_element_corrective_action= [0,0,0,0,0,1,0]

DRE_new_state = [0,0,0,1,0,1,0], CHANGE reward = 1

144

DRE log,process & service stats= [0,0,0,0,0,0,0,0] [0,0,0,0,0,0,0,0] [0,0,0,0,0,0,0,0], SD Service Outage =

[[2,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0]]

DRE_current_state = [0,0,0,1,0,1,0]

single_element_corrective_action= [0,0]

DRE_new_state = [0,0], CHANGE reward = 1

resolved

#####################################

fault count= 19 fault cmd= echo "stop post"|sp_ctrl && echo "stop read"|sp_ctrl && export ORACLE_SID=DB2 && echo "shutdown

immediate;"|sqlplus -s "sys/password as sysdba"

#####################################

DRE log,process & service stats= [0,0,0,0,0,0,0,64351381] [0,1,0,0,0,0,0,0] [0,1,1,0,0,0,0,0], SD Service Outage =

[[2,0,3,0,0,1],[2,2,1,1,0,0],[1,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0]]

DRE_current_state = [0,0,1,0,1,0,0,0,1,0,0,1,1,0,0,0,0,0,1,0,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0,0,0,0,0,0,0,0]

index= 22 correct cmd= export ORACLE_SID=DB2 && echo "startup;"|sqlplus -s "sys/password as sysdba"

single_element_corrective_action= [0,1,0]

DRE_new_state = [0,0,1,0,1,0,0,0,1,0,0,1,1,0], CHANGE reward = 1

DRE log,process & service stats= [0,0,0,0,0,0,0,64351381] [0,0,0,0,0,0,0,0] [0,0,1,0,0,0,0,0], SD Service Outage =

[[2,0,3,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0]]

DRE_current_state = [0,0,1,0,1,0,0,0,1,0,0,1,1,0]

index= 2 correct cmd= echo "start post"|sp_ctrl

single_element_corrective_action= [0,0,1,0]

DRE_new_state = [0,0,0,0,1,0,0,0,1,0,0,0,1,0], CHANGE reward = 1

DRE log,process & service stats= [0,0,0,0,0,0,0,0] [0,0,0,0,0,0,0,0] [0,0,1,0,0,0,0,0], SD Service Outage =

[[1,0,2,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0]]

DRE_current_state = [0,0,0,0,1,0,0,0,1,0,0,0,1,0]

index= 4 correct cmd= echo "start read"|sp_ctrl

single_element_corrective_action= [0,0,0,0,1,0]

DRE_new_state = [0,0], CHANGE reward = 1

resolved

#####################################

fault count= 20 fault cmd= echo "stop capture"|sp_ctrl && echo "stop export"|sp_ctrl && echo "stop import"|sp_ctrl && echo "Alter user

splx account lock;"|sqlplus -s "system/password@DB1"

#####################################

DRE log,process & service stats= [46968001,0,0,0,0,0,0,0] [0,0,0,0,0,0,0,0] [0,0,1,0,0,0,0,0], SD Service Outage =

[[3,0,3,1,0,1],[0,0,1,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0]]

DRE_current_state = [0,1,0,1,0,1,0,1,0,1,1,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]

index= 27 correct cmd= echo "Alter user splx account unlock;"|sqlplus -s "system/password@DB1"

single_element_corrective_action= [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]

DRE_new_state = [0,1,0,1,0,1,0,1,0,1,1,0], CHANGE reward = 1

DRE log,process & service stats= [46968001,0,0,0,0,0,0,0] [0,0,0,0,0,0,0,0] [0,0,1,0,0,0,0,0], SD Service Outage =

[[3,0,3,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0]]

DRE_current_state = [0,1,0,1,0,1,0,1,0,1,1,0]

index= 1 correct cmd= echo "start capture"|sp_ctrl

single_element_corrective_action= [0,1,0]

DRE_new_state = [0,0,0,1,0,1,0,0,0,1,1,0], CHANGE reward = 1

DRE log,process & service stats= [0,0,0,0,0,0,0,0] [0,0,0,0,0,0,0,0] [0,0,1,0,0,0,0,0], SD Service Outage =

[[2,0,2,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0]]

DRE_current_state = [0,0,0,1,0,1,0,0,0,1,1,0]

index= 3 correct cmd= echo "start export"|sp_ctrl

single_element_corrective_action= [0,0,0,1,0]

DRE_new_state = [0,0,0,1,0,1,0,0,0,0,1,0], CHANGE reward = 1

DRE log,process & service stats= [0,0,0,0,0,0,0,0] [0,0,0,0,0,0,0,0] [0,0,1,0,0,0,0,0], SD Service Outage =

[[2,0,1,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0]]

DRE_current_state = [0,0,0,1,0,1,0,0,0,0,1,0]

index= 5 correct cmd= echo "start import"|sp_ctrl

single_element_corrective_action= [0,0,0,0,0,1,0]

DRE_new_state = [0,0,0,1,0,1,0], CHANGE reward = 1

DRE log,process & service stats= [0,0,0,0,0,0,0,0] [0,0,0,0,0,0,0,0] [0,0,0,0,0,0,0,0], SD Service Outage =

[[2,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0]]

DRE_current_state = [0,0,0,1,0,1,0]

single_element_corrective_action= [0,0]

DRE_new_state = [0,0], CHANGE reward = 1

resolved

6.4. FDR’s Integration Conclusion

The combination of both the FD and FR module for the FDR completes the goal

of this thesis, giving the intelligent feature of able to predict the service outage based

on the anomalies detected within the DRE, as well as the intelligent fault resolving

capability to resolve the faults based on the past learning from interacting with the

DRE. One of the concerns was the overlapping of libraries functionalities that FD and

FR modules specifically used which can cause adverse faults that cannot be restored.

145

Therefore, care is taken to segregate both to ensure that they do not impact one another

or to cause conflict and deadlocks. The results that are received must be integrated into

the mini-batch knowledgebase which subsequently can be reused for continuous

module training and testing. The steps in which the series of actions that the FDR need

to restore the services for any given faults must adhere to the hierarchical importance

and reliance among the software within the DRE’s configuration. However, the FDR

has shown that it can navigate and learn this order through its trial-and-error iterative

RL routines, which fulfil the primary feature of what RL is, and that is to maximize

the rewards by using the best actions for each fault situation that it encounters.

146

CHAPTER 7: CONCLUSIONS

The rapid growth in the use of complex, multi-tiered IT systems across many

industries has posed a unique challenge to the IT personnel that support them. The

number of different software functioning with thousands of configurations and

parameters to serve other software and technology to meet the needs of the business is

increasing exponentially and it is stretching the pool of system administrators’

resources to the limit. Not only do they face the daily stress of supporting these systems

but the expectation to have a fast turnaround time to resolve any faults in the

production system environment grows daily. The Service Level Agreement (SLA) that

most mission-critical systems commanded are expected to be at least at 99.5% uptime

and above. Therefore, it is expected that the IT administrator must always be present

and focus on monitoring them closely. In addition to this, organisations have difficulty

in increasing their cost and talent pool to increase their resources. This research is an

attempt to use machine learning to propose a novel way to complement the IT

administrator in monitoring and resolving any systems faults encountered in the

production systems.

This thesis has contributed to the research of a better fault resolution approach

toward complex, multi-tier software systems via a novel faults identification and

mapping to solution method that this thesis has developed, including the use of a

customized version of the Deep reinforcement learning model. This chapter list the

answers to the research questions that were listed at the beginning of this thesis based

on the knowledge and experiences gained in this research. It also summarized the

research contributions and findings together with potential future works and

enhancement.

7.1. Research Contributions

The research made in this thesis has some positive contributions to the space of

fault diagnosis and resolution in the domain of enterprise data replication using

machine learning models such as Deep reinforcement learning. Enterprise data

replication environment across large enterprise IT environments are getting

complicated and this new FDR introduces an alternate option to the academia and

147

industry in the use of an intelligent agent that can learn adaptively to resolve detected

faults that arise from the multitude of participating software in the replication setup.

For any normal expert system that uses supervised learnings or rule-based, they serve

the current model with the provision of an available large dataset for training or, they

need a substantial number of resources and time to compute the optimal feedback for

the environment input, including the requirement for a large proven dataset of faults

and actions to support deep learning. The FDR, with its DRL model, doesn’t have this

pre-requisite for the a-prior knowledge base. The FDR can reduce the amount of

unnecessary computation required as it stored past known actions and results against

various environment states as part of its knowledge base. It learns by self-playing and

self-testing to validate all the potential faults that can occur among the participating

software across the DRE. This saves not only time and resources but improves the

speed of response. It can handle unknown states by using part of its routine to explore

better new solutions and thereby adding more information into its knowledge base.

If the DRL’s knowledgebase has all the known states with their optimum actions

to resolve the faults, the DRL can also be structured to handle problems within the

environment states in a hierarchical form as shown from the FR module, by increasing

the value in the rewards to steer the algorithm to favour those with higher reward

values. the newer states from the environment are treated equally as another

instantiation of state-action tuples and the DRL will exploit its knowledgebase to

provide another optimal action for it. This can be regarded as a two planes level

between existing and new states where the best corrective actions can steer the

environment to a better goal direction based on their state-action’s rewards and Q-

value.

The research also develops a novel method in using the details from the system

diagnostics to develop a systematic hierarchical approach to resolve software faults

based on their importance, element by element, based on a relationship matrix between

diagnosed faults to the list of corresponding correcting system commands and scripts.

The approach is not to use this as the primary mode of fault resolution but to learn to

fix them following the SC’s algorithms and build up the knowledgebase sufficiently

enough before the next phase, which is the Neural network, to learn predict the best

course of corrective actions for any given DRE’s state regarding the knowledge that is

148

gained from the SC phase. This is more efficient than the brute force method of

exhaustive, high iteration of randomly selecting all related actions to apply for any

given fault. The FDR can be able to provide high accuracy while applying the right

actions for all sorts of DRE’s states and their errors encountered.

This system also allows cross-platform inter-operations, not restricted to any

specific technology, unlike the current commercial proprietary system that is limited

to the software brands. The software vendors that develop their system usually rule or

statistics-based, and they do not integrate with competitor’s software due to privacy

and copyrights. This method of expressing various faults to corrective actions and

exploit the external libraries set the initiative for better and greater autonomous and

adaptive fault resolving systems that are based on machine learning.

The rise of enterprise cloud service is posing a potential big challenge to the

administrative work responsibility for IT administrators as it increases the landscape

of data replication and ingestion requirements especially the multitude of data marts

and enterprise data warehousing projects increase in multiple folds. They require even

more technology and software functions to manage a variety of ETL and ELT

processes with heterogenous data sources that are based in data lakes, blob storage,

IoT streams and databases. The data that they manage can be in structured, semi-

structured or unstructured form. Therefore, this ETL/ELT software require intensive

IT administrators’ attention to keep them working at 99.95% Service Level

Agreement. Therefore, this approach of FDR with the DRL can be set up to mitigate

and manage this class of complicated environments, able to interact and learn the

various technique and derive the correct flow of troubleshooting steps in hierarchical

order to restore the faults if they are detected. The anticipated contribution of the FDR

to the IT industry is huge and there is a big potential that it can be applied to other IT

sectors and the environment as well.

7.2. Comparison of FDR to other Diagnostic and Resolution Methods

There are several methods of fault diagnosis and resolving them as listed in Table

21 and they range from the most common method of having IT personnel performing

hands-on work to rectify the faults when the faults are detected. The fault detection

can be employed in numerous ways; from the common manual method where IT

administrators must run multiple queries against different software systems, to write

149

bash scripts that can execute similar commands but through an OS’ task scheduler, and

the final option of having a commercial software package that can do the monitoring

intelligently. However, most of this software does not handle fault resolution and it is

up to the IT administrators to handle that. How efficient and effective each of the

manual intervention against the detected faults depend strictly on the competency of

the IT administrator. And it is not cost-effective nor practical to employ many IT

personnel to cover the operation of the DRE and their maintenance around the clock.

The landscape of the DRE grows exponentially and the limited number of resources,

including manpower, cannot scale efficiently to meet the demand.

For fault resolution, one of the most common methods for any IT administrator

to fix any system-related fault is to do it hand-on with the DRE software directly.

Usually, they must refer to some knowledgebase that comes in vendor’s recommended

best practices or support websites that the organizations have to pay a premium to

access the software vendors’ knowledgebase or more if they want additional

professional support. This is preferred but it is not feasible for every IT administrator

to have the necessary skill nor experience to handle the overall troubleshooting tasks

and with outsourcing becoming prevalent in the IT industries, getting someone to

respond to DRE faults across the globe at different time zone is tedious and

cumbersome.

Therefore, some of the experienced IT administrators took to the task to write a

substantial number of custom scripts to do some of the basic troubleshooting and

correction using simple conditions and rule-based. But this is limited on most

occasions as not all of them can cross-skilled to other software or limited by their

jurisdiction and ring-fencing in terms of job responsibility. The rule or condition-based

method of their fault resolution are fixed and have limited adaptability, so if they are

going to be deployed to support other forms of DRE with heterogeneous platform and

technology, the entire scripts need to be revamped and rebuild. This is both laborious

and maintenance, in the long run, is difficult. Based on the Delphi method, we present

our method as well as the others to a group of experienced IT administrators from

Energy Queensland Limited and gather their feedback. Each method has their strength

and weakness described as shown in table 21 below.

Table 21 - Benchmarking FDR against other methods of fault diagnosis/resolution

150

Methods Strength Weakness

Manual/ Hand-on Slow, error-prone, passive, limited in

feature and coverage, can only handle

limited complex issues, not scalable

Fault detection, limited

diagnosis, low resolution

capability

Vendors’ best practice

and knowledgebase

Slow, error-prone, passive, limited in

feature and coverage, can only handle

more complex issues, not scalable,

enhance IT admin’s knowledge and

capability.

Fault detection, medium

diagnosis, medium resolution

capability

Professional support Very slow, passive, expensive, able to

mitigate high complex problem, not

scalable, enhance organisation’s IT

competency, not scale

Only for fault resolution

Smal shell script with

task scheduler

Fast, proactive, more reliable, better

feature and coverage, scalable, improve

monitoring and diagnosis reliability

Fault resolution is very limited

Program with

condition or Rule-

based

Faster, proactive, better reliability, more

feature and coverage, scalable to handle

more system, improve monitoring and

diagnostic ability including limited fault

resolution

Not adaptive, limited in scope,

require major rework if

configuration changes, not

flexible to adapt

FDR Faster, proactive, reliable, handle

complex, multi-tier software system, able

to do fault detection, diagnosis, and

resolution, adaptive,

Need to predefine all the

potential faults and

corresponding action to

remediate them.

Require massive amount of pre-

scripted commands to handle all

fault scenarios.

May be labour intensive

Currently, there is limited automated fault diagnostic method in academia that

explicitly applies to diagnose a complex multi-software Data replication integrated

system. Even in the industry, the fault diagnostic for each of the software is limited to

the individual vendors that produce it. Therefore, there isn’t a large base of available

methods for troubleshooting DRE that can be used for empirical analysis and

comparison.

The consensus on the usability of FDR is promising as compared to all other

methods. For system troubleshooting to be done manually or with their software

utilities, the level of fault diagnosis that can be achieved is strongly correlated

depending on skillset of the DBAs. Commercial fault diagnostic tools can expedite

and reduce the tedious tuning effort, but they are also limited to software’s specificity

and the human factor. Also, they do present a potential risk to the production

environment as they require direct interaction with the production DRE.

151

The other methods that are rule, heuristic and NN based, provide a higher level

of autonomy and greater coverage throughout the day without being dependent on

humans, and they do provide a high probability of detecting and diagnosing the faults.

Moreover, they can be duplicated to cover other instances of DREs. However, for the

NN-based model, it has a pre-requisite of an existing large dataset to start with. Other

methods such as rule-based may be static and limited by its internal knowledge base

of rule settings. All of them also have a significant risk impact on the production of

DRE if diagnosing efforts are made against them directly.

7.3. Future Works and Enhancement

While the FDR has been proven to be an intelligent fault diagnosis and resolution

approach for the enterprise set up of tools that replicate data, it is a proof of concept

with plenty of room for improvement. One of the main attributes with FDR is the

amount of information from DRE software, versus the libraries of system commands

for each software element, the relationship matrices of errors to faults, outages and the

respective fault-remediating actions are both huge and static. To make any amendment

either to accommodate new software or feature to monitor, to diagnose or to be

corrected, need updates among the various FDR’s configuration files from end to end

which is both laborious and time-consuming. so because of this, it is desirable that

greater flexibility and information storage, including retrieval, can be improved either

by creating a higher dimensional matrix that accommodates multiple software

integration relationships with greater ease or allow a more dynamic method of

ingesting a set of system commands and store shell scripts internally into a central

repository and update their relationship to the associated software’s list of faults

dynamically with a procedure. A backend database repository to facilitate all these

would-be new enhancements will be better too, as it allows easy information query

and storage with more security and performance.

Another issue that has been encountered in this research is the set of system

commands that are used to alter the software element’s configuration. All of them are

hardcoded but upon deeper analysis, it is found that they tend to follow repetitions of

statements except for values used in their parameters. Ideally, this can be replaced with

a new unit that can perform NLP specifically to each software environment using some

pre-set configuration or parameter values. This proposed NLP system command and

152

control module can also formulate new query languages that scan and gather all the

real-time statistics and variables from the software. This will certainly give the FDR

greater flexibility in adapting to a more complex integrated software environment. This

can overcome the current cumbersome method of hardcoding all the fault correcting

actions into a large list of system commands which may be difficult to maintain and

prone to errors.

For future enhancement, the FDR can benefit if it can be ensembled with other

models such as Monte Carlo Tree Search (MCTS) to strategize the solution paths

among the large state space of combinations for the fault resolution actions, similar to

Alpha-Go Zero’s strategies [76]. MCTS is used to build a local policy to save the

subsequent move for fault resolution, by searching for moves and record the results in

a search tree which enrich a knowledge base of a hierarchical tree structure and from

it, local policies are made and used to support the subsequent solution search. The

current FDR has been designed to respond to the move in a hierarchical manner which

limits the possibility of the model to search linearly across other potential action-space

that can potentially resolve the fault situation. This is a limiting factor and MCTS may

overcome this.

The performance of the FDR design can also be improved by rewriting the

software libraries that support the DRE’s software which inject the simulated faults

and restore their services in the attempt to support DRL’s learning process. The

preparation for these libraries and their functions is time-consuming and proprietary

to each software vendor, especially on the service restoration where the DRE’s state is

required to restore to the baseline for the iterative learning trial. The scripts used in

this FDR research have been hard-coded and stored in the libraries to support the

various DRE’s software. It is laborious and to maintain them, with multiple repetitions.

It is advisable to execute them via meta-data, configurations and parameters which

allow greater flexibility in code readabilities, and thus reduce the number of scripts

required. This can be replaced with a database that contains all the combinations of

parameters, variables, account id, details and passwords which can be referred to, and

construct the required working scripts to serve different functions with ease [77, 78].

One of the potential future work that can extend the FDR’s capability to cover

other complex IT systems with a matrix that can map the complex multiple inter-

153

operating dependencies among the software and their services to each other [79]. The

current FDR require expert’s insights who knows the intracity of the DRE’s software

relationship but should this FDR extend to other heterogeneous replication systems

that are not part of the current Shareplex/Oracle expert, then it will be difficult to re-

establish the FDR for the new setup. A matrix of software’s inter-operating

relationship can help to mitigate this challenge, and this, in turn, supports a range of

stored procedures or programs that can construct the relevant scripts to support each

of the software’s specific functions together with the adjacent co-dependent software

their corresponding functions or services [80].

7.4. Conclusion

The DRE is a complicated IT system that serves the need for enterprise data

replication that span multiple organisations and across geographical regions. It is not

cost-effective to employ hundreds of IT administrators to support this DRE around the

clock with a near real-time turnaround in fault resolution effort. The research here

developed a novel autonomous fault detection and resolution system that is adaptive

to the changing technology and business landscapes to provide a responsive interaction

that is equivalent to a human level 1 technical support in rectifying the faults within

the DRE and it comes in the form of an adaptive intelligent system. Most of the

commercial and academic fault resolution system relies on either a decision-based

system that is based on rules or conditions or a NN to prescribe the remedial actions.

However, these popular approaches have their drawbacks; for rule-based systems, the

model of the IT system must be predetermined, and it contains a list of fixed rules

which aren’t scalable and scripts that are proprietary to the vendors. Plus, they are only

designed for specific software, and they do not usually work well across other

platforms or technology. Those systems that depend on deep learning can be more

flexible and scalable as compared to those rule-based ones, but they require a large

amount of labelled dataset for training, something which is not readily available in

large IT setups that have different policies and configurations. However, the FDR

system is not based on an explicit rule or decision logic, and it does not need to have

a model based on DRE that is both explicit and well-defined. In any enterprise IT

landscape, it is impossible to impose such control and not all the DRE sites share the

same configuration or infrastructure. So, the FDR system is adaptive enough to learn

154

and serve the data replications setup. There are instances where FDR systems can be

trained specifically to support individual systems separately and then combine to serve

a higher and more global purpose. for example, one FDR system can be trained to

serve a DRE that is tied into a client-server OLTP finance system whereas another can

be trained to support another DRE via a web-based internet system. Both can be

deployed to various organisations to run as virtual autonomous IT administrators that

can work together to support a wide range of heterogeneous IT systems without

revealing the knowledge. these FDR systems can have encrypted external libraries of

system commands and scripts that the FDR system can exploit. But their secrecy can

be protected without revealing to the users.

FDR has overcome these limitations and the research has shown that this novel

approach does enable the FDR to be flexible enough to adapt its services of fault

diagnosis and resolution to any multi-tier software and learn on the job dynamically

with little or no a-prior dataset nor knowledge. While there is room for improvement,

it is novel especially in the space of complex software involving enterprise data

replication management.

References

1. Hamrouni, T., S. Slimani, and F.B.J.E.A.o.A.I. Charrada, A survey of dynamic replication and

replica selection strategies based on data mining techniques in data grids. 2016. 48: p. 140-158.

155

2. Gill, N.K. and S. Singh, A dynamic, cost-aware, optimized data replication strategy for

heterogeneous cloud data centers. Future Generation Computer Systems, 2016. 65: p. 10-32.

3. Malik, S.U.R., et al., Performance analysis of data intensive cloud systems based on data

management and replication: a survey. 2016. 34(2): p. 179-215.

4. Venkatasubramanian, V., et al., A review of process fault detection and diagnosis: Part I:

Quantitative model-based methods. Computers & chemical engineering, 2003. 27(3): p. 293-311.

5. Venkatasubramanian, V., et al., A review of process fault detection and diagnosis: Part III: Process

history based methods. Computers & chemical engineering, 2003. 27(3): p. 327-346.

6. Venkatasubramanian, V., et al., A review of process fault detection and diagnosis: Part II:

Qualitative models and search strategies. Computers & chemical engineering, 2003. 27(3).

7. Van Hasselt, H., A. Guez, and D. Silver. Deep Reinforcement Learning with Double Q-Learning. in

AAAI. 2016.

8. Lei, Y., et al., Applications of machine learning to machine fault diagnosis: A review and roadmap.

Mechanical Systems and Signal Processing, 2020. 138: p. 106587.

9. Littman, M.L., et al. Reinforcement learning for autonomic network repair. in International

Conference on Autonomic Computing, 2004. Proceedings. 2004. IEEE.

10. Venkatasubramanian, V. and K. Chan, A neural network methodology for process fault diagnosis.

AIChE Journal, 1989. 35(12): p. 1993-2002.

11. Robinson, W.N., A requirements monitoring framework for enterprise systems. Requirements

engineering, 2006. 11(1): p. 17-41.

12. Russell, S.J. and P. Norvig, Artificial intelligence: a modern approach. 2016: Malaysia; Pearson

Education Limited.

13. Žarković, M. and Z. Stojković, Analysis of artificial intelligence expert systems for power

transformer condition monitoring and diagnostics. Electric Power Systems Research, 2017. 149: p.

125-136.

14. Venkatasubramanian, V., R. Rengaswamy, and S.N. Kavuri, A review of process fault detection and

diagnosis: Part II: Qualitative models and search strategies. Computers & chemical engineering,

2003. 27(3): p. 313-326.

15. Isermann, R., Fault-diagnosis systems: an introduction from fault detection to fault tolerance. 2006:

Springer Science & Business Media.

16. Chandola, V., A. Banerjee, and V. Kumar, Anomaly detection: A survey. ACM computing surveys

(CSUR), 2009. 41(3): p. 15.

17. Oliner, A., A. Ganapathi, and W. Xu, Advances and challenges in log analysis. Communications of

the ACM, 2012. 55(2): p. 55-61.

18. Garcia-Teodoro, P., et al., Anomaly-based network intrusion detection: Techniques, systems and

challenges. computers & security, 2009. 28(1): p. 18-28.

19. Xu, W., et al. Detecting large-scale system problems by mining console logs. in Proceedings of the

ACM SIGOPS 22nd symposium on Operating systems principles. 2009. ACM.

20. He, Z., et al. A frequent pattern discovery method for outlier detection. in WAIM. 2004. Springer.

156

21. Patcha, A. and J.-M. Park, An overview of anomaly detection techniques: Existing solutions and

latest technological trends. Computer networks, 2007. 51(12): p. 3448-3470.

22. Yang, H., F. Xie, and Y. Lu, Clustering and classification based anomaly detection. Fuzzy Systems

and Knowledge Discovery, 2006: p. 1082-1091.

23. Boriah, S., V. Chandola, and V. Kumar. Similarity measures for categorical data: A comparative

evaluation. in Proceedings of the 2008 SIAM International Conference on Data Mining. 2008.

SIAM.

24. Steinwart, I. and A. Christmann, Support vector machines. 2008: Springer Science & Business

Media.

25. Mukkamala, S., G. Janoski, and A. Sung. Intrusion detection using neural networks and support

vector machines. in Neural Networks, 2002. IJCNN'02. Proceedings of the 2002 International Joint

Conference on. 2002. IEEE.

26. Erfani, S.M., et al., High-dimensional and large-scale anomaly detection using a linear one-class

SVM with deep learning. Pattern Recognition, 2016. 58: p. 121-134.

27. Agrawal, S. and J. Agrawal, Survey on anomaly detection using data mining techniques. Procedia

Computer Science, 2015. 60: p. 708-713.

28. Software, Q., Shareplex for Oracle v9.1.4. 2018.

29. Quest Software Releases SharePlex v9, in ICT Monitor Worldwide U6 - ctx_ver=Z39.88-

2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-

8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev

%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quest+Software+Releases+SharePlex+v9&rft.

jtitle=ICT+Monitor+Worldwide&rft.date=2017-06-

22&rft.pub=SyndiGate+Media+Inc¶mdict=en-US U7 - Newspaper Article. 2017, SyndiGate

Media Inc: Amman.

30. Brunt, B., Going for gold: Dell Software's SharePlex database replication offering is a powerful

tool with a small footprint. Computer Reseller News (UK), 2016: p. 23.

31. Dell Software Extends SharePlex to Optimize Data Integration and Analysis. Information

Technology Newsweekly, 2013: p. 136.

32. Kyte, T. and D. Kuhn, Expert Oracle Database Architecture. 2014: Apress.

33. Alapati, S.R. and Books24x7 Inc., Expert Oracle database 11g administration. Books for

professionals by professionals. 2009, Berkeley, Calif.: Apress. 1 online resource (liii, 1344 p.).

34. Kyte, T., Expert Oracle Database Architecture: Oracle Database 9i, 10g, and 11g Programming

Techniques and Solutions. 2010: Apress.

35. team, E.Q.s.D.O.-C.d., Shareplex/Oracle setup annd operating procedure 2016 rev 2.0. 2016.

36. Tabet, K., et al., Data replication in cloud systems: a survey. International Journal of Information

Systems and Social Change (IJISSC), 2017. 8(3): p. 17-33.

37. Milani, B.A. and N.J. Navimipour, A systematic literature review of the data replication techniques

in the cloud environments. Big Data Research, 2017. 10: p. 1-7.

38. Iacob, N., Data replication in distributed environments. Annals-Economy Series, 2010. 4: p. 193-

202.

157

39. Russell, S.J.N., Peter, Artificial intelligence: a modern approach. 2016.

40. Van Hasselt, H., A. Guez, and D. Silver. Deep reinforcement learning with double q-learning. in

Thirtieth AAAI conference on artificial intelligence. 2016.

41. Littman, M.L., Reinforcement learning improves behaviour from evaluative feedback. Nature, 2015.

521(7553): p. 445.

42. Lillicrap, T.P., et al., Continuous control with deep reinforcement learning. arXiv preprint

arXiv:1509.02971, 2015.

43. Farivar, F. and M. Nili Ahmadabadi, Continuous reinforcement learning to robust fault tolerant

control for a class of unknown nonlinear systems. Applied Soft Computing, 2015. 37(Supplement

C): p. 702-714.

44. Mellouk, A., Advances in Reinforcement Learning. 2011.

45. Szepesvari, C., Brachman, R. & Dietterich, T.G., Algorithms for Reinforcement Learning. 2010.

46. Mellouk, A., Advances in reinforcement learning. 2011, InTech.

47. Grondman, I., et al., A survey of actor-critic reinforcement learning: Standard and natural policy

gradients. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and

Reviews), 2012. 42(6): p. 1291-1307.

48. Fujimoto, S., H. Van Hoof, and D. Meger, Addressing function approximation error in actor-critic

methods. arXiv preprint arXiv:1802.09477, 2018.

49. François-Lavet, V., et al., An introduction to deep reinforcement learning. arXiv preprint

arXiv:1811.12560, 2018.

50. Hinton, G.E., S. Osindero, and Y.-W. Teh, A fast learning algorithm for deep belief nets. Neural

computation, 2006. 18(7): p. 1527-1554.

51. Hippert, H., D. Bunn, and R. Souza, Large neural networks for electricity load forecasting: Are they

overfitted? International Journal of forecasting, 2005. 21(3): p. 425-434.

52. Brotherton, T. and T. Johnson. Anomaly detection for advanced military aircraft using neural

networks. in Aerospace Conference, 2001, IEEE Proceedings. 2001. IEEE.

53. Henderson, P., et al. Deep reinforcement learning that matters. in Proceedings of the AAAI

conference on artificial intelligence. 2018.

54. Li, Y., Deep reinforcement learning: An overview. arXiv preprint arXiv:1701.07274, 2017.

55. Jingang, C. Using reinforcement learning for agent-based network fault diagnosis system. in 2011

IEEE International Conference on Information and Automation. 2011.

56. Zhang, Y., et al., An artificial neural network approach to transformer fault diagnosis. IEEE

Transactions on Power Delivery, 1996. 11(4): p. 1836-1841.

57. Holcomb, S.D., et al. Overview on DeepMind and Its AlphaGo Zero AI. in Proceedings of the 2018

International Conference on Big Data and Education. 2018. ACM.

58. Brockman, G., et al., Openai gym. arXiv preprint arXiv:1606.01540, 2016.

59. Chen, J. and R.J. Patton, Robust model-based fault diagnosis for dynamic systems. Vol. 3. 2012:

Springer Science & Business Media.

60. Chen, Z., et al., Random forest based intelligent fault diagnosis for PV arrays using array voltage

and string currents. Energy conversion and management, 2018. 178: p. 250-264.

158

61. Cai, B., L. Huang, and M. Xie, Bayesian networks in fault diagnosis. IEEE Transactions on industrial

informatics, 2017. 13(5): p. 2227-2240.

62. Habibi, A., A. Sarafrazi, and S. Izadyar, Delphi technique theoretical framework in qualitative

research. The International Journal of Engineering and Science, 2014. 3(4): p. 8-13.

63. Wen, L., et al., A new convolutional neural network-based data-driven fault diagnosis method. IEEE

Transactions on Industrial Electronics, 2017. 65(7): p. 5990-5998.

64. Saimurugan, M., et al., Multi component fault diagnosis of rotational mechanical system based on

decision tree and support vector machine. Expert Systems with Applications, 2011. 38(4): p. 3819-

3826.

65. Jia, F., et al., A neural network constructed by deep learning technique and its application to

intelligent fault diagnosis of machines. Neurocomputing, 2018. 272: p. 619-628.

66. Zhang, W., et al., A new deep learning model for fault diagnosis with good anti-noise and domain

adaptation ability on raw vibration signals. Sensors, 2017. 17(2): p. 425.

67. software, Q., SharePlex 9.0.1 - Administration Guide. 2019.

68. Dai, W., et al., Fault Diagnosis of Rotating Machinery Based on Deep Reinforcement Learning and

Reciprocal of Smoothness Index. 2020.

69. Ding, Y., et al., Intelligent fault diagnosis for rotating machinery using deep Q-network based health

state classification: A deep reinforcement learning approach. 2019. 42: p. 100977.

70. Xu, T., et al. Fault Diagnosis for the Virtualized Network in the Cloud Environment using

Reinforcement Learning. in 2019 IEEE International Conference on Smart Cloud (SmartCloud).

2019. IEEE.

71. Wee, C.K. and N. Wee. Adaptive Fault Diagnosis for Data Replication Systems. in Australasian

Database Conference. 2021. Springer.

72. Wee, C.K., et al. Adaptive Fault Resolution for Database Replication Systems. in International

Conference on Advanced Data Mining and Applications. 2022. Springer.

73. Zhang, J.M., et al., Machine learning testing: Survey, landscapes and horizons. IEEE Transactions

on Software Engineering, 2020.

74. Braiek, H.B. and F. Khomh, On testing machine learning programs. Journal of Systems and

Software, 2020. 164: p. 110542.

75. Yang, Y., et al., A systematic study of reward for reinforcement learning based continuous

integration testing. Journal of Systems and Software, 2020. 170: p. 110787.

76. Wang, Q., Y. Hao, and J. Cao, Learning to traverse over graphs with a Monte Carlo tree search-

based self-play framework. Engineering Applications of Artificial Intelligence, 2021. 105: p.

104422.

77. Amorim, R.C., et al., A comparison of research data management platforms: architecture, flexible

metadata and interoperability. Universal access in the information society, 2017. 16(4): p. 851-862.

78. Dhawan, U., et al. Architectural support for software-defined metadata processing. in Proceedings

of the Twentieth International Conference on Architectural Support for Programming Languages

and Operating Systems. 2015.

159

79. Madni, A.M., et al. Analyzing Systems Architectures using Inter-Level and Intra-Level Dependency

Matrix (I2DM). in 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC).

2019. IEEE.

80. Sangal, N., et al. Using dependency models to manage complex software architecture. in

Proceedings of the 20th annual ACM SIGPLAN conference on Object-oriented programming,

systems, languages, and applications. 2005.

