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ABSTRACT 

Modern business IT systems in large organisations have high levels of 

collaboration and interoperability to support various business functions. In 

heterogeneous IT systems, data is one of the most important entities that are constantly 

exchanged. The method of data exchange or transfer among these collaborating IT 

systems can occur in near real-time or in batches, and they are arranged in either 

hierarchical or mesh structure relationships. There are several ways of conducting 

these data transfers and one of the methods is to use data replicating software. 

Maintaining both the business IT system and the data replication services is always a 

challenge to the IT administrators, and with mission-critical systems that demand 24x7 

uptime, the data replicating services are expected to have a high level of operational 

standards and services to the organisation with minimum downtime.  

The job of the IT administrator is to maintain and support all the IT systems and 

infrastructure to meet the expected service level agreement (SLA). This includes 

monitoring the IT systems and data replications for anomalies or defects and rectifying 

them as soon as possible to minimize downtime. However, humans need rest, are prone 

to fatigue, and are unable to scale their operational work effectively. Therefore, an 

alternative is needed to overcome these limits. 

It is the goal of this thesis to meet this challenge by developing a novel 

autonomous and adaptive system in monitoring and proactively rectifying any 

technical problems encountered in the data replicating environment. This novel 

approach utilizes the research in the domain of deep learning and reinforcement 

learning that can take appropriate actions to rectify faults encountered in the data 

replication environment to maximize the concept of cumulative rewards. The proposed 

system will go through a series of learning cycles starting by learning through trial-

and-error by interacting with the data replicating environment, then gradually move to 

learn to predict the course of faults’ resolution actions and their associated scores of 

successes. It will refine and build up its knowledgebase incrementally and for any 

faults that it cannot resolve, it will need an IT administrator to help it out, which enrich 

its knowledgebase at the same time. The approach is novel as there has been no 

precedence in the use of Reinforcement learning in the domain of software’s fault 
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diagnosis and resolution for Near real-time Data replication before. The result will be 

an autonomous fault diagnostics and rectifying system that can function at near 

human’s IT level troubleshooting skills to support the data replicating environment. It 

is evaluated based on the results of the cost functions from the fault diagnosis and 

resolution of intelligent agents, against the guiding software routines that perform 

similar activities. 

The contribution that this thesis makes can be classified into two main groups: 

adaptively intelligent fault diagnosis and resolutions. The first group is to develop an 

adaptive self-learning approach that can learn to diagnose the service outage across the 

multitudes of software services which cannot be ascertained by manual IT system 

administration. This feature has significant benefits as it defies the traditional rule-

based diagnostic procedures which are limited to the set of pre-assigned rules that they 

are strictly designed for. It has the flexibility to scale and augment its coverage 

adaptively. For the second group, the self-learning approach is used to resolve specific 

software faults adaptively discovered in the diagnosis phase. This gives an edge over 

the rule-based procedures of fault resolution which depend on predefined rules and 

conditions to act, and they have the limitation of scalability and adaptiveness. Given 

the complexity of a large enterprise data replication setup with tens of thousands of 

software’s configuration and parameters, including a high volume of statistics and logs 

outputs, this thesis can contribute a significant value to the IT support and management 

community to automate their operations intelligently. 
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CHAPTER 1: INTRODUCTION 

This chapter gives an overview of the research and its various aspects such as 

background, questions, and goals, including its significance and limitation. The 

structure of the thesis is described at the end of this chapter. 

1.1. Motivation 

In the modern world of Information Technology (IT), there are numerous 

heterogeneous types of computer systems that work cohesively to deliver a multitude 

of services to organizations and individuals[1]. One of the main driving forces behind 

these IT services is the acquisition, manipulation, dissemination, and consumption of 

data. Contemporary systems and machines, together with the proliferation of modern 

electronic devices, generate several types of data at exceptionally high volumes and 

rates. As IT systems do not function in isolation, data transfer or information 

propagation is vital for sharing data across multiple platforms. It is also imperative that 

the data is sent and received with minimum delay, and that the mode of transportation 

must guarantee data accuracy, reliability, privacy, and security[1, 2].  

A common data transfer system to transfer data from one system’s database 

backend to another is the data replicating tool [2]. This is popular among large 

organizations for transferring their data between IT systems. Some data transfers may 

be direct, while others require additional manipulation and processing before, they can 

be accepted. A data replicating requirement is to have the data at Near Real-Time 

(NRT) where a certain record, which has been changed on one system, can be seen 

almost instantaneously on the receiving ends at other target IT systems. This NRT data 

replicating capability is dependent on several factors such as the features of a 

replicating tool, the fast-processing capability of the databases, and the amount of 

network bandwidth available. Everything must work together harmoniously to support 

the data replication process [3]. 

The number of resources required to keep the IT systems and infrastructure in 

full operation is usually high. It incurs high commitment in terms of human resources, 

labour, time, expertise, and investment. Apart from the operational and administrative 
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support, another labour-intensive and complex task that IT administrators face is 

detecting and fixing problems that arise in the data replication environment. Therefore, 

a major part of their work revolves around monitoring, detecting faults, diagnosing the 

faults, and resolving them to keep the systems operational. However, there is a limit 

to the period of their IT administration’s working hours as well as their operational 

scale and size. Another further consideration is the risk of human error which is 

common especially in an environment where work fatigue sets in[1].  

It will be desirable to have systems or support that can complement human 

labour in the domain of fault detection and resolution to maintain the continued 

operation of data replication services. Such a system should be able to monitor the 

suite of heterogeneous software participating in the data replicating service for faults, 

identifies and fixes them before they cause further delays and service outages. 

Additionally, the (semi-)autonomous system should be able to work with IT 

administrators, absorbing more information and bolster its knowledgebase much like 

a human trying to learn a trade until it reaches a level of competency that it can function 

independently.  

Commercial software vendors and academic researchers have attempted to 

develop new ways to automate the administration works using statistical and heuristic 

algorithms, creating an expert system to reduce the load on human administrators. 

These implementations are specific to individual software that remains proprietary to 

the software vendors. Heuristics, rule-based or decision trees are the most common 

algorithms that are used in these systems. However, these supporting software tools 

are both restrictive and well-defined, thus they are unable to adapt to a fast-changing 

environment. As such, their capacity to grow and cater to new changes is heavily 

restricted.  

Current research in artificial intelligence application toward fault diagnosis and 

resolution is geared towards root cause fault analysis as applying fixes to software 

poses a significant risk to the system’s stability and carries liability and litigation risk. 

The Data Replicating Environment (DRE) is an enterprise software setup that is 

common among large IT setup, and it comprises of specialised software that read data 

changes in databases before forwarding them to other designated databases at (NRT) 

speeds. It interacts with a series of other software and network environments such as 
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the Operating system and network protocol. Despite its critical importance to many 

organisations, most developments in DRE have been kept exclusive to software 

vendors, and scientific literature on the topic is scarce. At the time of writing, the use 

of artificial intelligence to manage DREs has not been reported in industry or the 

literature.  

1.2. Problem Statement  

This thesis attempts to address the challenges as listed in the previous section of 

diagnosing the various DRE software’s faults and correct them intelligently using 

Reinforcement learning by proposing a novel autonomous, self-learning Fault 

Diagnosis and Resolution (FDR) approach. The approach is based on Reinforcement 

Learning which has gained significant popularity in recent times where researchers 

have applied it to solve complex problems with high permutations of choices. This 

novel reinforcement learning-based approach is designed to 1) monitor the events in 

the data replicating environment and detect for any anomalies, 2) analyse if the 

anomalies are temporary or a genuine defect, 3) do root cause investigation and fault 

diagnosis, 4) apply the appropriate actions to resolve the faults and 5) retain the 

knowledge plus re-action for future faults.  

Identifying the root cause of the software’s potential faults and defects is a 

complex task that requires a series of investigative actions and intrusive probing before 

the real fault can be identified. While a set of prior knowledge can help to prepare the 

baseline for the defects-to-faults identification, there is still a multitude of other 

potential causes that may not be able to surface until they can be investigated more 

thoroughly. A fault diagnosis system should complement the humans where 

troubleshooting to find the faults can be a team effort. Once the faults have been 

identified, the next logical step is to resolve these errors in the least interruptive manner 

in an IT system. A fault resolution system should have the basis of intelligence to learn 

by interacting with the data replicating environment to rectify the faults with actions. 

It must be intelligent enough to know what action works and do not work and rate 

those actions accordingly based on their level of usefulness. It must be able to initiate 

the learning phase by assessing its level of competency first; if it does not have much 

knowledge of fixing the faults, then it should learn by trial-and-error to build up its 
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core competency. And when it reaches a level of skill, it should be able to predict the 

action and potential score from its knowledge base for a fault.  

A fault diagnosis and resolution (FDR) system is expected to identify the faults 

as well as not just resolve the faults correctly initially, but to learn adaptively from past 

experiences, to derive the optimum series of actions to maximize the rewards, reaching 

eventually the goal of an intelligent agent at an expert level that is competent enough 

to manage the DRE independently. It should be intuitive to interact through trial-and-

errors for its initial learning and then slowly gain more expertise in applying the 

appropriate actions to find and resolve the detected and diagnosed software faults.  

The objective of the research is to develop a novel fault diagnosis and resolution 

method, based on Reinforcement Learning, that is similar to an IT system apprentice 

where its skills to deduce and fix the potential software faults is derived from learning 

to interact with the DRE through trials-errors and feedbacks from guiding diagnostics-

resolving libraries that have been built to assist as its training wheels [4-6].  

1.3. Research Question 

This research proposes an intelligent and adaptive FDR system that can diagnose 

the faults that arise in each Data Replicating Environment (DRE) and able to resolve 

them interactively through the guidance of supporting software modules that have been 

custom-built to assist in its learning process. The proposed system must start its 

learning journey with little or no a-prior knowledge against the environment, so it 

relies on a series of trials and errors to learn to differentiate the course of actions that 

are relevant to the DRE’s fault scenarios.  

This thesis proposes to answer the following questions: 

1. What type of software anomalies be detected in DRE and under what 

circumstances do these anomalies are considered as defects? 

a. What type of approach can be used to detect software errors or anomalies? 

What are the methods that can be used to ascertain anomalies from a multi-

faceted software service's perspective, and the various techniques to conduct 

the identification of the detection processes? 
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b. What type of strategies should the DRE software’s logs and statistics be 

analysed once the software anomalies are detected to support both domains 

of faults diagnosis and resolutions within the proposed Fault Diagnosis and 

Resolution (FDR) system? 

2. What is the strategy for the DRE's software anomalies to be presented from a 

system-wide holistic point of view? There are tens and thousands of 

components and configurations that work based on their inter-connectivity and 

operation to deliver a common service. The report of the fault diagnosis should 

be consolidated at the service level instead of on the detailed component. 

a. What are the methods required for the system diagnostics to identify these 

software’s subcomponent and interoperative errors, and extend them to 

predict the overall service outage diagnostics, instead of an individual 

specific fault? 

3. What is the approach that the proposed FDR system needs to take the 

appropriate fault resolving actions to mitigate the defects? 

a. What type of techniques can the FDR system be designed to be intelligent 

enough to learn by itself to discover the appropriate actions to resolve 

specific faults successfully?  

b. What type of techniques can it use to act intelligently and select the 

optimum corrective action for any given identified fault? What kind of 

algorithms can fix the faults across different software groups? 

c. What type of initial problem-solving routine can allow Deep 

Reinforcement Learning (DRL) to build up the experience before it can be 

used to prescribe accurate remedial actions? 

4.   How effect the proposed FDR system is as compared to the other methods of 

fault diagnosis and resolutions? How can its performance be measured 

quantitatively and qualitatively? What type of metrics can be used to assess its 

performance and effectiveness on its usage? 



6 

 

 

1.4. Research Objectives 

From the research questions listed above, the research’s main objectives have been 

identified as followed. 

1. Develop a strategy to understand the DRE software and acquire their 

operational statistics. This is for the first research question 1a, the anomalies 

encountered across the series of DRE's software are explicit, with each error or 

exception being reported or shown by the operating system, replicating 

software and databases. In-depth research is required into these software 

technologies and familiarized with their operation, including the usual type of 

exceptions and errors that can be encountered. So, a series of different DRE's 

configurations is set up and evaluated in the test environment. For question 2, 

a list of external OS batch scripts is to be developed to read or acquire the DRE 

software's statistics via their log files and by the command-line interface. 

2. Develop a fault diagnosis system that can learn the anomalous status of the 

DRE and diagnose the data replication environment’s faults intelligently, with 

assistance from a comprehensive system-wide statistic querying module. 

Addressing question 3, the current fault diagnosis methods are commonly rule-

based methods that are restrictive and confined within the designed 

specification. Those that are based on machine learning approaches require a 

substantial amount of a-prior knowledge for model training. This proposed 

method seeks to overcome the limitation of rule-based approaches and the 

prerequisite of large a-prior information for supervised machine learning-based 

approaches. The expected task is to guide the agent to learn via trial-and-error 

with the assistance of a guiding module that acts as a teacher, starting by 

depending on it for the initial phase of the environment’s interaction, then learn 

to predict the best action based on the accumulated experiences to maximise 

the rewards. 

3. Create a fault resolution system that learns by interacting with the DRE to find 

out what actions work well to resolve the faults. For research question 3a, the 

intelligent agent to be used here follows a similar approach in research question 

2, using reinforcement learning with a guiding module to teach it how to 

resolve the faults initially, trying out all combinations of correcting paths and 
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their scores through trial and errors. The knowledge of fault, actions and 

rewards are then accumulated into the knowledgebase until it reached the final 

threshold of the training set. By this stage, it will have a knowledgebase that is 

comprehensive enough to determine what action is most appropriate and what 

is not relevant. This satisfies question 3b. For question 3c, the knowledgebase 

is used to train the agent's RL model to know what the best action is to take for 

a given environment's state and fault encountered. The fault resolutions 

approach available in current research for DRE faces a similar limitation as 

described in the previous goal which is to overcome the rule-based processes’ 

limitation in scopes, and the machine-learning models’ needs for a large a-prior 

dataset. 

4. Establish the list of benchmarking and measurement techniques for the FDR to 

assess the models’ effectiveness and efficiency in identifying the DRE’s faults 

and resolutions. The efficiency on the model’s training and the provision of the 

knowledge base to support it is also measured. There are two groups of 

measurement: quantitative and qualitative. Each group of benchmarking is 

based on the type of outputs from the model that is to be used, either in 

categorical form or in numerical metrics. The research will compare the FDR 

against the other research in fault resolution in software’s fault management 

domain. 

1.5. Research Contribution  

There are several contributions that this thesis makes. The first is to introduce a 

fault diagnosis and resolution system in the domain of near real-time data replication 

setup which involves multiple software such as databases, data replication and other 

IT services operating in a complex interconnecting and interdependent configuration. 

The second contribution is to overcome the current limitations of rule-based faults’ 

diagnosis and resolutions approaches which are pre-designed, and the constraints of 

the need for a large a-prior training dataset for machine-learning-based approaches.  

Reinforcement learning is branch of machine learning in the area of semi-

supervised learning [7]. In recent times, there is a surge in the number of research that 

use it to manage complex problems that have exceptional high computational 

complexity where there is a large permutation of system states, choice of actions and 
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scores on the results. The domain of fault diagnosis and resolution for complex IT 

systems has similar complexity that most conventional rule-based expert systems may 

not have the capability to manage [8]. So, this thesis utilizes the current research of 

reinforcement learning to develop an intelligent and adaptive system to meet this 

challenge. From the initial literature survey, there has yet to have any publication that 

utilizes model-free reinforcement learning for fault resolution on real-time data 

replication systems on a multi-tier data replicating setup environment.    

1.6. Research Significance 

The proposed research has the potential to support IT administrators in managing 

the data replication environment, providing fast fault detection, diagnosis, and 

resolution support around the clock and can scale to manage more systems than a 

human can. Another advantage of the proposed fault diagnosis and resolution system 

is that it is non-intrusive and complements any existing IT applications. It will not 

require modification of their codes, change in any products, or invoke new licenses or 

options. It will run in parallel on top of the existing systems, complementing the human 

administrators and apply the learnings that can troubleshoot and resolve the system’s 

problem. This will free up the human administrators from the laborious work of 

overseeing the IT application so that they can focus on the different areas of work. It 

will also increase the human administrators’ ability to manage even more IT systems, 

be it heterogeneous or homogeneous systems.  

The research in the domain of fault detection and diagnosis has been focused on 

the use of rule-based and heuristic algorithms, together with machine learning models 

for a wide range of applications toward machinery and software but few have 

embarked on the use of reinforcement learning for software fault management. Both 

the rule-based approaches and deep learning models have some constraints in terms of 

the extent of their usage which is confined to the scope they are intended for, and the 

presence of available dataset or knowledge to support the models training. Such 

constraints are not acceptable especially in the field of complex software operation 

where both the boundary of faults’ considerations is highly dynamic that cannot be 

confined and, the a-prior information may not be readily available. The proposed 

system in this thesis takes into consideration and mitigate it with an adaptive method 

in acquiring knowledge dynamically and be aware of the choices for optimum actions 
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selection as it interacts with the data replication software. This is synonymous with the 

analogy of how a junior IT administrator will learn on the job and acquire the 

knowledge to manage the system progressively over time through trial-and-errors, 

where certain events of fault occurrence will require a series of corresponding 

corrective actions to be taken. Another paper that showed similar intelligent fault 

diagnosis and repair is the research made to implement fault repair for the network use 

reinforcement learning which served as one of the inspirations [9].    

  

1.7. Outline of The Thesis  

This section provides an overview and structure of the thesis. Chapter 2 covers 

the literature review on the essential knowledge that is required for the thesis. They 

are software technology, faults and anomalies, various type of reinforcement learning 

models, neural network, optimization, and control, including the real-world setup of 

an enterprise IT environment in a Queensland energy utility company (called 

Energex).  

Chapter 3 describes the research methodology and design of the proposed Fault 

Diagnostics and Resolution system (FDR) that comprises of two mains modules: Fault 

Diagnostic Module (FD) and Fault Resolution Module (FR). They require a set of 

knowledge such as software technology, machine learning algorithms and faults 

management. For the software technology part which is the DRE that has both database 

and replicating tools, there is a need to research in detail their properties, 

characteristics, operation, and services.  

Chapter 4 describes the construct and implementation of the Fault Diagnosis 

Module (FD). This is where the scripts, modules construction, cost functions and 

algorithms are set. Tests have been conducted to ascertain the validity and accuracy of 

the models.  

Chapter 5 describes the design of the Faults Resolution Module (FR), its 

methodology and setup, action scripts, library builds, design, and test strategies, 

together with the test strategies and results. 
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Chapter 6 described the integration of both Diagnostics and Resolution modules 

together and the testing conducted to validate their outcome. It is the final aggregation 

where both FD and FR need to perform the task as per the thesis’ objective.  

Chapter 7 concludes the research of this thesis. It discusses the potential 

shortcoming that has been discovered on the proposed FDR design as well as future 

enhancement that have been identified. 
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CHAPTER 2: LITERATURE REVIEW 

This chapter presents the literature review that has been guided by the research 

objectives on the knowledge acquisition of anomaly detection, fault diagnosis and 

resolution in the contemporary field, covering the techniques and models used by the 

researchers. This is followed by the survey on Energy Queensland Limit’s Data 

Replication Environment (DRE)’s setup and their respective software which include 

Oracle relational database management system and Shareplex data replicating tool.  

2.1. Fault Detection and Diagnosis 

Referring to the series of papers on fault detection and diagnosis by 

Venkatasubramanian et al [4-6], a fault can be defined as a deviation from the 

acceptable state or value that is associated with a process/function/system that doesn’t 

perform as what it is designed for [4]. The cause of this abnormality is called a basic 

event or root cause which is referred to as malfunction or failure. Different types of 

faults can be classified according to their ability of recoverability, the number of 

damages caused, the severity of the faults and their impact. They can also be 

considered as both structured and unstructured uncertainties [4, 5, 10]. The fault 

diagnosis approach which is used to identify the various causes or sources of failures 

can generally be grouped into several classes: 

1. Gross parameter changes in the model. Failure occurs when a disturbance 

enters the process and disrupts its work, causing it to deviate from its parameter 

of operations and thereby malfunctioned[11].  

2. Structural changes. The process fails when the supporting entities that the 

process depends on have altered or become unavailable. That results in 

disruption to the resources available to the process which eventually halt its 

function[11].  

3. Malfunctioning sensors or detectors. Systems that interact with other systems 

require transmission and reception of signals, especially in software where 

signals of transmission and acceptance form the basis of communication 

between points. When there is a fault that hinders the process from transmitting 
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or receiving the signals properly, communication will be impeded which 

eventuates malfunction in the process[11].  

The process of fault detection transiting to the final decision-making process can 

be generally summarized in the following flow[11-13]; 

Measurement Space → Feature Space → Decision Space → Class Space 

In the Measurement Space, raw data are gathered from sensors, logs, meters, and 

other data reading devices. This data is acquired without prior knowledge. At the 

Feature Space, the function of measurement is obtained or derived with the usage of 

a-prior problem knowledge to obtain features that can be used to support decisions. At 

the Decision Space, the obtained features are mapped to the decisions based on an 

objective function such as indiscriminate or threshold functions. In the Class space, 

the categorization of faults is executed based on the results produced at Decision Space 

[4, 5, 10].  

Numerous fault diagnosis techniques have been developed. They are generally 

grouped into three categories: quantitative-based methods, qualitative based methods, 

and process history methods [4, 5, 14]. For the quantitative-based methods, analytical 

processes are used to generate results or residuals that can be used to isolate the fault; 

this is where all the sensors or log data must be present. The method will derive a 

decision concerning a-prior problem knowledge [4, 10, 14]. For the qualitative based 

methods, they focus on contexts, topographic or symptomatic searches to determine 

the fault with a priori problem knowledge [4, 10]. For the process history-based 

methods, it is assumed that a large amount of historical data is present and can be used 

to extract features or build models using machine learning or statistical algorithms. It 

can also be a combination of quantitative and qualitative approaches[4].  

While the three approaches defer in their techniques and field of use, from a 

global perspective, fault diagnosis processes can be decomposed into a series of feature 

extraction and classification stages before submitting to a decision stage. Under the 

classification stage, there are three subgroups; pattern recognition, model-based 

reasoning, and model-matching, in which all three are key factors under the three 

different fault diagnosis models mentioned above [15]. 

So, whenever a fault is detected in a process, the diagnostic model will have a 

classifier that can draw up a set of hypotheses or assumptions that can explain the 
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reason behind the anomaly. It is questionable how complete is the diagnostic classifier 

and how accurate is the hypothesized faults versus the real fault? The difference will 

need to be as small as possible. Venkatasubramanian et al [4-6] proposed a list of 

desirable features that a good fault diagnosis system should have. 

1. Quick detection and diagnosis. A fast and accurate response is required for 

mission-critical machines and people cannot afford to wait around for a 

resolution when services are unavailable [4, 5, 14]. 

2. Ability to Isolate. It can distinguish the different failures that occur in the 

process and can detect symptoms that are specific to specific faults without 

getting confused with other faults that are not occurring [4, 5, 14]. 

3. Robustness. It must be strong enough to withstand and accommodate different 

environments that the process is working in. and able to withstand a range of 

external environment factors and have some resilience to hardware faults [4, 

5, 14]. 

4. Novelty identifiability. It should be able to distinguish the process conditions 

and determine whether it is running normally or abnormally [4, 5, 14]. 

5. Classification error estimate. All classification models will give a certain 

degree of error, but this must be accurate enough to be of use and able to give 

the user confidence in the detection system [4, 5, 14]. 

6. Adaptability. It must be able to adapt whenever the process or environment 

changes and persist in its function while exempting its sensors from the 

external disturbance, from single to heterogeneous multi-site setup [4, 5, 14]. 

7. Explanation facility. Besides detecting the fault, it should be able to explain 

the fault’s origin including the cause/effect symptoms [4, 5, 14]. 

8. Modelling requirements. The classifiers and other feature mining tools require 

time to train their models. So, it is desired that the time needed for this effort 

should be kept to a minimum [4, 5, 14]. 

9. Computational requirement. It should be computationally cheap to maintain 

with average hardware consumption needs [4, 5, 14]. 

10. Multiple fault identifiability. It should have the ability to detect multiple faults 

simultaneously. Most of the systems in use are non-linear so the interaction 

will be almost spontaneous and ad-hoc, so the system must be able to combine 
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those single fault detecting models to form a more comprehensive multi-fault 

detecting one [4, 5, 14]. 

2.2. Anomaly Detection (AD) 

The fault diagnosis methods discussed in the previous section need to extract 

meaningful features to establish the decision of anomaly detection concerning a-prior 

knowledge. The information produced by the feature extraction algorithm can 

contribute to posterior knowledge. Anomaly refers to the data that do not conform to 

a typical expected behaviour or pattern. It can be considered as outliers, exceptions, 

abnormal or deviation from the norm [16].  

Referring to figure 1, the type of anomaly detection methods is determined by 

several criteria, namely the type of data, anomalies, models and software area that the 

AD is intended for [16]. There are three types of anomalies: point, contextual and 

collective anomalies. Point anomalies refer to an individual data point that is 

anomalous concerning the rest of the data and this can be detected by using a threshold 

setting. The contextual anomalies refer to the data point that is anomalous to the 

specific context of the data, but it is not anomalous if it occurs in a different time, 

region, or group. This can be detected by focusing on the data set by segments. 

Collective anomalies refer to the group of data points’ relationship that is anomalous 

concerning the rest but not to individual values. This type of anomaly has two variants: 

the occurrence of an event in an unexpected order or, unexpected combination of data 

values. It requires the use of collective anomaly techniques on a specific segment of 

data individually [17].  

There are various forms of anomaly detection; for a given dataset D, the method 

will find those data points of 𝑥 ∈ 𝐷 with a score higher than a threshold t or score 

within the extreme top or bottom-n of the dataset. The other form tests the data point 

of its anomaly score concerning the dataset D that contains normal data such as 

distance or score [16]. 

A typical anomaly detection method depends on the type of data, the anomaly 

type (point, contextual or collective), the type of anomaly detection used, the presence 

of administrators’ supervision and the detection results [16]. Relating the knowledge 

learned from the literature review on intrusion detection based on network research 
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For unsupervised methods where labels are not readily available, an assumption 

is made that the abnormal test instance is very extraordinary as compared to the mass 

normal data and their occurrence is rare. The approach here is to build a set of data 

(i.e. clusters) that are deemed as normal and this normal model is used to compare with 

the sample data to test whether they are normal or not [20]. For a clustering-based 

method, the assumption is that most of the normal data tend to group in clusters 

whereas anomalous ones will either be out of the group or form their unique group. 

Methods may require post-processing to determine the data points’ distance from the 

cluster and that in turn determines the degree of normality or anomaly [16]. One of the 

strengths of clustering-based methods is that no supervision is required and can be 

adapted to near real-time or incremental mode of data changes. The downside is the 

amount of computation needed to compute the model. Also, it heavily relies on the 

ability of normal data to form a cluster or else it will fail, especially in high dimension 

data where the concept of distance to distinguish data points diminishes, thus 

obfuscating the separation of normal data from anomalous one [16]. 

In a point anomaly detection method, the process is simple. It determines an 

anomaly by measuring a single data point concerning the rest of the data using a 

threshold or deterministic rule. Should the data exceed the threshold, it is considered 

anomalous. For a contextual anomaly detection method, it assumes that all data 

instances, within a context, will exhibit similar patterns and attributes whereas 

anomalous data behaviour will be different. It will use a set of contextual attributes to 

validate a new data instance to see if it is normal or anomalous.  The advantage of this 

method is that it can detect anomalies that may not appear as a point anomaly, but it is 

anomalous when it is detected against a higher plane of perspective [16] [19]. 

However, this method requires pre-processing; the contextual attributes will need to 

be defined as well as the context in which these attributes will relate to. The attributes 

are used to segment data and then apply a point outlier concerning the attributes to that 

specific context [21].  

A collective anomaly detection method tests the relationship among the given 

set of data points for anomalies within a segment from a global perspective. The set of 

data points may not be anomalous if they stand alone, but in comparison to a wider 
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perspective of the data series, this specific set’s behaviour may not comply with the 

wider dataset’s pattern.  

Both the context and collective detection methods cover context and collection 

of data instances that are of the spatial, graph, sequential or profile nature. They rely 

on the correlation to determine the nature of the abnormal operation or symptom for 

the given segment. But comparing these methods to the point detection approach, it 

will not be able to yield much information to determine the real root cause or fault 

[22]. 

Data in the present world is produced at an enormous pace and volume. The 

definition of data normality here is not static and it changes through time. The 

challenge here is to detect anomalies over a large volume of data and update the 

definition of what is considered as normal data constantly at frequent intervals. 

Therefore, the data that is streamed into the system are examined within a certain time 

segment to derive the normal profile, which in turn will be used in the next time 

segment for data detection. Incremental Local Outlier Factor (LOF) algorithm is 

commonly used in this context [22].  

In distributed anomaly detection, data come from numerous sources, and they 

come in the various form of speed, volume, and variety. They form the most difficult 

challenge where detection must be performed not only across the various sources but 

also correlating them to detect anomalies from a global perspective. Multiple aspects 

such as timing, the relationship of specific data’s outliers to other data sources can 

result in different outcomes and anomaly categorization. Because the data sources 

come in multiple forms and high volume, higher computational throughput and quicker 

turnaround time are needed.  

There are several approaches for distributed anomaly detection. The first 

approach is the simple data exchange where all the data instances from multiple 

sources are merged into a single location and processed. The second approach is to use 

distributed nearest neighbours such as k-nearest neighbour algorithm to find one data 

instance per distance computation. The third method relies on the exchange of data 

mining or statistical models for the near data source of a certain level of similarity and 

then combine to form an over-arching detecting process to find anomalies from a 

global perspective [19]. Finding the root cause problems that occur within a distributed 
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data replicating system is complex as well as tedious; there is usually more than one 

origin where multiple sources of events and logs are present. To make things 

complicated, these data are generated from their sources based on their functions or 

services, e.g., time or event triggered. It makes it more difficult to consolidate all this 

widely scattered information to extract the necessary features for the analysis. There 

are numerous methods available for anomaly detection, each developed to meet 

specific field’s needs across different but not limited to scientific, engineering, 

business, or financial sectors, and they are described as follows. 

2.2.2. Clustering-based techniques 

Clustering-based techniques can be segregated into the following groups.  

1. Grid-based techniques. These techniques use a graph technique of hypercube 

or cells across the set of data points and group them based on specifications of 

the domain of interest [20]. 

2. Centroid-based techniques. These techniques assume that anomalous data 

points will not be part of the clusters of normal data. They measure the distance 

of the data point to the centres of all cluster centroids. If the distance is longer 

than what the other data points’ have, then it is considered anomalous [20]. 

3. Density-based techniques. The data points are grouped based on their 

proximity to one another while forming density within regions. These 

techniques compute the regions’ density across the dataset and those that are 

in low-density regions are considered as anomalies whereas those in high-

density regions are considered as normal [16, 20]. 

4. Nearest neighbour-based techniques. This type of method assumes that all 

normal data points should be close to one another whereas the anomalous 

points will be a certain distance away [16, 20]. It finds the distance of each 

data point to its k-th nearest neighbour, sort the data points based on the 

computed distance and find the top-n groups of data points that have the largest 

distance. These are then considered outliers or anomalies. However, the nearest 

neighbour approach has some limitations as it cannot detect anomalies from 

both contextual or collective contexts [23]. 
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2.2.3. Classification based techniques 

There are numerous classification techniques such as the following. 

1. Deviation detection is where the amount of data that belongs to a certain class 

is over or under-represented so that in the class distribution, the ratio of normal 

data will exceed those anomalous, then it uses the misclassification that is 

based on that cost ratio. Synthetic Minority over-sampling technique is one 

example [16]. 

2. Rule-based such as Association rules like A-priori or Frequency Pattern (FP) 

growth algorithm. It creates association rules among the items or data points 

that have higher support higher occurring normal data with higher support as 

compared to rare but anomalous ones [16].  

3. Cost-sensitive classification uses the method of misclassification on a data 

point that must be labelled with the use of a cost matrix and then works out a 

classification based on the data point’s cost. So when the cost of the data is 

derived against the cost matrix and fall below the threshold, it is regarded as 

anomalous [16]. 

4. The use of machine learning models such as support vector machines, decision 

trees, random forest, neural networks, and many others. 

Support Vector Machine (SVM) is a supervised machine learning model that can 

be used for both classification and regression. [24] The concept is to find a hyperplane 

that can divide a given dataset into classes. So data points that are closest to the 

dividing hyperplane are called support vectors, which are considered as important 

elements as they can affect the hyperplane’s position [24, 25]. It has been used in 

research for anomaly detection across a broad sector [26].  A decision tree model 

builds a classification tree in a hierarchical tree structure form that splits a dataset into 

smaller groupings. Each split of the leaves is branched into a decision node that 

represents a classification or decision. A benefit of using a decision tree is that it can 

manage both categorical and numerical data [27]. A neural network comprises multiple 

units called neurons and they are interconnected and arranged in multiple layers, with 

each subsequent layer taking inputs from the previous one as a vector. For each neuron, 

it takes in all the inputs, applies a nonlinear function, and transfer the output to the next 

layers of neurons in a cascading flow [10]. Weights are applied to the signals which 
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pass among the neurons and these weights are adjusted by the training phase. This 

model will be covered in greater detail as it will play great importance in the 

candidate’s thesis [27]. K-nearest-neighbours takes a set of labelled points to learn 

how to label new data points by assessing the surrounding labelled points that are 

closest to the new point and take voting from the neighbouring point. Whichever label 

has the most significant presence will influence the new points and transfer their labels 

to them [27].  

2.2.4. Other techniques  

There are several other techniques inherited from areas other than machine 

learning like Information Theory which assume that anomalies have high information 

content due to the irregularities. They perform an investigation to find the subset of 

data points that have the highest irregularities [16]. Dimension reduction assumes that 

normal data can be expressed clearly in a lower dimension after the dimension 

reduction technique is applied, where anomalous data will be difficult to express [16]. 

Graph analysis depicts the interaction among the data points as a relationship graph, 

which is used to verify the data to determine the normality [16]. 

2.3. Organization IT Infrastructure 

The next section is the study conducted against the organization’s data 

replication environment and its setup. The organization is Energy Queensland (EQ) 

and it is Queensland’s state-wide power distribution utility. With an asset of more than 

$2.4 billion and 4.8 million customers, it is one of the largest utility companies in 

Australia. The database team of EQ’s digital Office provided a study ground with 

access to its non-production system together with its system operating procedures and 

software documentation. The software that this research focuses on will be on the data 

replicating tools and relational databases. 

2.3.1. Data Replication System - Shareplex 

Shareplex is a common data replicating tool developed by Quest software for 

both commercial and open-source databases [28]. Data replication is an essential 

business requirement where data are copied to other systems to maintain high 

availability, data reporting, business consolidation, workload sharing as well as 



21 

 

 

support disaster recovery standby nodes with redundancy in data sources. High 

availability refers to the continuity of the application services should the hardware or 

software that provide the service accidentally fail. Another server that is a duplicate of 

the primary server and has the latest copies of the data will start up and take over the 

services. The most widely used database platform that Shareplex support is Oracle 

databases.  However, Oracle database technology has its data replicating technology 

such as Oracle Streams, Materialized Views, Data Guard or GoldenGate. Both 

solutions have their strength and weakness and it becomes a customers’ choice to use 

a solution-driven by cost, complexity or license options [29]. 

Shareplex runs in the background without interrupting the business processes 

that occur in the database and it replicates only the changes as they occur by the means 

of reading the Oracle’s redo log and archive logs constantly [28]. Oracle redo logs 

record all the committed transactions that occur in the database and Shareplex reads 

these redo logs periodically to acquire all the commit SQL statements.  It then performs 

the data capture and replication in near real-time, sending changes to targets that are 

specified. The Shareplex framework comprises several components apart from the 

source and target databases that they run against with the processes of data capture, 

read, export, import, and post. Figure 2 shows the various Shareplex components and 

illustrates how the changes are captured and transported from the source to the target 

databases [29].  

Capture process – it runs against the source database, constantly reading Oracle’s 

redo logs and sometimes archived logs for changes, then sending the change to the 

capture queue. The capture process is called sp_ocap [30]. 

Queues – all the queues are dynamic data repositories that hold the temporary 

data for the duration of data capture, transmission, and reception through the process 

of data replication. The order of the queue’s relationship follows from the capture 

queue to the reader’s queue, to the export, then to the target side’s import which 

connects to the post queue.  
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Figure 2 - Shareplex data replication flow [28] 

The major components and subsystems of Shareplex are as follows: 

Read process – this runs only at the source side; it reads the data from the capture 

queues and processes it by repackaging them with information for network 

transmission. The processed data is then stored in the export queue.  

Export process – this runs at the source side, and it reads the processed replicated 

data from the export queue and transfers it to the target across the network. The process 

name is sp_xport and it can send over the data changes information to single or 

multiple target systems.  

Import process – this runs at the target side, and it intercepts all transported 

replicated data sent out by the export process and stores them in the import queue. The 

process is named sp_import. 

Post process – this process runs at the target side and transforms the data read 

from the import queue into relevant SQL statements before they can be executed 

against the target database [29]. 

Replication configuration: The replication can be set up or controlled by a 

configuration file that defines the list of tables that need to participate in the data 

replication and the information is split into two sections, the source, and the target. For 

the source side, there are the schema and table names, while on the target side, the 

intended schema and object names to which the data is replicated to. This is followed 

by the routing information which defines how the relationship between the source and 

the target are linked in the following format of  (target_system:named_queue@ 

o.Target_oracle_sid) [31]. 
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Shareplex filesystem: Shareplex operates from two main directories; product 

directories where all the binaries are stored and executed from as well as a variable 

data directory where template files, licenses, parameters, logs and trace files are stored. 

It also stores all the temporary data files that are used by the queues as well as the 

associated network routing information that is associated with them [29]. 

Shareplex operation: Shareplex system runs under a specific UNIX user account 

that shares the same admin group as the Oracle database group which was used to 

install the Oracle binaries. There are several Unix’s environment shell parameters; 

$ORACLE_SID, $ORACLE_HOME. $SP_SYS_VARDIR, $SP_SYS_HOST_ 

NAME, $SP_COP_TPORT and $SP_COP_UPORT. Once Shareplex is installed on 

both the source and target systems, the administrator will activate a configuration file 

to initiate the data replication. All information, including debug and errors, are 

captured and stored into event_logs under $SP_SYS_VARDIR/logs directory. In the 

event should some tables are out of sync, Shareplex has a compare/repair feature that 

allows the administrator to fix the replication tables and bring them back into 

synchronization [29]. Figure 3 is a screen log of how the status of shareplex’s 

processes show in within the SP_CTRL console, plus a copy of the Shareplex’s 

event_log with the indication of operational anomalies via warning and error 

messages. 

 

Figure 3 – Shareplex’s SP_CTRL status and EVENT_LOG output with error messages 

2.3.2. Relational database management system (RDBMS) - Oracle 

Oracle database is an object-relational database management system developed 

by Oracle Corporation. It consists of an instance and data storage. The instance 
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comprises a set of processes and memory structures that interact with the data storage. 

The primary processes are processed monitor, system monitor, database writer, log 

writer with other secondary processes that support it. Oracle instance is also a shared 

memory domain that has several areas like System Global Area (SGA) that holds 

information on data, users, programs or SQL statements, dictionaries, data, and others. 

Figure 4 shows an overview of an oracle RBDMS architecture depicting the memory 

structure and interaction with its various data storage [32]. 

 

Figure 4 - Oracle RDBMS architecture [33] 

The smallest entities in the Oracle storage system are called a block which 

corresponds to a specific number of bytes of database physical space on the hard disk 

storage. The next level is an extent which is a collection of contiguous data blocks. 

The next storage group is called a segment that holds a set of extents, and they are used 

to store both data and index. The RDBMS consists of multiple logical storage units 

called tablespaces which store the entire database’s data. Each tablespace consists of 

data files which are physical structures that are actual files on the operating system, 

and they are made up of segments. The RDBMS has a series of primary files that are 

essential to its functionality and they are described as followed [32]; 

1. Data files – physical files that hold both user and system data permanently as 

well as other system information.  
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2. Redo logfiles – stores logs of transaction activities that have been written out 

from the redo log buffer memory.   

3. Archived logfiles – these are archives of redo logfiles that will be used in data 

recovery. 

4. Temp-files – this file holds the temporary transactions that occur in the 

database as well as sorting made by both the users and the system. 

5. Control-files – these are files that hold the essential background information 

that is critical to the database system operation and it stores change control 

sequence, the location of the files, parameter setting plus other fundamental 

details [34]. 

Memory structures are. 

1. System Global Area (SGA) – the primary memory structure that comprises the 

redo log buffer, shared pool, large pool, buffer cache, java pool, and stream 

pool 

2. Library Cache – stored the shared SQL, execution plans for all the executed 

SQL statements. 

3. Data Dictionary Cache – stored the information about the database’s logical 

and physical attributes such as file location, user details, and various database 

objects information. 

4. Program Global Area (PGA)  - keeps track of all the Oracle server and 

background processes’ information [34]. 

The above are the primary components that all Oracle databases have. However, 

the list of services listed above are the main core to the database’s operation, and there 

is a wide range of other value-added enterprise options such as partitioning, 

encryption, data analytics, spatial, Java and XML support. However, these options are 

beyond the research scope and will not be discussed here. 

2.3.3. Energy Queensland’s Data Replication System 

The following section reviewed Energy Queensland’s (EQ) data replication 

setup between Shareplex and Oracle, which will form the basis and test subject for this 

research [35]. 

Shareplex is a data replicating system that is used by EQ to copy changing data 

that occur in IT systems over to a different location or system [18]. It is common to 
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Figure 5 - Energy Queensland’s Shareplex and oracle integration overview 

For this setup, all the instances at the target side will be administered and 

launched from the same Unix user account, e.g., qxedw1ut, with a menu option to 

choose and set up the environment that corresponds to the specific Shareplex instance. 

The environment variables that need to be set up are SP_SYS_TPORT, 

SP_SYS_UPORT and SP_SYS_HOST_NAME. Each of the Shareplex instances has 

its unique product directory and variable directories which store their binary, 

configuration, parameters, and queue data. Figure 5 depicts the two such Shareplex 

instances set up on the EDW’s system and their inter-connectivity relationship and 

Table 1 contains the details of their setup including the port that they operate on and 

their designated home directories [29]. Table 2 is an example of the configuration file 

that Shareplex uses to set up the replication for individual tables from the source to the 

target and that includes the routing map which has the source/target hostnames well as 

the desired queue plus the databases. 

 

Table 1 - Shareplex configuration table on EPM data warehouse 

Source 

Unix 

user 

Source Qxedw1pr’s MDIR Qxedw1pr’s VDIR Source Target 

Server port Server port 

qxellipr, 

qxel2ipr 

ellipse 

        

/db/SharePlex/XEDW1PR/splxprod/

oh1/8.5 

/db/SharePlex/XEDW1PR/splxvardir1/oh1/8.5/XEL

LIPR1/2210 

cds12a      2104, 

2310 

cbns1db01, 

cbnf1db02 

2104, 

2310 

qxnetwpr, 

qxne2wpr 

netsys 

         

/db/SharePlex/XEDW1PR/splxprod/

oh2/8.5 

/db/SharePlex/XEDW1PR/splxvardir1/oh2/8.5/XNE

TWPR1/2220 

cds14a/14b  2100, 

2320 

cbns1db01, 

cbnf1db02 

2100, 

2320 

qxff1hpr ffah     

       

/db/SharePlex/XEDW1PR/splxprod/

oh3/8.5 

/db/SharePlex/XEDW1PR/splxvardir1/oh3/8.5/XFF

AHPR1/2230 

xbneuv03    2330 cbns1db01, 

cbnf1db02 

2330 

qxmk1spr peace /db/SharePlex/XEDW1PR/splxprod/

oh4/8.5 

/db/SharePlex/XEDW1PR/splxvardir1/oh4/8.5/XM

KTSPR1/2240 

xbneuv40    

  

2340 cbns1db01, 

cbnf1db02 

2340 

qxes1fpr esafe   

        

/db/SharePlex/XEDW1PR/splxprod/

oh5/8.5 

/db/SharePlex/XEDW1PR/splxvardir1/oh5/8.5/XES

AFPR1/2250 

cds12a  2350 cbns1db01, 

cbnf1db02 

2350 

 

 

 

 

Table 2 - Typical Shareplex configuration file sample 

datasource:o.XFFAHPR2 

#source tables  target tables   routing map 
##      E  X  A  D  A  T  A             P R  O  D               C  O  N  F  I  G 

QLAG_OWNER.Q30 (QNAME,QTIME1)   QLAG_OWNER.Q30 (QNAME,QTIME1)           db-xffahpr2:exa30*cbns1db01-vip@o.XEDW1PR 

VSS_HDB.AREA_NODE               EDW_LDG_OWNER.AREA_NODE_SV              db-xffahpr2:exa30*cbns1db01-vip@o.XEDW1PR 

VSS_HDB.ASN_ASSIGNMENT          EDW_LDG_OWNER.ASN_ASSIGNMENT_SV         db-xffahpr2:exa30*cbns1db01-vip@o.XEDW1PR 

VSS_HDB.ASN_VISIT_T             EDW_LDG_OWNER.ASN_VISIT_T_SV            db-xffahpr2:exa30*cbns1db01-vip@o.XEDW1PR 

VSS_HDB.LAB_BUSINESS            EDW_LDG_OWNER.LAB_BUSINESS_SV           db-xffahpr2:exa30*cbns1db01-vip@o.XEDW1PR 

VSS_HDB.LAB_RESOURCE            EDW_LDG_OWNER.LAB_RESOURCE_SV           db-xffahpr2:exa30*cbns1db01-vip@o.XEDW1PR 

VSS_HDB.LAB_USER                EDW_LDG_OWNER.LAB_USER_SV               db-xffahpr2:exa30*cbns1db01-vip@o.XEDW1PR 

VSS_HDB.ORD_ACTIVITY            EDW_LDG_OWNER.ORD_ACTIVITY_SV           db-xffahpr2:exa30*cbns1db01-vip@o.XEDW1PR 

VSS_HDB.ORD_ACTIVITY_CUST_DATA  EDW_LDG_OWNER.ORD_ACTIVITY_CUST_DATA_SV db-xffahpr2:exa30*cbns1db01-vip@o.XEDW1PR 

VSS_HDB.ORD_JOB_CODE            EDW_LDG_OWNER.ORD_JOB_CODE_SV           db-xffahpr2:exa30*cbns1db01-vip@o.XEDW1PR 

VSS_HDB.ORD_ORDER               EDW_LDG_OWNER.ORD_ORDER_SV              db-xffahpr2:exa30*cbns1db01-vip@o.XEDW1PR 

VSS_HDB.ORD_ORDER_CUST_DATA     EDW_LDG_OWNER.ORD_ORDER_CUST_DATA_SV    db-xffahpr2:exa30*cbns1db01-vip@o.XEDW1PR 

VSS_HDB.SR_REPORT               EDW_LDG_OWNER.SR_REPORT_SV              db-xffahpr2:exa30*cbns1db01-vip@o.XEDW1PR 

VSS_HDB.ORD_ORDER_STATE         EDW_LDG_OWNER.ORD_ORDER_STATE_SV        db-xffahpr2:exa30*cbns1db01-vip@o.XEDW1PR 
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Figure 6 - Current architecture of EQ’s enterprise data replication 

 

After the fault has been diagnosed, the next stage is problem resolution. The 

problem resolution or treatment requires an iterative task of applying recommended 

actions and observing the effects or change state. While most recommendations work 

in a deterministic environment with assured controlled parameters settings, certain 

abnormal events do occur during the data replication operation which may be caused 

by unforeseen direct or indirect circumstances which impact the IT infrastructures. The 

resolution task must be adaptable to interact readily with the environment on the fault 

issue. It should be able to try all possible solutions that are closely related to the 

existing fault and its recommended fixes and find the optimum solution. As such, this 

domain of problem resolution is considered stochastic as the real world is complex and 

dynamic, which makes the treatment of the problems difficult to identify. Because of 

this complexity, state-space must be abstracted for a problem-solving attempt that 

replaces the real state with the abstract state, the complex real actions with the abstract 

action and a real path to a solution in the real world with an abstract solution. 

Data replication problems can be grouped into the following three categories: 

(1) Deterministic where agent knows what the data replication’s state is in and the 

solution to restore its functionality is a sequence; (2) non-observable which is a 

conformant problem where the agent doesn’t know what state the data replication state 

is in or if any solution is available or not, and (3) Non-deterministic which is a 
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contingency problem that may be partially observable and the agent only can receive 

new information about the current state and solution is another new contingency policy 

that needs interleave of search and execution process. The unknown state-space of the 

data replication where the problem to solution mapping are not defined created an 

exploration challenge since nothing is known about the state [36-38] [39]. 

2.3.4. System Anomalies detection in DRE 

This section describes the general type of anomalies that can be encountered in 

the DRE software which occur in their configuration and operation. The anomalies 

relating to the DRE can be regarded as explicit and implicit. The explicit DRE 

anomalies can show that there is an immediate and present problem among the DRE 

software, and this is generally on configuration or absent of services [32]. While the 

implicit DRE anomalies are more related to performance issues which are caused by 

numerous factors such as slow connection or services or impeding system resources 

constraint. These DRE anomalies and errors can be classified into quantitative and 

qualitative groups [30, 32].  

For the Quantitative related anomalies these are related to statistical information 

that are generated by the various DRE to indicate issues that are developing, and they 

involve metric readings of software's operation and configuration parameters [28]. 

Some values are direct indication of functional and configuration anomalies while 

others have values that exceed certain acceptable operational thresholds. The first 

group is on explicit error that indicate a clear and present outage, such as software of 

the database and data replication services are either not running or unavailable, while 

the other group may show the queue of the data replication processes have some 

performance bottleneck or operational contention problems [29] [30]. The following 

are some examples from the extensive list of possible DRE explicit quantitative 

anomalies.  

- Absence or failure of process id in the OS environment, Operating system's 

resource issue such as disk storage or memory full.- Network’s ping value return error 

value [28]. 
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- Backlogs of records that are present in the queue for the capture, export, read, 

import, write queue, abnormal value can indicate some issue with the overall data 

replication transfer process and will require some attention [28]. 

This is quite significant within the DRE as the Oracle database and Shareplex 

must remain in peak condition to support an efficient replication process [30].  

For the Qualitative group of DRE anomalies, there are human-readable texts that 

describe certain software issues that pertain to the DRE's Shareplex, oracle or the OS 

[30, 32]. Each software has its own specific error messages that have been developed 

by their vendors and they offer concise and accurate description on their anomalies 

encountered. These messages are delivered in two forms; the first is the list of 

associated event and error log files which the software constantly update them. The 

other form is only available when the IT admin initiate a console to explicit interact 

with the software and extract the error messages. Some examples of the qualitative 

anomaly are follows: 

- User's accounts are denied or password is invalid. 

- Services such as Oracle database, Shareplex instance, network connectivity is 

not available. 

- Certain software processes that have been stopped due to specific errors that 

arise. 

There is an extensive list of DRE anomalies which shows whether the issue is 

isolated or specific to each software’s domain or they are related to the inter-

operability among the various software [29, 30, 32]. Their detection is done via 

consistent scanning of the software's logs and probing on their statistics via their 

console programs. For this research, the challenge is to develop all the routines that 

can perform these specific tasks of acquire the necessary information about the DRE' 

software anomalies so that they can be used for the training of the models. 

2.4. Reinforcement learning  

In the context of artificial intelligence, one of the approaches to resolving a 

complex problem task is the use of dynamic programming. In dynamic programming, 

the method to solve a complex problem is to break it down into a group of simple sub-
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The agent accepts actions that are more favourable in yielding better rewards. All the 

encountered events and actions, including the calculated rewards, are stored in a 

knowledgebase. So eventually when the agent reached a matured state with high 

interaction of encounters with the environment, it would have accumulated the 

experiences and knowledge on the environment’s states versus relevant actions and 

which of them can yield positive outcomes. By this stage where the agent has reached 

certain advancement or maturity, it will start to exploit or use the knowledgebase as 

compared to performing more exploration of trial-n-errors. So it is said that the agent 

balance the changes of choosing exploration of alternate actions versus exploitation of 

its knowledgebase is hinged on an ε-greedy action-selection algorithm with a random 

number between 0 and 1. So for a given n number of interactions, the initial phase of 

the RL, the greedy algorithm favours exploration over exploitation since there is little 

or no knowledgebase. But when the number of environment’s interactions increases, 

the greedy algorithm will decrease its preference on choosing exploitation and 

emphasize more toward exploitation of the knowledgebase as it has accumulated more 

as the number of interactions accumulates [39, 41-44]. 

2.4.1. Markov Decision Process (MDP) – model-based 

Markov Decision Process (MDP) is model-based reinforcement learning. It 

models the environment in which the agent operates as a sequential decision-making 

problem. It has a tuple, (s,a,r,p), which comprises of state, s, action a, reward r, and 

transition possibility p. An MDP must meet the Markov property, that is, the effect of 

an action taken in a state is dependent only on that state and not influenced by its 

history. The entities of MDP are described as followed [39, 44]. 

State, st, is the state of the environment at time t which may be observable or 

hidden to the agent. Action, at, is the action that the agent performs against 

environment, which is at state, st, at time t and then the environment yielded a new 

state environment, st+1. State transition model, p(st+1| st,at), describes how the 

environment changes from a current state, st, to a new state, st+1, with the action a. The 

reward model, p(rt+1|st,at) is a reward that the agent receives from the environment 

after it receives the action, at, when it reached time, t+1. Discount factor, 𝛾, which 

controls the importance and influences of future rewards to the current reward [45]. 
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The policy defines the behaviour of the agent’s action to achieve the maximum 

cumulative reward over time. The learning task is to run actions in the environment to 

see the reward. Not to be influenced by its history, the learning policy is denoted as; 

π: s → a where s is the state and a is the action [41]. 

There are two types of learning environments; the first one is the deterministic 

environment where both the transition and reward models are deterministic functions. 

When the agent repeats a given action for a given state, the new state and new reward 

are the same each time. This type of environment is easier to solve as the agent knows 

how to plan its activities with great certainty. The other environment is the stochastic 

environment where there is some uncertainty about the action effect. When the action 

repeats the same action for the given state, the new state and new reward may not be 

the same each time. This environment is both dynamic and volatile, making it harder 

to solve [41]. 

Value Function 

The state value function vπ(s), shows how good is a state for the agent to be in. It is 

equal to the expected total reward starting from the state, s, and it is dependent on the 

policy that the agent picks the action to do. The function of this value function is 

denoted as followed [41];  

𝑉𝜋(𝑠) =  ∑γ𝑖−1

𝑇

𝑖=1

𝑟𝑖 

Where, s is the state, 𝛾 is the discount factor, π is the policy, r is the reward, i is the 

iteration to all steps T.  

For all the value functions, there is an optimal value function. The function is denoted 

with an asterisk, *. 

𝑉∗(𝑠) =
𝑚𝑎𝑥
𝜋

𝑉𝜋(𝑠) 

To achieve this optimal value function, there will be an optimal policy π*. 

𝜋∗ = 𝑎𝑟𝑔 
𝑚𝑎𝑥
𝜋

𝑉𝜋(𝑠) 

Apart from the state value function, there is another function called Q-function which 

pairs both the state and the actions as Q*(s,a). It is a normalized value that signifies 

the preferential in weights for the algorithm to select. So, when the agent starts from 

the state, s, and pick an appropriate action, a, based on the Q value and behave 
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optimally afterwards. It also indicates how good it is for an agent to pick action a while 

in the state, s. As V*(s) is the maximum expected reward that the agent expects to start 

from the state, s, it will be the maximum of Q*(s,a) for all possible actions. Therefore, 

both Q*(s,a) and V*(s) relationship is expressed as follows [42, 45] in eq(1); 

𝑉∗(𝑠) =
𝑚𝑎𝑥
𝑎

𝑄∗(𝑠, 𝑎)        (1) 

The optimal policy can be expressed after the optimal Q-function, Q*(s,a) is 

known in eq(2). 

𝜋∗(𝑠) = 𝑎𝑟𝑔 
𝑚𝑎𝑥
𝜋

𝑄𝜋(𝑠, 𝑎)       (2) 

The next important equation is Bellman’s equation, eq (3), which is used in 

reinforcement learning especially in the dynamic programming domain, provides a 

recursive definition for an optimal Q-function. Q*(s,a) is equal to the summation of 

reward after the agent performs an action, a, while in state s and the discounted 

expected future reward after moving to the next state,  s’ [45]. 

𝑉∗(𝑆) =  
𝑚𝑎𝑥
𝑎

[𝑅(𝑠, 𝑎) +  𝛾 ∑ 𝑝(𝑠′|𝑠, 𝑎)𝑠∈𝑆 𝑉∗(𝑠′)]   (3) 

where, 

R(s,a) is the reward from the state, s, after receiving action a. 

P(s’|s,a) is the transition model for all states. 

V*(s’) is the optimal state value function. 

𝛾 is the discounted factor. 

Model-based learning such as MDP requires the agent to interact with the 

environment and attempt to approximate the environment state transition and rewards 

based on its history of interactions. When it has learned the model, the agent uses 

value-iteration or policy-iteration to find the optimal policy. However, there several 

challenges within the model-based reinforcement learning. One of them is that it 

requires the real-world environment to be modelled clearly. This task is difficult and 

prior domain knowledge may be required. Furthermore, transition state models or 

probability value is not readily available or difficult to define; therefore, they are hard 

to control. The next learning that will be explored is model-free training. Q-learning 

is one of the most popular algorithms [45]. Unlike model-based approaches, the agent 

in model-free learning will not try to learn the models of the environment state 
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derives the optimal policy through policy improvement from the evaluation of policies 

that are based on previous value functions. It is suitable for continuous and stochastic 

environments as it can give a good approximation of the value function. Its strength is 

that it works directly in the policy space, and it has better learning performance with 

new updates. For its drawback, it is susceptible to high variance and sample 

inefficiency, plus it tends to converge to local maxima. The Actor RL is policy-based, 

and it decides what action to take for the state. The Critic RL method is value-based 

and it tells the actor how good its action taken was and how it should adjust [47]. The 

Actor-Critic (AC) algorithm as shown in figure 8, combines the best of both methods, 

the actor's policy gradient method and the critic's value function method. So now, both 

the actor and critic complement each other; the actor produces the action for a given 

state from the environment, and the critic gives feedback and criticizes the actor's 

action.  

 

 

 

 

Figure 8- Actor-Critic Reinforcement Learning 

 

The critic can reduce the variability of approximation and provide an update to the 

actor's policy. The actors learn from policy and use it to apply actions continuously. 

Given that the policies are parametric on the state-action features, the AC model can 

work well in continuous state-action spaces that have feature vectors representation 

and they are used with Neural Network (NN) for their action and value function 

approximations [47, 48].  But Reinforcement learning by itself will not be adequate to 

tackle our research questions. Another method is required to perform the function 

approximation between the various state inputs from the environment to the 

anticipated actions and the preferred algorithm for this is a Neural network (NN) [49]. 

2.4.4. Artificial Neural Network 

Supervised learning is another form of machine learning task where the learning 

maps inputs to outputs based on pairs of input-output dataset [50]. NN is supervised 
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Figure 10 – Neuron’s transfer and activating function diagram. 

 

The combined function is in eq (5). 

𝑍𝑗 = 𝑏𝑗 + ∑ 𝑤𝑖,𝑗  𝑋𝑖
𝐼
𝑖=1        (5) 

Where z is the combined value, w is the weight, x is the input, i is the input 

number, j is the layer, b is the bias. The combined value is then changed by a non-

linear function like a sigmoid as in eq (6) to reduce and prep it as input for the next 

layer[50]. 

𝑠(𝑧) =
1

1+𝑒−z2         (6) 

The final output of y will be the trained result. However, the trained result will 

not be the same as the actual data as the NN guess with the current weights, therefore 

the weights will have to be adjusted to minimize the error. This is done by calculating 

the error followed by propagating the adjustment of the weights in the opposite 

direction as in eq (7). To do this; First, the error is calculated for a given set of training 

data tj and output layer of Oj [24], 

𝐸 =
1

2
∑ (𝑂𝑘 − 𝑡𝑘)

2
𝑘∈𝐾        (7) 

Then calculate the rate of change on the connective weight to minimize it in eq (8); 

𝜕𝐸

𝜕𝑊𝑗𝑘
𝑙  

So, for the output layer node 𝑘 ∈ 𝐾  

 
𝜕𝐸

𝜕𝑊𝑗𝑘

= 𝑂𝑘𝛿𝑘           (8) 

Where 𝛿𝑘 = 𝑂𝑘(1 − 𝑂𝑘)(𝑂𝑘 − 𝑡𝑘) 

And at the hidden layer node, eq (9); node 𝑗 ∈ 𝐽 

𝜕𝐸

𝜕𝑊𝑖𝑗

= 𝑂𝑖𝛿𝑗          (9) 

Where 𝛿𝑗 = 𝑂𝑗(1 − 𝑂𝑗)∑ 𝛿𝑘𝑘∈𝐾 𝑊𝑗𝑘   

So, in summary, the back-propagation algorithm is as followed [24]: 

1. First, run the network forward with input data to get network output 

2. Each output node computes 𝛿𝑘 = 𝑂𝑘(1 − 𝑂𝑘)(𝑂𝑘 − 𝑡𝑘) 
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Figure 11- Deep Reinforcement Learning 

 

The neural network used in the DRL will be based on deep learning with multiple 

hidden layers to capture the intricacy of the complex states to action relationship, and 

it can generalise the complex problems [40, 53, 54]. 

There does not exist a large amount of work on automated problem resolution. 

Farivar and Admadabadi [43] proposed the use of RL for controlling fault-tolerant on 

non-linear systems to ensure stability. The neural network model was used to perform 

Lyapunov’s function to prove the stability of the equilibrium for the ordinary 

differential equations that are developed for the Fault tolerance control system, then 

use the RL to interact and learn to optimize the value functions to control the situation 

like a Cart pole game. This research is an excellent foundation to which this thesis 

referred [43]. Another paper was from Cao [55] who proposed the use of RL to identify 

the faults in the network and diagnose the root cause. The agent is comprised of a fault 

diagnosis module, a learning module, and a diagnosis knowledge base. The RL is used 

in the learning and fault diagnosis module which interacts with the network to identify 

the fault and reference the fault back to the knowledgebase to extract the root cause 

problems which in turn are delivered to the users via the user interface.  

2.5. Research Gap and Summary 

There is a substantial body of knowledge in the domain of anomaly detection, 

fault diagnosis as well as other machine learning models that have been briefly covered 

in the literature review. Methods such as SVM and ANN have been used to detect 

intrusion (or anomaly) in a complex environment such as computer networks, crowd 

movement and IT security. These machine learning models have been used to develop 

intelligent expert systems in the engineering and medical field in anomaly detection 

and prognosis. However, this research has applied the machine learning models to very 

specialized and complex environments, be it medical, IT or engineering. Most of them 

achieved great in-depth analysis in the subject matter and develop bespoke algorithms 

to meet the challenge; however, major changes and customization are required to adopt 

these anomaly detecting algorithms and processes to a multi-tier data replicating 

environment (DRE) such as this.  
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The DRE itself has several software modules and each of them have their own 

unique operating functionalities, operations, and parameters. To establish a proper 

operating setup, each of the modules has specific expectations or dependency on the 

adjacent ones. This complexity has introduced a level of challenges that most of the 

literature on anomaly detection has described multi-source events, but not for software 

such as DRE.  

Another challenge lies in the task of pinpointing the exact root cause of the 

defects that may occur in the DRE. In its course of operation, there will be anomalies 

appear among the events and finding the real defect among the noise of anomalies 

prove to be difficult. While the literature on multi-view data may be compatible with 

this requirement, it is still difficult to define all the conditions which can pre-mediate 

the default cause and the fault associated with it. the gap here is to bridge the 

complexity between the DRE’s potential anomalies, defects, and faults. That is a task 

which this thesis needs to undertake, to formulate an aggregating routine that can 

acquire the anomalies and deduce the defects, followed by faults systematically. The 

whole routine will have to be assessed and tested rigorously to affirm its operating 

expectations. One potential model that can assist in this setup is deep learning. 

Recently neural network-based deep learning methods have become popular to learn 

from a wide variety of data and it is a powerful and popular model to be used for fault 

diagnosis in many fields such as transformers, oil refineries [5, 10, 56]. 

This study is intended to model after organizations such as Deepmind [57] and 

OpenAI [58], where they build an intelligent system based on deep reinforcement 

learning (DRL) to tackle games with extremely high computational complexity such 

as Go and Multi-player battle arena. These projects only surface in recent times and 

although DRL theory is not new, such implementations are. As such, in the space of 

FDR system and DRL, there is currently limited research or project in development. 

While the candidate is confident that this type of project will take off eventually and 

reach the mainstream, it is the data replicating environment (DRE) which he has an 

immense interest in to support and therefore, take this opportunity to apply this domain 

of RDL to the tackle the fault diagnosis, detecting, and resolution of the DRE. 

So how can this thesis go about defining the state and action for the data 

replicating environment? There is limited research conducted to date in the usage of 
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DRL for software fault diagnosis and resolution particularly in interconnectivity 

among enterprise relational databases. Furthermore, there are not many types of 

research made in the domain of data replication, particularly around ETL. While some 

research papers discuss the method of optimizing workflow, there is no precedence on 

software such as near-real-time data replicating tools like Shareplex. 

Some research can place the causal relationship between defects and faults 

through decision trees, but this is feasible if the system’s scope is simple and well-

defined. If we have an environment with extreme high complexity that cannot be 

defined, then a more dynamic approach is required. The relationship of defects to faults 

and to resolving actions are complicated and may not be accurate in the first version, 

and constant revisions or corrections are required to recalibrate them.   

To define the state of the DRE model, the initial design set the model to accept 

hundreds of system-wide defining inputs as variables in the DRE, and with these 

inputs, a strategy is required to build up function approximations on them to deduce 

the potential defects. Likewise, for the defects to the hundreds or thousands of potential 

actions that may be required for both statistical information query and real system 

corrective actions. It is important to note that some of the DRE’s defects are usually 

inter-related, some are compound, or hierarchical whereas others are isolated. This is 

the type of complex condition that the candidate faces and there is no existing research 

available for him to refer to. A new strategy must be methodically designed to address 

this gap. Furthermore, resolutions for the faults are not straightforward and it will 

require multiple cycles before it can reach the final resolution. The proposed system 

must be able to reiterate to its best ability to search for a solution before giving up to 

the IT administrator for help. 

To the best of our knowledge, this is the first research to utilise deep 

reinforcement learning for fault diagnosis and resolution for database replication 

technology as there is no precedence of similar work in this fields. 
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of key success factors. These factors will design the goals and deliverables that each 

following phase in the research process must be met. 

3.2. Data Input and Analysis Phase 

Followed by the establishment of the architectural design of the proposed model, 

the next stage is to analyse the data that need to be managed. This is an important phase 

as all the sources of data pertaining to the various DRE software’s operation, 

integration, configuration and inter-operability requirement are discovered. This is in 

preparation to meet the research question 2 and 3. In this phase, only analysis of the 

target systems that need to be managed will be conducted. This is to gain an insight 

into the intended managed system’s modes of operation; their configuration, activity 

and status information output, interaction as well as a series of operational functions 

that normal IT administrators would do regularly. A review of EQ’s database team’s 

operational procedures and manuals will be conducted to gain an insight into their IT 

administration work, together with the documented faults that had been encountered 

and as well as the resolution techniques that had been used. This will give the research 

an initial application on the landscape of knowledge before formulating the attack 

plans. 

Each domain of IT systems will generate a wide variety of data that have 

different functions and attributes. There are challenges in how to manage the data and 

the types of expected outcomes that should be required. While the data cleansing 

process here will be limited, they will be done to clarify those data that will impact the 

research. The next stage is to analyse the data meaning and their implication to the 

impending system that this proposed model will manage. Referencing the fault 

diagnosis literature [6], some faults can be easily identified through simple univariate 

anomaly detection, whereas others will require multitudes of data to support the 

diagnosis. In other cases, there will be incomplete data that require further 

investigation against the managed system via upstream, downstream, or adjacent in 

the fault-finding process. On some occasions, shifting to a different domain to gather 

more information will be required but that will require the learning phase to conduct 

trial-and-error information gathering.  The information gathered will be categorized 

following their groups and hierarchies; what is classified as system, functions, 

operational process, expected outputs, potential faults, root cause, and resolutions 
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technique. An initial graph database and a spreadsheet will be used to map this 

knowledge. This forms the basis on which the next phase of classification and learning 

will refer to. 

Question. 

1. What privileges does our agent require to access the relevant files under 

various directories that belong to different software owners; Shareplex and 

Oracle? 

2. What are the output files that are required and how will the agent go about 

finding them repeatedly with minimum error? 

3. What kind of content do each of the log files have and how can we gather 

features from them? 

4. What type of method can we use to ensure that the patterns of information 

recorded in these files are consistent? 

5. What other information can we gather from the OS environment and how can 

we correlate them with the details gathered from the logs? 

3.2.1. Environment Dataset 

The required data will be provided by Energy Queensland’s database 

department. There will be a mixture of raw data; from systems’ log files to the streams 

of time series data that will be obtained from the production IT systems. There are 

different varieties of data in this raw output and logs, so there will be an ample set of 

testing opportunities to be practised on them. The researcher has obtained the approval 

of using this data. There are two avenues of obtaining information about the target 

software; Shareplex and Oracle, and they are in explicit and implicit forms. For the 

explicit form, it is by reading through the event and alert logs that are generated by the 

software progressively, logging every event, information, error, or alert. The implicit 

form is done via a persistent search for information through interaction with the 

software to acquire their statistics. Such activities involved here are by the usage of 

OS commands or through the software’s console such as SQLPLUS or SP_CTRL. One 

of the challenges here is that we need to know the exact commands to invoke so that 

it can query the appropriate information or statistics that the software will respond to. 

The information or statistics that are returned cannot be interpreted readily and require 

in-depth background knowledge before their meaning can be derived. For the Oracle 
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database, the common alert log is named as alert_<Oracle_SID>.log and they are 

located at $ORACLE_HOME/diag/RDBMS/ /PROD/trace. For the Shareplex, the log 

file is called Event_log and it is located at $VARDIR/log. 

3.2.2. Evaluation Procedure 

This is progressive research, and each phase has significant importance to the 

next one, so accuracy in building and testing the proposed methods in each phase will 

be imperative. The evaluation process covers the breadth of the research project in 

terms of independent and inter-operational process capability, as well as the depth of 

the specific ML models. While the research wants to mimic the entire fault 

management process that the IT engineers have, it is open to the research on 

redesigning or optimizing the process flow should the need arises. For all the ML 

models that will be used, the evaluation process will cover the following aspects. 

Test harness occurs at the initial stage, and it involves the acquisition of data that 

represents the problem which will be used as both training and testing set for the ML 

algorithms. it prepares the foundation of each ML formulation by assessing how 

learnable the problem is through analysing the data, and whether the data structures 

are suitable for the models and if not, how much transformation will be required to 

alter them. 

Performance measurement covers the evaluation of the solution to the problem 

by calculating the prediction made by a trained model against a test dataset. There is a 

list of performance measures available, and they are generally relevant based on the 

type of problem and solution required, be it a classification, regressing or clustering. 

Some give a generic score; others can give a more meaningful answer to the problem's 

solution.  

Cross-validation is also part of the test harness, and its approach is to split a 

dataset that presents the problem environment. The training data set is used to train the 

model whereas the testing data set is for evaluating the performance of the model. 

Evaluating algorithms. Once the problem has been defined and the test harness 

is prepared, the next stage is to shortlist a series of ML algorithms that will be relevant 

to the problem; most of the ideal models have been mentioned in the literature review.  

These models will be trained and tested against the dataset prepared at the test harness 
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stage and their results will be measured and compared with one another. An assessment 

will be made on the chosen model against the problem environment to determine if 

they are relevant or practical. Each one of them will be also measured in terms of 

performance using the ratio of both loss and cost functions. 

The next section describes the evaluation methods that need to be performed 

against each phase that has been designed in this research.  

Evaluation of data input and analysis phase - The requirement is to assess the 

ability of the pre-processing routines are in removing data inconsistencies and 

redundant content as well as the quality of the final processed data. Each log and data 

input, e.g., event_logs, alert_log, syslog and system stats will have their unique 

features that need special consideration to clean out the unwanted or erroneous 

information in preparation for the analysis phase, so the measurement here is to gauge 

the completeness of data cleansing that this phase can cover. The routines will be 

developed against the sample data from the IT environment and once the logic has 

been established, testing data set from another batch will be used to validate against 

the routine to test its efficiency as well as its effectiveness. Each batch will comprise 

information from the enterprise combination of the software systems, e.g. Shareplex, 

UNIX, Oracle DB, with different varieties. This will be tested in several batches to 

ascertain the thoroughness of the pre-processing routines whether they can handle a 

bigger load of data with a wider range of errors. 

Evaluation of classification and learning phase - in this phase, the test is to 

evaluate how relevant the result from the phase of data re-working via reduction, 

conversion and symbolically altered, is to the DRL downstream. the data from various 

DRE's sub-systems (OracleDB, Shareplex, Unix, network) must be evaluated and 

tested via the DRL agent and validate the result. Normalization is included in this 

process which changes all the respective hashed value of the error message and helps 

to speed up the DRL’s NN convergence process. This phase is tightly connected to the 

next phase. The measurement of the NN’s accuracy is also related to this.  

Evaluation of fault diagnosis phase - the next phase is to test the fault diagnosis 

routine on its ability to use the features and anomalies acquired to identify the root 

cause. This will be achieved by training the fault diagnosis model by using a labelled 

dataset to train and test like the classification phase above. the model’s accuracy can 
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be measured using a ROC curve and confusion matrix, both will show the performance 

of the ML models against the set of test data. Also, in this phase, the routine will need 

to work with the knowledgebase which will be stored in a database. The fault diagnosis 

routine will be evaluated on its ability to interact with it in a timely and accurate 

manner, matching the classified faults that have been identified by the model to the 

knowledgebase and extract the root cause information.  

Evaluation of faults resolution phase - In this phase, the reinforcement learning 

model works with the fault diagnosis model; the latter will feed the information to the 

RL model and that in turn will interact with the system or known as the environment. 

The RL model will be assessed on its ability to find the optimum solution; the number 

of iteration and the results that the applied actions from the RL model can yield. While 

the evaluation here does not focus on speed and accuracy at the beginning, it is still a 

major factor that needs to be observed in the long run. The main critical success factor 

here is to interact with the next process learning phase when a certain number of 

iterations has been exhausted and the optimum solution is not available. at the same 

time, new knowledge will be acquired for the knowledgebase from the external 

interface, so it is expected that once there is an accumulation of new knowledge, the 

RL model should have a greater chance of resolving the faults through less and less 

iteration. So, the measurement here is gradually, and the expectation level will increase 

over each epoch of trial-and-error-and-learn. 

Integration/Process learning phase - This is the governing phase that controls the 

fault resolution phase with the users. Once the RL model has exhausted the moves in 

the knowledgebase, the IT administrator or user will have to assess the problems and 

input their expertise into the system, thus enhancing the knowledgebase and its 

capability. The measurement here is on the workflow that will be built into this phase 

model, which can allow the interaction between the system and the user. As each 

knowledge that has been entered by the IT administrator, this phase’s model must 

transfer the updates accurately back to the knowledgebase so the RL model can refer 

to it without any hindrance. Both the evaluation of this phase and the fault resolution 

phase are interleaved.  



50 

 

 

3.3. Classification And Learning Phase 

After establishing the knowledge about the managed systems’ behaviour, the 

next task is to identify the features that will be required from the raw data to support 

the fault diagnosis and define what is considered normal or anomalous. Referring to 

research paper on the survey of anomaly detection [16], some anomalies can be 

regarded as point anomalies that can be detected easily, others will be more difficult 

to acquire namely the contextual and collective anomalies. So, based on the faults 

listed in the survey from the previous phase, the raw data feature to support the 

diagnosis will be decided. For the classification and learning phase, the impact is to 

acquire the knowledge of the DRE's software service services from different aspects 

of each software' sub-systems; DB's component listed in the DB architecture diagram 

must maintain a certain level of error-free activity to serve other adjacent DB's sub-

systems to serve the overall DB's function. The DB's function is, in turn, serve as a 

sub-system, integrated closely to other software and IT technology to support the 

DRE's mission, in a hierarchical arrangement of software and technology 

dependencies. To know the different state of the DRE's software, there are various 

sources that the information can be acquired; through 1) event, trace, or diagnostic 

logs, 2) statistics acquired from software’s support console, commands or utility, 3) 

extracting features from other sub-grouping of statistics. They reflect both point and 

group anomalies across hundreds of parameters and variables. They are then 

aggregated into logical grouping at the service level of the individual software's sub-

system such as connectivity, security, operation status, process control etc. This 

derives a unique matrix that represents the DRE's entire service level structure, 

indicating holistically the logical group and their respective service level so an IT 

administrator can briefly know the nature of the anomaly and where they have been 

affected. Most of the anomaly that occurs within the tightly integrated software in DRE 

will not be isolated but have a ripple effect that impacts others. This matrix of service 

anomalies can capture and illustrate the landscape of service anomalies encountered. 

This information will be logged into the research which will then be used to support 

the next phase.  
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3.4. Fault Diagnosis Phase 

Using the information and results acquired in the classification/learning phase, 

the next phase is to map the different knowledge acquired to the identified faults that 

are listed in the survey conducted beforehand. This will enable the research to establish 

a hierarchy of managed system’s operation, faults encountered, root cause, and source 

of faults. Referencing Chen and Patton’s model based on fault diagnosis [59], the 

research here will build a fault diagnosis model based on the information and 

knowledge acquired through the previous few stages. The proposed fault diagnosis 

sub-model will be expected to support some basic fault diagnosis initially and it will 

be augmented progressively to handle a wider range of other faults. A series of 

validation tests will be conducted on this model to access its accuracy and the logic 

used to diagnose the problem. The result will be studied, and corrections will be made 

to adjust or change the structure. Once the fault diagnosis sub-section is complete, the 

next step is to develop the fault resolution part. This phase covers the decision to the 

class space under fault diagnosis’s hierarchy method, and the challenge here is to 

handle different types of faults. Therefore, the main challenge is to customize the 

concept of DRL in deriving both the DRE’s environment state and action in 

conjunction with the concept of DRL. However, there are some customizations 

required with regards to the policy-based approach of the model-free DRL, using an 

alternate set of sub-algorithms to complement it. 

3.4.1. Defining Data Source for System Anomalies 

The initial phase learnt the entire setup of all the software modules that operate 

inter-dependently; the configuration that is required to be set up in each of them before 

they can start operation. Keeping the data replication process going between the 

databases and the Shareplex requires an in-depth understanding of the construct of 

Shareplex’s requirement and its demand for the database’s operation so that its data 

replication can function at an optimum level. Apart from getting the entire 

environment to work, there are several aspects of these software modules that give the 

candidate insight into the internal operation which includes the information, statistics, 

and errors that they encounter throughout their services. These specific tasks have been 

identified as followed. 
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1. From the text logs and system statistics of both Shareplex and Oracle, machine 

algorithms such as text mining and anomaly detection are applied to detect 

faults and errors. 

2. Classification of text between normal and erroneous. 

3. Anomaly detection of erroneous sessions and process among the client 

sessions’ and system backgrounds’ attributes. 

4. Classify each type of detected error into different categories of IT subsystem 

in a hierarchical order. 

5. Data involved are mainly text, time series and scalar. 

6. Error detected can be point and contextual. Point anomalies are easy to detect 

as they are an outlier. Contextual errors are harder to find. 

7. Time series data in utility companies are ubiquitous among all business 

operations and functions in Energy Queensland, its fundamentals and must be 

understood including current practices.  

One of the main challenges in this thesis is to define the environment of the 

complex multiple software systems that not only need to operate cohesively but can 

function at the optimum level with a minimum adverse effect on the overall data 

replicating functionality as each software has its own set of parameters, operating 

commands and control, performance statistics, processes, output logs. It is needed to 

determine the list of events that are important to this software from which they are also 

dependent on by the other software. Event logs’ outputs can be determined explicitly 

and implicitly through constant mining of the logs or run certain commands against 

the software to acquire the statistics. However, not all events from a system can be 

correlated to the events on another system. A complex mesh of relationships will have 

to be determined in categorical form and in a hierarchical structure which will be 

covered in the next phase.  

So, for each event, there will be a threshold or limits in which their values are 

regarded as either normal or anomalous. If the specific event is deemed anomalous, it 

must have an equivalent diagnostic process that can acquire the necessary statistics 

and then based on them to decide and define the real cause of the problem. Based on 

causal models, some of the simple root-cause problems can be determined straight 

away, others require inputs from multiple sources before the root cause can be 
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determined. Once the root-cause problem is determined, the next step is to find the 

possible action that has the highest chance of resolving the problem. 

There are several approaches and one is to build an expert knowledge-base of 

problem-actions so that the system can refer and apply the appropriate actions, but this 

is not the case in reality as there are numerous environmental factors that increase the 

difficulty of this research, namely; 1) The constant changes in all the dependent 

software in term of a software upgrade, control parameters, command syntax, statistics 

value alteration and, 2) the list of problem-action combinations is extremely large and 

dynamic. 

Therefore, this thesis builds the system to be adaptive so that it can learn to 

observe what actions is the most appropriate for a given state through trial-and-error, 

plus it should also learn in collaboration with a human IT administrator. His/her 

knowledge and experience will help the system to build up its knowledgebase and at 

the same time, a source for it to seek external help if it has exhausted its entire means. 

This begs the following definition questions. 

1. The environment of the setup. 

2. Environment’s state. 

3. Action for the environment. 

4. The reward for the action is applied to the environment. 

5. Is it a single goal, multiple goals or a hierarchical set of goals that need to be 

accomplished before the final goal is achieved? 

3.5. Faults Resolution Phase 

Referring to figure 13, fault resolution is a process where the solution is applied 

to fix a problem and this phase covers the intelligent agent that will interact with the 

environment to find and apply the optimal solution. Based on the fault diagnosis’ 

results, the proposed series of solutions can be identified. The agent will reference the 

diagnosed faults and prescribe a series of solutions to rectify the faults. The process 

does not end there as the model will check the actual results and compare them with 

its knowledge of the expected outcomes. If there is a discrepancy between the actual 

and the expected results, this is classified as a miss. The model will be expected to 

route back to the starting phase and work through a different route of data analysis; 
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clear up within a short period. But there are occasions where anomalies are genuine 

defects that have surfaced in the environment and that sort of defects are hindering or 

preventing it from performing its designed function. Therefore, identifying the actual 

faults to the defects in the next stage which requires intrinsic analysis to determine the 

exact reason why the default occurs and where the fault lies. The next stage will be the 

resolution to the fault. Finding the best possible method to resolve the fault is another 

domain of knowledge that requires a vast amount of product familiarity and systematic 

logic of problem-solving skills, which are at times, difficult to pinpoint and identify 

unless a very skilled IT administrator that has years of experience in this area of 

specialisation can resolve it. 

Here is one example; an event has surfaced where the backlogs of one of the post 

queues are building up. This event is highly unusual, and it is defined as an anomaly 

from the usual system functionality. It is now classified as a defect and requires a more 

detailed investigation. The defect found in the DRE is the inability to insert new data, 

and the fault that lies with this defect is with the permission issue on the database. Each 

entity bears the many-to-many relationship to the next and this adds more complexity 

to the thesis’ scope of the challenge. 

Applying this knowledge to the proposed DRE fault resolution model in 

combination with reinforcement learning, two streams of decision-making workflow 

have been defined. The first one is based on a simple or direct goal where the a priori 

faults-resolution knowledge has been well defined. The next one is of the complex 

structure where 1) there is no a priori knowledge, 2) need to perform some trial-and-

error tests to assess the environment’s state versus the action, 3) start to learn from past 

mistakes and refine the learning path towards an optimum resolution. The following 

figure 13 describes the detailed steps involved in the simple and complex goal 

approaches. 
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Figure 18 - Different learning stages of RL agent 

3.8.  FDR’s RL Agent Learning Process 

The RL agent starts with little or no knowledge about the environment and it has 

only equipped with a basic reference of a list of actions that are grouped into their 

respective categories under the software; OS, Shareplex and Oracle. As shown in 

figure 18, the fault resolution process is a progression of learning that is grouped into 

3 stages in which the agent functions according to the availability of knowledge about 

the environment. The following describes the stages in greater detail. 

Non-to-low knowledge: The RL agent starts with the premise that it has no prior 

knowledge of the data replicating environment (DRE). What it has is a basic guideline 

of general faults’ categories and the associated actions of software’s console or 

commands to operate. What it must do first is learn through trial-and-error with 

random actions to test if the actions can be able to resolve the faults and the feedback 

that it receives. Through the initial learning state, the RL agent builds up its knowledge 

base about the cause-and-effect between the states, actions, and rewards. It builds up 

the Q-table that sets the Q-score among the state, actions, and rewards. learning and 

exploration rates are two control that decides the probability of performing actions that 

are within the agent’s knowledge base versus the chance of trying something random. 

For example, the learning rate, it is set at a very high value of 1.0 at the start and force 

the RL agent to explore all means and ways. But this rate will be decreased slowly 
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over time using a decay factor of 0.995 until a threshold of 0.4 is reached. By the time 

it has reached the 0.4 value, it also means that the RL agent has gained some experience 

to do more exploitation of its build-up knowledgebase and can rely less on exploration. 

But it still leaves some room for exploration though, but the chances will be much 

lesser. 

Medium-to-high knowledge: Once it builds up an initial knowledge on the 

environment’s states to various actions, the candidate applies the Q-learning algorithm 

to fault resolution technique by building a deep network neural (NN) model that 

predicts the possible score and actions for a given state. The NN model is trained with 

the already built-up knowledgebase to find the best reward and action for a given state 

from the environment. At this stage, there may not be enough past data to train the NN 

model accurately and so the trained NN model may not give accurate predictions in its 

first few attempts, but the agent will run the NN model repeatedly over several 

iterations internally until the predicted rewards reach an acceptable threshold, after 

which the best NN prediction is sent to back to the RL agent. The agent will validate 

the prediction against the data replicating environment; if the predicted action achieves 

positive feedback or reward, it will log it as a Q’s tuple of state, action, rewards in its 

Q-table as well as adding the new information to its knowledgebase, enriching the 

dataset for the next round of NN training. But if the prediction is not accurate, the RL 

agent will correct the information and do the knowledgebase’s enrichment. The agent 

will go back to repeat predictions and validation until the reward meets or exceeds the 

desired threshold, thus finding the argmax(Q(sn, an)) of rewards [7]. This process is 

repeated until the learning rate has decayed to a value such that it can be ascertained 

that the agent has acquired sufficient knowledge about the environment. It is now 

supposed to be competent to apply the action to a state that the environment can 

produce.  

Very high-to-expert knowledge: Toward the end of RL’s iteration, the RL agent 

has accumulated enough information for it to exploit any states that it encounters from 

the data replicating environment. In its knowledgebase, it will have a sizable volume 

of states, actions, and Q-value. from there, it can be considered that the RL agent has 

attained a high proficiency in solving all the faults with accurate and optimum actions. 

But the algorithm will not allow the RL agent to be conceded and be closed off to other 
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possibilities. Instead, it will allow a small room of chance that it will attempt to balance 

the choice of exploring for other new actions through randomization of chance. 

Algorithm 2 described the process in detail. 

Algorithm 2 – FRD’s agent training process based on different learning phases 

routine 1 - apply a preconfigured fault initiating procedure. 

routine 2 - reset to DR environment to baseline 

Input: The state of DRE statistics and computed rewards 

Output: The action of new parameters’ value for the database 

Initialization 1: set value for learning, reward preference and exploration rate, threshold for exploration, 

learning, and exploitation. 

Initialization 2: initialize memory, Q-table collection, and respective counters 

 

Apply a baseline reset of the DR environment 

Acquire the state of the DRE from stats report 

Set exploration rate to 1 

Set the learning rate to zero, med_learning to 30%, high_learning to 90% 

Loop the iteration process 

     Check the learning rate.  

     /* low learning phase */ 

     If learning <= med_learning, do the exploration phase 

          /* exploration phase */ 

          initiate random fault initiation routing 

          Apply the action to the DRE environment to get a new state  

          *** 

          Find the reward/penalty = Δ new state vs current state 

          Add the knowledge of state, action, reward-penalty, and new_state to minibatch’s training data 

       

     /* medium learning phase */ 

     If learning is > med_learning and < high_learning, then do  

          /* learning phase */ 

          If run=1, apply a baseline reset of the DRE environment 

          Get the current state of the DRE environment.    

          Find best future reward and action based on new_state; 

               Loop until the reward is higher than 0.05  

                    Train the NN model using knowledgebase as minibatch, with state as input and reward plus action 

as an output. 

                     Call the NN model to predict the possible new reward and action.       

     Validate the action against the environment and get a new reward 

     Add the information to the memory and minibatch 

     Find the q-value for the state and action with consideration from gamma, then add them to Q-table 

     /* high learning phase */ 

     If learning > high_learning, do exploitation phase. 
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operations' statistics of Shareplex, OracleDB, OS and interconnectivity are denoted 

here as sp, db, nw and os. Under each group, there are three summarized grouped 

variables; the first indicates the operational status of the software's attributes, e.g. 

processes are running or not. The second covers the performance statistics related to 

each software's attributes, e.g. CPU load at 60%.  The third is the difference or 

variation between the current and previous values for the software’s attributes, e.g. 

CPU load difference between previous and current periods. The iteration of the 

training period is denoted as t. But some statistics such as sp are more important and 

need more emphasis. So, weight is associated with them to augment their importance. 

𝑠𝑡 = [∑ 𝑠𝑝𝑖
𝑘
𝑖=1 𝑤𝑘 , ∑ 𝑠𝑝𝑖

𝑙
𝑖=1 𝑤𝑙 , ∑ 𝑠𝑝𝑖

𝑚
𝑖=1 𝑤𝑚, ∑ 𝑑𝑏𝑖

𝑘
𝑖=1 𝑤𝑘 , ∑ 𝑑𝑏𝑖

𝑙
𝑖=1 𝑤𝑙 , ∑ 𝑑𝑏𝑖

𝑚
𝑖=1 𝑤𝑚,

∑ 𝑛𝑤𝑖
𝑘
𝑖=1 𝑤𝑘, ∑ 𝑛𝑤𝑖

𝑙
𝑖=1 𝑤𝑙 , ∑ 𝑛𝑤𝑖

𝑚
𝑖=1 𝑤𝑚, ∑ 𝑜𝑠𝑖

𝑘
𝑖=1 𝑤𝑘, ∑ 𝑜𝑠𝑖

𝑙
𝑖=1 𝑤𝑙 , ∑ 𝑜𝑠𝑖

𝑚
𝑖=1 𝑤𝑚]    (11) 

 

Table 3 – DRE’s software stats and logs queries 

DRE’s software Status(k) – Task’s purpose Perfstat(l)  - information source 

Shareplex (sp) Query for process up or running 

Test if sp_cop is responsive 

Check if queue is stopped 

Check if config file is active 

Check response is proper 

Check if capture process is running  

Check if read process is running  

Check if export process is running  

Check if import process is running  

Check if post process is running 

Shareplex’s Parameter setting 

Shareplex’s Process’s Status  

Shareplex’s Queue status via sp_ctrl 

Shareplex’s directories information  

Shareplex’s $Pdir and v$vdir directories 

 

OracleDB 

(db) 

Query for Oracle instance, DB1, is up  

Query for Oracle instance, DB2, is up  

Test if sqlplus can connect to DB1 

Test if sqlplus can connect to DB2 

Check if DB1 is in open mode 

Check if DB2 is in open mode 

Check if listener1 is running 

check if theres any invalid SPLX's objects on DB1 

check if theres any invalid SPLX's objects on DB2 

check if tablespace is full on DB1 (100%) 

check if tablespace is full on DB2 (100%) 

Oracle DBs’ Processes 

DB Operational stats 

DB’s tablespaces 

Oracle’s command console  

Oracle DB’s system views 

OracleDB’s trace logs  

Oracle’s AWR reporting tool 

 

network 

(nw) 

Check if DB1 can connect to DB2 

Check if DB2 can connect to DB1 

Check if network is available between DB1 and DB2 

Check if DB1 can be resolved via tnsnames 

Check if DB2 can be resolved via tnsnames 

Check network card 

Listener.ora file 

Tnsnames.ora file 

Lsnrctl command console 

Listener’s stats 

Listener logs 

Operating 

system(os) 

Check if the user account SPLX exists 

Check if the user SPLX belong to SPLX group 

Check if user account splx’s permission is correct 

Check if user account oracle’s permission is correct 

Check if server name is in /etc/hosts 

Check if Oracle unix account is in /etc/passwd 

Check if SPLX unix account is in /etc/passwd 

Check if Oracle is in Dba group in /etc/groups 

Check if Splx is in dba group in /etc/groups 

Disk space availability via df command 

System based file; /etc/passwd, /etc/shadow, 

/etc/hosts, /etc/group 

Network card is up 

Vmstat’s for cpu, memory 
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Where software components' critical status is k, Performance statistics is l, 

statistics variation between previous iteration and current is m, the time is t. the weights 

for wk, wl and wm are 1. The rationality for the default value of 1 is that each state 

representation has equal importance to their purpose in the DRE and require similar 

attention. Table 3 shows the list of the status purpose’s description, their corresponding 

tasks and the result that are derived from the tasks. All the commands, scripts and 

utilities used for the tasks are available in the appendix. 

Table 4 – list of system commands for DRE’s software and functions 

DRE’s software System Remedial actions Query action 

Shareplex (sp) Start Capture on splx1 

Stop Capture on splx1 

Start Read on splx1 

Stop Read on splx1 

Start Export on splx1 

Stop Export on splx1 

Start Import on splx2 

Stop Import on splx2 

Start Post on splx2 

Stop Post on splx2 

Startup sp_cop on host1, 2 

Shutdown sp_cop on host1, 2 

Query for process up or running 

Test if sp_cop is responsive 

Check if queue is stopped 

Check if config file is active 

Check response is proper 

Check if capture process is running  

Check if read process is running  

Check if export process is running  

Check if import process is running  

Check if post process is running 

OracleDB(db) Startup Oracle instance, DB1 

Shutdown oracle instance DB1 

Startup Oracle instance, DB2 

Shutdown oracle instance DB2 

Startup listener on host1,2 

Shutdown listener on host1,2 

Change database, DB1, to open mode 

Change database, DB2, to open mode 

Compile invalid objects on DB1 

Compile invalid objects on DB2 

Re-grant specific privileges to SPLX on DB1 

Re-grant specific privileges to SPLX on DB2 

Increase tablespace size for SPLX on DB1 

Increase tablespace size for SPLX on DB2 

Query for Oracle instance, DB1, is up  

Query for Oracle instance, DB2, is up  

Test if sqlplus can connect to DB1 

Test if sqlplus can connect to DB2 

Check if DB1 is in open mode 

Check if DB2 is in open mode 

Check if listener1 is running 

check if theres any invalid SPLX's objects on DB1 

check if theres any invalid SPLX's objects on DB2 

check if tablespace is full on DB1 (100%) 

check if tablespace is full on DB2 (100%) 

Network (nw) Enable network card status 

Disable network card status 

Restore $oracle_home/network/tnsnames.ora on host1,2 

Restore $oracle_home/network/sqlnet.ora on host1,2 

Restore $oracle_home/network/listener.ora on host1,2 

 

Check if DB1 can connect to DB2 

Check if DB2 can connect to DB1 

Check if network is available between DB1 and 

DB2 

Check if DB1 can be resolved via tnsnames 

Check if DB2 can be resolved via tnsnames 

Check network card 

Operating 

system(os) 

Unlock user account SPLX 

Change permission on oracle’s directories 

Change permission on splx’s directories 

Restore /etc/host.orig 

Restore /etc/groups.orig 

 

Check if the user account SPLX exists 

Check if the user SPLX belong to SPLX group 

Check if user account splx’s permission is correct 

Check if user account oracle’s permission is 

correct 

Check if server name is in /etc/hosts 

Check if Oracle unix account is in /etc/passwd 

Check if SPLX unix account is in /etc/passwd 

Check if Oracle is in Dba group in /etc/groups 

Check if Splx is in dba group in /etc/groups 

3.11.  Action for the Environment 

The FDR system needs to carry out a series of remedial actions in response to 

the faults that have been detected to resolve them. the actions comprise of a series of 

commands and custom-built scripts that run on the OS, DB and Shareplex console to 
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change their parameters, configuration, manipulate UNIX based files and alter OS' 

components. These actions are referred to as actions under the FDR's Fault Resolution 

(FR) module and to select and activate the required action, they are referenced via a 

vector that is mapped to the entire list of commands, segregated into their respective 

software and functions as shown in table 4. 
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CHAPTER 4: DESIGNING THE FAULT 

DIAGNOSTIC (FD) MODULE 

This chapter presents the Fault Diagnostic (FD) module with its design 

architecture and operations, testing, and results analysis. 

4.1. The Current Approach Toward DRE’s Fault Diagnosis 

The current common method of implementing fault diagnosis for complex IT 

systems for both academia and industry is to use machine learning models such as 

Random Forests or Bayesian Network [60, 61]. Both require well-designed models 

that are specifically tailored to the intended IT systems where the fault detection and 

diagnosis procedures need to be performed. The premise for the design of such 

complex and well-defined fault detection and diagnosis (FDD) model has complete 

knowledge of every sub-system, component, relationship, and operation including data 

exchange in the IT system. The limitation with this approach is that every 

implementation of these complex IT systems is not generic and are tailored to specific 

business IT requirement. So, having a rigid and well-defined FDD agent will not have 

the adaptiveness nor flexibility to meet the range of different system setups. it will 

require numerous customization which is time-consuming and laborious. Another 

downside with this approach is the coverage of the FDD models, as they are designed 

based on the IT human’s expert knowledge. If there are new anomalies occur in the 

systems and the diagnosis model in the FDD agent may not have the information to 

mitigate it, then these new anomalies will be set as blind spots for the agent 

permanently unless the IT administrators take note of this and provide corrective 

actions to the FDD model like updates or upgrades. This is also applicable to situations 

where the IT system’s setup must be altered to meet new business requirements, and 

that may render the static FDD model invalid. Therefore, the FDD models must be 

constantly updated to keep up with the changing environment. 

One of the most important components for proactive fault detection is highly 

competent monitoring software that can monitor all the software used in a complex 

setup. However, most of the monitoring systems available are built to monitor specific 



70 

 

 

software which is commonly used in the industry. They usually include other common 

supporting technology and software such as OS, but most require additional add-on or 

patches to enable them. But they do not cater for uncommon products such as Data 

replicating or ETL software. The only option is to either use the replicating software 

vendor's customized monitoring tool or the IT administrator must write scripts to 

function as basic monitoring. But all of them fill the monitoring needs on a vertical 

basis, meaning they are primarily focus on the overall functionality of the software 

alone, but rarely monitor the inter-operability or relationship from a holistic 

perspective of a multitude of software functioning as an integrated system. Another 

shortcoming with the existing FDD approach is the need for every iteration of the 

diagnosis task, it will require an exhaustive execution of detailed checks on every 

component and attribute of the IT systems, followed by passing statistics into the FDD 

model and deducing the faults. While some checks may be instantaneous, others will 

take a longer time to validate and acquire their statistics. This is time-consuming and 

computationally intensive which may significantly delay the overall fault diagnosis. 

This delay is not desirable especially when the IT system is mission-critical and 

requires a very fast turnaround time in its fault diagnosis and resolution process.  

What is required here is a new approach where the FDD model can be made 

general-purpose enough to suit any combination of software for the IT systems; be it 

database, web application, firewall or network. It should minimize unnecessary steps 

of detailed check procedures and be able to deduce the diagnosis quickly simply by 

looking at the symptoms and refer to its knowledge just an experienced IT 

administrator. It should be flexible to extend or correct its existing model to cover any 

new alteration that occurs in the IT system’s environment. In other words, we consider 

the new FDD model as a new mechanic apprentice that needs to learn on the job to 

perform the checks and deduce the faults from the gathered information under the 

guidance of his supervisor. We expect it to learn in both detecting and diagnosing 

adaptively, starting from an early stage where it will do extensive checks on every 

aspect of the IT system, but once it reaches a certain level of maturity, it should be able 

to determine from its expert knowledge that the certain symptoms or events exhibited 

in the IT system can be related to certain sub-domain of the system’s setup with great 

confidence, similar to the skill difference between an inexperienced and an expert IT 

administrator. 
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There are several common contemporary practices to the approach of Data 

replication’s Fault Diagnosis in academia and industry and they are listed in Table 5 

with their complexity and effort of implementation rated, and this is based on feedback 

from experienced IT administrators from the industry using Delphi method[62].  

Manual approach- this is the basic task where all IT administrators need to do 

especially for the junior staff that is not familiar with the system. They must go through 

a checklist that stipulates the attributes of sub-systems that need to be checked, 

including the corresponding script commands or shell's interface that they need to 

interact with. information or statistics are collected slowly from each sub-system and 

then tally them to determine the cause of the faults. This is a time consuming and 

laborious manual process that is unproductive, but it is still the baseline of any software 

fault finding procedures. 

Best practice - another option is following a well-defined checklist that was well-

prepared by experts. By associating with the symptoms and service errors found, the 

checklist can narrow down the possibility and guide the IT administrator to perform 

only those checks that have the closest relation to the potential faults group. This can 

cut down a significant amount of labour and save time, but it is still a tedious manual 

task, and it is difficult to scale.  

Decision rule-based scripting - another option is to script the process of the above 

checks and run it whenever the faults surfaced. the IT administrator will run the 

specific scripts to check the sub-systems' components, thus automating some of the 

parts of the manual query processes and increase the turnaround time. This approach 

has higher scalability, but it still requires human intervention and expert knowledge to 

decide the exact type of scripts to run and be able to interpret the results to deduce the 

faults.  

Machine learning models (SVM, decision-tree, deep-learning) - researchers have 

used this approach to implement fault diagnosis on various types of machinery and 

other hardware with success[63-66]. It can automate the detection and diagnosis of the 

machinery's faults process, giving a fast and accurate response. However, the pre-

requisite for implemented these supervised learning is that the environment must be 

stable with limited variability. Besides this, the models' pre-requisite is a large set of 

labelled data for its training. Another approach is to engineer the features from 
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unlabelled samples to lead the training which is a significant amount of preparation 

works. on top of that, their designs are usually meant for well-defined systems and 

should thereby any variation in the system's structure or operation, then they must be 

redesigned and recalculated which is laborious. 

Table  5  – Fault Diagnosis Method (low 1 to high 10) 

Method Complexity Effort   Remark 

Manual[67] 3 9 Require medium IT knowledge and skill. Go through a prescribed checklist. Manual, 

inefficient, time consuming, laborious, not scalable. low productivity, cannot cater for 

unforeseen or bespoke setup. 

Best practice, 

decision rule-

based[67] 

4 8 Require medium level skill, a checklist has a decision flowgraph. Improve 

troubleshooting time. still manual, inefficient laborious and time-consuming but superior 

to a manual approach. 

Bayesian network 

model 

7 4 Require a med-high level of knowledge and skill. The target system’s model must be 

pre-known. tightly customized. Rigid design. Difficult to enhance or correct. Need 

redesign. Less time consuming, limited scalability, higher productivity. Require IT 

admin intervention to correct. No research available for DRE 

Machine learning 

model 

5 4 Require a higher level of knowledge and skill.  The target system’s model must be pre-

known. Tightly customized. Less rigid design. Difficult to enhance or correct. Need 

redesign. Less time consuming, scalable, higher productivity.  

No research available for DRE 

4.2. Problem Formulation  

DRE has several systems working together and each system has a list of 

subsystems that comprise of other individual components or smaller sub-system that 

serve the function of the higher sub-system. The diagnosis of the fault is linked closely 

to each of the systems’ hierarchically related sub-systems, and the finer the sub-set, 

the more accurate the diagnosis will be. The diagnosis process and their granularity 

are determined or limited by several factors such as the 1) availability of the data, 2) 

resources to collect them, 3) additional requirements by the IT administrators. 

Referring to the AC reinforcement learning model in section 2.4.3 under chapter 2, the 

set of all the software systems in DRE is represented as, S, and the individual software 

system and their sub-system are represented as sn and snm, respectively. n is the number 

of software and m is the number of sub-systems that software, sn, has. 

The sub-systems have metrics associated with them, where M refers to this set 

of all the metrics is. Each of the metrics is linked to one sub-system’s attribute, m ∈ 

M. The set of all service models is represented by C, and each model, c, is a logical 

model that group those sub-systems together. They support similar services and can 

have multiple metrics. The metric has n-to-1 mapping to a sub-system α: M → S and 

the set of all their mapping is A. The metric has n-to-1 mapping to the models; β: M 

→ C and the set of all their mapping is B.   The model has n-to-n mapping to the sub-
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trained by using the DRE knowledgebase gathered from the earlier learning phase as 

its minibatch. There is a high chance that the neural network will make predictions. In 

such an event, the RL's Critic will run the validation process through the SD module 

which corrects the Q-value and assigns it to the state-action pairs stored in the Q-table, 

as well as updating the knowledgebase. The gradual build-up of the knowledgebase 

will improve the accuracy of DRL’s NN prediction. 

3) High learning phase: By this stage, the DRL agent will have learned all the states-

symptoms that is associated with the faults in the DRE and can predict the best actions-

diagnosis with high accuracy. This is regarded as the exploitation of the DRL’s rich 

build-up of knowledge where it can provide a very quick turnaround time by 

identifying the faults’ matrix without performing excessive checks or validation 

through the SD module. However, the agent also performs a probability-based decision 

between exploitation versus exploration at this time; Exploitation where the DRL 

decides to refer to its knowledgebase to respond to the best action for the DRE’s state, 

and Exploration where the DRL decides to run detailed checks through the SD module 

to get the diagnosis instead of relying on the NN’s prediction. At the low learning 

phase, the probability of exploration will be high. However, this diminishes over time 

when it reaches the high learning phase, where the exploration rate has decayed over 

iterations and the preference shifts towards knowledge exploitation. 

4.4. System Diagnostic (SD) Module 

The DRE comprises of different software and technology working together to 

provide the service.  Each software and technology have a unique list of 

configurations, checks, operations, and attributes. Therefore, the SD Module has 

several groups of check routines that target this software, and within each group are 

sub-routines that query specific areas in the software like privileges, permission, 

process status, usage statistics, for example. Referring to figure 22, the DRL agent 

gives instructions to the SD module to perform the checks against the DRE’s 

environment, ranging from comprehensive top-down checks to selective ones. This is 

analogous to junior workers who need to perform every check to make sure, compared 

with a senior worker who can deduce the exact areas to verify before deducing the root 

cause of the error. The SD module then performs the detailed checks by running a long 

list of command queries and scripts against the DRE’s software. Some of the details 
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collected are the 1) states of their system processes, 2) space availability of directories 

in which the systems' binary files reside and their information are processed, 3) current 

privileges of the system's process, files, accounts that they operate from, 4) details in 

their configurations and parameters that they are using, operating or initializing from, 

5) network connectivity that is required for their operation, 6) statistics of specific 

operations like process backlogs, connectivity delays, abnormal system values. Others 

contain a summary of software-wide statistics which range in the thousands. The result 

is then consolidated and sent back to the RL agent. It is a matrix that presents the 

multiple sub-areas under the DRE across different software about their functional 

status from a high-level perspective. Further details can be made available from the 

diagnostic module upon request, but the vast number of details will be too 

overwhelming for its administrators to go through. The following is a tabulation of the 

output in which each command performing the specific information extraction from 

the various software.  

The SD provides its diagnosed results of the DRE’s software status on the 

participating server hosts, n, at their service group level instead of the technical 

attributes. This is to give an overview of the DRE software’s availability from a 

general administrative perspective, taking into consideration their 1) process 

availability, 2) filesystem’s attributes and permissions, 3) responsiveness to 

administrative interaction, 4) communication functionality, 5) data transfer and input-

output capability, and 6) software’s function and operation status. The specific 

software details can be made available, and they will be connected to the future Fault 

Resolution agent. The four diagnosed service groups in Eq (12) are as follows: 

Database service, sdbsn, Shareplex replication service, srpln, Network and 

communication services, snetn,,  supporting the OS environment, sosen 

𝐷𝑅𝐸′𝑠 𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑒𝑑 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑚𝑎𝑡𝑟𝑖𝑥 = [

𝑠𝑑𝑏𝑠1 𝑠𝑟𝑝𝑙1 𝑠𝑛𝑒𝑡1 𝑠𝑜𝑠𝑒1

𝑠𝑑𝑏𝑠2 𝑠𝑟𝑝𝑙2 𝑠𝑛𝑒𝑡2 𝑠𝑜𝑠𝑒2

… … … …
𝑠𝑑𝑏𝑠𝑛 𝑠𝑟𝑝𝑙𝑛 𝑠𝑛𝑒𝑡𝑛 𝑠𝑜𝑠𝑒𝑛

]    (12) 

 

4.5. Data Replication Environment (DRE)’s State Representation 

It is challenging to define the DRE’s state due to its complex multi-tier software 

setup and the characteristics of the IT applications under its service. Therefore, a direct 
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method is needed to identify a state in a database without time properties, where each 

software’s operation information is mined continuously for anomalies and errors. In 

this research, the use of a matrix is proposed to capture a list of events and process 

statuses of the DRE’s software across multiple sources and target instances, n. 

Therefore, the two sections in the state’s matrix contain information from both their 

logs and process statuses. For the logs, the attributes are a numerical representation of 

the encountered error messages in their respective logs, which are concatenated to 10 

characters long and hashed using Secure Hash Algorithm 1 (SHA1). The following is 

the list of the software’s logs location and their respective variables assigned.  

1. Oracle database’s alert logs with the prefix of ORA-XXX, files exist in the 

location; $ORACLE_BASE/diag/rdbms/DB1/trace/alert_DB1.log, as oralogn. 

2. Shareplex replication’s event_logs with the initial string of “Error”, files available 

in the location at; $VARDIR/log/event_log, as splxlogn. 

3. Network-related Listener’s logs with the prefix of LSNR-XXX, available in 

$ORACLE_HOME/diag/network/log/.log as nwlogn. 

4. OS’s error with the string, err, in /var/log/syslog, as oslogn. 

For the process’s status, the status shows the presence of the DRE’s software 

main processes in the VM host’s background as well as the reachability of remote VM 

from the current VM. The representation is; 1) Oracle DB’s primary process, smon, as 

orastatn. 2) Shareplex replication’s main process, sp_cop, as splxstatn. 3) Oracle’s 

listener's processes and network, lsnrctl, as nwstatn. 4) Ping status from both UNIX 

nodes to one another, as osstatn. 

The services under the different software are represented as; 1) Oracle DB’s as 

orasvcn. 2) Shareplex replication as splxsvcn. 3) Oracle’s listener and network, as 

nwsvcn. 4) Operating system and host’s, as ossvcn. 

Therefore, the final matrix represent the DRE’s state in eq (13). 

𝐷𝑅𝐸′𝑠 𝑠𝑡𝑎𝑡𝑒 =

[
 
 
 
 
 
 
 
 
𝑜𝑟𝑎𝑙𝑜𝑔1

𝑜𝑟𝑎𝑙𝑜𝑔2

𝑠𝑝𝑙𝑥𝑙𝑜𝑔1

𝑠𝑝𝑙𝑥𝑙𝑜𝑔2

𝑛𝑤𝑙𝑜𝑔1

𝑛𝑤𝑙𝑜𝑔2

𝑜𝑠𝑙𝑜𝑔1

𝑜𝑠𝑙𝑜𝑔2 ]
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
𝑜𝑟𝑎𝑠𝑡𝑎𝑡1
𝑜𝑟𝑎𝑠𝑡𝑎𝑡2
𝑠𝑝𝑙𝑥𝑠𝑡𝑎𝑡1
𝑠𝑝𝑙𝑥𝑠𝑡𝑎𝑡2
𝑛𝑤𝑠𝑡𝑎𝑡1
𝑛𝑤𝑠𝑡𝑎𝑡2
𝑜𝑠𝑠𝑡𝑎𝑡1
𝑜𝑠𝑠𝑡𝑎𝑡2 ]

 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
𝑜𝑟𝑎𝑠𝑣𝑐1

𝑜𝑟𝑎𝑠𝑣𝑐2

𝑠𝑝𝑙𝑥𝑠𝑣𝑐1

𝑠𝑝𝑙𝑥𝑠𝑣𝑐2
𝑛𝑤𝑠𝑣𝑐1
𝑛𝑤𝑠𝑣𝑐2

𝑜𝑠𝑠𝑣𝑐1

𝑜𝑠𝑠𝑣𝑐2 ]
 
 
 
 
 
 
 

       (13) 
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Table 6 describes the specific software validation and checks that need to be 

performed to acquire the DRE’s collective status together with the associated details 

that depict their respective software components including the checks are performed 

against them. Each of the software is checked by different OS scripts which have 

encapsulated commands to interrogate them on their respective service groups of logs, 

processes, and services. For various software logs check, the scripts are 

check_alert_log_err.sh, check_event_log_err.sh, check_os_log_err.sh on OracleDB 

with listener, Shareplex and OS. As for the DRE’s software processes checks, 

check_all_processes.sh is used. The last group check is done by check_all_services.sh 

which validates their specific services. 

 

 

 

Table  6  - Memory and logs checks 

DRE’s 

software 

Service Group 

checks 

Software attribute. Area 

of focus  

Detail checks/description Name of Process, logs, 

system views 

OracleDB Process check Process’ stats DBs’ memory process in the OS Smon, pmon  
Process check Operation’s stats DB’s mode of operation V$instance  
Service check Tablespace’s stats Tablespaces have enough space on DBs V$freespace, v$tablespace  
Service check Session’s stats No existing blocking session on both 

DBs 

V$locked_session 

 
Service check Users’ stats User accounts are open and accessible on 

DBs 

V$users 

 
Service check Object’s stats objects’ validity on DBs Dba_objects 

 Alert Log error 

check 

Alert logs Check for exception and errors in both 

alert logs 

Alert_<oracle_sid>.log 

Shareplex  Service check Parameter setting parameters are valid in Shareplex 

instances 

Show param 

 
Process check 

Service check 

Process’s Status and 

operation 

Shareplex’s memory process in the OS Sp_cop, sp_<processes> 

 
Process check 

Service check 

Queue’s status and 

statistics 

Shareplex’s various queues status on both 

nodes 

Capture, export, post …. 

 
Service check Directory’s stats Both directories, $pdir and $vdir, have 

enough free spaces 

$PDIR, $VDIR 

 Log error check Shareplex logs  Shareplex exception in both event logs 

on two nodes 

$VDIR/log/Event_log 

Network Process check Listener Process stats Oracle’s listener process on both nodes Lsnrctl   
Process check 

Service check 

Listener.ora availability, 

and stats 

Listeners’ availability for service on both 

nodes 

Lsnrctl  

 
Process check 

Service check 

Listener’s stats – error or 

available 

Listeners’ operations are valid and not in 

error 

Lsnrctl status 

 Log error check Listeners’ logs Exception and error in logs for both 

listeners  

Listener.log 

 Service check DBs reachability Able to connect to each DBs from 

opposite side 

Tnsping <DB1> 

 Service check Hosts reachability Able to reach each VM host from 

adjacent node 

Ping <host1> 

OS Service check Disk space Free space availability on OS for both 

nodes 

Df -m 

 
Service check Primary conf files  Validate /etc/passwd, /etc/shadow, 

/etc/hosts, /etc/group files 

Os: ls -lt /etc 

 
Process check Network card operation Network card status and availability Os: ifconfig  
Service check CPU resource CPU usage not full Os: sar 
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Service check Memory resource memory usage not high Os: free -m 

 Log error check System log Check for error on system logs Os: check /etc/log/syslog 

4.6. DRE’s Action of Diagnostic Prediction 

The DRE’s state information in 5.5 are the summarized raw inputs that the FDR 

takes in, and part of its diagnostic routine is to show its ability to predict or estimate 

the possible faults with the DRE’s software. Part of the outcome of the FDR is to 

produce the diagnostics report that shows the status of the DRE’s operation at a high 

service level which indicates the software’s respective sub-group and level of errors it 

has, concerning the DRE’s environment state. The outcome is a series of tuples that 

signify the status or condition of the software group and their sub-group services in 

the arrangement of <software_typ> and <software_sub-service_grp>. Their statuses 

are derived from a custom-built script which contains a list of OS commands that 

extract and aggregate all the statistics from the various DRE software into their 

respective sub-system service groups, to show the service outage based on the state’s 

matrix from the environment in the previous chapter. The process of showing the 

service-level exceptions will be later handled by the DRL's NN.  

DRE’s service level diagnosis = {dba, dbb, dbc, dbd, spa, spb, spc, spd, spe, spf, nwa, 

nwb, nwc, osa, osb, osc, osd} 

where,  

1. for OracleDB, dba = DB’s memory process, dbb = DB’s Status, dbc = DB’s 

Account security, dbd = DB’s storage space.  

2. for Shareplex, spa = Splx’s main processes, spb = splx’s console availability, 

spc = splx’s queues operation, spd = splx’s configuration validity, spe = splx’s 

queues’ backlogs, spf = Splx’s DB accessibility.  

3. for the networks, nwa = Network connectivity of Databases’ listeners, nwb = 

Splx’s network connectivity, nwc = VM hosts interconnectivities.  

4. for the OS, osa = hosts’ OS unix account status, osb = hosts’ file storage space, 

osc = hosts’ network card status, osd = hosts’ resource availability.  

4.7. Approximation Between DRE’s Symptoms-States and 

Diagnosis-Actions 

It is not practical for the optimal policy to be used due to the large problem and 

solution space of both the DRE’s states and the actions for diagnosis prediction. This 
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is regarded as a typical curse dimensionality problem and to mitigate this issue, Neural 

Network is used by the DRL-Actor to the DRE’s states as input and then predict the 

best possible action of diagnosis [7]. Although the dataset used for the NN training 

comes from the knowledge base, there is not be enough data initially to train the NN 

model competently as it starts with little or no a-prior knowledge about the DRE’s 

environment. Therefore, knowledge must be accumulated by investing in the initial 

phase of RL through multiple iterations of trial-and-error. The predicted action, apredict, 

from the DRL-Actor NN is compared with the actual action, aactual, that the DRL-Critic 

has validated with the SD module.  

In a typical DRL model, the agent will try to find the best values based on the 

policy, including predicting the potential rewards and actions for the input states. 

Whereas in the Actor-Critic RL model, the Critic has a separate NN to validate the 

Actor’s predicted action toward the environment and get the real score, before 

correcting the actor’s policy. In this thesis, it is proposed that the SD module acts as 

the optimal policy for the DRL which the Critic uses directly. The difference between 

the predicted versus Actual actions forms the mean square error function for the NN 

for optimization. The Critic also assigns the Q-value, which is the maximized reward 

for the state-action pairs and is a normalized value of the MSE value. Section 3.15 has 

described this in detail. 

4.8. FD’s Algorithm 

Algorithm 3 describes the process of how the FD’s SD unit works both as a 

procedure to gather and process information from the DRE’s state, plus the execution 

of the external script to derive the detailed system diagnostics and convert them into 

service outage information. The procedure, p_complete_diagnosis, uses the same 

process but against a list of faults to build up the knowledgebase required for the FD’s 

NN training.  

Algorithm 4 describes the FD’s process from a holistic point of view. This Fault 

Diagnostics is inspired by reinforcement learning but with some customization. The 

DRE is a highly complex software integrated with many parameters and configurations 

that can affect the stability of the system. Therefore, the implementation for the 

research has some deviation from the typical reinforcement learning method. 

However, the principle of learning from experience to build up the knowledge and its 
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exploitation at the latter phase remains. It is a policy-based reinforcement learning and 

the SD's output is a definitive certain goal for each state, taking the SD's service outage 

and diagnostics as the product of its immediate rewards with no consideration for any 

future rewards. The Q-value that defines the state and action are certain with no room 

for any alternate consideration. The usual reinforcement learning's parameters that 

control exploitation-exploration will not be used. This follows the work rules where 

the IT administrator trainee is not allowed to perform the diagnosis independently until 

the Senior IT supervisor has watched over all their tests before allowing them to 

perform the first duty.  

The initial, early and middle learning phases of the FD uses the SD unit 

aggressively to build up the knowledge to a sufficient level for the NN to competently 

predict them. The SD runs the procedure, p_complete_system_diagnosis, which runs 

through the simulated faults of both true positive and negative scenarios that were 

planned in the previous section, followed by running a list of external routines which 

contain a series of system-related commands to gather all the information from various 

sources, including the software's log, processes, and internal operation statistics. It then 

aggregates the information and represents the DRE’s state for that period after the fault 

is injected in. Another external file, system_matrix.txt, is then executed against the 

DRE. This file contains all the system commands that interact with various DRE's 

software elements and service their statistics. This, in turn, is processed and aggregated 

to form the logical representation of the DRE's service outage. At this point, there are 

three types of information: (i) DRE's state, (ii) service outage and (iii) system 

diagnostics. These are considered knowledge and are stored in an external file. Once 

this phase of learning is complete, the next phase of using the NN of handling the 

diagnostics process takes over. This occurs while looping through the simulated fault 

list: inject each fault, acquire the DRE's state, use the NN to predict the service outage 

and lookup from the knowledge on the closest matching system diagnostics 

information based on the service outage details. The loop ends with the execution of 

the fixes to restore the services. 

Algorithm 3 – System diagnostics, for individual and batch run 

###this System Diagnostics routine is for single run 

Input: The state of the DRE 

Output: Service outage and system diagnostics  
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def p_single_system_diagnosis(): 

   all_process_err = execute(check_all_process.sh)  #gather stats on dre software processes 

   all_services_err= execute(check_all_services.sh) #gather stats on dre software services 

   ora_log= execute(check_alert_log.sh)             #scan oracle log for anomaly 

   splx_log= execute(chec_event_log_err.sh)         #scan shareplex log for anomaly 

   lsnr_log= execute(check_listener_log_err.sh)     #scan listener log for anomaly 

   os_log= execute(check_os_log_err.sh)             #scan os log for anomaly 

   all_log_err=aggregate(ora_log, splx_log, lsnr_log, os_log)  #combine all scanned log anomalies 

   system_diagnostics=execute(system_matrix.txt)  #this run a list of external sys cmds #run list of syscmds to 

gather all DRE stats 

   dre_state=join(all_log_err,all_process_err,all_service_err)  #join up all the errors/anomalie to form dre's 

current state  

   service_outage=aggregate(system_diagnostics) 

   knowledgebase.write(dre_state,service_outage,system_diagnostics) 

   return(dre_state, service_outage, system_diagnostics) 

 

###this run through the whole scenario of pre-planned faults to buildup knowledgebase 

Initialization1: learning, Knowledgebase, breakfix_file 

Set the learning rate to zero, med_learning to 80% 

breakfix_file =fault_breakfix.txt 

 

def p_complete_system_diagnosis(): 

   Loop the iteration,i, of reading(breakfix_file): 

      break_cmd = f<breaki> 

      fix_cmd = f<fixi> 

      Check the learning rate.  

      execute(break_cmd)    #inject fault   

      all_process_err = execute(check_all_process.sh)  #gather stats on dre software processes 

      all_services_err= execute(check_all_services.sh) #gather stats on dre software services 

      ora_log= execute(check_alert_log.sh)             #scan oracle log for anomaly 

      splx_log= execute(chec_event_log_err.sh)         #scan shareplex log for anomaly 

      lsnr_log= execute(check_listener_log_err.sh)     #scan listener log for anomaly 

      os_log= execute(check_os_log_err.sh)             #scan os log for anomaly 

      all_log_err=aggregate(ora_log, splx_log, lsnr_log, os_log)  #combine all scanned log anomalies 

      system_diagnostics=execute(system_matrix.txt)  #this run a list of external sys cmds #run list of syscmds to 

gather all DRE stats 

      dre_state=join(all_log_err,all_process_err,all_service_err)  #join up all the errors/anomalie to form dre's 

current state  

      service_outage=aggregate(system_diagnostics) 

      knowledgebase.write(dre_state,service_outage,system_diagnostics) 

   end loop 

 

Algorithm 4 – Fault diagnosis, using SD and NN units 
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Input: The state of the DRE 

Output: Service outage and system diagnostics  

Initialization1: learning, Knowledgebase, breakfix_file 

Set the learning rate to zero, med_learning to 80% 

breakfix_file= fault_breakfix.txt 

Loop the iteration,i, of reading(breakfix_file): 

   break_cmd = f<breaki> 

   fix_cmd   = f<fixi> 

   Check the learning rate.  

   execute(break_cmd)    #inject fault 

     

   ###exploration phase - use SD unit  

   If learning < med_learning, do the exploration phase 

      dre_state, service_outage, system_diagnostics= p_system_diagnosis() 

 

    ##Knowledge exploitation phase - use NN unit  

   If learning is > med_learning then do  

      ##Train NN with data from knowledgebase 

      NN_model=NN_build(knowledgebase)             

      service_outage=round(NN_model.predict(DRE_state)) 

      system_diagnosis=search_knowledgebase(DRE_state,service_outage) 

     

   print(dre_state, service_outage, system_diagnostics) 

   learning rate +=1 

   execute(fix_cmd)   #fix fault 

loop 

4.9. Empirical Analysis 

This section describes the tests conducted for the FD module. The purpose of 

experiments is to determine the effectiveness of the proposed FD method in producing 

the best diagnosis for the DRE under simulated faults situations. Before each 

experiment's iteration, the testing environment DRE's services are restored to the 

baseline where all the DRE’s services are functioning normally. Not all errors 

introduced can result in a service’s disruption. The goal is to ascertain the diagnosis of 

those faults that can disrupt the services and less toward those that are either too minor 

or ineffective to cause major issues to the replication services. However, the test scope 

is limited to faults that are recoverable and not catastrophic failures. In the event of a 

catastrophic failure, the DRE service is irrecoverable and can only be solved by an 

entire system rebuild. 
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4.9.1. Software used for FDR tests 

This section describes the setup, arrangement, and configurations of the 

respective software in the DRE test environment. 

Database: two Oracle DBs are installed on two VMs and each of them houses 

the Test schema that owns 10 tables. One of the DB serves as the source site where 

SQL updates are applied against the Test Schema’s tables. The other DB on the other 

VM serves as the target where it receives the data changes from the source via 

Shareplex. The Test schema tables' structure is identical between the DBs for the 

replication to occur. While the target DB requires no special setup, the source DB must 

have several features enabled, including both archive log mode and supplemental log 

data. The archive log mode enables the DB to archive their redo log files, which 

contain the information of all the DML and DDL operations that had occurred in the 

DB, into a specific file location. The supplemental log data feature enforces the DB to 

log additional information about the DML and DDL which the Shareplex needs for its 

reading operation. The Shareplex requires superuser level privileges on both DBs to 

work properly, with the privilege not only to read system views but also to make 

changes to the table structures. 

Replication tool: The Shareplex were installed on each VM host using the common 

accounts on both the UNIX and Oracle DB. They share the same names for their 

installation directories, as well as privileges in the OS and DB. There are three main 

directories to store the relevant files and attributes: 1) product directory for the 

software binaries and libraries, 2) variable directory for the dynamic or volatile data, 

logs and operational information and, 3) maintenance directory for the administration 

scripts. Both the source and target Shareplex instance operates on TCP port 2100 and 

under the specific hostname set as an environment variable in the start-up scripts. A 

configuration file has been created and activated at the source Shareplex to support the 

replication of the 10 tables from the source DB to the target via one queue.  

Network: the two guests VMs reside on the common host, and they are configured to 

communicate via TCPIP protocol. The addresses used by the VMs are static IP 

addresses that belong to the 192.168.1.X subnets, and they can reach each other on the 

internal network. The next network connectivity required is between the DBs and via 

TNS resolution and managed by the listener. For each of the installed Oracle’s 
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binaries, two network configurations need to be set. The first binary is the listener.ora 

which resolves incoming connection requests to the listener for the Oracle DB. The 

second binary is the tnsnames.ora which informs the oracle client of the address where 

the DB's listener is at. On each VM, the Shareplex instance uses the Oracle client to 

connect to the local Oracle DB to perform its required services and tasks. It does not 

directly connect to the remote DBs using the TNS connectivity, but it is also important 

that both DBs can contact one another through the Oracle network in this experiment.  

Operating system: Both VMs are running on Oracle Linux and their internal activities, 

such as CPU, memory, and storage, are monitored. While hardware failure is 

considered catastrophic, therefore it falls beyond the scope of this thesis, some other 

aspects like excessive usage of the CPU, memory or storage volume are of significant 

concern. This is because they cause both software to seize up or suffer significant 

delays. Furthermore, part of the OS's security involves the management of user and 

group accounts, and each software requires access to the OS to operate their service. 

Therefore, they need to be assessed in the event of locked user accounts or changes to 

permissions. 

Table  7- Faults induction and restoration on DRE software’s component services (service status flag: 0 

– good, 1 – faults) 

Software Component/Services Target for Faults  Fault inducing action Service restoring action  

Databases Memory process PMON, SMON processes availability Kill off PMON process 

Kill off SMON process 

Start oracle instance (which start 

both PMON and SMON) 

 Status DB operational and service status Shutdown and start in mount 

mode 

Open DB for use 

 Account security DB’s System and splx accounts’ status. 

Splx has quota on splx tablespace 

 

Lock up system and splx DB 

account. 

Splx user has no quota on 

tablespace to write 

Unlock system and splx DB user 

account  

Splx has quota to write on 

tablespace 

 DB storage space Amount of free space in system and splx 

tablespaces. 

Shrink tablespace to 100% 

full 

Increase tablespace space to have 

20% of free space 

Shareplex 

replication 

Mmain processes Shareplex main processes availability.   

Sp_cop, Capture, Read, Exp, Imp, Post 

processes 

Kill off individual processes 

 

Restart sp_cop to resume all 

processes 

 Queues’ operation Capture, Export, Import, Post and  

Read’s queues  

Stop the queues’ operations Start the queues’ operations 

 DB accessibility DB connection using splx Unix account 

from current and opposite VM hosts 

Lock DB user account  Unlock DB user account  

Network 

connectivity 

Oracle listeners Source & target Listeners 

Source & target host connect to target DB 

via sqlplus 

Stop the listener process to 

stop user from connecting to 

on-site DBs 

Start the listener process to allow 

user to connect to on-site DBs 

 

 Oracle network files Essential files availability; tnsnames.ora, 

listener.ora  

Delete off network files Restore network files 

 VM hosts Each VM host can reach the opposite node Disable sshd service Enable sshd service 

Host OS Unix account status splx and oracle’s Unix accounts 

 

Lock the Unix user accounts Unlock the Unix user accounts 

 Essential OS system 

files 

Essential Unix files like /etc/hosts  

 

Delete the /etc/hosts file Restore /etc/hosts file 

 Network card status Network service on enps03network cards 

on both hosts 

Disable network card Enable network card 
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4.9.2. The experimental set-up 

The objective of the test is to ascertain the accuracy of the FD module in 

detecting and diagnosing the DRE fault. This is done by simulating a series of software 

component faults that impact the DRE’s systemic service. The outage of a specific 

software service has repercussions for other software component functionality, leading 

to a partial or complete service outage among the software in the DRE. Each of the 

specific simulated faults is induced by running one or more commands either against 

the OS or through their interactive utility. The FD module will interact with the DRE 

under these fault simulations to build up its competency and its diagnosing competency 

will be assessed after its training routines. Table 7 below lists the various DRE 

software’s core services or components, the intended functionalities to target, together 

with the corresponding actions to induce and restore their specific faults. The 

experiments are run on two VM running on Linux OS and both have Oracle DB and 

Shareplex installed on them. Each VM has 4GB of RAM and 100GB of hard disk 

storage. The OS of the Shareplex is Oracle 12 Enterprise edition, version 9.1. The 

network protocol that both VMs use is TCPIP. 

Table 8 - Detailed Test for Fault Diagnostic module, with break-fix routines 

Software Function Attributes Commands Break fix 

Databas

es 

memory 

process 

PMON 

SMON 

Ps -ef|grep smon|grep DB1|grep -v 

grep 

Ps -ef|grep smon|grep DB2|grep -v 

grep 

export ORACLE_SID=DB1 && echo 

"shutdown immediate;"|sqlplus -s 

"sys/password as sysdba" 

export ORACLE_SID=DB2 && echo 

"shutdown immediate;"|sqlplus -s 

"sys/password as sysdba" 

export ORACLE_SID=DB1 && echo 

"startup;"|sqlplus -s "sys/password as 

sysdba" 

export ORACLE_SID=DB2 && echo 

"startup;"|sqlplus -s "sys/password as 

sysdba" 

 Status DB’s mode is open, not 

restricted 

DB available for use 

Select open_mode from v$database;   

 Account 

security 

System, splx account not 

locked 

Splx has quota on splx 

tablespace 

 

Select username, account_status from 

dba_users where 

account_status!=’OPEN’; 

Select username, tablespace_name, 

max_bytes from dba_ts_quotas where 

username=’SPLX’; 

echo "Alter user splx account 

lock;"|sqlplus -s 

"system/password@DB1" 

echo "alter user splx quota 0 on 

USERS;"|sqlplus -s 

"system/password@DB1" 

echo "Alter user splx account 

unlock;"|sqlplus -s 

"system/password@DB1" 

echo "alter user splx quota unlimited on 

USERS;"|sqlplus -s 

"system/password@DB1" 

 storage 

space 

System Tablespace’s free space 

>20% 

Splx tablespae’s free > 20% 

--refer to script ?? Alter tablespace USERS datafile ‘XXX’ 

autoextend on 100m; (??) 

Shareple

x 

main 

processe

s 

Sp_cop is running 

Exp, imp,post are running 

ps -ef|grep sp_cop|grep -v grep 

ps -ef|grep sp_ocap|grep -v grep  

ps -ef|grep sp_opst_mt|grep -v grep  

ps -ef|grep sp_xport|grep -v grep  

ps -ef|grep sp_ordr|grep -v grep  

ps -ef|grep sp mport|grep -v grep 

echo password|su - splx -c 

$MDIR/shutdown.sh 

echo password|su - splx -c 

$MDIR/startup.sh 

 queues 

operatio

n 

Capture, export, import, post, 

read status = Running 

echo "show capture"|sp_ctrl 

echo "show export"|sp_ctrl 

echo "show import"|sp_ctrl 

echo "show post"|sp_ctrl 

echo "show read"|sp_ctrl 

 

echo "stop capture"|sp_ctrl 

echo "stop export"|sp_ctrl 

echo "stop import"|sp_ctrl 

echo "stop post"|sp_ctrl  

echo "stop read"|sp_ctrl 

echo "start capture"|sp_ctrl 

echo "start export"|sp_ctrl 

echo "start import"|sp_ctrl 

echo "start post"|sp_ctrl  

echo "start read"|sp_ctrl 

 DB 

accessibi

lity 

Source Splx can connect to 

source DB 

Target Splx can connect to 

target DB 

splx@host1> echo "select 1 from 

dual;"|sqlplus splx/splx@DB1 

splx@host2> echo "select 1 from 

dual;"|sqlplus splx/splx@DB2 

export ORACLE_SID=DB1 && echo 

"shutdown immediate;"|sqlplus -s 

"sys/password as sysdba" 

export ORACLE_SID=DB2 && echo 

"shutdown immediate;"|sqlplus -s 

"sys/password as sysdba" 

export ORACLE_SID=DB1 && echo 

"startup;"|sqlplus -s "sys/password as 

sysdba" 

export ORACLE_SID=DB2 && echo 

"startup;"|sqlplus -s "sys/password as 

sysdba" 

Network 

connecti

vity 

Databas

es’ 

listeners 

Source Listener is running  

Target listener is running 

Source host connect to target 

DB via sqlplus 

Target host connect to source 

DB via sqlplus 

oracle@host1> ps -ef|grep lsnr|grep -v 

grep 

oracle@host1> tnsping DB2 

oracle@host2> tnsping DB1 

$ORACLE_HOME/bin/lsnrctl stop 

 

#break listener without proper db entries 

Rm 

$ORACLE_HOME/network/admin/listen

er.ora_bak 

mv 

$ORACLE_HOME/network/admin/listen

er.ora listener.ora bak 

$ORACLE_HOME/bin/lsnrctl start 

 

#restore listener services 

cp 

$ORACLE_HOME/network/admin/liste

ner.ora.orig listener.ora 

Lsnrctl restart 
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Lsnrctl restart 

 

#break tnsnames.ora 

Rm 

$ORACLE_HOME/network/admin/tnsna

mes.ora_bak 

mv 

$ORACLE_HOME/network/admin/tnsna

mes.ora tnsnames.ora_bak 

#restore tnsnames.ora 

mv 

$ORACLE_HOME/network/admin/tnsn

ames.ora_orig tnsnames.ora 

 Replicati

on tool 

Socket_test from source to 

target  

Socket_test from target to 

source 

splx@host1> ssh host2 

splx@host2> ssh host1 

Host1>Echo “password” | sudo systemctl 

stop ssh.service 

Host2>Echo “password” | sudo systemctl 

stop ssh.service 

Host1> Echo “password” | sudo 

systemctl start ssh.service 

Host2> Echo “password” | sudo 

systemctl start ssh.service 

 VM 

hosts 

Host 1 can ping host 2 

Host 2 can ping host 1 

oracle@host1> ping host2 

oracle@host1> ping host1 

Host1> ifconfig enpsp03 down 

Host2> ifconfig enpsp03 down 

Host1> echo password| su -c “shutdown -

h now” 

Host2> echo password| su -c “shutdown -

h now” 

Host1> ifconfig enpsp03 up 

Host2> ifconfig enpsp03 up 

 

Manual power on host1 or host2 

Host OS unix 

account 

status 

Unix account are open & not 

locked on host1  

Unix account are open & not 

locked on host2 

root@host1> passwd --status splx 

root@host1> passwd --status oracle 

root@host2> passwd --status splx 

root@host1> passwd --status oracle 

root@host1> passwd -l splx 

root@host1> passwd -l oracle 

root@host2> passwd -l splx 

root@host1> passwd -l oracle 

root@host1> passwd -u splx 

root@host1> passwd -u oracle 

root@host2> passwd -u splx 

root@host1> passwd -u oracle 

 storage 

space 

/ has free space > 10% on host1 

/ has free space > 10% on host2 

oracle@host1> df -h |grep /u01|awk 

‘{print $5}’ 

oracle@host2> df -h |grep /u01|awk 

‘{print $5}’ 

--not tested --not tested 

 network 

card 

status 

Ifconfig enps03 is up on host1 

Ifconfig enps03 is up on host2 

oracle@host1>ifconfig enps03|grep -i 

up 

oracle@host2>ifconfig enps03|grep -i 

up 

Host1> ifconfig enpsp03 down 

Host2> ifconfig enpsp03 down 

Host1> ifconfig enpsp03 up 

Host2> ifconfig enpsp03 up 

 memory 

utilizatio

n 

Vmstat < 95% used on host1 

Vmstat < 95% used on host2 

oracle@host1> free | grep Mem | awk 

{print $4/$2 * 100.0}' 

oracle@host2> free | grep Mem | awk 

{print $4/$2 * 100.0}' 

  ??? 

 

Table 8 lists the details for the fault inducing and resolving routines for all the 

DRE’s software various services and components. For the DBs, the simulated faults 

will impact Oracle’s primary memory process such as SMON and PMON. A failure 

in one of these processes will cause the DB service to stop. The script will then perform 

a root level kill to simulate the DB outage and a start-up command via DB’s admin 

level is required to restore it.  

Another feature is the operational status of the DB. If the database is open, then 

users can log in and interact with it. However, if it is brought down to mount mode, 

then the DB service will no longer be available. A script will start the DB in mount 

mode, and another will change it to open. The user account, SPLX, that the Shareplex 

requires for interacting with the DB is critical to the overall operation. If the account 

is not open or locked, then Shareplex’s replication service can no longer function. The 

fault-inducing and correcting scripts will modify the user account status to be in open 

or locked mode. 

The Shareplex also require a user account to have a list of DB level privileges to 

function, so scripts that simulate the absence and presence of these privileges were 

prepared. Likewise, for the schema objects that the user account owns and access, the 

Shareplex creates a list of DB objects under the user account during installation and 

continues to use them for its operation. Should there be any changes to their 
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accessibility to the user account or the validity of the object, the Shareplex will 

malfunction. Scripts were written to simulate this error.  Another factor to note is the 

availability of free space within DB for the Shareplex to operate on. If there is 

insufficient space, the Shareplex will not be able to write data into the DB, resulting 

in the suspension of its service. Scripts that constrict and free up the storage space were 

written.  

For the Shareplex’s fault simulation, it follows a similar pattern to the DB, with 

the focus on their instance’s primary processes that run on the OS. Their service 

disruption and restoration are done by scripts that execute system-level commands 

against their console. Similar actions are performed against the Shareplex queues in 

altering their status and operations for inducing and reverting the faults. The Shareplex 

also needs to be able to connect to the DBs from different nodes in the DRE setup. and 

this is done via network and oracle’s essential network files setup. The fictitious faults 

on the setup are simulated with scripts to disable and enable the network cards, remove, 

and reinstate the tnsnames.ora and listener.ora, as well as shutting down and starting 

up the listener processes.  

For the network inter-connectivity, there are two main areas in which the fault 

can be induced for this setup: 1) the connection via the TCPIP protocol at the OS level 

between the two VM hosts and, 2) the ability of the software’s client to connect to the 

current and remote DBs through the oracle’s network grid which comprises of listener 

services, OCI library, and oracle-related network files setup. The scripts that perform 

the opposing functions of fault induction and restoration target the network card’s 

status, the listener process availability and status, the presence and validity of the 

network configuration files, as well as the OS’ network files under the /etc folders. 

Finally, in the OS, the emphasis is on 1) the Unix user accounts that Oracle and 

Shareplex need to use throughout their services, 2) the availability of free space on the 

disk partitions that their home and operational directories are installed on, 3) the 

resource availability in the OS which both Oracle and Shareplex can operate under and 

4) status of the network card. In the first group, their scripts that can lock up and revert 

the Unix account’s status were written. In the second group, a script to simulate an 

error by changing the permissions of the Unix accounts, thereby suspending their 

ability to write, was written. Finally, in the third group, a script was written to shut 
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down or restore the network connectivity services by disabling and re-enabling the 

network card. For each of the software’s core functionalities, two of its attributes will 

be assessed and a metric measuring their service normality is associated with them. A 

value of 0 indicates a normal state whereas >0 indicates an abnormality. The following 

tables 9 and 10 lists all the software components and the respective commands that can 

simulate and restore their faults.  

These tests do not include malicious or terminal faults to the software as they are 

either irreversible or require a substantial amount of effort to restore. Examples of such 

faults are the corruption or deletion of the software’s binaries or libraries, deletion of 

DB's repository, file-based data store and erasure of OS’ disk mount-point. The neural 

network that the RL used for its rewards-action prediction is made up of 3 hidden 

layers of 30 nodes. It is trained with data in 50 batches and 500 epochs. Different 

configurations and combinations of neural networks have been tested, and this setup 

was selected based on the better results with the least fluctuations.  

4.9.3. True Negative test results 

Apart from the data obtained from the faults-inducing scripts in the previous 

section, another group of scripts have been created to induce software faults that have 

no impact on their DRE’s software functionalities and services. This is to form a set 

of true negative data to support and enrich the dataset for the NN’s training so that the 

NN can be competent enough to recognize the environment’s state data that can cause 

service disruption.  

For the script to induce this group of faults, research has been made across the 

DRE’s software to identify faults that have a high chance of occurring, but do not have 

a direct consequential effect on the entire software’s stability or create an outage on 

the DRE’s functionalities. This is verified by the SD module which confirms the 

presence of a service disruption. For this group, the service disruption matrix values 

should all be zero. Once these faults are induced, the software will capture their 

exceptions and events in their event or trace logs, which in turn are detected by the FD 

module. Table 9 lists the faults on the DRE software that are considered to have no 

direct impact on the DRE’s services.  
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4.10. Evaluation Criteria and Benchmarking  

This section describes how the FD module is evaluated and the criteria used in 

its assessment. The faults statistics cover the four main DRE's software: Database, 

Replication, Network, operating system, and service level. They are represented by a 

vector with each element representing the service. Within each element is a scalar 

value from 0 to 1. Values >0 indicate the presence of a fault, with greater values related 

to greater severity of the fault, while a value of 0 means that all components are 

operating normally.  

The vectors form the basis for the primary evaluation criteria. The statistical 

differences among fault diagnosis of DRE's states can indicate the progress of the 

DRE's overall service. Each diagnosis is correlated to the detailed diagnostic statistics 

that were generated by the FD module which will be vital for the next module of fault 

resolution. There are two groups of evaluation criteria for the FD’s diagnosis: the 

quantitative and qualitative criteria. The quantitative criteria measure the level of the 

severity value of the faults under the software's service group within a normalized 

range, between the prediction and the actuals. The mean square error test applies to 

this group. The qualitative criteria are on the group classification of the software's 

service's faults. It is regarded as a binary classification too; with zero indicating normal 

operation, and values greater than 0 to indicating the presence of faults. The binary 

classification test applies to this group, and it measures the performance in terms of 1) 

sensitivity: the measure of how good the model is in detecting the positives, 2) 

Specificity: if it can avoid the false positives, and 3) Precision: the number of True 

Positive it can find that are relevant.  A receiver operating characteristic (ROC) graph 

is plotted between the sensitivity and specificity to evaluate the quality or performance 

of the diagnostic tests. The formula for the statistical measurement of the FD’s 

classification test is listed in eq (14). The prediction results are also summarized into 

a Confusion matrix. 

Sensitivity/recall = sum (TP) / [sum (TP) + sum (FN)]  (14)   

Specificity = sum (TN) / [sum (TN) + sum (FP)] 

Precision = sum (TP) / [sum (TP) + sum (FP)] 
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where TP is True-Positive, FP is False-Positive, TN is True-Negative, FN is 

False-Negative. 

 For the quantitative assessment, the accuracy of the FD module’s DRL-NN 

prediction is measured against the output from the SD module. Both vectors’ 

difference is calculated using the Mean Average Square Error (MASE) to assess their 

accuracy. This is used to evaluate if the NN needed to be re-organized and optimized 

for improved performance. 

4.10.1. Test results 

This section describes the results obtained from the FD module after it has 

completed the training and is subjected to the evaluation test processes. By this stage, 

the FD module has been trained thoroughly and it is regarded to have achieved the 

expert level of fault diagnostic capability. The minimum expectation of its prediction 

accuracy internally is expected to reach 85% accuracy or greater. A sample of the 

DRE’s states, including both the predicted and actual service outage results, is shown 

in Table 9.  

1) The DRE state data is derived from the information gathered against the 

DRE’s software components from their logs, internal system statistics, and monitoring 

after a fault is simulated.  

2) The FD module predicted the service outage results after it has received the 

DRE input based on its learned NN.  

3) The SD module produced detailed results by running a list of diagnostic 

routines against the DRE environment to derive and aggregate the actual statistics.  

4) The classification of the outage results is derived by comparing the sum of the 

predicted results’ values against the actual service outage results.  

5) The MASE score is calculated based on the difference in the vectors’ values 

between the predicted and actual results.  Table 10 shows the raw output from the 

simulated test. 

Table  9 - Results of service outage prediction & scores against DRE’s state 

DRE State Service outage Predicted  Service outage Actual with 

rounding 

Classes MASE 

[0,64655058,76223968,0,0,0,0,643513

81] [1,0,1,0,0,0,0,0] [1,0,0,0,0,0,0,0] 

[[6,1,0,1,3,1],[2,2,1,1,0,0],[1,0,0,0,0,0],[0

,0,0,0,0,0],[0,0,0,0,0,0]] 

[[6,1,0,1,3,1],[2,2,1,1,0,0],[1,0,0,0,0,

0],[0,0,0,0,0,0],[0,0,0,0,0,0]] 

TP 0.6 
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[46968001,0,0,0,0,0,0,64351381] 

[0,1,0,0,0,0,0,0] [0,1,0,0,0,0,0,0] 

[[0,0,0,1,0,2],[2,2,2,1,0,0],[1,0,0,0,0,0],[0

,0,0,0,0,0],[0,0,0,0,0,0]] 

[[0,0,0,1,0,2],[2,2,2,1,0,0],[1,0,0,0,0,

0],[0,0,0,0,0,0],[0,0,0,0,0,0]] 

TP 0.3 

[46968001,0,0,0,0,0,0,64351381] 

[0,1,0,0,0,0,0,0] [0,1,0,0,0,0,0,0] 

[[0,0,0,1,0,2],[2,2,2,1,0,0],[1,0,0,0,0,0],[0

,0,0,0,0,0],[0,0,0,0,0,0]] 

[[0,0,0,1,0,2],[2,2,2,1,0,0],[1,0,0,0,0,

0],[0,0,0,0,0,0],[0,0,0,0,0,0]] 

TP 0.2 

[46968001,0,0,0,0,0,0,0] 

[0,0,1,0,0,0,0,0] [0,0,0,0,0,0,0,0] 

[[6,1,0,1,3,0],[0,0,0,0,0,0],[0,0,0,0,0,0],[0

,0,0,0,0,0],[0,0,0,0,0,0]] 

[[6,1,0,1,3,0],[0,0,0,0,0,0],[0,0,0,0,0,

0],[0,0,0,0,0,0],[0,0,0,0,0,0]] 

TP 0.1 

[46968001,0,0,0,0,0,0,64351381] 

[0,1,0,0,0,0,0,0] [0,1,0,0,0,0,0,0] 

[[0,0,0,1,0,2],[2,2,2,1,0,0],[1,0,0,0,0,0],[0

,0,0,0,0,0],[0,0,0,0,0,0]] 

[[0,0,0,1,0,2],[2,2,2,1,0,0],[1,0,0,0,0,

0],[0,0,0,0,0,0],[0,0,0,0,0,0]] 

TP 0.6 

[0,0,0,0,0,0,0,64351381] 

[0,1,0,0,0,0,0,0] [0,1,1,0,0,0,0,0] 

[[2,0,3,0,0,1],[2,2,1,1,0,0],[1,0,0,0,0,0],[0

,0,0,0,0,0],[0,0,0,0,0,0]] 

[[2,0,3,0,0,1],[2,2,1,1,0,0],[1,0,0,0,0,

0],[0,0,0,0,0,0],[0,0,0,0,0,0]] 

TP 0.0 

[46968001,0,0,0,0,0,0,0] 

[0,0,0,0,0,0,0,0] [0,0,1,0,0,0,0,0] 

[[4,0,4,1,0,1],[0,0,1,0,0,0],[0,0,0,0,0,0],[0

,0,0,0,0,0],[0,0,0,0,0,0]] 

[[4,0,4,1,0,1],[0,0,1,0,0,0],[0,0,0,0,0,

0],[0,0,0,0,0,0],[0,0,0,0,0,0]] 

TP 0.3 

[46968001,0,0,0,0,0,0,0] 

[0,0,0,0,0,0,0,0] [0,0,1,0,0,0,0,0] 

[[4,0,4,1,0,1],[0,0,1,0,0,0],[0,0,0,0,0,0],[0

,0,0,0,0,0],[0,0,0,0,0,0]] 

[[4,0,4,1,0,1],[0,0,1,0,0,0],[0,0,0,0,0,

0],[0,0,0,0,0,0],[0,0,0,0,0,0]] 

TP 0.0 

[0,0,0,0,0,0,0,0] [0,0,0,0,0,0,0,0] 

[0,0,1,0,0,0,0,0] 

[[3,0,4,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0],[0

,0,0,0,0,0],[0,0,0,0,0,0]] 

[[3,0,4,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,

0],[0,0,0,0,0,0],[0,0,0,0,0,0]] 

TP 0.1 

[0,0,0,0,0,0,0,0] [0,0,0,0,1,1,0,0] 

[1,1,0,1,1,1,0,0] 

[[0,0,0,0,0,2],[0,4,2,2,0,0],[3,2,1,0,0,0],[0

,0,0,0,0,0],[0,0,0,0,0,0]] 

[[0,0,0,0,0,2],[0,4,2,2,0,0],[3,2,1,0,0,

0],[0,0,0,0,0,0],[0,0,0,0,0,0]] 

TP 0.2 

…. …. …. … …. 

[0,0,0,0,0,0,0,0] [0,0,0,0,1,1,0,0] 

[1,1,0,0,1,1,0,0] 

[[0,0,0,0,0,2],[0,4,2,2,0,0],[2,2,0,0,0,0],[0

,0,0,0,0,0],[0,0,0,0,0,0]] 

[[0,0,0,0,0,2],[0,4,2,2,0,0],[2,2,0,0,0,

0],[0,0,0,0,0,0],[0,0,0,0,0,0]] 

TP 0.0 

[58729172,0,0,0,0,0,0,0] 

[0,0,0,0,0,0,0,0] [0,0,0,0,0,0,0,0] 

[[0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0],[1

,0,0,0,0,0],[0,0,0,0,0,0]] 

[[0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,

0],[0,0,0,0,0,0],[0,0,0,0,0,0]] 

TN 0.2 

[0,0,0,0,0,0,0, 28387490] 

[0,0,0,0,0,0,0,0] [0,0,0,0,0,0,0,0] 

[[0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0],[0

,0,0,0,0,0],[0,0,0,0,0,0]] 

[[0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,

0],[0,0,0,0,0,0],[0,0,0,0,0,0]] 

TN 0.0 

[34823972, 58729172,0,0,0,0,0,0] 

[0,0,0,0,0,0,0,0] [0,0,0,0,0,0,0,0] 

[[0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0],[0

,0,0,0,0,0],[0,0,0,0,0,0]] 

[[0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,

0],[0,0,0,0,0,0],[0,0,0,0,0,0]] 

TN 0.1 

[0, 82736461,0,0,0,0,0,0] 

[0,0,0,0,0,0,0,0] [0,0,0,0,0,0,0,0] 

[[0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0],[0

,0,0,0,0,0],[0,0,0,0,0,0]] 

[[0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,

0],[0,0,0,0,0,0],[0,0,0,0,0,0]] 

TN 0.1 

 

 

Table 10 – Outputs from SD’s simulated tests 

*** break ****   export ORACLE_SID=DB1 && echo "shutdown immediate;"|sqlplus -s "sys/password as sysdba" 

DRE log stats,DRE proc stats,DRE srvc stats = [0,64655058,76223968,0,0,0,0,0] [1,0,0,0,0,0,0,0] [1,0,0,0,0,0,0,0] 

Diag service fault= [[0,0,0,1,0,1],[2,2,1,1,0,0],[1,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0]] 

DRE diagnose metrics= [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0] 

*** break ****   export ORACLE_SID=DB2 && echo "shutdown immediate;"|sqlplus -s "sys/password as sysdba" 

DRE log stats,DRE proc stats,DRE srvc stats = [0,0,0,0,0,0,0,0] [0,1,0,0,0,0,0,0] [0,1,0,0,0,0,0,0] 

Diag service fault= [[0,0,0,0,0,1],[2,2,1,1,0,0],[1,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0]] 

DRE diagnose metrics= [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0,0,0,0,0,0,0,0] 

*** break ****   echo "Alter user splx account lock;"|sqlplus -s "system/password@DB1" 

DRE log stats,DRE proc stats,DRE srvc stats = [0,0,0,0,0,0,0,0] [0,0,0,0,0,0,0,0] [0,0,0,0,0,0,0,0] 

Diag service fault= [[0,0,0,1,0,1],[0,0,1,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0]] 

DRE diagnose metrics= [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 

*** break ****   echo "alter user splx quota 0 on USERS;"|sqlplus -s "system/password@DB1" 

DRE log stats,DRE proc stats,DRE srvc stats = [0,0,0,0,0,0,0,0] [0,0,0,0,0,0,0,0] [0,0,0,0,0,0,0,0] 

Diag service fault= [[0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0]] 

DRE diagnose metrics= [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 

*** break ****   echo password|su - splx -c $MDIR/shutdown.sh 

DRE log stats,DRE proc stats,DRE srvc stats = [0,0,0,0,0,0,0,0] [0,0,1,0,0,0,0,0] [0,0,0,0,0,0,0,0] 

Diag service fault= [[6,1,0,1,3,0],[0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0]] 

DRE diagnose metrics= [1,1,1,1,1,1,1,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 

*** break ****   echo "stop capture"|sp_ctrl && echo "stop export"|sp_ctrl 

DRE log stats,DRE proc stats,DRE srvc stats = [0,0,0,0,0,0,0,0] [0,0,0,0,0,0,0,0] [0,0,1,0,0,0,0,0] 

Diag service fault= [[3,0,2,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0]] 

DRE diagnose metrics= [0,1,0,1,0,1,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 

*** break ****   echo "stop capture"|sp_ctrl && echo "stop import"|sp_ctrl 

DRE log stats,DRE proc stats,DRE srvc stats = [0,0,0,0,0,0,0,0] [0,0,0,0,0,0,0,0] [0,0,1,0,0,0,0,0] 

Diag service fault= [[3,0,2,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0]] 

DRE diagnose metrics= [0,1,0,1,0,1,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 

*** break ****   echo "stop capture"|sp_ctrl && echo "stop post"|sp_ctrl 

DRE log stats,DRE proc stats,DRE srvc stats = [0,0,0,0,0,0,0,0] [0,0,0,0,0,0,0,0] [0,0,1,0,0,0,0,0] 

Diag service fault= [[2,0,2,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0]] 

DRE diagnose metrics= [0,1,1,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 

*** break ****   echo "stop capture"|sp_ctrl && echo "stop read"|sp_ctrl 

DRE log stats,DRE proc stats,DRE srvc stats = [0,0,0,0,0,0,0,0] [0,0,0,0,0,0,0,0] [0,0,1,0,0,0,0,0] 

Diag service fault= [[2,0,3,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0]] 

DRE diagnose metrics= [0,1,0,0,1,0,0,1,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 

*** break ****   echo "stop export"|sp_ctrl && echo "stop import"|sp_ctrl 

DRE log stats,DRE proc stats,DRE srvc stats = [0,0,0,0,0,0,0,0] [0,0,0,0,0,0,0,0] [0,0,1,0,0,0,0,0] 

Diag service fault= [[2,0,2,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0]] 

DRE diagnose metrics= [0,0,0,1,0,1,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 
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*** break ****   echo "stop export"|sp_ctrl && echo "stop post"|sp_ctrl 

DRE log stats,DRE proc stats,DRE srvc stats = [0,0,0,0,0,0,0,0] [0,0,0,0,0,0,0,0] [0,0,1,0,0,0,0,0] 

Diag service fault= [[3,0,2,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0]] 

DRE diagnose metrics= [0,0,1,1,0,1,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 

*** break ****   echo "stop capture"|sp_ctrl && echo "stop export"|sp_ctrl &&  echo "stop import"|sp_ctrl 

DRE log stats,DRE proc stats,DRE srvc stats = [0,0,0,0,0,0,0,0] [0,0,0,0,0,0,0,0] [0,0,1,0,0,0,0,0] 

Diag service fault= [[3,0,3,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0]] 

DRE diagnose metrics= [0,1,0,1,0,1,0,1,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 

….. 

4.10.2. Service outage classification results 

The test is conducted with 80 fault inducing scripts. 30 of them have a direct 

effect on the software’s functionalities which impact the DRE’s software services, and 

50 of them do not.  It is expected that the FD module can predict accurately for both 

groups. The results are split into qualitative and quantitative groups. Table 11 is the 

tabulation of the prediction’s result classes in a confusion matrix.  The results showed 

that the SD module can predict the group of service outages concerning the 

information received from the DRE’s environment. While it has a high capability in 

recognizing most of the induced faults that can affect the DRE’s software 

functionalities, it fares less well when it comes to the detection of those in the other 

groups. Based on the result, the FD’s sensitivity is 0.87, specificity is 0.98, precision 

is 0.871. The SD module has been shown to be accurate enough that its prediction can 

produce the correct category of service outage for the given environment state’s data 

input. Compared to the other published research works, the FD’s results are 

comparative in acceptable term for the respective domain of application [68-70]. It has 

the competency to differentiate if the inputs are related to DRE’s service 

functionalities. In the next section, the accuracy of true-positive predictions is 

discussed.  

Table  11- Confusion matrix of the classification of the service outage’s prediction 

N=80 
 

Predicted: Yes 
 

Predicted: No 

Actual: Yes 
 

27(TP) 4(FN) 

Actual: No 
 

1(FP) 49(TN) 

4.10.3. Service outage prediction accuracy 

For this test, The SD module forms the baseline against which the FD’s 

predictions are measured against. Each value in the service outage results produced by 

both the FD and SD is calculated using the MSE approach, and they are summed up 
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better as it progresses with the iterations of interactions produce more data for its NN’s 

training minibatch and thereby, improves its prediction accuracy rate. By the end of 

its learning phase, it has achieved an expert level and is able to recognize the state 

input to predict the service outage. The results from the experiments had proven its 

capability. The entire content of this chapter has been published with the Australasian 

Database Conference 2020[71]. In the next chapter, the next module called fault 

restoration is discussed. 
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CHAPTER 5: DESIGNING THE FAULT 

RESOLUTION (FR) MODULE 

Chapter 5 presents the Fault Resolution (FR) module with its design architecture 

and operations, testing, and results analysis. 

5.1. Adaptive Fault Resolution (FR) Module Design 

The Fault Resolution (FR) module performs the act of resolving the faults 

against DRE after it receives the inputs from the SD module on the service outages, 

and it uses the same architecture as the FD module which has the objective of creating 

an expert medium that can able to decipher the possible software's service outages 

based on the DRE input without the need of running through a time-consuming, 

resource-intensive and fine-grained system diagnostics every time throughout its 

production's operation. It also serves as a repository of correlating the specific list of 

outages to the respective group of diagnostic information that has been gathered and 

curated, for the FR module to follow up. The FR module has a similar setup but serves 

another function, which is to decipher the service outage matrix to the required actions 

that can resolve the faults to restore the service. Once the FR module is trained fully, 

it can prescribe a series of corrective actions for the DRE's service outages that are 

obtained via the SD module. The DRE responds to the SD module with its new state. 

if the SD's analysis on the DRE and decides that it no longer acknowledge any DRE's 

related outages, it completes the fault diagnostics and resolution cycle. Else it will keep 

to the FR module for the next course of action. 

The FR is based on the following outlines: 1) there is a finite number of corrective 

actions that can be taken to resolve a finite number of faults within the DRE. The DRE 

has several software require configuration setting perfectly tuned to interoperate 

harmoniously. So, a single fault can not only cause one direct outage, but it will affect 

other and create a cascading effect. Fixing the cascaded service faults requires some 

insights into the software element's attributes and function, where a series of 

appropriate actions is chosen by the FR module to restore the elements' function. 2) it 

may take one or more correction iteration before the faults can be resolved. it is 
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in providing solutions quickly without invoking any action on the SC module. this is 

considered exploitation of its rich expert knowledgebase. However, it also performs a 

probability calculation to determine whether it should continue to rely on its 

knowledgebase or take a chance to explore for potential newer actions. 

 Like the FD module's DRL, the balance between exploitation vs exploration is 

mutually inverse. For the exploration phase, in this DRL setup, it is referred to as the 

use of FR and SC module to ascertain the corrective actions. for the exploitation phase, 

the module relies on its build-up knowledgebase as a reference. this is to minimize the 

chance of getting stuck in local optima. Through the learning phase from low, medium 

to expert, the probability of the exploration starts high whereas the exploitation rate is 

low. As the learning interaction goes, both phases decrease and increase respectively 

till they reach the end of the expert phase. By the end of the phase, the module favours 

the use of its knowledgebase instead of exploring new ones. 

5.1.2. System Correction (SC) module 

To guide the FR's DRL in its path to find the appropriate action to respond to the 

information generated by the SD module, the system correction (SC) module serves as 

the guide. The SC's purpose is to search through its repository for the appropriate 

actions to correct the SD module's predicted service outages, using the service outage 

related system diagnostics statistics. The SC module serves only as the passive 

reference to validate the FR module's output and it doesn't play the proactive role as 

the intent of the FR module is to be trained up to a level that it knows the corrective 

actions to take for any given service outages event. For a certain software element's 

faults, there are multiple corrective solutions to use and at times, it requires more than 

one corrective action before their faults can be resolved. However, instead of randomly 

running through every combination of the corrective actions, the SC module chooses 

the appropriate actions, much like the equivalent of having an expert IT administrator 

guiding the junior on the appropriate action to take for a given identified fault.  

Referring to figure 28, the SC module receives the FD module's service outage 

matrix, and it can use the knowledgebase to lookup for the corresponding system 

diagnostics detailed statistics. each entity in the system diagnostics statistics is related 

to a vector of corrective action (CA) for that software element's attributes and function. 

the correlations have pre-determined like an IT troubleshooting guide except that the 
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guide recommends a series of checks to determine the actions whereas the fault-

correction matrix bypasses the checks and prescribe the actions. This is like an 

experienced IT administrator who knows what to do when he sees a certain faulty 

situation. 

The SC module comprises a multitude of libraries of external OS-based 

commands that interact with the software elements and make changes. These libraries 

are comprehensive and are maintained in accordance with each software's groups 

domain such as Oracle DB, Shareplex, network and OS. each of the scripts that are 

intended to make the corrective changes have been crafted as a response specifically 

for each unique software element's functions and they are indexed for reference. The 

rationality of mapping the diagnosed faults to specific actions is derived from the fact 

that in any typical fault resolving scenario, the troubleshooting workflow passes the 

system information through various conditions and checks to decide whether a certain 

course of actions is to be taken and what specific commands or changes are needed. 

But when such system faults arise, the end goal is to use one or more appropriate 

corrective actions against the software element in the hope to rectify them or restore 

their function, it is a 1:n relationship between faults and corrective actions.  

Examples of some of the actions incurred are;  1) altering the state of the system 

processes through start-up or shutdown, 2) increase space availability for the system's 

directories, 3) correcting the setting of the privileges of the system's process, files, 

accounts that they operate from, 4) setting the values of the configurations and 

parameters that they are using, operating or initialize from, 5) ensuring network card 

operations' status for network connectivity, 6) unlocking the user accounts or 

regranting the appropriate privileges, 7) restoring the original baseline copy of the 

system and network files onto the Unix's /etc folders and, 8) enabling the replication 

queues back to operation. This holds the flags of activation to match the library of 

corrective action scripts in a 1:m relationship as shown in the matrices in eq (15). This 

will be discussed in greater detail in the next section. 

𝐷𝑖𝑎𝑔𝑛𝑜𝑠𝑡𝑖𝑐𝑠 𝑚𝑎𝑡𝑟𝑖𝑥 [

𝑜𝑟𝑎𝑓1
𝑜𝑟𝑎𝑓2

…
𝑜𝑟𝑎𝑓𝑛

] [

𝑠𝑝𝑥𝑓1
𝑠𝑝𝑥𝑓2

…
𝑠𝑝𝑥𝑓𝑛

] [

𝑛𝑤𝑓1
𝑛𝑤𝑓2

…
𝑛𝑤𝑓𝑛

] [

𝑜𝑠𝑓1
𝑜𝑠𝑓2
…

𝑜𝑠𝑓𝑛

],             (15) 

𝑐𝑜𝑟𝑟𝑒𝑡𝑖𝑣𝑒 𝑚𝑎𝑡𝑟𝑖𝑥 = [

𝑜𝑟𝑎𝑉1

𝑜𝑟𝑎𝑉2

…
𝑜𝑟𝑎𝑉𝑛

] [

𝑠𝑝𝑥𝑉1

𝑠𝑝𝑥𝑉2

…
𝑠𝑝𝑥𝑉𝑛

] [

𝑛𝑤𝑉1

𝑛𝑤𝑉2

…
𝑛𝑤𝑉𝑛

] [

𝑜𝑠𝑉1

𝑜𝑠𝑉2

…
𝑜𝑠𝑉𝑛

]  
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Where, the ora, spx, nw, and os identify the software groups as Oracle DB, Shareplex, 

network, and operating system. The suffix, f, identifies the specific software’s 

diagnosed faults and, V, refers to the corrective actions vectors that have m dimensions. 

Following the Actor-Critic Reinforcement learning model outline which is described 

in section 2.4.3 under chapter 2, the state, s, is the diagnostics matrix while the 

corrective matrix is the action, a. The reward, r, is the number of faults that the action, 

a, can resolve. 

5.1.3. Representation and correlation of diagnosed faults to 

corrective actions  

For the FDR design, a software element can have multiple types of faults and 

there is a list of corresponding corrective actions. Starting from the FD module, it 

produced the predicted outcome of the service outage (SO) information of the DRE’s 

state for both the users and the FR module. Each SO has its corresponding System 

Diagnostic (SD) statistics which has all the specific errors found. The FR module is 

then based on the SO information to predict the course of corrective actions for the 

troubled DRE, and the corrective actions are obtained from the external library that 

has a list of pre-built system commands and OS scripts for the various software 

elements. it is important to map each specific software elements’ fault to those 

corrective actions that have been predetermined to restore their function. For example, 

the oracle DB user account may have been locked or lack the system privilege, so the 

appropriate list of actions is a multitude of commands that range from unlocking the 

account, granting additional space quota, granting system privilege, to recreating the 

account. Table 12 illustrates the relationship between the two state-space of diagnosed 

faults and corrective actions. 

Sometimes, a single software entity outage can cause multiple faults. For 

example, Oracle instance outage can attribute to other problems such as loss of 

database to the Shareplex, inability to read Oracle DB’s logfiles by the Capture 

process, and Oracle DB’s account checks. The table below illustrates this complex 

relationship hypothetically. The level of inter-correlation is high but for this thesis, the 

scope is narrowed down to the major and more significant form of changes that the 

corrective actions are developed for, which involves in services’ start-stop, parameters, 

and configuration changes, plus privilege and resources allocation. The reduction in 
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the scope is to improve the manageability of the proposed system’s complexity as well 

as prediction’s reliability.  

However, a future enhancement to this thesis can include a more complex route 

to enhance its capability. All these corrective actions’ scripts have been crafted through 

numerous consultations with experienced IT experts and technical research.  

Table  12 – Example of diagnosed faults correlation to corrective actions 

       Corrective actions 
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OracleDB 

Fault1(process, servces) 2 1 0 0 0 0 0 0 0 0 0 0 0 

Fault2(operation, privileges) 3 0 0 1 0 0 0 0 0 0 0 0 0 

Fault3(configuration, 

parameters) 
4 0 0 0 0 0 0 0 0 0 0 0 0 

Shareplex 

Fault1(process, servces) 2 0 0 0 1 1 0 0 0 0 0 0 0 

Fault2(operation, privileges) 1 0 0 0 0 0 1 0 0 0 0 0 0 

Fault3(configuration, 

parameters) 
3 0 0 0 0 1 0 0 0 0 0 0 0 

Network 

Fault1(process, servces) 6 0 0 0 0 0 0 0 0 1 0 0 0 

Fault2(operation, privileges) 1 1 0 0 0 0 0 0 0 0 0 0 0 

Fault3(configuration, 

parameters) 
2 0 0 0 0 0 0 1 0 0 0 0 0 

Linux OS 

Fault1(process, servces) 4 0 0 0 0 0 0 0 0 0 1 0 0 

Fault2(operation, privileges) 2 0 0 0 0 0 0 0 0 0 0 0 1 

Fault3(configuration, 

parameters) 
1 0 0 0 0 0 0 0 0 0 0 0 0 

 

The software DRE is segregated into 4 tiers of importance; OS being the highest, 

followed by the network, database, and lastly Shareplex. This is because one software 

technology provides a more foundational service to the others which are dependent on 

it. Because of this, the DRL can dictate the choice of actions to take, especially when 

it comes to multiple types of actions available for one fault. So, like a typical 

troubleshooting workflow where the conditions direct the tacit consideration to the 

most appropriate course of action. The DRL uses the Q-value is used to define the best 

course of corrective action matrix. 

 

 

 

Table  13 – Association of software corrective actions to diagnosed faults for specific software 

elements. 

Oracle’s diagnosed faults ID and 

description 

Oracle DB corrective actions flag 

array  

Corresponding action vector to 

external commands 

1= locked user account  

2= incorrect password 

3= not enough space  

[1,0,0,0,0] 

[0,0,0,1,0] 

[0,1,0,0,0] 

Unlock user account. 

Grant space quota. 

Grant more privilege. 
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4= insufficient privilege 

5 = user does not exist 

[0,0,1,0,0] 

[0,0,0,0,1] 

Reset password. 

Create the user account. 

 

Referring to Table 13, for an example of resolving a common fault like a locked 

DB account, only the action of unlocking will be required. Therefore, the action for 

the fault with the vector of actions is required to enable the necessary activation of the 

commands to unlock it. the following table illustrates this relationship. Each array has 

a tuple of <action flag, script id> where action flag stipulates for activation, and the 

script id identifies the commands for the software element.  

Therefore, the initial representation of the detailed diagnosed information to the 

corrective actions can be depicted as followed where the diagnosed matrix is changed 

to a vector to show the relationship to the respective vector of arrays that hold the 

tuples of corrective action information. 

 

 

              (16) 

 

 

 

 

This can be summarised as; dtn = atnm          

Where d is the diagnosed faults, t is type software group, n is the number of 

software element faults, a is the corrective action array, m is the number of array’s 

action flags position, d ∈ D and a ∈ A, where d is the element of all diagnosed faults 

of set D, a is the element of all corrective actions of set A. the array of corrective action, 

a, is a list of tuples, each with an identification and a numerical reference to the specific 

entries in the correction external libraries of scripts and OS commands. 

5.1.4. Prioritization of the software groups’ action 

Not all the software in the DRE is regarded equally. Some can function 

independently without the need of others while others depend heavily on others to 

conduct their purpose and service. There is different level of dependencies stacked 

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝑜𝑟𝑎1

𝑜𝑟𝑎2

…
𝑜𝑟𝑎𝑛
𝑠𝑝𝑥1

𝑠𝑝𝑥2

…
𝑠𝑝𝑥𝑛
𝑛𝑤1

𝑛𝑤2…
𝑛𝑤𝑛
𝑜𝑠1

𝑜𝑠2

 …  
𝑜𝑠𝑛 ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

[(𝑜𝑟𝑎𝑎11, 𝑜𝑟𝑎𝑠11), (𝑜𝑟𝑎𝑎12, 𝑜𝑟𝑎𝑠12), … , (𝑜𝑟𝑎𝑎1𝑚, 𝑜𝑟𝑎𝑠1𝑚)] 
[(𝑜𝑟𝑎𝑎21, 𝑜𝑟𝑎𝑠21), (𝑜𝑟𝑎𝑎22, 𝑜𝑟𝑎𝑠22), … , (𝑜𝑟𝑎𝑎2𝑚, 𝑜𝑟𝑎𝑠2𝑚)] 

…. 
[(𝑜𝑟𝑎𝑎𝑛1, 𝑜𝑟𝑎𝑠𝑛1), (𝑜𝑟𝑎𝑎𝑛2, 𝑜𝑟𝑎𝑠𝑛2), … , (𝑜𝑟𝑎𝑎𝑛𝑚, 𝑜𝑟𝑎𝑠𝑛𝑚)] 
[(𝑠𝑝𝑥𝑎11, 𝑠𝑝𝑥𝑠11), (𝑠𝑝𝑥𝑎12, 𝑠𝑝𝑥𝑠12), … . , (𝑠𝑝𝑥𝑎𝑚, 𝑠𝑝𝑥𝑠1𝑚)] 
[(𝑠𝑝𝑥𝑎21, 𝑠𝑝𝑥𝑠21), (𝑠𝑝𝑥𝑎22, 𝑠𝑝𝑥𝑠22), … . , (𝑠𝑝𝑥𝑎2𝑚, 𝑠𝑝𝑥𝑠2𝑚)] 

…. 
 

[(𝑛𝑤𝑎11, 𝑛𝑤𝑠11), (𝑛𝑤𝑎11, 𝑛𝑤𝑠11), , … . , (𝑛𝑤𝑎1𝑚, 𝑛𝑤𝑠1𝑚)] 
[(𝑛𝑤𝑎21, 𝑛𝑤𝑠21), (𝑛𝑤𝑎22, 𝑛𝑤𝑠22), , … . , (𝑛𝑤𝑎2𝑚, 𝑛𝑤𝑠2𝑚)] 

….. 
[(𝑛𝑤𝑎𝑛1, 𝑛𝑤𝑠𝑛1), (𝑛𝑤𝑎𝑛2, 𝑛𝑤𝑠𝑛2), , … . , (𝑛𝑤𝑎𝑛𝑚, 𝑛𝑤𝑠𝑛𝑚)] 

[(𝑜𝑠𝑎11, 𝑜𝑠𝑠11), (𝑜𝑠𝑎12, 𝑜𝑠𝑠12), , … . , (𝑜𝑠𝑎2𝑚, 𝑜𝑠𝑠2𝑚)] 
[(𝑜𝑠𝑎21, 𝑜𝑠𝑠21), (𝑜𝑠𝑎22, 𝑜𝑠𝑠22), , … . , (𝑜𝑠𝑎2𝑚, 𝑜𝑠𝑠𝑛𝑚)] 

….. 
[(𝑜𝑠𝑎𝑛1, 𝑜𝑠𝑠𝑛1), (𝑜𝑠𝑎𝑛2, 𝑜𝑠𝑠𝑛2), , … . , (𝑜𝑠𝑎𝑛𝑚, 𝑜𝑠𝑠𝑛𝑚)] 

Detailed diagnostic stats corrective actions for each software element’s configurations and functions 
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hierarchically, starting from the top where one Shareplex operates on top of all the 

software and IT infrastructure, followed by the oracle DB that requires both networks 

and operating systems to support its service, but it is not dependent on Shareplex. The 

Operating system is considered as a platform on which all the other software depends, 

but it can function without any of the above software. The next in line is the network 

connectivity which sees the connectivity and communication among the hosts plus 

software elements that require this feature to talk to one another. Therefore, any faults 

that occur in the software that has the higher importance in this hierarchical order of 

dependencies, will cascade down the errors down to the other software, causing 

multiple faults among the other software groups. Likewise, when the fault is resolved 

at the top, the other faults that developed due to the faults may get fixed subsequently 

without any intervention. With this in the plan, the prescription of corrective actions 

to resolve faults in the DRE should start with the most important software in the 

hierarchical order first, then observe the cascading of the problem fixed across other 

software groups. 

In the DRE’s fault resolution process, there are two extreme scenarios. In the 

best-case scenario, the fault is a minor and isolated incident that can be resolved by 

single action. Such as the database account for Shareplex is locked the only corrective 

action needed is to unlock it. The service outage information to represent this will be 

a straight vector that contains no errors except with one value to depict the specific 

error, e.g. service outage information = [0,1,0,0…..0,0,0,0]. So, the action required is 

the corresponding array of software elements’ corrective actions array which points to 

the respective external system commands.  But in the worst-case scenario, this happens 

when a major software element in the DRE fails and that impact the rest of the other 

elements that depend on it. For example, when the network card status is disabled or 

has the wrong IP configuration at the OS level, this will cause an outage on the 

connectivity and communication. This has a direct impact on the DRE’s network 

services, which in turn affect the Oracle DB service and eventually the operation of 

the Shareplex. In this scenario, the service outage information to represent this DRE’s 

state will be [ 1,2,2,1,0,0,…1,2,3,1,1] and the corresponding fault resolution 

information is a large matrix of corresponding corrective actions.  
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However, referring to the previous section on how the hierarchical importance 

of software impact the others, we proposed that we only perform corrective actions 

only to the most important groups of the software elements from the top level down, 

and observe the effect on the rest of the other discovered faults. It is a sequence of 

succession in solving each software group in stages. This problem-solving process is 

not a single one-off but requires several iterations to assess just how effective the 

change will be against the problematic DRE before the next course of action is decided. 

The process can be simplified as followed.  

1. It will require the FD module to sample and diagnose the level of service 

outages if there is any that arise from the above set of corrections. In the event, 

if the entire service outages which had been previously reported, have turned 

up all negatives, then the fault resolution process is then considered to be 

successful.  

2. If the service outage information is still positive with all sector’s faults as 

active, then the FR module will try to activate the other corrective actions based 

on their output to resolve them.  

3. If the service outage information’s section for that specific software group, e.g., 

OS, is clear, that means the problem-solving routine is a success. The next 

course of action is to move and focus on the rest of the other software groups’ 

elements such as network, Oracle DB, and Shareplex in a hierarchical 

sequential order. 

4. A counter is used to keep track that in the event where the problem-solving 

process iterates and there is no success, then it will notify the IT administrator 

for help. 

5.1.5. Cost function and Q-Values for FR module 

The accuracy measurement of each DRL’s NN prediction is derived from finding 

the absolute differences in value between the predicted corrective actions values 

against those that are produced by the SC modules. Refer to eq (17), if the cost values 

of the predictions are high, then more work is required in building up the 

knowledgebase and retrain the NN for the DRL.  It also determines the confidence 
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level in the FR module to predict the corrective action accurately and this reduces the 

dependency on the SC module. 

Cost = |apredict – aactual|        (17) 

For a given input state of the service outage and based on the consideration of 

the software group’s priority plus the best number of actions needed, the DRL will 

select the best course and how it does that is based on the reward that takes in the 

software group’s priority and the number of actions it should take, given the 

assumption that the corrective actions can indeed resolve the faults as in eq (18). 

Q-values = gs * hs         (18) 

where g is the software group’s priority in which the faults have occurred, h is 

the total actions used, s is the service outage state’s identification.  

For example, if there are faults in the SO matrix [<OracleDB>, <Shareplex>, 

<network>, <OS>], then the best choice of action is to resolve the OS’ fault first based 

on its priority. Once the action has resolved the OS’s fault, the focus is turned onto the 

Network’s, and this keeps repeating onto the OracleDB and eventually the 

Shareplex’s. However, if the applied action for a particular software group managed 

to resolve one set of faults but the DRE’s state return with another fault of the same 

group, then the FR module’s focus will not move and keep trying to resolve. Therefore, 

the values for g are 1 = Shareplex, 2 = OracleDB, 3 = Network, 4 = OS. Table 14 

illustrated this sequence of considerations. As it resolved them, it calculates the cost 

or reward for the action to the state and builds up a hierarchical structure of actions vs 

service outage states like figure 18.  Algorithm 6 shows the FR module’s process in 

solving each of the software groups’ faults in the proposed hierarchical order and 

algorithm 7 shows describe the procedure of how the direct corrective actions are 

obtained for each of the software element’s fault from the external libraries of pre-

scripted commands that have been duly prepared by the IT administrators. 

 

Table  14 – Sequence of actions’ consideration for series of faults 

Run State of Service outage information 

[<OracleDB> <Shareplex> <Network> 

<linuxOS> 

Prescribed corrective actions [<OracleDB> 

<Shareplex> <Network> <linuxOS>] 

Description 

1 [1,2,1,0][1,0,1,2][2,3,1,0][3,0,1,0] [0,0,0,0][0,0,0,0][0,0,0,0][0,0,A1,0] Resolve OS fault as priority 

2 [1,2,1,0][1,0,1,2][2,3,1,0][0,0,0,0] [0,0,0,0] [0,0,0,0][A1,A2,A3,0][0,0,0,0] OS fault resolved, attempt to fix network faults 
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4 [1,2,1,0][1,0,1,2][0,0,0,0][0,0,0,0] [A1,0,A2,A3][0,0,0,0][0,0,0,0][0,0,0,0] Both OS and network faults resolved, try fixing 

OracleDB 

5 [0,0,0,0][1,0,1,0][0,0,0,0][0,0,0,0] [0,0,0,0] [A1,0,A2,0][0,0,0,0][0,0,0,0] OS, Network & DB faults resolved, remain 

Shareplex faults, attempt to fix 

6 [0,0,0,0][0,0,2,0][0,0,0,0][0,0,0,0] [0,0,0,0] [0,0,A1,0][0,0,0,0][0,0,0,0] 2nd faults in Shareplex found, attempt to fix 

7 [0,0,0,0][0,0,0,0][0,0,0,0][0,0,0,0] [0,0,0,0][0,0,0,0][0,0,0,0][0,0,0,0] All faults have been fixed 

 

5.2. FR’s Algorithm 

The algorithm for Fault Resolution follows the same design as FD's in using 

defining the amount of iteration for solution exploration to build up the knowledgebase 

for the latter phase of exploiting them via NN prediction as shown in algorithm 5. In 

this phase, both the current and new state refers to the DRE as the system diagnostics 

details, unlike the FD. There is a separate iteration of the fault simulation and 

correction routine which employ the use of the SC unit to identify and correct the 

simulated faults with corrective actions that are described in algorithm 6. This routine 

updates the information and the reward associated with the actions in a knowledgebase 

file, which will be used in the next phase. The next routine performs against the 

simulated faults again and it can contain another set of simulated faults. The process 

is split into two distinct sections between the exploration and the exploitation phase. 

Similar to the first routine, the exploration phase in the second routine also assesses if 

the learning rate is in the favour of the exploration. If so, the SC unit is performed, and 

the information is added to the knowledgebase. If the learning rate favours 

exploitation, the NN unit is used to predict the corrective action against the state, and 

then use the p_single_element_corrective_action procedure to execute them one by 

one. The new state plus all the information is added to the knowledgebase file 

alongside their rewards. This enriches it and bolsters the NN’s training competency. 

The NN is to map the large state space between the diagnostic information about the 

DRE's state and the corrective actions that are required to resolve the faults.  

Referring to algorithm 5, the System Correction (SC) unit is the foundation of 

the FR where it takes in the system diagnostics information and device the array of 

corrective actions. Referring to algorithm 6, the SC unit has its algorithm where the 

software groups are prioritized following their group's hierarchical level of importance 

in the order of OS, network, OracleDB and Shareplex, respectively. The SD unit then 

iterates through each of the element's corrective actions as flagged as active in the sub-

group from the start to the end individually, finding the corresponding system 
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commands from the external library and execute them against the DRE. Using the SD 

unit's procedure, p_single_system_diagnostics, as previously mentioned in chapter 5.8, 

the SC unit queried and build up the information of the DRE's new state after the 

corrective action has been applied, together with its diagnostics information which 

determines the progress of the fault resolution. If the new state is the same as the old 

state, then that signifies that the corrective action is either not effective or the cause of 

the fault for that specific software element is not isolated, but a cause from other 

adjacent software. Therefore, the SC unit moves on to the next corrective actions in 

line until it completes the whole sub-group of flagged corrective actions. By the end 

of it, the SC unit achieves two outcomes, either it succeeds or failed in the fault 

resolution task for the software sub-group. If it succeeds, the SC unit moves to the next 

software sub-group to resolve its problem. If it fails, then it should stop the 

troubleshooting effort and notify the IT administrator for attention. The information is 

captured and stored in the knowledgebase; stipulating the system diagnostics details, 

versus the corrective action and the outcome which is the equivalent of the result. if 

there is a change between the current and new state and for the better, the reward is set 

to 1, else it is zero. So, in the knowledgebase, there is a list of DRE current state, 

system diagnostics, corrective action, new state, and the respective reward. 

 

 

 

 

 

 

 

 

Algorithm 5 – Main algorithm of FR 

Input: DRE_state, system_diagnostics 

Output: corrective_actions 

Initialization1: learning, Knowledgebase, breakfix_file 

Giveup_limit=10 
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Fault_count=0 

breakfix_file =fault_breakfix.txt 

kb_file=frkb.txt 

############################################### 

# loop through all the simulated fault, fix up, build up kb 

############################################### 

Loop the iteration,i, of reading(breakfix_file1): 

   break_cmd = f<breaki> 

   fix_cmd     = f<fixi> 

   execute(break_cmd)                     #inject fault 

  dre_current_state = p_single_system_diagnostics() 

  fault_count+=1 

  

  while sum(dre_current_state) >=1 and giveup<giveup_limit: 

     kb=[] 

     corrective_action = p_system_corrective_action(dre_curent_state) 

     execute_single_element_corrective_action(corrective_action)  #loop through one by one action 

     dre_new_state = p_single_system_diagnostics() 

     #append all the info to the kb array     

     kb=append_to_kb(dre_current_state,dre_new_state, single_element_corrective_action) 

 

     if dre_current_state = dre_new_state then        #compare current state vs new state 

          reward =0               

          giveup +=1 

          tries+=1          #try next element corrective action in position 

     else  

         reward=1         #made some progress, +ve reward 

         tries =0 

         dre_current_state = dre_new_state   #new state become current state 

 

     if sum(single_element_corrective_action)==0 and sum(dre_current_state)>=1 then 

          print “no more solution. Giveup” 

         break 

         kb.append_to kb(reward) 

         write_to_kb_file(kb_file, kb) 

    end loop 

##################################### 

# simulate individual fault, using SC and NN 

#################################### 

Loop the iteration, j, of reading(breakfix_file2): 

   break_cmd = f<breakj> 

   fix_cmd   = f<fixj> 

   Check the learning rate.  

   execute(break_cmd)              #inject fault 
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   ###exploration phase - use SD unit  

   If learning < med_learning, do the exploration phase 

      dre_current_state = p_single_system_diagnostics() 

      fault_count+=1 

     

     while sum(dre_current_state) >=1 and giveup<giveup_limit: 

         kb=[] 

         corrective_action = p_system_corrective_action(dre_curent_state) 

         #loop through one by one action 

         execute_single_element_corrective_action(corrective_action)   

         dre_new_state = p_single_system_diagnostics() 

   

         #append all the info to the kb array     

         kb=append_to_kb(dre_current_state,dre_new_state, single_element_corrective_action) 

 

         if dre_current_state = dre_new_state then        #compare current state vs new state 

              reward =0               

             giveup +=1 

              tries+=1          #try next element corrective action in position 

         else  

              reward=1         #made some progress, +ve reward 

              tries =0 

              dre_current_state = dre_new_state   #new state become current state 

 

         if sum(single_element_corrective_action)==0 and sum(dre_current_state)>=1 then 

             print “no more solution. Giveup” 

             break 

         kb.append_to kb(reward) 

         write_to_kb_file(kb_file, kb) 

 

    ##Knowledge exploitation phase - use NN unit  

   If learning is > med_learning then do  

      NN_model = NN_build(knowledgebase)    ##Train NN with data from knowledgebase 

      corrective_actions = round(NN_model.predict(dre_current_state)) 

      p_execute_corrections(corrective_action) 

      dre_new_state = p_system_diagnostics() 

       

      if sum(system_diagnostics) = 0 then 

         print("all faults are fixed") 

      else  

         print("unable to fix faults. notify IT admin") 

         email "iteadmin@domain" < dre_state,system_outage 

   learning rate +=1 

  execute(fix_cmd)   #fix fault 
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end loop 

 

Algorithm 6 – FR module finding corrective actions for DRE based on system diagnostics input and 

software group’s priorities 

Input: system diagnostics input S 

initialize1:  software element’s corrective action array, A, external libraries X 

Initialize2: learning rate, l. predict_threshold, p=0.8, retry_count, r 

intialize3: input from FD module, S, 1st element in the software group, g,  

                 last element in the group, e 

Result: corrective actions, A 

 

Def p_system_corrective_action: 

g =1, r = 0, e = g+3 

l +=0.01 

if sum[S[*]] != 0 then                         #Check for any faults  

#loop through software groups based on hierarchy via index 

/* Attempt to fix OS faults */ 

    if sum(S[g:e])>0 then:    #check on faults between index range for group 

        if r > 2 then:     #if retries exceed 2, call for IT admin 

            sp_alert_IT_administrator (S[g:e], S) 

            r:=0 

      break  

        if l < p then:                            #check if l has exceeded p threshold 

            for i in range (g..e):      #loop through all faults that belong to g 

                corrective_action_OS += sp_find_solution(S[i])  #accumulate actions from SC module 

            else: 

                 corrective_action_OS +=  NN_predict(S[i])    #accumulate actions from DRL module 

            r +=1 

        Apply_action_on_DRE(corrective_action_OS)      #apply actions to DRE 

g=e+1, e=g+3                         #shift to next group 

/* Attempt to fix Network faults */ 

    if sum(S[g-4:e-4])=0 and sum(S[g:e])>0 then:  #check on faults between index range for group 

        if r > 2 then:     #if retries exceed 2, call for IT admin 

            sp_alert_IT_administrator (S[g:e], S) 

            r:=0 

      break  

        if l < p then:                            #check if l has exceeded p threshold 

            for i in range (g..e):        #loop through all faults that belong to g 

                corrective_action_Nw += sp_find_solution(S[i])  #accumulate actions from SC module 

            else: 

                 corrective_action_Nw +=  NN_predict(S[i])  #accumulate actions from DRL module 

        r +=1 

        Apply_action_on_DRE(corrective_action_Nw) #apply actions to DRE 
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g=e+1, e=g+3     #shift to next group       

/* Attempt to fix OracleDB faults */ 

    if sum(S[g-8:e-8])=0 and sum(S[g-4:e-4])=0 and sum(S[g:e]) > 0 then: #check on faults between index 

range for group 

        if r > 2 then:     #if retries exceed 2, call for IT admin 

            sp_alert_IT_administrator (S[g:e], S) 

            r:=0 

      break  

        if l < p then:                            #check if l has exceeded p threshold 

            for i in range (g..e):      #loop through all faults that belong to g 

                corrective_action_DB += sp_find_solution(S[i])   #accumulate actions from SC module 

            else: 

                 corrective_action_DB +=  NN_predict(S[i])  #accumulate actions from DRL module 

        r +=1 

        Apply_action_on_DRE(corrective_action_DB)  #apply actions to DRE 

g=e+1, e=g+3     #shift to next group 

/* Attempt to fix Shareplex faults */ 

    if sum(S[g-12:e-12])=0 and sum(S[g-8:e-8])=0 and sum(S[g-4:e-4])=0 and sum(S[g:e]) > 0 then: 

    # Check if all the previous faults have been resolved before proceeding 

        if r > 2 then:     #if retries exceed 2, call for IT admin 

            sp_alert_IT_administrator (S[g:e], S) 

            r:=0 

      break  

        if l < p then:                            #check if l has exceeded p threshold 

            for i in range (g..e):      #loop through all faults that belong to g 

                corrective_action_SP += sp_find_solution(S[i])  #accumulate actions from SC module 

            else: 

                corrective_action_SP +=  NN_predict(S[i])  #accumulate actions from DRL module 

        r +=1 

        Apply_action_on_DRE(corrective_action_SP) #apply actions to DRE 

 

 

 

 

 

 

 

Algorithm 7 – the procedure to find the corresponding action for each software element’s fault from 

the external library of pre-scripted commands 

Input: section of service outage input, s 

initialize1: External corrective action library, X. fault index, f. action index, a. 

Result: corrective action, c 

 



119 

 

 

Def Sp_find_solution (s): 

     Count:=1 

     with open(X) as f:          #search external library for corresponding corrective actions to faults 

         for line in f: 

             if found s[count] in line[f,]: 

             c += line[, a]   #where line[,a] return a reference to external scripts and commands 

    Return c 

 

From this knowledgebase, the FR's NN unit routine picks out all the entries with 

the positive rewards and use them to train the NN. Once it has achieved a good 

performance, the NN unit can take in any known DRE state-system diagnostics and 

provide the best corrective action with the sub-group that has the priority to fix, 

meaning if the system diagnostics contains faults in the OS group, then the most 

appropriate corrective actions will be from the knowledgebase that applied the relevant 

actions to the OS sub-group. when the OS group's fault is resolved, the system 

diagnostics information will not contain any faults for that sub-group. the future 

rewards hyperparameter that the common reinforcement learning is not included here 

as the current reward is sufficient for the algorithm to determine the best choice. also, 

there is no probability to contemplate between exploration versus exploitation as this 

FR's routine has defined it clearly. 

5.3. Empirical Analysis 

This section describes the test for the FR module against the DRE. The purpose 

is to determine the effectiveness of the proposed FR module in prescribing the best 

corrective actions for the DRE based on the service outage information that the FD 

module has determined about the DRE under simulated faults. For this to work, the 

FD module should have achieved sufficient accuracy in its service outage predictions 

in the previous phase where it has been properly trained and tested to a certain 

expectation. Like the FD module testing phase, the test starts with the DRE's baseline 

where all its software is functioning normally. Then each fault is injected into the DRE, 

causing abnormalities across the DRE's software elements, which are in turn acquired 

by the FD module and the service outages information is released. The FR module 

received the SO details and predicted the course of actions, which are then applied to 

the DRE and incur a new state. if the state is fixed, then the fault resolution process is 

considered a success. If the faults are not clear, the FR module iterates for the next 
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round of prescribing corrective actions for the new DRE's state. This repeats for a 

specific number of loops before it can be regarded as an unsuccessful attempt. Before 

each iteration test can start, the DRE must be reinitialized to the baseline to ensure a 

clean slate where all the software is fully functional. The goal is to assess the capability 

and accuracy of the FR module in prescribing the relevant corrective actions for the 

detected service outage in the DRE. The scope of the test is confined to those 

recoverable failures and those catastrophic ones are excluded.  

5.3.1. Software setup 

The setup for the DRE software is the same as what was described in section 

5.8.1. The test environment which had been used for the FD module testing is now 

used for the FR module test. There is no deviation on the underlying DRE setup and 

operation. Only the FR module is added together with the external libraries of 

resolution.  

5.3.2. Experiment setup and goal 

For the FR module experiment setup, the DRE test environment is used with the 

same DB and Shareplex configuration as well as the DB schema and objects in place, 

all of which have been described in section 5.8.2. There is no deviation nor alteration 

required. The only pre-requisite here is the FD module that needs to be trained and 

tested before proceeding on with the FR module test. 

The DRE is set to the baseline where all the software work as per norm. Each 

fault that belongs to the specific software is introduced in the DRE which will then 

yield information that the FD module will detect and predict the possible service 

outage, which in turn, is input into the FR module that will predict the best possible 

corrective actions based on its trained knowledge to score the best rewards. The FR 

module is expected to prescribe action for the following software element's faults in 

response to the service outage input concerning its associated system diagnostics 

information. Table 15 contains the test case with a list of common faults, and the 

corresponding action to rectify them.  The priority for the FR module is to resolve the 

OS, followed by the network, OracleDB, and Shareplex in a hierarchical inter-

dependent arrangement. 

Table  15 – List of DRE’s software groups service outage fault and their corrective actions 
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Function Attributes Commands Reason and Corrective 

actions 

Corrective actions Diagnosed 

Fault 

vectors 

Corrective 

action 

vectors  

   OracleDB          = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]  

memory 

process 

0~0~0 

Check for 

DB1's smon  

Check for 

DB2's smon 

Check for 

DB1's pmon 

Check for 

DB2's pmon 

 

if [ $(ps aux|grep -i ora_smon_DB1|grep 

-v grep|wc -l) -eq 1]; then echo 0; else 

echo 1; fi  

if [ $(ps aux|grep -i ora_pmon_DB1|grep 

-v grep|wc -l) -eq 1]; then echo 0; else 

echo 1; fi 

if [ $(ps aux|grep -i ora_smon_DB2|grep 

-v grep|wc -l) -eq 1]; then echo 0; else 

echo 1; fi 

if [ $(ps aux|grep -i ora_pmon_DB2|grep -

v grep|wc -l) -eq 1]; then echo 0; else echo 

1; fi 

Oracle instance is not 

active, start it up 

Pmon, smon are 

together. Either both are 

up or both are down 

DB1 and 2 

 

export 

ORACLE_SID=DB1 

&& echo 

"startup;"|sqlplus -s 

"sys/password as 

sysdba"  

 

export 

ORACLE_SID=DB2 

&& echo 

"startup;"|sqlplus -s 

"sys/password as 

sysdba" 

[1,1,0,0,0,0

,0,0,0,0,0,0

] 

 

 

[0,0,1,1,0,0

,0,0,0,0,0,0

] 

 

[1,0,0,0,0,0,

0,0,0,0,0,0] 

 

 

[0,0,1,0,0,0,

0,0,0,0,0,0] 

Status 

0~1~0 

if DB1 is open 

 

if DB2 is open 

 

(DB’s mode is 

open, not 

restricted 

DB available 

for use) 

 

Check any 

session 

blocking on 

DB1 

 

Check any 

session 

blocking on 

DB2 

 

if [ $(echo -e "SET PAGESIZE 0 

FEEDBACK OFF; \n select 

instance_name from v\$instance;"|sqlplus 

-s system/password@DB1|head -n1) == 

'DB1' ]; then echo 0; else echo 1;fi 

 

if [ $(echo -e "SET PAGESIZE 0 

FEEDBACK OFF; \n select 

instance_name from v\$instance;"|sqlplus 

-s system/password@DB2|head -n1) == 

'DB2' ]; then echo 0; else echo 1;fi 

 

if [ $(echo -e "SET PAGESIZE 0 

FEEDBACK OFF; \n select 

ltrim(count(*)) from v\$session where 

blocking_session is not NULL;"|sqlplus -

s system/password@DB1|head -n1) 

2>/dev/null -eq 0 ]; then echo 0; else 

echo 1;fi 

 

if [ $(echo -e "SET PAGESIZE 0 

FEEDBACK OFF; \n select 

ltrim(count(*)) from v\$session where 

blocking_session is not NULL;"|sqlplus -

s system/password@DB2|head -n1) 

2>/dev/null -eq 0 ]; then echo 0; else 

echo 1;fi 

Oracle database could 

have been mounted but 

not available; open the 

DB for use 

 

 

Presence of blocking 

sessions in DB; kill all 

blocking session 

 

 

export 

ORACLE_SID=DB1 

&& echo "alter database 

open;"|sqlplus -s 

"sys/password as 

sysdba" 

export 

ORACLE_SID=DB2 

&& echo "alter database 

open;"|sqlplus -s 

"sys/password as 

sysdba" 

 

./kill_blocked_sess.sh 

DB1  

./kill_blocked_sess.sh 

DB2 

[0,0,0,0,1,0

,0,0,0,0,0,0

] 

 

[0,0,0,0,0,1

,0,0,0,0,0,0

] 

 

[0,0,0,0,0,0

,1,0,0,0,0,0

] 

 

[0,0,0,0,0,0

,0,1,0,0,0,0

] 

[0,0,0,0,1,0,

0,0,0,0,0,0] 

 

[0,0,0,0,0,1,

0,0,0,0,0,0] 

 

[0,0,0,0,0,0,

1,0,0,0,0,0] 

 

[0,0,0,0,0,0,

0,1,0,0,0,0] 

Account 

security 

0~2~0 

~SPLX account 

is available on 

DB1 

 

~SPLX account 

is available on 

DB2 

 

System, splx 

account not 

locked 

Splx has quota 

on splx 

tablespace 

 

if [ $(echo -e "SET PAGESIZE 0 

FEEDBACK OFF; \n select 

ltrim(decode(account_status,'OPEN',0,1)) 

from dba_users where 

username='SPLX';"|sqlplus -s 

system/password@DB1|head -n1) 

2>/dev/null -eq 0 ]; then echo 0; else 

echo 1;fi 

 

if [ $(echo -e "SET PAGESIZE 0 

FEEDBACK OFF; \n select 

ltrim(decode(account_status,'OPEN',0,1)) 

from dba_users where 

username='SPLX';"|sqlplus -s 

system/password@DB2|head -n1) 

2>/dev/null -eq 0 ]; then echo 0; else 

echo 1;fi 

DB account for SPLX is 
locked; unlock the 
account 
 
 
SPLX’s DB account 
does not have enough 
quota space, increase its 
quota  
 
 

echo "Alter user splx 
account unlock;"|sqlplus 
-s 
"system/password@DB
1" 
echo "Alter user splx 
account unlock;"|sqlplus 
-s 
"system/password@DB
2" 

 

echo "alter user splx 

quota unlimited on 

USERS;"|sqlplus -s 

"system/password@DB

1" 

 

echo "alter user splx 

quota unlimited on 

USERS;"|sqlplus -s 

"system/password@DB

2" 

[0,0,0,0,0,0

,0,0,1,0,0,0

] 

 

[0,0,0,0,0,0

,0,0,0,1,0,0

] 

 

 

[0,0,0,0,0,0,

0,0,1,0,0,0] 

 

[0,0,0,0,0,0,

0,0,0,1,0,0] 

 

 

storage 

space 

0~3~0 

~check USERS 

TBLSP free 

space on DB1 

 

~check USERS 

TBLSP free 

space on DB2 

 

 

if [ $(echo -e "SET PAGESIZE 0 

FEEDBACK OFF; \n select case when 

(1-used_percent) > 0.1 then ltrim(0) else 

ltrim(1) end from 

dba_tablespace_usage_metrics where 

tablespace_name='USERS';"|sqlplus -s 

system/password@DB1|head -n1) 

2>/dev/null -eq 0 ]; then echo 0; else 

echo 1;fi 

 

if [ $(echo -e "SET PAGESIZE 0 

FEEDBACK OFF; \n select case when 

(1-used_percent) > 0.1 then ltrim(0) else 

ltrim(1) end from 

dba_tablespace_usage_metrics where 

tablespace_name='USERS';"|sqlplus -s 

system/password@DB2|head -n1) 

User Tablespace has 

reached max size; 

extend the datafile size;  

 

 

Alter tablespace USERS 

datafile 

‘/u01/oradata/DB1/user

01.dbf’ autoextend on 

100m; 

Alter tablespace USERS 

datafile 

‘/u01/oradata/DB2/user

01.dbf’ autoextend on 

100m; 

 

 

 

[0,0,0,0,0,0

,0,0,0,0,1,0

] 

 

[0,0,0,0,0,0

,0,0,0,0,0,1

] 

[0,0,0,0,0,0,

0,0,0,0,1,0] 

 

,0,0,0,0,1] 
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2>/dev/null -eq 0 ]; then echo 0; else 

echo 1;fi 

 

  Shareplex = [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1] 

main 

processes 

1~0~0 

Check if 

sp_cop process 

is up  

Check if 

sp_ocap 

process is up  

Check if 

sp_opst_mt 

process is up  

Check if 

sp_xport 

process is up  

Check if 

sp_ordr process 

is up  

Check if 

sp_mport 

process is up  

if [ $(pidof -s sp_cop) > 1]; then echo 0; 

else echo 1; fi  

if [ $(pidof -s sp_ocap) > 1]; then echo 0; 

else echo 1; fi  

if [ $(pidof -s sp_opst_mt) > 1]; then 

echo 0; else echo 1; fi  

if [ $(pidof -s sp_xport) > 1]; then echo 0; 

else echo 1; fi  

if [ $(pidof -s sp_ordr) > 1]; then echo 0; 

else echo 1; fi  

if [ $(pidof -s sp_mport) > 1]; then echo 

0; else echo 1; fi 

 

When sp_cop is down, 

all the rest will be done 

too; start up sp_cop  

 

 

echo password|su - splx 

-c $MDIR/startup.sh 

[1,1,1,1,1,1

,0,0,0,0,0,0

,0,0,0,0,0,0

,0] 

 

 

[1,0,0,0,0,0,

0,0,0,0,0,0,

0,0,0,0,0,0,

0] 

Splx 

console 

1~1~0 

Check if 

sp_cop is 

responsive 

if sp_ctrl status 2> /dev/null|grep -q 

"Running" ; then echo 0; else echo 1; fi 

 

If sp_ctrl is not response; 
restart the sp_cop 
 
 

echo password|su - splx 
-c $MDIR/startup.sh 

[0,0,0,0,0,0
,1,0,0,0,0,0
,0,0,0,0,0,0
] 
 

[1,0,0,0,0,0,
0,0,0,0,0,0,
0,0,0,0,0,0] 
 

queues 

operation 

1~2~0 

Check if 

capture state is 

running 

Check if read 

state is running 

Check if export 

state is running 

 

~Check if 

import state is 

running 

~Check if post 

state is running 

Capture, export, 

import, post, 

read status = 

Running 

if [ $(sp_ctrl status 2>/dev/null|tail -

n+5|head -n-5|grep -i capture|awk '{ print 

$2 }'|grep -i stopped|wc -l) 2>/dev/null -

eq 0 ]; then echo 0; else echo 1; fi 

if [ $(sp_ctrl status 2>/dev/null|tail -

n+5|head -n-5|grep -i read|awk '{ print $2 

}'|grep -i stopped|wc -l) 2>/dev/null  -eq 

0 ]; then echo 0; else echo 1; fi 

if [ $(sp_ctrl status 2>/dev/null|tail -

n+5|head -n-5|grep -i export|awk '{ print 

$2 }'|grep -i stopped|wc -l) 2>/dev/null  -

eq 0 ]; then echo 0; else echo 1; fi 

if [ $(sp_ctrl status 2>/dev/null|tail -

n+5|head -n-5|grep -i import|awk '{ print 

$2 }'|grep -i stopped|wc -l) 2>/dev/null  -

eq 0 ]; then echo 0; else echo 1; fi 

if [ $(sp_ctrl status 2>/dev/null|tail -

n+5|head -n-5|grep -i post|awk '{ print $2 

}'|grep -i stopped|wc -l) 2>/dev/null  -eq 

0 ]; then echo 0; else echo 1; fi 

If the capture, read, 
export and post status 
are stopped; start them 
up 
 
 

echo "start 
capture"|sp_ctrl 
echo "start 
export"|sp_ctrl 
echo "start 
import"|sp_ctrl 
echo "start post"|sp_ctrl  

echo "start read"|sp_ctrl 

[0,0,0,0,0,0
,0,1,0,0,0,0
,0,0,0,0,0,0
] 
[0,0,0,0,0,0
,0,0,1,0,0,0
,0,0,0,0,0,0
] 
[0,0,0,0,0,0
,0,0,0,1,0,0
,0,0,0,0,0,0
] 
[0,0,0,0,0,0
,0,0,0,0,1,0
,0,0,0,0,0,0
] 
[0,0,0,0,0,0
,0,0,0,0,0,1
,0,0,0,0,0,0
] 

[0,0,0,0,0,0,
0,1,0,0,0,0,
0,0,0,0,0,0] 
[0,0,0,0,0,0,
0,0,1,0,0,0,
0,0,0,0,0,0] 
[0,0,0,0,0,0,
0,0,0,1,0,0,
0,0,0,0,0,0] 
[0,0,0,0,0,0,
0,0,0,0,1,0,
0,0,0,0,0,0] 
[0,0,0,0,0,0,
0,0,0,0,0,1,
0,0,0,0,0,0] 

Config 

file 

1~3~0 

Query if config 

file is active 

1~3~1~if sp_ctrl show config 

2>/dev/null|grep -q 'Actid' ; then echo 0; 

else echo 1; fi 

 

 

 

 

Echo “activate config 

ck.cfg” |sp_ctrl 

[0,0,0,0,0,0

,0,0,0,0,0,0

,1,0,0,0,0,0

] 

[0,0,0,0,0,0,

0,0,0,0,0,0,

1,0,0,0,0,0] 

Queues’ 

backlogs 

1~4~0 

~ Check for 

post backlog 

 

~ Check for 

capture 

 

~ Check for 

export backlog 

 

if sp_ctrl status 2> /dev/null|grep -q 

"Running" ; then if [ $(sp_ctrl 

qstatus|grep -A 3  -i post|grep 

"Backlog"|awk '{ print $3 }'|awk 

'{s+=$3} END {print s}') 2>/dev/null -eq 

0 ]; then echo 0;else echo 1;fi else echo 

1; fi 

 

if sp_ctrl status 2> /dev/null|grep -q 

"Running" ; then if [ $(sp_ctrl 

qstatus|grep -A 3  -i post|grep 

"Backlog"|awk '{ print $3 }'|awk 

'{s+=$3} END {print s}') 2>/dev/null -eq 

0 ]; then echo 0;else echo 1;fi else echo 

1; fi 

 

if sp_ctrl status 2> /dev/null|grep -q 

"Running" ; then if [ $(sp_ctrl 

qstatus|grep -A 3  -i post|grep 

"Backlog"|awk '{ print $3 }'|awk 

'{s+=$3} END {print s}') 2>/dev/null -eq 

0 ]; then echo 0;else echo 1;fi else echo 

1; fi 

 

Substantial backlogs 

discovered, send email 

to IT admin requesting 

for attention 

 

 

mail -s 'Attention 

required for DRE – 

backlog detected' 

ITAdmin@company.co

m 

[0,0,0,0,0,0

,0,0,0,0,0,0

,0,1,0,0,0,0

] 

[0,0,0,0,0,0

,0,0,0,0,0,0

,0,0,1,0,0,0

] 

[0,0,0,0,0,0

,0,0,0,0,0,0

,0,0,0,1,0,0

] 

 

 

 

[0,0,0,0,0,0,

0,0,0,0,0,0,

0,1,0,0,0,0] 

[0,0,0,0,0,0,

0,0,0,0,0,0,

0,1,0,0,0,0] 

[0,0,0,0,0,0,

0,0,0,0,0,0,

0,1,0,0,0,0] 

 

 

 

 

For the OS, the common faults that lie with this group are related to the system 

resources, configurations, and privileges. System resources refer to various facilities 
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that the rest of the other software groups need to perform, such as CPU, memory, disk 

storage space, and communication facility. The configurations’ part is mainly on the 

underlying settings that are present in the system directories that controlled various 

aspects of the OS' functionality. For this thesis, the main emphasis on the OS' 

configuration is on the security and network portion. The third area is where the 

security and privileges govern most of the OS operations.  

1. The system resource for CPU and memory are commonly allocated more than 

what the overall DRE will needs but, in the event, should there be events that 

they are reaching the maximum threshold and the FD module has flagged them 

as a potential risk, then the corrective action to take is to turn off some of the 

adjacent non-critical processes, removing log files and compressing the DB's 

archived log files to free up the resources. The network cards' status must be 

brought to active status if they are found to be inactive, plus activating the IP 

configuration if they are not accurate. 

2. There are several critical system configuration files that the OS depends on, 

like networks, hosts lookup, DNS setting, user accounts securities and they 

reside in the /etc folder. Faults may arise in the DRE especially when these 

files are changed or removed illegally, causing massive outages across the 

different software groups. Therefore, to resolve this, the original backed-up 

copies of these configuration files must be restored usually from a backup 

device or off-site storage. To simplify this task of restoration, a set of backups 

has been made on this system configuration files and the FR module will 

initiate their restoration to overcome these faults. 

3.  For the OS' privileges, these refer to the User accounts and their privileges to 

specific folders on which they are designated to operate on. if the FD module 

finds that they are not available for use or the privileges have some mismatched 

permission, then the actions need to rectify them. System commands such as 

altering the file and directory privileges, plus unlocking the locked users’ 

accounts, or resetting their passwords to the original baseline are some of the 

actions that can restore their service for the DRE. when there are faults with 

the OS, it has a cascading effect on other software groups, therefore, it is 

important for the FR module to resolve the OS' fault first. 
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Network service is the next group in line for the FR module to attend to when 

the OS service outages are resolved. The network supports the database listeners to 

facilitate the network connectivity from sqlplus client connection, and to do that, it 

requires the OS' network infrastructure and TCPIP protocol to be active. It operates on 

Oracle’s network-related process which needs its own set of configuration files. 

1. The common faults identified with this software element related to its 

processes and configuration's information, so the corrective actions for it 

usually involve restarting the listener process, enabling the listener service 

through the lsnrctl command console, including restoring the various oracle 

network-related files like listener.ora, tnsnames.ora and sqlnet.ora. 

2. The network service is also required for connection among the OracleDB and 

Shareplex, so this involves the underlying OS' system configuration files under 

/etc and network card configuration, both fall under the scope of OS' fault 

management. it is expected the corrective actions should cover as part of the 

OS' fault validation and resolution process too. 

Once the infrastructure issue is resolved, the next area to focus on is the software 

service that operates on them such as the OracleDB and Shareplex. 

The Oracle DB's faults cover several areas such as the processes that support the 

DB services, the configuration that controls the services, and the security and 

privileges that allow both the internal and external clients to operate on. The corrective 

actions that the FR module is expected to prescribe are like those that are carried out 

for the above software groups, and that is to restart processes, change the 

configuration, and restore files. 

1. If the essential DB processes are not found, it means that the Oracle instance 

is not operational. The solution is to restart the Oracle instance to bring back 

all the relevant oracle's essential processes. This is the first and most 

fundamental approach which solves most of the current hung operation in any 

environment. the restart also cleared out orphaned client processes that can 

impose complications that hinder the server's operations too. 

2. As for the configurations part, it comprises different parameter settings that 

direct and controls the OracleDB's various services. So, any faults with these 
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configurations can arise when the parameters are changed incorrectly or 

illegally. The course of action is to correct them in accordance with their pre-

set values to restore their services' purposes. 

3. The OracleDB's security concerns with accounts & privileges including 

internal operations and other internal DB resourcing that can hamper its 

ongoing services. Common issues such as locked user accounts, lack of proper 

system or objects privileges and execution rights, availability of free spaces, 

and even session that are causing deadlocks. These are some of the most 

common and major issues that have a direct impact on the overall DB services 

on which the Shareplex is dependent. The FR module must resolve them by 

providing solutions that can rectify them via actions such as resetting their 

passwords, unlocking the accounts, regranting the permission and privileges, 

allocating more space quota to their accounts, or removing blocking sessions 

to name a few. The last area for the FR module to focus on is the Shareplex, 

once all the rest of the other software groups have been resolved. 

The fault categories for the Shareplex are like the OracleDB, covering the 

processes and internal configurations. One exception is the account and privileges that 

Shareplex needs on the OracleDB, but this should be resolved at the OracleDB's stage 

of fault resolution instead. 

1. Shareplex has several important memory processes, and all are controlled from 

the main process called sp_cop. In the event should any of the other processes, 

e.g. capture, read, export, import, and post, died or hung, the recommended 

course of action is to shut down the main sp_cop process, kill off any remnant 

orphaned processes and restart it. The FR module is expected to prescribe such 

a course of action should it receive such service outages. 

2. For the configuration, Shareplex depends on one main configuration file to 

operate, if the FR module finds that this is either not available or in an 

erroneous stage, then it will invoke the action of reconfiguring or reactivating 

with a backed-up copy of the config file. This action will cause the Shareplex 

to flush out all the active cache and reinitialize new queues under the VARDIR 

or variable directory.  
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3. For Internal Shareplex operations where the different queues that belong to the 

various processes must remain clear with minimum blockage or backlog. One 

of the common corrective actions is to quiesce and restart them. This is the first 

level of support intervention required. But in the event, if this action cannot 

resolve the fault, then other actions may involve external intervention that 

needs more in-depth analysis, which requires IT administrator intervention. 

5.4. Evaluation Criteria 

This section describes how the FR module is evaluated and the criteria used in 

its assessment. for any instance of the DRE's faults, it can occur in either one or all 

software groups concurrently. The FR module exploits its knowledgebase and 

remediates the DRE with a series of corrective actions. Two evaluation criteria, both 

quantitative and qualitative that have been used in section 5.9, are utilized to assess 

the FR module’s capability. The qualitative outcome of the FR module is referred to 

the effectiveness is on its ability to achieve the goal of resolving the faults. While the 

FR module has the flexibility to address a wider range of software faults and service 

outages. In this thesis, it is restricted to handle those issues that only impact the DRE. 

Also, the control environment set the faults that are to be used for the test, have a 

corresponding corrective action that can resolve them.  Therefore, the test is to assess 

just how effective the FR module can be when it comes to handle various known faults 

and recall the relevant actions from its knowledgebase. 

There cannot be two outcomes from the FR module that can help the DRE to 

reach the objective, whether the corrective actions that have been applied can resolve 

the faults or not. The feedback loop from the DRE’s response to the action generates 

the new state where the FD module can ascertain if there are more errors to resolve or 

not. It is a progressive stepped resolution process that can take several sub-iterations 

in the attempt to resolve the faults, be it the outcome is successful or not. There is a 

limit on the number of resolution iterations that the FR module can action before the 

entire resolution effort is considered unsuccessful.  

The next test is the accuracy of the FR’s module DRL-NN. The output from the 

SC module serves as the reference where the accuracy of the DRL-NN’s output is 

derived using the MASE formula. This is used to validate the degree of errors that the 
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DRL-NN has, and it is useful in optimizing the NN design, including their parameters 

and other NN’s related attribute to improve the overall accuracy. 

5.4.1. Test results 

There are two groups of results that are generated by the FR. One is from the SC 

module where it responds to the diagnostics information with a series of corrective 

actions and the outcomes of the DRE states. The other is the prediction performance 

and outcome of the DRL-NN in response to various diagnostics information from the 

DRE. These results are obtained through the process of introducing a series of known 

faults into the DRE and the FR module is executed against it. 

5.4.2. FR module - SC’s results  

The SC is used prevalently when the entire FR’s learning phase is at the early 

and middle stages. Table 15 showed the outcomes from the SC when a list of the 

known faults is injected into the DRE. The FR module used the diagnosed information 

from FD and derive the appropriate corrective actions based on the hierarchical order 

of the software group and action planned to solve that software of higher importance 

first and work its way down. the result showed the state of the DRE once the faults are 

executed and followed by the new state when the corrective action is executed. The 

single element corrective action is the information in which the corresponding single 

action that the SC refer to run the relevant system commands in the attempt to rectify 

the fault. If the first action for that specific software element within the group is 

successful, the result will render the software service back to the norm, giving the 

DRE’s new state zero through the diagnostics information. Fault run #1 and 6 are such 

example. However, if the first action failed, the SC will iterate to the next element’s 

action. This goes on until either the fault for the software group is resolved such as in 

fault run #8 or it reached the end with no positive outcome, which signifies a failed 

attempt of giving up for the troubleshooting effort. This is translated into the routine 

where an alert is sent to the IT administrator. Referring to table 16, fault run #1 is a 

single fault occurring at the OracleDB which terminated the DB services but that in 

turn sets off multiple error flags across the diagnostics information. By default, if the 

troubleshooting effort starts from each flag, it will not be practical since the software 

elements among the four groups are interdependent. So, once the OracleDB’s fault is 
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DRE_current_state               = [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 

index= 27  correct cmd= echo "Alter user splx account unlock;"|sqlplus -s "system/password@DB1" 

single_element_corrective_action= [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 

DRE_new_state                   = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 

CHANGE reward  = 1 

Resolved 

##################################### 

fault count= 11 fault cmd= echo "stop capture"|sp_ctrl && echo "stop import"|sp_ctrl 

##################################### 

DRE_current_state               = [0,1,0,1,0,1,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 

DRE_current_state               = [0,1,0,1,0,1,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 

index= 1  correct cmd= echo "start capture"|sp_ctrl 

single_element_corrective_action= [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 

DRE_new_state                   = [0,0,0,1,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 

CHANGE reward  = 1 

DRE_current_state               = [0,0,0,1,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 

index= 5  correct cmd= echo "start import"|sp_ctrl 

single_element_corrective_action= [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 

DRE_new_state                   = [0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 

CHANGE reward  = 1 

DRE_current_state               = [0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 

index= 3  correct cmd= echo "start export"|sp_ctrl 

single_element_corrective_action= [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 

DRE_new_state                   = [0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 

CHANGE reward  = 1 

DRE_current_state               = [0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 

index= 25  correct cmd= /home/oracle/fddr/kill_blocked_sess.sh DB1 

single_element_corrective_action= [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 

DRE_new_state                   = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 

CHANGE reward  = 1 

resolved 

##################################### 

fault count= 12 fault cmd= echo "stop capture"|sp_ctrl && echo "stop post"|sp_ctrl 

##################################### 

DRE_current_state               = [0,1,1,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 

index= 1  correct cmd= echo "start capture"|sp_ctrl 

single_element_corrective_action= [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 

DRE_new_state                   = [0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 

CHANGE reward  = 1 

DRE_current_state               = [0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 

index= 2  correct cmd= echo "start post"|sp_ctrl 

single_element_corrective_action= [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 

DRE_new_state                   = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 

CHANGE reward  = 1 

resolved 

Figure 31 shows the progress of SC using its algorithms and workflow to resolve 

the faults. Each of the faults has a different level of complexity and some can be 

resolved by one cycle of applying the appropriate corrective actions. However, some 

need more than 1 cycle to resolve them and these are the more complicated faults like 

id #8, #15, #21 and #30. The SC did have several unsuccessful attempts to rectify the 

faults which are highlighted in orange. And those actions have yielded some positive 

changes in the DRE’s diagnostics information are represented in green. The SC 

progress is considered rule-based which most decision-based system management 

system is based on and it showed the inefficiency involved. But this step is important 

to the overall FDR system as it forms the explorative phase where SC experience the 

different combination of ordered random actions against the environment’s states, 

mapping what actions works against each type of DRE’s state. These experiences are 

then stored into the knowledgebase which is then used to build the intelligent phase of 

the FR’s DRL where the NN is trained with those datasets from the knowledgebases 

that have proven to have positive rewards.  
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5.4.3. FR module – NN performance and result 

Once the FR’s learning phase reached the advance or mature stage, it starts to 

rely on its NN to predict the corrective action. The advantage of using this is to improve 

the overall turnaround time of deriving corrective actions that are effective for a given 

DRE state based on its corresponding diagnostics information. While the SC can 

iterate through multiple permutations of controlled random actions to states, it incurs 

a substantial number of trials and errors before arriving at the best actions. Whereas in 

the mature phase where the NN is trained against minibatch that comprised of only 

those effective actions against different DRE states, it can cut short of the turnaround 

time needed to find the optimum solution. 

Prior to the use of the NN, a test is required to determine the optimum 

hyperparameters needed against the dataset. The choice of neural network library is 

Keras, and it has many hyperparameters to tune but only the major ones are focused 

on for this experiment. They are 1) optimizer – it is the iterating learning algorithm 

that optimizes the internal parameters within the NN against a performance measure 

like MSE based on the use of datasets to train and update the NN model. The most 

common optimizers used are stochastic gradient descent (SGD) and Adaptive moment 

estimation (Adam). 2) batch size is the hyperparameter that controls the number of 

training samples or rows to use before the model's internal parameters are updated. 3) 

epoch is the hyperparameter of gradient descent which controls the number of passes 

through the training dataset, and finally 4) activation function is part of neural network 

and it determines what is deemed to be activated based on the neuron's input. There 

are several types of activation functions available but only a few of them are used in 

this test. 

Figure 32 shows the NN’s performance results from the tests using a 

combination of different types of activation functions (RELU, SIGMOID, TANH) 

against two optimizers (Adam, Stochastic Gradient Descent (SGD)) against varying 

values of epochs and batch-size settings. The legends listed in the charts depict both 

the loss and accuracy readings with different epoch-batch size values.  There are many 

other types of optimizers and activation functions which they have been tested too, 

including adjustment of other minor hyperparameters such as dropout rate, model’s 

initialization factor, optimizer’s learning rate etc. but the gains or losses are not as 
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that the NN did not choose those corrective actions that yield zero rewards, whereas 

the SC did go through iterative as its algorithm dictates it. Therefore, the outcomes 

from the NN are more productive and efficient as compared to those from the SC.   

Table 17 – SC’s results in response to injected faults 

##################################### 

fault count= 0 fault cmd= export ORACLE_SID=DB1 && echo "shutdown immediate;"|sqlplus -s "sys/password as sysdba" 

##################################### 

DRE_current_state               = [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0] 

index= 19  correct cmd= export ORACLE_SID=DB1 && echo "startup;"|sqlplus -s "sys/password as sysdba" 

single_element_corrective_action= [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 

DRE_new_state                   = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 

CHANGE reward  = 1 

resolved 

##################################### 

fault count= 1 fault cmd= export ORACLE_SID=DB2 && echo "shutdown immediate;"|sqlplus -s "sys/password as sysdba" 

##################################### 

DRE_current_state               = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0,0,0,0,0,0,0,0] 

index= 22  correct cmd= export ORACLE_SID=DB2 && echo "startup;"|sqlplus -s "sys/password as sysdba" 

single_element_corrective_action= [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 

DRE_new_state                   = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 

CHANGE reward  = 1 

resolved 

##################################### 

fault count= 2 fault cmd= echo "Alter user splx account lock;"|sqlplus -s "system/password@DB1" 

##################################### 

DRE_current_state               = [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 

index= 27  correct cmd= echo "Alter user splx account unlock;"|sqlplus -s "system/password@DB1" 

single_element_corrective_action= [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 

DRE_new_state                   = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 

CHANGE reward  = 1 

resolved 

##################################### 

fault count= 11 fault cmd= echo "stop capture"|sp_ctrl && echo "stop import"|sp_ctrl 

##################################### 

DRE_current_state               = [0,1,0,1,0,1,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 

index= 1  correct cmd= echo "start capture"|sp_ctrl 

single_element_corrective_action= [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 

DRE_new_state                   = [0,0,0,1,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 

CHANGE reward  = 1 

DRE_current_state               = [0,0,0,1,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 

index= 5  correct cmd= echo "start import"|sp_ctrl 

single_element_corrective_action= [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 

DRE_new_state                   = [0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 

CHANGE reward  = 1 

DRE_current_state               = [0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 

index= 3  correct cmd= echo "start export"|sp_ctrl 

single_element_corrective_action= [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 

DRE_new_state                   = [0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 

CHANGE reward  = 1 

DRE_current_state               = [0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 

index= 25  correct cmd= /home/oracle/fddr/kill_blocked_sess.sh DB1 

single_element_corrective_action= [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 

DRE_new_state                   = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 

CHANGE reward  = 1 

resolved 

##################################### 

fault count= 12 fault cmd= echo "stop capture"|sp_ctrl && echo "stop post"|sp_ctrl 

##################################### 

DRE_current_state               = [0,1,1,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 

index= 1  correct cmd= echo "start capture"|sp_ctrl 

single_element_corrective_action= [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 

DRE_new_state                   = [0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 

CHANGE reward  = 1 

DRE_current_state               = [0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 

index= 2  correct cmd= echo "start post"|sp_ctrl 

single_element_corrective_action= [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 

DRE_new_state                   = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 

CHANGE reward  = 1 

resolved 

 

Table 18 showed the results from the various efficacy tests, scoring 100% for all 

the registered or known faults.  While the plan is to anticipate all possible faults that 
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can and will happen in any complex environment, there is always a chance that some 

unplanned and unknown faults that can occur and the FR’s fault-corrective action 

matrix has no provision for. In this scenario, a feedback process is anticipated so that 

in such an event where the FR is unable to handle the fault since it is beyond its 

knowledgebase, the even must be sent to the IT administrator to request additional 

assistance. This process of acquiring external intervention is necessary so that the FR 

module can readapt its SC and reoptimize its knowledgebase against the newly found 

knowledge, thus expanding its capacity to handle more faults soon.  

Table 18 – FR module’s efficacy test results 

Software groups Occurrences/combination/ service 

specifics 

Total outcomes 

network Network files, listeners 2 2 resolved 

oracledb privileges, accounts 4 4 resolved 

oracledb Oracle processes  4 4 resolved 

Shareplex+ oracledb Access, privileges 2 2 resolved 

Shareplex Sp_cop processes 5 5 resolved 

Shareplex Queues and services 5 5 resolved 

shareplex Accounts  2 2 resolved 

 

While the above results have indicated the efficacy of the FR’s SC and DRL-NN 

components, the next step is to differentiate the efficiency between the two 

components. Figure 33 showed the number of corrective action cycles that each of 

them took against the series of faults. For easier faults such as id #1, #3, #5 and #9, 

both SC and DRL-NN performed the same number of corrective action cycles. 

However, for more complex ones like fault id #8, #18, 21 or #30, the SC had to perform 

more cycles following its internal logic before resolving them. The NN, however, can 

pick those actions that can yield a positive outcome for the faults and managed to 

resolve them under few cycles. Thus, proving that having a deep NN that can learn 

from its knowledgebase to pick only those relevant corrective actions for the different 

DRE states.  
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been experienced in the trials. So, delaying the diagnostic query with some waits is 

needed. 

5.5. FR’s Conclusion 

The FR module has been tested and can predict the corrective actions based on 

the service outage information that is provided by the FD module with good accuracy. 

It makes use of the DRL that is based on the Actor-Critic approach where the SC 

module plays the role of the critic and forms as a reference for the DRL to develop and 

home in its prediction capability while enriching its knowledgebase and build up the 

information for DRL's NN minibatch repository.  This effort trains up the FR's DRL-

NN slowly over time with minimum or no a-prior knowledge of the environment. By 

the end of its learning phase, it has achieved an expert level and is able to recognize 

the state input to predict the service outage. But not all DRE faults can be resolved by 

the FR module, it should alert the IT administrator about the failed outcome of its fault 

resolution.  

There are two categories of faults vs actions that the FR module can encounter: 

known-known and known-unknown. for those known faults with known solutions, if 

the FR module is unable to dispense the proper corrective actions, then the solution is 

to optimize and retrain its NN to improve its prediction. For those known-unknown 

where there are no known solutions to identified faults, then the IT administrator is 

required to assist to evaluate other new possible methods of changes and then write a 

new system command routine for the action libraries and then retrain the NN to include 

the new routine. So, these are two paths of recourses for failed resolution outcomes.  

The concept of using the FR module instead of the SC module is in its transfer 

learning where copies of the FR modules can be replicated to other FDR systems to 

provide the capacity of an intelligent Fault resolving agent but protect the proprietary 

knowledge of the fault-to-resolution expertise. The results from the FR experiments 

had proven its capability. In the next chapter, the combined FD and FR module for the 

FDR system and their future are discussed. 

The entire content of this chapter has been accepted and published with the 17th 

International Conference on Advanced Data Mining and Applications (ADMA) [72].  
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CHAPTER 6: FDR – FD AND FR 

INTEGRATION 

Both FD and FR modules have been designed, developed, and tested against 

various simulated DRE faults in the previous two chapters. The next step is to 

consolidate them together and run them as a single FDR system. Now the complete 

FDR has both modules working together to serve the goal that this thesis has set out, 

which is to detect errors within the DRE, predict the specific type of software service's 

outage to the user that these faults can affect. It refers to the system diagnostics 

information that it has previously captured and stored, then repeatedly searches within 

its knowledge to interact with the DRE until the faults are resolved or until it has 

exhausted all tries before notifying the IT administrator for assistance. 

6.1. Background of integration testing 

In software and machine learning testing, there are three types of testing: unit, 

regression and integration. The unit testing focus on individual specialised 

functionality, the regression testing is to test the reliability of the modules to discover 

errors and resolve them. The integration testing combine all the rest of the modules 

and test their higher-level operational behaviour of all the various units from the 

codebase [73]. The difference between software and ML testing is the nature of inputs 

and outputs. For Software testing, data and logic are the inputs into the software 

module while the output's desired behaviour is measured. But in ML testing, the inputs 

are comprised of the data and desired behaviour, while the output is the logic.  The 

goal is to observe the operation from a higher perspective when the modules of FD 

and FR are integrated, including the addition of other supporting programs and 

functions such as OS, networking, Oracle and Shareplex libraries. This is to ensure 

that there are no contention or integration issues that can impact the new FDR system’s 

functionality. 

For the common integration testing of ML models, the common approaches are 

offline and online testing [74]. In Offline ML testing, the model has not been deployed 

for any use or it is still undergoing training and tuning. For online testing, the ML 



138 

 

 

modules may be currently active in use and the test is conducted to compare and 

improve the ML model competency. These methods are common for supervised and 

unsupervised learning models deployment. However, the FD and FR are based on 

Reinforcement learning which requires iterative interaction with the DRE with their 

respective guiding SD and SC modules, and it requires a different approach such as 

continuous integration (CI) testing [75]. The basis for the CI is due to the constant and 

continuous changes of test cases with the expectation of quick feedback into the 

model’s adaptation and time execution constraints [75]. Therefore, the RL-specific CI 

testing is conducted at the unit level for FD and FR modules, whereas the integration 

testing employed the finished trained models to ascertain their performance and 

functionality with no CI process for the FD and FR modules.  Should there be new 

cases of DRE events, they will be introduced for the modules at their unit testing level. 

The CI testing for the FDR as an integrated system will be regarded as part of future 

enhancements. 

In the FD and FR integration testing process, the objective is to simulate the 

ability of the trained FD and FR modules operating in the DRE and observe their 

behaviour. its operating capability is measured by the metrics of its outputs to ascertain 

if it meets the criteria and checks for errors. However, the FR module played a more 

significant role in the combined FDR as it holds the critical function of resolving the 

faults, as compared to FD which hold the role of the less critical but still important 

service outage reporting. the integration test also covers the performance metrics of 

the ML modules using RL to resolve the DRE faults as compared to the rule-based 

intelligence that the SD and SR function. 

6.2. FDR Test Analysis 

This section discussed the test results from the integration testing, together with 

the findings. 

6.2.1. Usage of Software  

There are no changes to the test environment for the integration-test phase and 

it is the same setup that we used for chapters 5 and 6. Only the python functions and 

other shell scripts that supported the FD and FR are integrated into the common 

libraries, bearing labels to differentiate them and the modules that they serve. 
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6.2.2. Experiment setup and goal 

The DRE setup for the integration testing remains the same without any changes 

from the setup that both FD and FR modules tests were conducted. Configuration of 

Shareplex, OracleDB, network and OS retains the exact configurations, parameter 

settings and patch level to ensure consistency and stability in the test environment. The 

test procedure follows the same protocol which introduces the simulated fault for the 

test and is followed by restoration of service through the execution of applying 

rollback scripts to restore the various DRE’s functions. 

The goal is to observe how the integrated FDR can react under the fault 

simulation and derive their outcome plus observing their behaviour when they 

integrated to work together. One of the main aspects to observe is the overlapping of 

specific software operations between FD and FR against the various software 

components in the DRE that potentially can cause conflicts or contention that may 

aggravate the fault states to the level where the service restoration scripts may not be 

able to perform correctly. The outcome of the integration testing should not have lesser 

accuracy as compared to the FR’s unit testing outcomes as the integration testing is 

merely to ensure that the two modules can work together seamless without errors. 

Table 16 lists the simulated test faults that are injected into the DRE and the 

corresponding scripts that restore or revert them for Shareplex, OracleDB, network 

and OS. While the faults can be injected at random, the restoration of their services 

will require a proper sequence that is based on the hierarchy of the DRE’s software 

inter-dependency, where one software’s restoration of service takes precedence of 

another that depends on it. 

6.2.3. Test analysis procedures 

The focus now is to validate the efficiency and effectiveness of the FDR toward 

the DRE. Most of the tests have been done at the FR stage and that has concluded most 

of the criteria that have been laid out for the FDR, such as the time taken between the 

FR's SC unit versus the FR's NN unit which significantly shortens the turnaround time 

in producing corrective actions as shown in figure 32. This is the goal of this thesis 

which is to develop a new approach in resolving faults in a fast and efficient manner 

while able to expand its learning ability and adaptive to an ever-changing DRE. 
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The next area is on the FDR's effectiveness. The faults that are used for both the 

training and testing are controlled within the tolerance of the DRE's functionalities. 

The slightest deviation of parameters, values, or configuration, including the syntax 

on the system commands, can cause chaos to the overall FDR's process and render it 

ineffective. The faults that the FDR referred to for training and testing are anticipated 

ahead with minimum guesswork available. Its effectiveness is tested against the same 

batch of known faults but with a different combination of various software element's 

faults to provide a more complex test scenario that can test every combination of 

system diagnostics and fault resolution processes available in the FDR are validated. 

The FDR's FR module has been proven to handle faults from various elements of 

OracleDB, Shareplex, network and OS individually. This current set of tests will 

combine them to ascertain how effective the FDR can be after both the FR and FD 

modules are merged. Table 19 list out all the test cases with the various combination 

of faults tests that span across the various software groups and their respective 

elements’ units with the combination that range from 2 to 9, together with the 

validation test results. With each test, the FD modules’ outputs are included in and 

their responses are tracked in the diagnosed status columns. The FDR’s FR module is 

using the DRL-NN unit to predict the corrective actions but the number of iterations 

that the FR’s SC unit performs against similar faults are recorded to ascertain the 

efficiency of the FDR’s FR modules, comparing the number of iterations it must 

perform using both SC and DRL-NN units, as well as the time, is taken.  

 

 

 

 

 

 

 

Table 19 - Test scenario and increase the number of simultaneous occurring faults for each case 

Fault

# 

Software Software 

groups’ units 

impacted 

No. Of 

Faults 

Faults' System Commands Diag 

Status 

Resolved 

Status 

FR’s 

SC 

runs 

FR’s 

NN 

runs 

Time 

Taken 

FD (S) 

Time 

Taken 

FR (S) 

Time 

Taken 

SC (S) 
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1 Oracledb Main 

Processes 

2 export ORACLE_SID=DB1 && echo "shutdown immediate;"|sqlplus -s 

"sys/password as sysdba" && echo password|su - splx -c 

$MDIR/shutdown.sh 

passed resolved 2 2 10.8 17.2 27 

2 Oracledb Process & 

Privileges 

2 export ORACLE_SID=DB2 && echo "shutdown immediate;"|sqlplus -s 

"sys/password as sysdba" && echo "Alter user splx account lock;"|sqlplus -

s "system/password@DB1" 

passed resolved 3 2 11.8 23.2 51.2 

3 Oracledb Privileges 1 echo "Alter user splx account lock;"|sqlplus -s "system/password@DB1" passed resolved 1 1 10.2 11.2 17.2 

4 Oracledb Security 1 echo "alter user splx quota 0 on USERS;"|sqlplus -s 

"system/password@DB1" 

passed resolved 0 0 11 0 5 

5 Oracledb Main 

Processes 

1 echo password|su - splx -c $MDIR/shutdown.sh passed resolved 1 1 10 12.4 15.2 

6 Oracledb Privileges, 

Operation 

2 echo "Alter user splx account lock;"|sqlplus -s "system/password@DB1" 

&& echo "stop capture"|sp ctrl 

passed resolved 2 2 11.8 31.2 36.6 

7 Oracledb Privilege, 

Process, 

Operation 

2 echo "Alter user splx account lock;"|sqlplus -s "system/password@DB1" 

&& echo password|su - splx -c $MDIR/shutdown.sh 

passed resolved 2 2 11.4 29.2 25.8 

8 Oracledb Privilege, 

Operation 

2 echo "Alter user splx account lock;"|sqlplus -s "system/password@DB1" 

&& export ORACLE_SID=DB2 && echo "shutdown immediate;"|sqlplus -

s "sys/password as sysdba"  

passed resolved 3 2 10.6 18.8 53 

9 Shareplx, 

Oracledb 

Operation, 

Main Process 

5 echo "Alter user splx account lock;"|sqlplus -s "system/password@DB1" 

&& echo "stop post"|sp_ctrl && echo "stop capture"|sp_ctrl && echo "stop 

export"|sp ctrl &&  echo "stop import"|sp ctrl 

passed resolved 9 6 11.2 64.8 127.4 

10 Shareplx, 

Oracledb 

Operation, 

Main Process 

4 echo "Alter user splx account lock;"|sqlplus -s "system/password@DB1" 

&& echo "stop read"|sp_ctrl && echo "stop import"|sp_ctrl && echo "stop 

post"|sp ctrl && echo "stop read"|sp ctrl 

passed resolved 9 6 10 64.8 109.4 

11 Shareplx, 

Oracledb 

Operation, 

Main Process 

3 echo "stop capture"|sp_ctrl && echo "stop export"|sp_ctrl && export 

ORACLE_SID=DB1 && echo "shutdown immediate;"|sqlplus -s 

"sys/password as sysdba"  

passed resolved 2 2 11.2 26.8 34.6 

12 Shareplx, 

Oracledb 

Operation, 

Main Process 

3 echo "stop capture"|sp_ctrl && echo "stop import"|sp_ctrl && export 

ORACLE_SID=DB2 && echo "shutdown immediate;"|sqlplus -s 

"sys/password as sysdba"  

passed resolved 9 5 10 48 116.6 

13 Shareplx, 

Oracledb 

Operation, 

Main Process 

3 echo "stop capture"|sp_ctrl && echo "stop post"|sp_ctrl && export 

ORACLE_SID=DB1 && echo "shutdown immediate;"|sqlplus -s 

"sys/password as sysdba"   

passed resolved 3 3 11.4 36.6 41.6 

14 Shareplx, 

Oracledb 

Operation, 

Main Process 

3 echo "stop capture"|sp_ctrl && echo "stop read"|sp_ctrl && export 

ORACLE_SID=DB2 && echo "shutdown immediate;"|sqlplus -s 

"sys/password as sysdba"  

passed resolved 4 3 10 36 57.8 

15 Shareplx, 

Oracledb 

Operation, 

Main Process 

3 echo "stop export"|sp_ctrl && echo "stop import"|sp_ctrl && export 

ORACLE_SID=DB1 && echo "shutdown immediate;"|sqlplus -s 

"sys/password as sysdba"  

passed resolved 7 4 11 58.4 91.8 

16 Shareplx, 

Oracledb 

Operation, 

Main Process 

3 echo "stop export"|sp_ctrl && echo "stop post"|sp_ctrl  && export 

ORACLE_SID=DB2 && echo "shutdown immediate;"|sqlplus -s 

"sys/password as sysdba"  

passed resolved 4 3 10 39.6 63.4 

17 Shareplx, 

Oracledb 

Operation, 

Main Process 

3 echo "stop export"|sp_ctrl && echo "stop read"|sp_ctrl  && export 

ORACLE_SID=DB1 && echo "shutdown immediate;"|sqlplus -s 

"sys/password as sysdba"  

passed resolved 3 3 11.6 24 39.2 

18 Shareplx, 

Oracledb 

Operation, 

Main Process 

3 echo "stop import"|sp_ctrl && echo "stop post"|sp_ctrl  && export 

ORACLE_SID=DB2 && echo "shutdown immediate;"|sqlplus -s 

"sys/password as sysdba"  

passed resolved 8 3 11 37.2 118.6 

19 Shareplx, 

Oracledb 

Operation, 

Main Process 

3 echo "stop import"|sp_ctrl && echo "stop read"|sp_ctrl && export 

ORACLE_SID=DB1 && echo "shutdown immediate;"|sqlplus -s 

"sys/password as sysdba"  

passed resolved 8 4 12 35.2 99.4 

20 Shareplx, 

Oracledb 

Operation, 

Main Process 

3 echo "stop post"|sp_ctrl && echo "stop read"|sp_ctrl && export 

ORACLE_SID=DB2 && echo "shutdown immediate;"|sqlplus -s 

"sys/password as sysdba"  

passed resolved 4 3 10.8 25.2 65.8 

21 Shareplx, 

Oracledb 

Operation, 

Privileges 

4 echo "stop capture"|sp_ctrl && echo "stop export"|sp_ctrl &&  echo "stop 

import"|sp_ctrl && echo "Alter user splx account lock;"|sqlplus -s 

"system/password@DB1" 

passed resolved 8 5 10.2 68 112.2 

22 Shareplx, 

Oracledb 

Operation, 

Privileges 

4 echo "stop capture"|sp_ctrl && echo "stop export"|sp_ctrl &&  echo "stop 

post"|sp_ctrl && echo "Alter user splx account lock;"|sqlplus -s 

"system/password@DB1" 

passed resolved 4 4 11.6 54.4 59.4 

23 Shareplx, 

Oracledb 

Operation, 

Privileges 

4 echo "stop capture"|sp_ctrl && echo "stop export"|sp_ctrl &&  echo "stop 

read"|sp_ctrl && echo "Alter user splx account lock;"|sqlplus -s 

"system/password@DB1" 

passed resolved 4 4 11 63.2 63.4 

24 Shareplx, 

Oracledb 

Operation, 

Privileges 

4 echo "stop capture"|sp_ctrl && echo "stop import"|sp_ctrl &&  echo "stop 

post"|sp_ctrl && echo "Alter user splx account lock;"|sqlplus -s 

"system/password@DB1" 

passed resolved 5 4 11 48 58 

25 Shareplx, 

Oracledb 

Operation, 

Privileges 

4 echo "stop capture"|sp_ctrl && echo "stop import"|sp_ctrl &&  echo "stop 

read"|sp_ctrl && echo "Alter user splx account lock;"|sqlplus -s 

"system/password@DB1" 

passed resolved 9 5 11.2 47 109.4 

26 Shareplx, 

Oracledb 

Operation, 

Privileges 

4 echo "stop capture"|sp_ctrl && echo "stop post"|sp_ctrl &&  echo "stop 

read"|sp_ctrl && echo "Alter user splx account lock;"|sqlplus -s 

"system/password@DB1" 

passed resolved 4 4 10 33.6 62.6 

27 Shareple

x 

Operation 3 echo "stop export"|sp_ctrl && echo "stop import"|sp_ctrl &&  echo "stop 

post"|sp ctrl  

passed resolved 7 4 12 36 103 

28 Shareple

x 

Operation 3 echo "stop export"|sp_ctrl && echo "stop import"|sp_ctrl &&  echo "stop 

read"|sp ctrl 

passed resolved 6 4 11.4 37.6 99.8 

29 Shareple

x 

Operation 3 echo "stop export"|sp_ctrl && echo "stop post"|sp_ctrl &&  echo "stop 

read"|sp_ctrl 

passed resolved 3 3 10 43.8 39.8 

30 Shareple

x 

Operation 3 echo "stop import"|sp_ctrl && echo "stop post"|sp_ctrl && echo "stop 

read"|sp ctrl 

passed resolved 7 5 12 69 112.8 

31 Network Configuratio

n 

3 mv -f $ORACLE_HOME/network/admin/listener.ora 

$ORACLE_HOME/network/admin/ listener.ora.orig && 

$ORACLE HOME/bin/lsnrctl stop && $ORACLE HOME/bin/lsnrctl start 

passed resolved 1 1 10.8 12.4 18.2 

32 Network Main 

Processes 

1 $ORACLE_HOME/bin/lsnrctl stop  passed resolved 1 1 10.8 11 16.2 

33 Network Configuratio

n 

1 mv -f $ORACLE_HOME/network/admin/tnsnames.ora 

$ORACLE HOME/network/admin/tnsnames.ora.orig 

passed resolved 1 1 10 11.4 18.6 

34 OS Security 1 echo password|su - root -c "passwd -l splx"  passed resolved 1 1 10.2 14.6 18.8 

35 OS Security 1 echo password|su - root -c "passwd -l oracle" passed resolved 1 1 12 9.4 18 
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6.3. Test results and analysis 

This section discusses the test results from the integration testing, together with 

the findings. 

6.3.1. FDR modules performance results 

Figure 35 shows the time used among the two main FD and FR modules but 

FR’s details are split into two using both its SC and DRL-NN unit to form a visual 

comparison. Note that the time taken by the FD to produce the service outage report is 

fast, occurring in less than 3 secs. For the FR, the time spent is significantly higher as 

they need to interact with the DRE’s software as some of them require some time to 

start up or enable their services. Figure 34 shows that the time spent using the SC takes 

a much longer time to reach the end goal of resolving all the faults as it followed its 

algorithm to handle the faults one at a time. The method of using the DRL-NN proves 

to be much more efficient and time-saving since it predicts only effective actions that 

have been learnt from its knowledge. 

 
Figure 35 – Time taken by FD to diagnose, FR to resolve faults using SC and NN unit 

 

6.3.2. FDR integration test outputs and findings 

 

Table 20 shows some of the results from the validation test using the test cases 

from table 18. Each of the faults is printed with the system commands to induce the 

faults. The FD performance the query against the DRE retrieving and compiling all the 

information and statistics, then predict the service outage information of the DRE 

based on the software’s services logical grouping. The diagnostics information is 

passed to the FR module, and it is depicted as the current starting state. The FR module 

predicted the corrective action, depicted in the table as the single element correction 
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action to tackle the faults based on its knowledgebase. Then the FR retrieves a new 

state from the DRE after it executed the action. If there are some positive changes, 

some of the faults that have been previously captured will no longer be there and their 

diagnostics will not flag any error. The FR repeats the next iteration and focuses on 

the next faults to fix.  The positive changes have been indicated with a reward of 1. 

But this plays only as a visual indicator unlike in the previous chapter. This keeps on 

going until the new state of the DRE return zeros for all the fault indication. Note that 

some of the more complex faults with the higher number of faults combination require 

a much longer iteration to repair, whereas those with 2 or fewer faults, get fixed up 

rather quickly.  

Table 20 - Results from FR integrated testing 

##################################### 

fault count= 0 fault cmd= export ORACLE_SID=DB1 && echo "shutdown immediate;"|sqlplus -s "sys/password as sysdba" && echo 

password|su - splx -c $MDIR/shutdown.sh 

##################################### 

DRE log,process & service stats= [0,64655058,76223968,0,0,0,0,64351381] [1,0,1,0,0,0,0,0] [1,0,0,0,0,0,0,0], SD Service Outage = 

[[6,1,0,1,3,1],[2,2,1,1,0,0],[1,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0]] 

DRE_current_state = [1,1,1,1,1,1,1,0,0,0,0,0,0,1,1,1,1,1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0] 

index= 19  correct cmd= export ORACLE_SID=DB1 && echo "startup;"|sqlplus -s "sys/password as sysdba" 

single_element_corrective_action= [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 

DRE_new_state      = [1,1,1,1,1,1,1,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], CHANGE reward  = 1 

DRE log,process & service stats= [0,0,0,0,0,0,0,64351381] [0,0,1,0,0,0,0,0] [0,0,0,0,0,0,0,0], SD Service Outage  = 

[[6,1,0,1,3,0],[0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0]] 

DRE_current_state  = [1,1,1,1,1,1,1,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 

index= 0  correct cmd= echo password|su - splx -c $MDIR/startup.sh 

single_element_corrective_action= [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 

DRE_new_state      = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], CHANGE reward  = 1 

resolved 

##################################### 

fault count= 1 fault cmd= export ORACLE_SID=DB2 && echo "shutdown immediate;"|sqlplus -s "sys/password as sysdba" && echo "Alter 

user splx account lock;"|sqlplus -s "system/password@DB1" 

##################################### 

DRE log,process & service stats= [46968001,0,0,0,0,0,0,64351381] [0,1,0,0,0,0,0,0] [0,1,0,0,0,0,0,0], SD Service Outage  = 

[[0,0,0,1,0,2],[2,2,2,1,0,0],[1,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0]] 

DRE_current_state  = [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,0,0,1,1,0,1,0,1,1,1,0,1,0,1,0,0,0,0,0,0,0,0,0,0] 

index= 22  correct cmd= export ORACLE_SID=DB2 && echo "startup;"|sqlplus -s "sys/password as sysdba" 

single_element_corrective_action= [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 

DRE_new_state      = [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], CHANGE reward  = 1 

DRE log,process & service stats= [46968001,0,0,0,0,0,0,64351381] [0,0,0,0,0,0,0,0] [0,0,0,0,0,0,0,0], SD Service Outage  = 

[[0,0,0,1,0,1],[0,0,1,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0]] 

DRE_current_state  = [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 

index= 27  correct cmd= echo "Alter user splx account unlock;"|sqlplus -s "system/password@DB1" 

single_element_corrective_action= [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 

DRE_new_state      = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], CHANGE reward  = 1 

resolved 

##################################### 

fault count= 18 fault cmd= echo "stop import"|sp_ctrl && echo "stop read"|sp_ctrl && export ORACLE_SID=DB1 && echo "shutdown 

immediate;"|sqlplus -s "sys/password as sysdba" 

##################################### 

DRE log,process & service stats= [0,64655058,0,0,0,0,0,64351381] [1,0,0,0,0,0,0,0] [1,0,1,0,0,0,0,0], SD Service Outage  = 

[[3,0,3,1,0,1],[2,2,1,1,0,0],[1,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0]] 

DRE_current_state  = [0,0,0,1,1,1,0,0,1,0,1,0,1,1,0,0,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0] 

index= 19  correct cmd= export ORACLE_SID=DB1 && echo "startup;"|sqlplus -s "sys/password as sysdba" 

single_element_corrective_action= [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 

DRE_new_state      = [0,0,0,1,1,1,0,0,1,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], CHANGE reward  = 1 

DRE log,process & service stats= [0,0,0,0,0,0,0,0] [0,0,0,0,0,0,0,0] [0,0,1,0,0,0,0,0], SD Service Outage  = 

[[3,0,3,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0]] 

DRE_current_state  = [0,0,0,1,1,1,0,0,1,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 

index= 4  correct cmd= echo "start read"|sp_ctrl 

single_element_corrective_action= [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 

DRE_new_state      = [0,0,0,1,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], CHANGE reward  = 1 

DRE log,process & service stats= [0,0,0,0,0,0,0,0] [0,0,0,0,0,0,0,0] [0,0,1,0,0,0,0,0], SD Service Outage  = 

[[2,0,1,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0]] 

DRE_current_state  = [0,0,0,1,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 

index= 5  correct cmd= echo "start import"|sp_ctrl 

single_element_corrective_action= [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 

DRE_new_state      = [0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], CHANGE reward  = 1 
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DRE log,process & service stats= [0,0,0,0,0,0,0,0] [0,0,0,0,0,0,0,0] [0,0,0,0,0,0,0,0], SD Service Outage  = 

[[2,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0]] 

DRE_current_state  = [0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 

single_element_corrective_action= [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 

DRE_new_state      = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], CHANGE reward  = 1 

resolved 

##################################### 

fault count= 19 fault cmd= echo "stop post"|sp_ctrl && echo "stop read"|sp_ctrl && export ORACLE_SID=DB2 && echo "shutdown 

immediate;"|sqlplus -s "sys/password as sysdba" 

##################################### 

DRE log,process & service stats= [0,0,0,0,0,0,0,64351381] [0,1,0,0,0,0,0,0] [0,1,1,0,0,0,0,0], SD Service Outage  = 

[[2,0,3,0,0,1],[2,2,1,1,0,0],[1,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0]] 

DRE_current_state  = [0,0,1,0,1,0,0,0,1,0,0,1,1,0,0,0,0,0,1,0,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0,0,0,0,0,0,0,0] 

index= 22  correct cmd= export ORACLE_SID=DB2 && echo "startup;"|sqlplus -s "sys/password as sysdba" 

single_element_corrective_action= [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 

DRE_new_state      = [0,0,1,0,1,0,0,0,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], CHANGE reward  = 1 

DRE log,process & service stats= [0,0,0,0,0,0,0,64351381] [0,0,0,0,0,0,0,0] [0,0,1,0,0,0,0,0], SD Service Outage  = 

[[2,0,3,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0]] 

DRE_current_state  = [0,0,1,0,1,0,0,0,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 

index= 2  correct cmd= echo "start post"|sp_ctrl 

single_element_corrective_action= [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 

DRE_new_state      = [0,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], CHANGE reward  = 1 

DRE log,process & service stats= [0,0,0,0,0,0,0,0] [0,0,0,0,0,0,0,0] [0,0,1,0,0,0,0,0], SD Service Outage  = 

[[1,0,2,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0]] 

DRE_current_state  = [0,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 

index= 4  correct cmd= echo "start read"|sp_ctrl 

single_element_corrective_action= [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 

DRE_new_state      = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], CHANGE reward  = 1 

resolved 

##################################### 

fault count= 20 fault cmd= echo "stop capture"|sp_ctrl && echo "stop export"|sp_ctrl &&  echo "stop import"|sp_ctrl && echo "Alter user 

splx account lock;"|sqlplus -s "system/password@DB1" 

##################################### 

DRE log,process & service stats= [46968001,0,0,0,0,0,0,0] [0,0,0,0,0,0,0,0] [0,0,1,0,0,0,0,0], SD Service Outage  = 

[[3,0,3,1,0,1],[0,0,1,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0]] 

DRE_current_state  = [0,1,0,1,0,1,0,1,0,1,1,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 

index= 27  correct cmd= echo "Alter user splx account unlock;"|sqlplus -s "system/password@DB1" 

single_element_corrective_action= [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 

DRE_new_state      = [0,1,0,1,0,1,0,1,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], CHANGE reward  = 1 

DRE log,process & service stats= [46968001,0,0,0,0,0,0,0] [0,0,0,0,0,0,0,0] [0,0,1,0,0,0,0,0], SD Service Outage  = 

[[3,0,3,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0]] 

DRE_current_state  = [0,1,0,1,0,1,0,1,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 

index= 1  correct cmd= echo "start capture"|sp_ctrl 

single_element_corrective_action= [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 

DRE_new_state      = [0,0,0,1,0,1,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], CHANGE reward  = 1 

DRE log,process & service stats= [0,0,0,0,0,0,0,0] [0,0,0,0,0,0,0,0] [0,0,1,0,0,0,0,0], SD Service Outage  = 

[[2,0,2,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0]] 

DRE_current_state  = [0,0,0,1,0,1,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 

index= 3  correct cmd= echo "start export"|sp_ctrl 

single_element_corrective_action= [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 

DRE_new_state      = [0,0,0,1,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], CHANGE reward  = 1 

DRE log,process & service stats= [0,0,0,0,0,0,0,0] [0,0,0,0,0,0,0,0] [0,0,1,0,0,0,0,0], SD Service Outage  = 

[[2,0,1,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0]] 

DRE_current_state  = [0,0,0,1,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 

index= 5  correct cmd= echo "start import"|sp_ctrl 

single_element_corrective_action= [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 

DRE_new_state      = [0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], CHANGE reward  = 1 

DRE log,process & service stats= [0,0,0,0,0,0,0,0] [0,0,0,0,0,0,0,0] [0,0,0,0,0,0,0,0], SD Service Outage  = 

[[2,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0]] 

DRE_current_state  = [0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 

single_element_corrective_action= [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 

DRE_new_state      = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], CHANGE reward  = 1 

resolved 

 

 

 

6.4. FDR’s Integration Conclusion 

The combination of both the FD and FR module for the FDR completes the goal 

of this thesis, giving the intelligent feature of able to predict the service outage based 

on the anomalies detected within the DRE, as well as the intelligent fault resolving 

capability to resolve the faults based on the past learning from interacting with the 

DRE. One of the concerns was the overlapping of libraries functionalities that FD and 

FR modules specifically used which can cause adverse faults that cannot be restored. 
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Therefore, care is taken to segregate both to ensure that they do not impact one another 

or to cause conflict and deadlocks. The results that are received must be integrated into 

the mini-batch knowledgebase which subsequently can be reused for continuous 

module training and testing. The steps in which the series of actions that the FDR need 

to restore the services for any given faults must adhere to the hierarchical importance 

and reliance among the software within the DRE’s configuration. However, the FDR 

has shown that it can navigate and learn this order through its trial-and-error iterative 

RL routines, which fulfil the primary feature of what RL is, and that is to maximize 

the rewards by using the best actions for each fault situation that it encounters.  
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CHAPTER 7: CONCLUSIONS 

The rapid growth in the use of complex, multi-tiered IT systems across many 

industries has posed a unique challenge to the IT personnel that support them. The 

number of different software functioning with thousands of configurations and 

parameters to serve other software and technology to meet the needs of the business is 

increasing exponentially and it is stretching the pool of system administrators’ 

resources to the limit. Not only do they face the daily stress of supporting these systems 

but the expectation to have a fast turnaround time to resolve any faults in the 

production system environment grows daily. The Service Level Agreement (SLA) that 

most mission-critical systems commanded are expected to be at least at 99.5% uptime 

and above. Therefore, it is expected that the IT administrator must always be present 

and focus on monitoring them closely. In addition to this, organisations have difficulty 

in increasing their cost and talent pool to increase their resources. This research is an 

attempt to use machine learning to propose a novel way to complement the IT 

administrator in monitoring and resolving any systems faults encountered in the 

production systems. 

This thesis has contributed to the research of a better fault resolution approach 

toward complex, multi-tier software systems via a novel faults identification and 

mapping to solution method that this thesis has developed, including the use of a 

customized version of the Deep reinforcement learning model. This chapter list the 

answers to the research questions that were listed at the beginning of this thesis based 

on the knowledge and experiences gained in this research. It also summarized the 

research contributions and findings together with potential future works and 

enhancement. 

7.1. Research Contributions  

The research made in this thesis has some positive contributions to the space of 

fault diagnosis and resolution in the domain of enterprise data replication using 

machine learning models such as Deep reinforcement learning.  Enterprise data 

replication environment across large enterprise IT environments are getting 

complicated and this new FDR introduces an alternate option to the academia and 
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industry in the use of an intelligent agent that can learn adaptively to resolve detected 

faults that arise from the multitude of participating software in the replication setup. 

For any normal expert system that uses supervised learnings or rule-based, they serve 

the current model with the provision of an available large dataset for training or, they 

need a substantial number of resources and time to compute the optimal feedback for 

the environment input, including the requirement for a large proven dataset of faults 

and actions to support deep learning. The FDR, with its DRL model, doesn’t have this 

pre-requisite for the a-prior knowledge base. The FDR can reduce the amount of 

unnecessary computation required as it stored past known actions and results against 

various environment states as part of its knowledge base. It learns by self-playing and 

self-testing to validate all the potential faults that can occur among the participating 

software across the DRE. This saves not only time and resources but improves the 

speed of response. It can handle unknown states by using part of its routine to explore 

better new solutions and thereby adding more information into its knowledge base.  

If the DRL’s knowledgebase has all the known states with their optimum actions 

to resolve the faults, the DRL can also be structured to handle problems within the 

environment states in a hierarchical form as shown from the FR module, by increasing 

the value in the rewards to steer the algorithm to favour those with higher reward 

values.  the newer states from the environment are treated equally as another 

instantiation of state-action tuples and the DRL will exploit its knowledgebase to 

provide another optimal action for it. This can be regarded as a two planes level 

between existing and new states where the best corrective actions can steer the 

environment to a better goal direction based on their state-action’s rewards and Q-

value. 

The research also develops a novel method in using the details from the system 

diagnostics to develop a systematic hierarchical approach to resolve software faults 

based on their importance, element by element, based on a relationship matrix between 

diagnosed faults to the list of corresponding correcting system commands and scripts. 

The approach is not to use this as the primary mode of fault resolution but to learn to 

fix them following the SC’s algorithms and build up the knowledgebase sufficiently 

enough before the next phase, which is the Neural network, to learn predict the best 

course of corrective actions for any given DRE’s state regarding the knowledge that is 
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gained from the SC phase. This is more efficient than the brute force method of 

exhaustive, high iteration of randomly selecting all related actions to apply for any 

given fault. The FDR can be able to provide high accuracy while applying the right 

actions for all sorts of DRE’s states and their errors encountered. 

This system also allows cross-platform inter-operations, not restricted to any 

specific technology, unlike the current commercial proprietary system that is limited 

to the software brands. The software vendors that develop their system usually rule or 

statistics-based, and they do not integrate with competitor’s software due to privacy 

and copyrights. This method of expressing various faults to corrective actions and 

exploit the external libraries set the initiative for better and greater autonomous and 

adaptive fault resolving systems that are based on machine learning.  

The rise of enterprise cloud service is posing a potential big challenge to the 

administrative work responsibility for IT administrators as it increases the landscape 

of data replication and ingestion requirements especially the multitude of data marts 

and enterprise data warehousing projects increase in multiple folds. They require even 

more technology and software functions to manage a variety of ETL and ELT 

processes with heterogenous data sources that are based in data lakes, blob storage, 

IoT streams and databases. The data that they manage can be in structured, semi-

structured or unstructured form. Therefore, this ETL/ELT software require intensive 

IT administrators’ attention to keep them working at 99.95% Service Level 

Agreement. Therefore, this approach of FDR with the DRL can be set up to mitigate 

and manage this class of complicated environments, able to interact and learn the 

various technique and derive the correct flow of troubleshooting steps in hierarchical 

order to restore the faults if they are detected. The anticipated contribution of the FDR 

to the IT industry is huge and there is a big potential that it can be applied to other IT 

sectors and the environment as well. 

7.2. Comparison of FDR to other Diagnostic and Resolution Methods 

There are several methods of fault diagnosis and resolving them as listed in Table 

21 and they range from the most common method of having IT personnel performing 

hands-on work to rectify the faults when the faults are detected. The fault detection 

can be employed in numerous ways; from the common manual method where IT 

administrators must run multiple queries against different software systems, to write 
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bash scripts that can execute similar commands but through an OS’ task scheduler, and 

the final option of having a commercial software package that can do the monitoring 

intelligently. However, most of this software does not handle fault resolution and it is 

up to the IT administrators to handle that. How efficient and effective each of the 

manual intervention against the detected faults depend strictly on the competency of 

the IT administrator. And it is not cost-effective nor practical to employ many IT 

personnel to cover the operation of the DRE and their maintenance around the clock. 

The landscape of the DRE grows exponentially and the limited number of resources, 

including manpower, cannot scale efficiently to meet the demand.  

For fault resolution, one of the most common methods for any IT administrator 

to fix any system-related fault is to do it hand-on with the DRE software directly. 

Usually, they must refer to some knowledgebase that comes in vendor’s recommended 

best practices or support websites that the organizations have to pay a premium to 

access the software vendors’ knowledgebase or more if they want additional 

professional support. This is preferred but it is not feasible for every IT administrator 

to have the necessary skill nor experience to handle the overall troubleshooting tasks 

and with outsourcing becoming prevalent in the IT industries, getting someone to 

respond to DRE faults across the globe at different time zone is tedious and 

cumbersome.  

Therefore, some of the experienced IT administrators took to the task to write a 

substantial number of custom scripts to do some of the basic troubleshooting and 

correction using simple conditions and rule-based. But this is limited on most 

occasions as not all of them can cross-skilled to other software or limited by their 

jurisdiction and ring-fencing in terms of job responsibility. The rule or condition-based 

method of their fault resolution are fixed and have limited adaptability, so if they are 

going to be deployed to support other forms of DRE with heterogeneous platform and 

technology, the entire scripts need to be revamped and rebuild. This is both laborious 

and maintenance, in the long run, is difficult. Based on the Delphi method, we present 

our method as well as the others to a group of experienced IT administrators from 

Energy Queensland Limited and gather their feedback. Each method has their strength 

and weakness described as shown in table 21 below. 

Table 21 - Benchmarking FDR against other methods of fault diagnosis/resolution 
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Methods Strength Weakness  

Manual/ Hand-on Slow, error-prone, passive, limited in 

feature and coverage, can only handle 

limited complex issues, not scalable 

 

Fault detection, limited 

diagnosis, low resolution 

capability 

Vendors’ best practice 

and knowledgebase 

Slow, error-prone, passive, limited in 

feature and coverage, can only handle 

more complex issues, not scalable, 

enhance IT admin’s knowledge and 

capability. 

 

Fault detection, medium 

diagnosis, medium resolution 

capability 

Professional support Very slow, passive, expensive, able to 

mitigate high complex problem, not 

scalable, enhance organisation’s IT 

competency, not scale 

Only for fault resolution 

Smal shell script with 

task scheduler 

Fast, proactive, more reliable, better 

feature and coverage, scalable, improve 

monitoring and diagnosis reliability 

Fault resolution is very limited  

Program with 

condition or Rule-

based 

Faster, proactive, better reliability, more 

feature and coverage, scalable to handle 

more system, improve monitoring and 

diagnostic ability including limited fault 

resolution 

Not adaptive, limited in scope, 

require major rework if 

configuration changes, not 

flexible to adapt  

FDR Faster, proactive, reliable, handle 

complex, multi-tier software system, able 

to do fault detection, diagnosis, and 

resolution, adaptive,  

Need to predefine all the 

potential faults and 

corresponding action to 

remediate them. 

Require massive amount of pre-

scripted commands to handle all 

fault scenarios. 

May be labour intensive 

 

Currently, there is limited automated fault diagnostic method in academia that 

explicitly applies to diagnose a complex multi-software Data replication integrated 

system. Even in the industry, the fault diagnostic for each of the software is limited to 

the individual vendors that produce it. Therefore, there isn’t a large base of available 

methods for troubleshooting DRE that can be used for empirical analysis and 

comparison.  

The consensus on the usability of FDR is promising as compared to all other 

methods. For system troubleshooting to be done manually or with their software 

utilities, the level of fault diagnosis that can be achieved is strongly correlated 

depending on skillset of the DBAs. Commercial fault diagnostic tools can expedite 

and reduce the tedious tuning effort, but they are also limited to software’s specificity 

and the human factor. Also, they do present a potential risk to the production 

environment as they require direct interaction with the production DRE.  



151 

 

 

The other methods that are rule, heuristic and NN based, provide a higher level 

of autonomy and greater coverage throughout the day without being dependent on 

humans, and they do provide a high probability of detecting and diagnosing the faults. 

Moreover, they can be duplicated to cover other instances of DREs. However, for the 

NN-based model, it has a pre-requisite of an existing large dataset to start with. Other 

methods such as rule-based may be static and limited by its internal knowledge base 

of rule settings. All of them also have a significant risk impact on the production of 

DRE if diagnosing efforts are made against them directly. 

7.3. Future Works and Enhancement 

While the FDR has been proven to be an intelligent fault diagnosis and resolution 

approach for the enterprise set up of tools that replicate data, it is a proof of concept 

with plenty of room for improvement. One of the main attributes with FDR is the 

amount of information from DRE software, versus the libraries of system commands 

for each software element, the relationship matrices of errors to faults, outages and the 

respective fault-remediating actions are both huge and static. To make any amendment 

either to accommodate new software or feature to monitor, to diagnose or to be 

corrected, need updates among the various FDR’s configuration files from end to end 

which is both laborious and time-consuming. so because of this, it is desirable that 

greater flexibility and information storage, including retrieval, can be improved either 

by creating a higher dimensional matrix that accommodates multiple software 

integration relationships with greater ease or allow a more dynamic method of 

ingesting a set of system commands and store shell scripts internally into a central 

repository and update their relationship to the associated software’s list of faults 

dynamically with a procedure. A backend database repository to facilitate all these 

would-be new enhancements will be better too, as it allows easy information query 

and storage with more security and performance. 

Another issue that has been encountered in this research is the set of system 

commands that are used to alter the software element’s configuration. All of them are 

hardcoded but upon deeper analysis, it is found that they tend to follow repetitions of 

statements except for values used in their parameters. Ideally, this can be replaced with 

a new unit that can perform NLP specifically to each software environment using some 

pre-set configuration or parameter values. This proposed NLP system command and 
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control module can also formulate new query languages that scan and gather all the 

real-time statistics and variables from the software. This will certainly give the FDR 

greater flexibility in adapting to a more complex integrated software environment. This 

can overcome the current cumbersome method of hardcoding all the fault correcting 

actions into a large list of system commands which may be difficult to maintain and 

prone to errors. 

For future enhancement, the FDR can benefit if it can be ensembled with other 

models such as Monte Carlo Tree Search  (MCTS) to strategize the solution paths 

among the large state space of combinations for the fault resolution actions, similar to 

Alpha-Go Zero’s strategies [76]. MCTS is used to build a local policy to save the 

subsequent move for fault resolution, by searching for moves and record the results in 

a search tree which enrich a knowledge base of a hierarchical tree structure and from 

it, local policies are made and used to support the subsequent solution search. The 

current FDR has been designed to respond to the move in a hierarchical manner which 

limits the possibility of the model to search linearly across other potential action-space 

that can potentially resolve the fault situation. This is a limiting factor and MCTS may 

overcome this. 

The performance of the FDR design can also be improved by rewriting the 

software libraries that support the DRE’s software which inject the simulated faults 

and restore their services in the attempt to support DRL’s learning process. The 

preparation for these libraries and their functions is time-consuming and proprietary 

to each software vendor, especially on the service restoration where the DRE’s state is 

required to restore to the baseline for the iterative learning trial. The scripts used in 

this FDR research have been hard-coded and stored in the libraries to support the 

various DRE’s software. It is laborious and to maintain them, with multiple repetitions. 

It is advisable to execute them via meta-data, configurations and parameters which 

allow greater flexibility in code readabilities, and thus reduce the number of scripts 

required. This can be replaced with a database that contains all the combinations of 

parameters, variables, account id, details and passwords which can be referred to, and 

construct the required working scripts to serve different functions with ease [77, 78]. 

One of the potential future work that can extend the FDR’s capability to cover 

other complex IT systems with a matrix that can map the complex multiple inter-
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operating dependencies among the software and their services to each other [79]. The 

current FDR require expert’s insights who knows the intracity of the DRE’s software 

relationship but should this FDR extend to other heterogeneous replication systems 

that are not part of the current Shareplex/Oracle expert, then it will be difficult to re-

establish the FDR for the new setup. A matrix of software’s inter-operating 

relationship can help to mitigate this challenge, and this, in turn, supports a range of 

stored procedures or programs that can construct the relevant scripts to support each 

of the software’s specific functions together with the adjacent co-dependent software 

their corresponding functions or services [80].  

7.4. Conclusion 

The DRE is a complicated IT system that serves the need for enterprise data 

replication that span multiple organisations and across geographical regions. It is not 

cost-effective to employ hundreds of IT administrators to support this DRE around the 

clock with a near real-time turnaround in fault resolution effort. The research here 

developed a novel autonomous fault detection and resolution system that is adaptive 

to the changing technology and business landscapes to provide a responsive interaction 

that is equivalent to a human level 1 technical support in rectifying the faults within 

the DRE and it comes in the form of an adaptive intelligent system. Most of the 

commercial and academic fault resolution system relies on either a decision-based 

system that is based on rules or conditions or a NN to prescribe the remedial actions. 

However, these popular approaches have their drawbacks; for rule-based systems, the 

model of the IT system must be predetermined, and it contains a list of fixed rules 

which aren’t scalable and scripts that are proprietary to the vendors. Plus, they are only 

designed for specific software, and they do not usually work well across other 

platforms or technology. Those systems that depend on deep learning can be more 

flexible and scalable as compared to those rule-based ones, but they require a large 

amount of labelled dataset for training, something which is not readily available in 

large IT setups that have different policies and configurations. However, the FDR 

system is not based on an explicit rule or decision logic, and it does not need to have 

a model based on DRE that is both explicit and well-defined. In any enterprise IT 

landscape, it is impossible to impose such control and not all the DRE sites share the 

same configuration or infrastructure. So, the FDR system is adaptive enough to learn 
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and serve the data replications setup. There are instances where FDR systems can be 

trained specifically to support individual systems separately and then combine to serve 

a higher and more global purpose. for example, one FDR system can be trained to 

serve a DRE that is tied into a client-server OLTP finance system whereas another can 

be trained to support another DRE via a web-based internet system. Both can be 

deployed to various organisations to run as virtual autonomous IT administrators that 

can work together to support a wide range of heterogeneous IT systems without 

revealing the knowledge. these FDR systems can have encrypted external libraries of 

system commands and scripts that the FDR system can exploit. But their secrecy can 

be protected without revealing to the users. 

FDR has overcome these limitations and the research has shown that this novel 

approach does enable the FDR to be flexible enough to adapt its services of fault 

diagnosis and resolution to any multi-tier software and learn on the job dynamically 

with little or no a-prior dataset nor knowledge. While there is room for improvement, 

it is novel especially in the space of complex software involving enterprise data 

replication management. 
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