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Abstract. There is growing evidence that many neurodegenerative disease processes involve
the proliferation, accumulation and spread of pathogenic proteins. The transport of proteins in
the brain is typically hindered on small scales by micro-domain traps and binding sites but it
may be enhanced on larger scales by neuronal pathways identified as white matter transport
networks. We have introduced a mathematical network model to simulate a pathogenic protein
neurodegenerative disease in the brain taking into account the anomalous transport. The pro-
liferation and accumulation of pathogenic proteins is modelled using a set of reaction kinetics
equations on the nodes of a network. Transport of the proteins on the network is modelled as
a continuous time random walk with power law distributed waiting times on the nodes. This
power law waiting time distribution is shown to be consistent with anomalously slowed diffu-
sion on local scales but transport is enhanced on larger scales by the jumps between nodes.
The model reveals that the disease spreads as a propagating front throughout the brain. The
anomalous behaviour leads to a lessor variation in the concentration of pathogenic proteins. The
enhanced transport on the network ensures that the approach to equilibrium is dominated by
the short time behaviour of the waiting time density, hence the effects of subdiffusion are not
as pronounced as in a spatial continuum.

Keywords and phrases: anomalous transport, fractional diffusion, prion disease

Mathematics Subject Classification: 34A08, 37H10, 60G20, 92B05, 90B15, 92C20

1. Introduction

Many neurodegenerative disease processes are thought to involve pathogenic misfolded proteins that
cause other proteins to misfold and aggregate together disrupting the normal functioning of nerve cells
[1]. These misfolded proteins are hypothesised to spread along neuronal pathways to other regions of the
brain seeding further misfolding and aggregation there. The canonical example [2] involves proteinaceous
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infectious particles, known as prions, implicated in diseases such as Creutzfeldt-Jakob disease, Gerstmann-
Sträussler-Scheinker disease, kuru, fatal insomnia, bovine spongiform encephalopathy, scrapie and chronic
wasting disease [1,3,4]. The mammalian prion protein, PrP, is the only known prion in mammals, however
there are other proteins that are “prion-like”. These proteins are known as prionoids [5] and examples
include, amyloid-β and tau [6], which are involved with Alzheimer’s disease [7], and α-synuclein, which
is involved with Parkinson’s disease [8, 9]. Whilst prions and prionoids are very similar [6, 10] there is
evidence both for [11,12] and against [13] the hypothesis that they are the same.

The mechanics of prion diseases involves the normal cellular protein PrPC and the pathogenic form
of the same protein PrPSc [3]. It has been observed that PrPSc form catalyses PrPC to misfold and
transform into PrPSc. Also the PrPSc will form aggregates. In the presence of PrPSc, the continuous
production of PrPC from neurons results in the accumulation of these aggregates and the disruption of
proper neural functioning [3]. A similar chain of events is thought to happen to prionoids [6, 10].

For each of the prion and prionoid diseases, characteristic effects are observed at a macroscopic level.
These are manifest as spongiform degeneration and aggregates of PrPSc in prion diseases [14], aggregates
of Amyloid-β aggregates in Alzheimer’s disease [7] and α-synuclein containing Lewy bodies in Parkinson’s
disease [8]. Understanding the aggregation and the spread of the aggregates is a major open problem
[1,10,15].

The exact mechanism of prion transport in the brain is unknown but it is thought to occur across the
white matter neural pathways [16–22]. Transport along these pathways can be identified as a transport
network [23] obtained from Diffusion Tensor Imaging (DTI) [24]. DTI provides a mapping of the diffusion
of water molecules in the brain. Previous work has shown links between the structure of the white matter
transport network and the spread of Alzheimer’s disease [25].

The diffusion of molecules in the extracellular space are hindered by micro-domain traps, binding sites,
and obstruction from other molecules in the extracellular matrix space [26]. Collectively such barriers
may result in anomalously slowed diffusion [27,28] that has been characterised variously through; reduced
apparent diffusion constants [29, 30], biexponential behaviour [31], stretched exponential behaviour [32–
35], kurtosis [36], and fractional subdiffusion [33, 37, 38]. Extracellular transport of proteins in the brain
may be further complicated by their uptake and release from cells [39, 40].

One of the most well studied and commonly observed manifestations of anomalously slowed diffusion
is fractional subdiffusion [41,42]. Here the mean square displacement grows as a sub linear power law in
time, characterised by an anomalous exponent α. Fractional subdiffusion can be derived from a continuous
time random walk (CTRW) model in which particles wait for a random time, given by a power law or
Mittag-Leffler waiting time density, before jumping to a new location [41]. In a spatial continuum the limit
process of CTRWs can be formulated as fractional diffusion equations [41, 42], fractional Fokker-Planck
equations [43–45], and fractional reaction-diffusion equations [46–48]. In subdiffusion with reactions on
a spatial continuum propagating fronts have been analyzed [47,49,50]. Further extensions to include the
effects of an electric field have been used to formulate a fractional cable equation [51–53] as a mathematical
model for the electronic properties of dendrites, taking into account trapping by dendritic spines. On
a larger scale, the fractional diffusion equation has been used to calibrate anomalous diffusion in MRI
images of the brain [54]. The CTRW model has also been extended to networks, including the effects of
reactions [55] and forces [56].

In this paper we have introduced a mathematical network model to describe a pathogenic protein
neurodegenerative disease in the brain taking into account transport along neural pathways and locally
anomalous diffusion. The proliferation and accumulation of pathogenic proteins is modelled using reaction
kinetics on the nodes of a white matter transport network. The spread of the disease is modelled
using a CTRW on the network with power law distributed waiting times at the nodes [55]. The power
law distributed waiting times model the locally anomalous subdiffusion. As a particular application
we consider a simple hetrodimer model of PrP [57] on the white matter transport network with local
subdiffusion. The model includes the reaction kinetics of PrPSc causing PrPC to misfold then aggregate.
The governing generalised master equations for the disease process are solved numerically using an implicit
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time-stepping method [58]. Numerical simulations have been carried out for two anomalous exponents,
α = 0.6 and α = 0.8, and for locally standard diffusion where α = 1. The values of the anomalous
exponents considered are consistent with reported values [33,35,54].

2. A Network Mathematical Model for Prion Dynamics

Our mathematical model for prion dynamics considers three agents, normal cellular proteins PrPC ,
pathogenic proteins, PrPSc, and stationary aggregates of pathogenic proteins, PrPAgg, and is based on
the hetrodimer model [57]. The model is composed of a set of coupled ordinary differential equations
(ODEs) to describe the temporal evolution of the concentration of each of the proteins. The model
reaction kinetics consist of: production of PrPC by cells, degradation of PrPC , catalysis of PrPC into
PrPSc, degradation of PrPSc and aggregation of PrPSc. We assume the prions move on a white matter
transport network consisting of N nodes, {v1, ..., vN}. The aggregates, which accumulate at the nodes,
are assumed to be stationary. The model assumes three basic features: (i) Reactions occur on the nodes of
a network. (ii) Transport occurs as transitions between the nodes of the network. This models enhanced
transport along white matter neural pathways. (iii) Transitions between nodes occur after random, power
law distributed, waiting times. This models anomalously slowed diffusion on local scales.

2.1. Reaction Dynamics on Nodes

Let c(vi, t), s(vi, t), and a(vi, t) denote the concentrations of PrPC , PrPSc, and PrPAgg respectively at
node vi at time t. The set of ODEs governing the reaction dynamics on a single node is given by

dc(vi, t)

dt
= ν0 − kac(vi, t)− kbc(vi, t)s(vi, t), (2.1)

ds(vi, t)

dt
= kbc(vi, t)s(vi, t)− (kc + kd)s(vi, t), (2.2)

da(vi, t)

dt
= kcs(vi, t). (2.3)

In these equations; ν0 parameterises the creation of new PrPC , ka and kd the degradation of PrPC and
PrPSc respectively, kb the conversion of PrPC into PrPSc, and kc the conversion of PrPSc into PrPAgg.

The reduced coupled system of equations, Eq.(2.1) and Eq.(2.2), has a disease free steady state and
an endemic steady state. The disease free state is given by

c(vi, t) =
ν0
ka

and s(vi, t) = 0. (2.4)

The endemic steady state is given by

c(vi, t) =
kc + kd
kb

and s(vi, t) =
kbν0 − (kc + kd)ka

(kc + kd)kb
. (2.5)

The aggregate, a(vi, t), remains zero in the disease free state but it grows linearly in time in the endemic
steady state.

2.2. Enhanced Transport on a Network

By observing the diffusion of water molecules, Diffusion Tensor Imaging (DTI) [59] is used to identify
neural pathways that enhance transport in the brain. These pathways can be represented mathematically
by a network of N undirected nodes with edge weights. The edge weights, denoted by wi,j correspond
to the number of fibres in a fibre bundle connecting the two nodes vi and vj . If there is no edge between
vi and vj then wi,j = 0. The model equations governing transport on a network are then given by
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dC(vi, t)

dt
=

1

τ

N∑
j=1

λj,iC(vj , t)−
1

τ

N∑
j=1

λi,jC(vi, t) (2.6)

where C(vi, t) is the number of particles on node vi at time t, and λi,j are normalized weights defined by

λi,j =
wi,j∑N

m=1 wi,m
. (2.7)

The parameter τ has been introduced as a scale factor with the dimensions of time. To obtain an equation
in terms of concentration we need to divide by the volume of the node. If node vi has volume Vi, then
the transport equation for the concentration, c(vi, t), on the network is

dc(vi, t)

dt
=

1

τ

N∑
j=1

λj,i
Vj
Vi
c(vj , t)−

1

τ

N∑
j=1

λi,jc(vi, t) (2.8)

In general it is difficult to obtain the volumes of each node from available experimental data, but it is still
possible to infer these volumes from the edge weights. In the long time limit, in the absence of reactions,
the concentration on each node must be the same. In order for this limit to hold we let Vi = κ

∑N
j=1 wi,j

where κ is a constant with the dimensions of volume. The transport equation can then be written,

dc(vi, t)

dt
=

1

τ

N∑
j=1

wj,i∑N
m=1 wi,m

c(vj , t)−
1

τ

N∑
j=1

wi,j∑N
m=1 wi,m

c(vi, t). (2.9)

As the wights wi,j are symmetric, this can be further simplified to,

dc(vi, t)

dt
=

1

τ

N∑
j=1

wj,i∑N
m=1 wi,m

(c(vj , t)− c(vi, t)) . (2.10)

Considering the case of reactions and transport, applying the reaction dynamics for prion disease
introduced above the governing equations are,

dc(vi, t)

dt
= ν0 − kac(vi, t)− kbc(vi, t)s(vi, t)

+
1

τ

N∑
j=1

wj,i∑N
m=1 wi,m

(c(vj , t)− c(vi, t)) , (2.11)

ds(vi, t)

dt
= kbc(vi, t)s(vi, t)− (kc + kd)s(vi, t)

+
1

τ

N∑
j=1

wj,i∑N
m=1 wi,m

(s(vj , t)− s(vi, t)) , (2.12)

da(vi, t)

dt
= kcs(vi, t), (2.13)

If τ � 1/k, where k is the minimum reaction rate, then the transport is very slow compared with the
time scale of reactions. For the purposes of this model it is important that the reactions have time to be
well mixed before transport occurs.
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2.3. Local Anomalous Diffusion

We assume that on local scales, for example the size of voxels in imaging studies, the diffusion of particles
is anomalously slowed. This is referred to as subdiffusion if the mean square displacement of diffusing
particles scales as a sublinear power law in time, i.e., 〈x2〉 ∼ tα, with the scaling exponent α ∈ (0, 1). It
is straightforward to show that the first passage time distribution of subdiffusing particles exiting a voxel
is power law distributed with the same scaling exponent. The first passage time results for subdiffusion
can readily be obtained from the time subordination of first passage time results in standard diffusion
[60].

The solution of the standard diffusion equation with an absorbing boundary can be written as

u(x, t) =

∞∑
n=0

anXn(x)e−p
2
nDt, (2.14)

where Xn is the nth eigenfunction of the Laplacian with eigenvalue pn and the constants cn can be deter-
mined from the initial condition, together with the orthogonality condition of the eigenfunctions. This
solution can be used to provide the solution to the subdiffusion problem using time subordination. Under
time subordination the temporal term e−p

2
nDt is replaced with a heavy tailed Mittag-Leffler function,

Eα(−p2nDtα), [42] and this results in the subdiffusion solution

uα(x, t) =

∞∑
n=0

anXn(x)Eα[−p2nDtα], (2.15)

where α is the anomalous exponent on the scale of a voxel.
The survival density at time, denoted by Φα(t), is the total of what remains in the local domain, Ω,

at t. Formally we write

Φα(t) =

∫
Ω

uα(x, t)dx (2.16)

=

∫
Ω

∞∑
n=0

anXn(x)Eα[−p2nDt]dx. (2.17)

The long time behaviour is dominated by the largest non-zero eigenvalue, pmax, resulting in the long time
scaling

Φα(t) ∼ Eα[−p2maxDtα] = Eα

[
−
(
t

τ

)α]
∼ τα

Γ (1− α)

1

tα
. (2.18)

2.4. Network Model with Reactions and Local Anomalous Diffusion

A continuous time random walk model, including reactions on nodes with randomly distributed waiting
times before transitions between nodes, was introduced earlier by the authors in [55]. In the model
considered here, the waiting times, which arise from locally anomalous diffusion, can be obtained from
the survival density in Eq.(2.18). The waiting time density is then given by

ψ(t) = −dΦα(t)

dt

= (
tα−1

τα
)Eα,α

[
−
(
t

τ

)α]
, (2.19)

where

Ea,b[t] =

∞∑
k=0

tk

Γ (an+ b)
(2.20)
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is the generalised Mittag-Leffler function [61]. The density in Eq.(2.19) is one of the characteristic heavy
tailed waiting time densities employed in CTRW models for subdiffusion. This is a clear demonstration
that the anomalous exponent for subdiffusion on the scale of voxels can be carried across to model
anomalous transport through a CTRW on a network [55]. In the CTRW model on a network the
normalized weights defined in Eq(2.7) become the transition probabilities. The general master equations
for a CTRW on a network with Mittag-Leffler waiting time densities and reaction kinetics on the nodes
were first derived in [55]. Using the reaction dynamics given by Eqs. (2.1), (2.2), (2.3), in these master
equations, we obtain the master equations for the prion model, incorporating local subdiffusion, local
reactions and enhanced transport on neural pathways:

dc(vi, t)

dt
= ν0 − kac(vi, t)− kbc(vi, t)s(vi, t)

+
1

τα

N∑
j=1

wi,j∑N
m=1 wi,m

(
e−
∫ t
0
kbs(vj ,t

′)dt′−kat
0D

1−α
t

[
c(vj , t)

e−
∫ t
0
kbs(vj ,t′)dt′−kat

]

−e−
∫ t
0
kbs(vi,t

′)dt′−kat
0D

1−α
t

[
c(vi, t)

e−
∫ t
0
kbs(vi,t′)dt′−kat

])
(2.21)

ds(vi, t)

dt
= kbc(vi, t)s(vi, t)− (kc + kd)s(vi, t)

+
1

τα

N∑
j=1

wi,j∑N
m=1 wi,m

(
e−(kc+kd)t 0D

1−α
t

[
s(vj , t)

e−(kc+kd)t

]

−e−(kc+kd)t 0D1−α
t

[
s(vi, t)

e−(kc+kd)t

])
(2.22)

da(vi, t)

dt
= kcs(vi, t). (2.23)

Here

0D
1−α
t [y(x, t)] =

1

Γ (α)

d

dt

t∫
0

y(x, t′)

(t− t′)1−α
dt′. (2.24)

is the Riemann-Liouville fractional derivative of order 1 − α, and we have assumed that the fractional
integral 0D

−α
t [y(x, t)] vanishes at t = 0. In this model the aggregates are stationary and so there is no

fractional diffusive component in Eq. (2.23). Note that when α = 1, this set of equations recovers the
standard set of network reaction transport equations, Eqs.(2.11), (2.12), and (2.13).

3. Model Simulations

In this section we report our results on numerical solutions of the model equations, Eqs.(2.21), (2.22),
and (2.23), using an implicit method, described below, and using a brain network obtained from the
UCLA Multimodal Connectivity Database [62]. A single 264 node network, named TD32C DTI in the
database, was chosen from the “Typically developing” group of a study into the structural brain networks
of individuals with autism [63].

To numerically solve Eqs. (2.21) – (2.23) we use a method similar to the implicit method introduced
by Langlands and Henry [58] for solving the fractional subdiffusion equation

∂u

∂t
= D 0D

1−α
t

(
∂2u

∂x2

)
. (3.1)

Let tn = (n− 1)∆t be equally-spaced time points in the interval t ∈ [0, T ] where ∆t = T/(M + 1) is the
constant time step, n = 1, 2, 3, . . . ,M + 1 and M is the number of time steps. We denote the numerical
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approximation for each of the unknowns c(vi, t), s(vi, t) and a(vi, t), at vertex vi and time tn, by c
(n)
i ,

s
(n)
i , and a

(n)
i respectively. The subscript denotes the vertex and the superscript denotes the time step.

As in [58] we approximate the first order time derivatives on the left of Eqs. (2.21), (2.22), and (2.23)
using a backward finite difference at the time tn+1 and the right-hand side of these equations are evaluated
at the time t = tn+1. Eq. (2.23) then becomes

a
(n+1)
i − a(n)i

∆t
= kcs

(n+1)
i (3.2)

or
a
(n+1)
i − kc∆ts(n+1)

i = a
(n)
i . (3.3)

To evaluate the Riemann-Liouville fractional derivative as in Eqs. (2.21) and (2.22), we use the L1
approximation for the fractional derivative of order 1 − α, with respect to time, of the function y(t) at
t = tn+1. Using the L1 approximation from [64] we can write this as

0D
1−α
t y(t) ≈ ∆tα−1

Γ (1 + α)

{
Ωn(α)y(1) + y(n+1) +

n∑
l=2

Θn−l+2(α)y(l)

}
, (3.4)

where

y(n) = y((n− 1)∆t), n ≥ 1, (3.5)

Θn(α) = nα − 2 (n− 1)
α

+ (n− 2)
α
, n ≥ 2, (3.6)

Ωn(α) =
α

n1−α
− (nα − (n− 1)

α
) , n ≥ 1, (3.7)

and Γ (x) is the Gamma function.
Using Eq. (3.4) to approximate the fractional derivative in Eq. (2.22) we find

s
(n+1)
i − s(n)i

∆t
= kbc

(n+1)
i s

(n+1)
i − (kc + kd)s

(n+1)
i

+
∆tα−1

ταΓ (1 + α)

N∑
j=1

wi,j
N∑
m=1

wi,m

([
Ωn(α)s

(1)
j e−(kc+kd)n∆t + s

(n+1)
j +

n∑
l=2

Θn−l+2(α)s
(l)
j e
−(kc+kd)(n+1−l)∆t

]

−

[
Ωn(α)s

(1)
i e−(kc+kd)n∆t + s

(n+1)
i +

n∑
l=2

Θn−l+2(α)s
(l)
i e
−(kc+kd)(n+1−l)∆t

])
(3.8)

which simplifies to

s
(n+1)
i − kbc(n+1)

i s
(n+1)
i ∆t+ (kc + kd)s

(n+1)
i ∆t+ ρ

N∑
j=1

wi,j
N∑
m=1

wi,m

(
s
(n+1)
i − s(n+1)

j

)
= s

(n)
i

+ ρ

N∑
j=1

wi,j
N∑
m=1

wi,m

([
Ωn(α)s

(1)
j e−(kc+kd)n∆t +

n∑
l=2

Θn−l+2(α)s
(l)
j e
−(kc+kd)(n+1−l)∆t

]

−

[
Ωn(α)s

(1)
i e−(kc+kd)n∆t +

n∑
l=2

Θn−l+2(α)s
(l)
i e
−(kc+kd)(n+1−l)∆t

])
(3.9)

where

ρ =
∆tα

ταΓ (1 + α)
. (3.10)
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To evaluate the integral of s(vi, t) in Eq. (2.21) we take advantage that the solution of Eq. (2.23) is

ai(t) = ai(0) +

∫ t

0

kcsi(t
′
) dt

′
(3.11)

and so ∫ t

0

kbsi(t
′
) dt

′
=
kb
kc

(ai(t)− ai(0)) = β (ai(t)− ai(0)) (3.12)

where β = kb/kc. Now using Eqs. (3.4) and (3.12), Eq. (2.21) is discretized as

c
(n+1)
i − c(n)i

∆t
= ν0 − kac(n+1)

i − kbc(n+1)
i s

(n+1)
i

+
∆tα−1

ταΓ (1 + α)

N∑
j=1

wi,j
N∑
m=1

wi,m

([
Ωn(α)c

(1)
j e
−β
(
a
(n+1)
j −a(1)j

)
−kan∆t + c

(n+1)
j

+

n∑
l=2

Θn−l+2(α)c
(l)
j e
−β
(
a
(n+1)
j −a(l)j

)
−ka(n+1−l)∆t

]

−

[
Ωn(α)c

(1)
i e
−β
(
a
(n+1)
i −a(1)i

)
−kan∆t + c

(n+1)
i +

n∑
l=2

Θn−l+2(α)c
(l)
i e
−β
(
a
(n+1)
i −a(l)i

)
−ka(n+1−l)∆t

])
(3.13)

or

c
(n+1)
i + kac

(n+1)
i ∆t+ kbc

(n+1)
i s

(n+1)
i ∆t+ ρ

N∑
j=1

wi,j
N∑
m=1

wi,m

(
c
(n+1)
i − c(n+1)

j

)

= c
(n)
i + ν0∆t+ ρ

N∑
j=1

wi,j
N∑
m=1

wi,m

([
Ωn(α)c

(1)
j e
−β
(
a
(n+1)
j −a(1)j

)
−kan∆t

+

n∑
l=2

Θn−l+2(α)c
(l)
j e
−β
(
a
(n+1)
j −a(l)j

)
−ka(n+1−l)∆t

]

−

[
Ωn(α)c

(1)
i e
−β
(
a
(n+1)
i −a(1)i

)
−kan∆t +

n∑
l=2

Θn−l+2(α)c
(l)
i e
−β
(
a
(n+1)
i −a(l)i

)
−ka(n+1−l)∆t

])
. (3.14)

Eqs. (3.3), (3.9) and (3.14) form a system of nonlinear equations which is solved using the Newton-
Raphson procedure.

Initial conditions were chosen as follows; c(vi, 0) = 1, s(vi, 0) = 0 and a(vi, 0) = 0 for all nodes except
at six seed nodes where s(vi, 0) = 0.01 and c(vi, 0) = 0.99. These conditions ensure that initially there
is the same total number of PrPC and PrPSc at each node, i.e. s(vi, 0) + c(vi, 0) = 1. The seeded nodes
correspond to the inferior temporal cortex region of the brain. The formation of aggregates in these
regions of the brain have been observed in very early cases of Alzheimer’s Disease [17].

It is difficult to provide reliable estimates for model parameters. The parameters used in our simulations
are chosen to show the effects of changing the subdiffusive exponent α. The rate parameters, in arbitrary
units, were taken to be ν0 = 60, ka = 60, kb = 60, kc = 30 and kd = 20. The time scale parameter was
set at τ = 1.
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Figure 1 shows plots of the concentrations of proteins and aggregates, taken over all nodes, as a
function of time for three different values of α. On each node the concentration of PrPC and PrPSc tends
towards their endemic steady state values, Eq.(2.5). The concentration of the aggregate PrPAgg tends
towards a linear increase in time at the same rate across all nodes. It is clear from this figure that as
α is decreased (more anomalous) the system approaches the equilibrium state faster with less variation
in the concentrations of proteins and aggregates across the network. The profile of concentration versus
time is similar for all nodes. On each node the disease free steady state is destablilized by the arrival
of PrPSc whose concentration then increases to the endemic steady state. This behaviour is typical of a
propagating front. The propagation can be seen in plots of the spatial spread of the disease.

Figure 1. Node concentration of PrPC (Left), PrPSc (Centre) and PrPAgg (Right) up
till time t = 2: (A), α = 1; (B), α = 0.8; (C), α = 0.6.

Figures 2, 3, 4 show the spatial spread of the concentrations of the diseased protein, PrPSc, across an
XY projection of the brain network for α = 0.6, α = 0.8, and α = 1.0, respectively. At α = 0.6 all nodes
appear to have reached the equilibrium concentration for diseased proteins by time t = 1.4. For α = 0.8
more than half of the nodes, but not all, have reached the equilibrium concentration levels by this time
whereas for α = 1.0 less than half of the nodes have reached the equilibrium concentration levels. From
these figures is can be seen that the concentration of diseased proteins builds up faster on nodes at the
rear of the brain. This is due to the initial conditions and the network topology. Taken together the plots
in Figures 1-4 provide evidence that this spread can be described as a propagating front with the endemic
disease state moving from the seeded parts of the brain to the other parts of the brain at different times.
The front appears to move faster for lower values of α. This can be explained by the early time behaviour
of the waiting time survival function. At early times, the Mittag-Leffler survival function is larger for
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values of α closer to one, hence for small α a larger proportion of particles will jump at early times. The
destabilization of the disease free state only requires a low concentration of particles. As such the long
time trapping of even the majority of particles is insufficient to prevent the propagation of the disease.

Figure 2. The concentration of PrPSc across the network at times, t = 0.4 (A), t = 0.6
(B), t = 0.8 (C ), t = 1.0 (D), t = 1.2 (E ), and t = 1.4 (F ) with α = 0.6.
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Figure 3. The concentration of PrPSc across the network at times, t = 0.4 (A), t = 0.6
(B), t = 0.8 (C ), t = 1.0 (D), t = 1.2 (E ), and t = 1.4 (F )with α = 0.8.
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Figure 4. The concentration of PrPSc across the network at times, t = 0.4 (A), t = 0.6
(B), t = 0.8 (C ), t = 1.0 (D), t = 1.2 (E ), and t = 1.4 (F )with α = 1.0.

4. Discussion

The movements of particles, including disease particles, in the brain and the resultant disease progres-
sion in the brain is confounded by microscopic trapping and binding of particles on the one hand and
the relatively free movements of particles along neural pathways on the other. We have introduced a
model that can incorporate both these transport features along with reaction dynamics modelling disease
processes. The neural pathways are routinely obtained from diffusion tensor imaging and represented
as networks with edge weights quantifying the number of fibres, and hence ease of transport, between
nodes. Our mathematical model is a network model with transport between nodes and reactions on
nodes. The microscopic trapping of particles motivates the introduction of a heavy tailed waiting time
density in a continuous time random walk on the network, with jump probabilities defined by normalized
edge weights. The reaction dynamics are then incorporated into this model using the formalism derived
in [55].

Modelling the spatial progression of prion and prionoid diseases is fundamental to the understanding
and treatment of these diseases and we hope that the model developed here could be a useful starting
point for further studies. In the simulations presented here, there is evidence that subdiffusion on local
scales could impact on disease progression across large scales but there are two problems with the model as
it stands. One problem, which is ubiquitous in brain network models, is the choice of model parameters.
A second problem, which is fundamental to models for the spatial spread of disease on brain networks, is
that transport between the nodes on the network is instantaneous whereas the physical transport in the
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brain between such points is very complex and certainly not instantaneous. The prevalence of anomalous
diffusion in the brain and the increasing availability of brain network models makes this an important
area for future work.
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