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Abstract

Anaesthesia is the corner stone of modern surgical medicine. Despite a long pe-

riod of enquire beginning with Snow (1847) anaesthesia remains a field in which

there are more questions than answers. This thesis reports findings on three

different aspects of anaesthesia.

1. Initially, a method for calculating a population pharmacokinetic model for

propofol infusion is described. This method greatly reduced the time required

to calculate the model (0.1 seconds per iteration) compared to the NONMEM

method (hours per iteration (Minto, Schnider, Egan, Youngs, Lemmens, Gam-

bus, Billard, Hoke, Moore, Hermann, Muir, Mandema & Shafer 1997)). The

resultant model achieved improved fit to the data than the model of Schüttler

& Ihmsen (2000b) achieving a mean squared error of 0.2835 compared to 0.6413

respectively.

2. Second, a neural network (NN) method is presented to assess Depth of Anaes-

thesia from long segments of raw EEG. The proposed method was able to ap-

proximate the output from a BIS XP monitor for the training data. The linear

regression, between the NN and the BIS monitor, resulted in an R value of

0.99963. The network was able to approximate the BIS monitor output for new

(unseen) data.

3. Finally, a lumped parameter neural mass, anaesthesia, model is presented.

This model is capable of generating changes in EEG associated with increas-

ing doses of γ-aminobutyric acid type A (GABAA) hypnotic agent (propofol).

This model was not a fitting exercise rather it was constructed based on known

brain physiology, and the changes to α1 GABAA receptors conductance caused

by propofol. Encompassing the regional interactions, that are thought to be,

altered by GABA hypnotic agents.

The model is capable of producing five distinct EEG patterns (β, α, θ, δ and iso-

electric) in response to different levels of hypnotic agent. The model is reactive

capable of switching from α to β band EEG when the eyes open. Anaesthetic

supresses the models transition to a higher state EEG.

The model suggest that the effect site for propofol as α1 GABAA receptors of

slow interneurons of the cortex.
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Chapter 1

Introduction

Anaesthesia is an important process in modern medicine, which allows modern

surgical practices. Anaesthesia modifies the body’s responses to stimuli, resulting

from a medical procedure, so that the procedure may proceed. A series of the

bodies control systems are altered with a range of relative toxic compounds. The

essential features of a general anaesthesia are a reversible loss of consciousness

with a lack of movement, a lack of awareness, unresponsiveness to painful stimuli

and a lack of recall of the surgical intervention. Inappropriate general anaesthesia

may lead to intraoperative awareness with recall (due to patient under dosage)

or prolonged recovery and increased risk of postoperative complications (due to

over dosage).

We assume that anaesthesia, as a critical part of modern medicine, is a well

understood. As an anaesthesia patient we take comfort in the fact that the

procedure will be meticulously planned and the drug regiment tailored to our

personal needs, assured that very few persons are harmed directly by the anaes-

thetic. In reality anaesthesia is more art than science.

Anaesthesia disrupts or modifies the functioning of the nervous system. This is

not a single system; it is divided into a series of sub systems that control portions

of the body. The areas that are targets of the anaesthetic are dependent upon

the patient and the procedure performed. For most surgical procurers relaxation

of the muscle is required to allow the progress of surgery. Other goals are absence

of memory, unconsciousness, and removal of pain.

Despite meticulous planning, only thirteen percent of procedures go to plan (Rall,

Gaba, Howard & Dieckmann 2009). Fundamental to this poor performance is the

estimation of the dose required for a particular patient. Although the effect site
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concentration required is well defined, calculation of the dose contains significant

error (Dhillon & Gill 2009, Schnider, Minto, Gambus, Andresen, Goodale, Shafer

& Youngs 1998). An average dose has the potential to kill some while it will have

no effect on others; variation within the population is large. Improvement in

population PK modelling represents a clear opportunity to improve anaesthetic

practice.

Patients undergoing general anaesthesia for operations always have their vital

signs and other markers checked throughout the operation (Eskaros, Papadakos

& Lachmann 2009, Schroeder, Barbeito, Bar-Yosef & Mark 2009, Sessler 2009,

Viby-Mogensen 2009) to ensure; firstly, that the patient survives the intoxica-

tion. Then detect deviations in normal body function as early as possible in

order that counter measures may be taken when necessary (Gelb et al. 2009).

Secondly, amongst other things if the patient is sufficiently unconscious. Estima-

tion of the anaesthetic effect is a considerable challenge for those who administer

anaesthesia. Assessment of anaesthetic state relies on the subjective assessment

of a range of factors that could be influenced by the anaesthetic (Urban 2002).

This subjective process is a complex task prone to error (Rall et al. 2009). De-

spite a range of DoA monitors subjective assessment still represents the gold

standard in patient care.

Monitoring of this ill-defined phenomenon is a complex challenge. Current moni-

tors rely on processed EEG to estimate Depth of Anaesthesia (DoA). EEG based

monitors have yet to prove their benefit (Bleijenberg, van Oostrom, Akkerdaas,

Doornenbal & Hellebrekers 2011, Jensen, Callesen, Hagemo, Hreinsson, Lund &

Nordmark 2010, Kaskinoro, Maksimow, Lãngsjö, Aantaa, Jääskeläinen, Kaisti,

Särkelä & Scheinin 2011, Leslie 2007). Anaesthesia agents alter function of a

host of bodily functions other than EEG. These changes are relied on during

the subjective assessment. This visual information is present in the changing

potential of the patients skin. Current EEG DoA methods rely on the re-

moval of this noise (Schachinger, Schindler & Kluge 2007, Nguyen-Ky, Wen &

Li 2009a, Rampil 1998, Zikov, Bibian, Dumont, Huzmezan & Ries 2006) for their

estimation process. An important contributing factor in inadequate anaesthesia

is the current limited ability to assess the level of consciousness. Information,

which is routinely removed, has the potential to improve estimation of DoA.

Improved estimation holds out the promise of closed loop control of anaesthetic

delivery.

This work highlighted the lack of understanding underling the location of the

effect site, the mechanisms of anaesthesia, the neural correlates of consciousness,

the transformations of cortical and subcortical activity into EEG signals, and

the effects of anaesthetics at a systems level.
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A grey box model was developed to produce the typical changes in EEG, fre-

quency and amplitude, expected from increasing levels of hypnotic anaesthetic.

The model is capable of producing changes in EEG in response to increased

stimuli. Anaesthetic supress the models response to stimuli requiring increased

stimuli to produce a transition in the EEG. Brain modelling in the study of

anaesthesia is a recent development (Steyn-Ross, Steyn-Ross, Sleigh & Wilcocks

2001) there are not many existing models in my understanding (Liley, Foster &

Bojak 2011, Molaee-Ardekani, Shamsollahi & Senhadji 2011).

1.1 Overview of the Dissertation

This dissertation is presented in two parts, 1. The first part of this dissertation

focuses on controlling anaesthesia automatically providing methods for measure-

ment of DoA, and modelling of population pharmacokinetics for propofol infu-

sion. 2. The second part focuses on a brain model for anaesthesia.

Chapter 2 provides background on anaesthesia.

Chapter 3 discusses the development of a population pharmacokinetic model

for propofol infusion.

Chapter 4 investigates techniques to estimate DoA from raw potential of the

human forehead.

Chapter 5 introduces understanding of anaesthetic induced changes in brain

function as the basis for the development of an anaesthesia brain model.

Chapter 6 introduces brain modelling methods.

Chapter 7 describes the base model and the modifications required to pro-

duce a brain model capable of generating changes in electroencephalograph

(EEG) caused by stimuli and γ-aminobutyric acid type A (GABAA) hyp-

notic agents (propofol).

Chapter 8 reports the model testing results and discussion of their significance.

Chapter 9 concludes the dissertation and suggests further work in the area of

anaesthesia and brain modelling.





Chapter 2

Understanding anaesthesia;

system wide effects

2.1 Introduction

Anaesthesia evolved from recreational drug use of the 1840s, (Rushman, Davies &

Atkinson 1996) and from this dubious beginning it has become the cornerstone of

modern medicine. Despite the primacy of anaesthesia in the practice of surgical

medicine, the administration of anaesthesia is still an art. The anaesthetic state

consists of suppression of responses from the nervous system to the stimuli of

the medical procedure. Several complex physiological mechanisms are modified

by chemical agents. Although there is understanding regarding the effects the

drugs have across a range of sub cellar targets, this has not however enhanced

understanding of the anaesthetic state. Understanding of anaesthesia is in part

theoretical, as some of the effects are not defined in real terms.

The purpose of anaesthesia is to control or modify responses from the bodies con-

trol systems to optimise the outcome of the patient for a medical procedure. The

systems that regulate biological function have complex interactions. A cocktail

of drugs are introduced to these systems to achieve the anaesthetic state. The

administration of an adequate anaesthetic is complex and at times a compromise.

In which the negative side effects of the agents are traded against the anaesthetic

outcomes.

Considerable variation exists across the population for the effect caused by a

given amount of anaesthetic agent; the distribution of the drug in the body

of the patient (pharmacokinetics (PK)) and the drug effect (Pharmacodynam-
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ics (PD)). Each particular drug has a number of different effects that occur at

different concentrations. The order in which the effects occur and the relative

concentration required vary between agents.

Anaesthesia is the product of the reversible states being: unconsciousness; am-

nesia; analgesia; and immobility produced by controlled intoxications. Despite

being meticulously planned, unexpected incidents are common in anaesthesia

(Drews, Syroid, Agutter, Strayer & Westenskow 2006). Twenty percent of all

surgeries contain unexpected incidents that potentially impact on patient safety.

One incident in four is critical, posing a significant danger to the patient (Cook,

Potter, Woods & McDonald 1991). A retrospective review, (Caplan, Vistica,

Posner & Cheney 1997), of cases in which patients suffered injury during anaes-

thesia found that 75% ± 3% of the adverse outcomes could have been prevented

with better patient monitoring. Whether these often subtle incidents build to a

catastrophic event relies on the vigilance of the anaesthetist.

Anaesthesia is the foundation upon which surgical procedures sit. Balancing

the surgeons need for an optimal work place and the patients need to live, those

who undertake administration of anaesthetic agents face a considerable challenge

due in part to the nature of biological systems and the fact that multiple meth-

ods that can achieve equivalent out comes. As physicians, anaesthesiologists

are responsible for administering anaesthesia to render the patient to a set of

states that allow the procedure and for managing vital life functions, including

breathing, heart rhythm and blood pressure, during surgery. After surgery, they

maintain the patient in a comfortable (pain free) state during the recovery and

are involved in the provision of critical care medicine in the intensive care unit.

2.2 Defining anaesthesia

Plomley (1847) is recognised as the first person to define anaesthesia. Since then

there have been a large number of contributions to this field reflecting a variety

of drugs and anaesthetic techniques. Still, no general hypotheses exists (Urban &

Bleckwenn 2002) for the mechanism of anaesthesia. There is a lack of consensus

as to which physiological features constitute anaesthesia.

In 1957, Woodbridge gave four components for general anaesthesia (Gover &

Bharti 2008), 1. Sensory blockade; 2. motor blockade; 3. blockade of autonomic

reflexes; and 4. loss of consciousness. By 1974 Eger had two components (Urban

& Bleckwenn 2002), 1. Amnesia; and 2. immobility. Prys-Roberts (1987) reduced

anaesthesia to one component, suppression of conscious perception of noxious



2.2 Defining anaesthesia 7

stimuli. In 2002 Heinke used three components to define General Anaesthesia

(Urban & Bleckwenn 2002), 1. Unconsciousness; 2. amnesia; and 3. immobility.

While Orser (2007) gave the following components, 1. Sedation; 2. unconscious-

ness; 3. immobility; 4. amnesia; and 5. other. There is some consensus on what

anaesthesia is, although the concepts that describe some anaesthetic effects are

themselves abstract in nature.

2.2.1 Immobility, muscle relation

Most anaesthetic agents cause immobility at relative high concentrations. This

removal of movement is however a function of the stimuli the progression of ever

increasingly painful events can be seen in Figure 2.1 (Gelb et al. 2009). The

suppression of movement during intubation requires a fourfold increase in the

blood plasma concentration of alfentanil (ng/ml) compared to that required for

skin closure.

Ever since first use of a neural muscular blocker (NMB) in 1947 the need to

achieve immobility through anaesthetic agents has reduced. NMB agents unlike

anaesthetics have their effect site in the peripheral nervous system; they act at

the neuromuscular junctions. The use of NMB may contribute to the incidence

of awareness (Myles, Symons & Leslie 2003) as they have no effect on analgesia

or hypnosis.

2.2.2 Awareness, memory and unconsciousness

Intraoperative awareness is a complicated issue. All anaesthetic agents cause

amnesia at relative low doses∼ 1/10 of the dose required for hypnosis. Regardless

of this, the incidence of intraoperative awareness is ∼ 0.1% in low risk procedures

(Jones & Aggarwal 2001, Sandhu & Dash 2009) and as high as 4% in high risk

procedures (Tonner & Bein 2006). Awareness in anaesthesia most often refers to

remembering events from the procedure and signifies inadequate anaesthesia.

Memory is divided into a number of different classes. The major division is

between short-term and long term memory. Short-term memories relate to;

learning; decision-making; and retrieving information, and is associated with

conscious awareness. The long-term memory is divided into procedural memory

and declarative memory. Declarative memory is further divided into somatic

memory, remembering facts, and episodic memory-remembering both the facts

and how they were learnt.
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Figure 2.1: Movement response curves for Alfentanil to different stimuli (adapted

from Gelb et al. 2009).

Somatic and procedural memories, require effortless retrieval, are referred to as

implicit memory. Episodic memory requires effort for recall and is referred to

as explicit memory. Explicit memory is more sensitive than implicit memory to

the effects of anaesthesia. There is little effect on conscious awareness or explicit

memory at very low concentration of anaesthetic. Increasing the concentration

will first remove explicit memory with little effect on conscious awareness. In-

crease the anaesthetic concentration further abolishes conscious awareness. Im-

plicit memory, however may still remain, these represent perception of events

without consciousness. Kaul & Bharti (2002) outlines the types of memory.

1. Short term memory

2. Long term memory

(a) Procedural memory (implicit memory)

(b) Declarative memory

i. Somatic memory (implicit memory)

ii. Episodic memory (explicit memory)

The spectrum of consciousness in anaesthesia is divided into four stages;

1. Conscious awareness with explicit recall
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2. Conscious awareness with no explicit recall

3. Subconscious awareness with implicit recall

4. No awareness or recall.

Awareness occurs most commonly during relaxant anaesthesia (Myles et al.

2003).

Gelb et al. (2009) provide the model shown in Figure 2.2 as a frame work in which

to discuss the anaesthetic effects. The model depicts anaesthesia as a hierarchical

system in which anaesthetic agents operate at three distinct levels in the nervous

system. Consciousness is thought to exist in the cortex; anaesthetic agents alter

the function of the cortex to produce the anaesthetic state. Anaesthetic agents

also act in the midbrain and thalamus to reduce the flow of information into

the cortex. The unconscious state requires the suppressive effect of the agents

to outweigh the restorative effect of the pain projections to the cortex. We will

see later awareness, activity in the cortex, is required for the anaesthetic effect

(chapter 7). This model of anaesthesia is well suited to the definition of Prys-

Roberts (1987),

state of drug induced unconsciousness in which the patient neither

perceives nor recalls noxious stimulation.

The effectiveness of an anaesthetic is not just the achieving of the required state

but the stability of that state regardless of external events that may normally

modify it. The challenge is to provide the required state, while minimising the

negative effects of agent. All anaesthetic agents have relative small therapeutic

ratios. That is the lethal dose is less than 10 times the therapeutic dose. For

inhaled anaesthetics the therapeutic ratio is ∼ 3. This fact combined with the

variation in pharmacokinetics across the population requires constant assessment

of the patient response to the anaesthetic agent.

2.3 Clinical practice

Physicians, anaesthesiologists are responsible for administering anaesthesia to

relieve pain and for managing vital life functions, including breathing, heart

rhythm and blood pressure, during surgery. After surgery, they maintain the pa-

tient in a comfortable state during the recovery, and are involved in the provision

of critical care medicine in the intensive care unit.
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Figure 2.2: Hierarchical model of the interaction between pain and anaesthetic

agents to achieve unconsciousness ( adapted from Gelb et al. 2009). Anaesthesia

is the blancing of the drug effects aganst the stimuli of the operation. Anaesthetic

agents act across the entire neverous system.

The anaesthetist begins by developing a drug regiment for the procedure based

on the patient. The selection of agents will be influenced by both the procedure

and the patients history. Duration of the anaesthetic has a significant role in the

administration of anaesthesia where the duration of effect is assessed in terms of

half-lives. The half- life refers to the time required for the concentration of the

drug to reduce by 50%. Half-lives of anaesthetics range from the short acting

propofol and isoflurane both with half-live of less than three minutes to long

acting agents with half-lives in the hours. When agents with long half-lives are

used the anaesthesia is terminated before the end of the procedure to allow the

patient to regain consciousness quickly at the end of the procedure.

After having settled on a drug regiment, the doses of the agents will be cal-

culated based on the patient age, height, weight, and gender are all significant

factors in determine the drug distribution. The initial dose will be sufficient to

produce the desired effect in the majority of the population. The patients re-

sponse to the anaesthetic will either be adequate or not. The inadequate dose

can either be excessive, which will prompt the use of reversal agent, or minimal,

this results in an increased dose until a adequate level is reached. After a period

of time the anaesthetic dose is reduced by up to 20%. If this new level is still

adequate the anaesthetic is furthered reduced until the patient shows signs of



2.4 Assessing anaesthesia 11

Table 2.1: Standard anaesthetic monitors

Anaesthesia monitors

Arterial oxygen saturation (SpO2)

Venous oxygen saturation (SvO2)

Heart rate from ECG (HR)

Mean arterial pressure (MAP)

Mean Central venous pressure (MCVP)

Systolic pressure (BPsys)

Diastolic pressure (BPdia)

Depth of Anaesthesia

Measured Tidal Volume (TV)

End tidal concentration of oxygen (EtO2)

End tidal concentration of carbon dioxide (EtCO2)

End tidal concentration of anaesthetic (EtAgent)

Actual Respiratory Rate (RR)

inadequate intoxication, the rate is increased to the previous level. Through this

recursive process the patients dose is minimized (Sebel, Lang, Rampil, White,

Cork, Jopling, Smith, Glass & Manberg 1997).

2.4 Assessing anaesthesia

The monitoring of anaesthesia was first put forward by Snow (1847) who recog-

nised that through observation of the patient insights into the effectiveness of the

anaesthetic could be gained. Snows work formed the basis of anaesthetic practice

until the work of Guedel (1951). Anaesthesia depth assessment remains primar-

ily a subjective process requiring observation of physiological parameters. The

anaesthetist subjective monitors the DoA with following autonomic responses;

hemodynamic changes; lacrimation; sweating and; pupillary dilation. Table 2.1

(Yang & Guo 2007), demonstrates the relative importance of the vital signs to

Anaesthetists. Six of the standard monitors relate to respiration, five relate to

cardiac function and the remaining two relate to DoA.

Current anaesthesia depth assessments can be divided into two distinct ap-

proaches. The first involves the use of stimuli. Anaesthesia is assessed in terms

of the response to the stimuli. The second involves the measurement of a feature

that correlates with a subjective assessment.
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Table 2.2: Standard anaesthetic stimuli and the responses used to assess anaes-

thesia (adapted from Gelb et al. 2009).

Stimuli Responses

Benign Noxious

Calling name Pinprick Verbal

Light touch Electrical twitch Memory; Implicit

Shouting Electrical tetanus Memory; Explicit

Shouting and shacking Trapezius squeeze Movement; Purposeful

Skin closure Movement; Involuntary

Incision Ventilation

Abdominal exploration Sudomotor, Tearing

Rib retraction Sudomotor, Sweating

Laryngoscopy Hemodynamic, Blood pressure

Intubation Hemodynamic, Heart rate

2.4.1 Stimulate and Observation.

This method requires the assessment of the patients response to defined stimuli

as present or not. This approach predominantly requires a suitably qualified

human to make the subjective assessment of the patient. A particular advantage

of the method is that it is flexible allowing features rendered irreverent by the

procedure to be replaced. There is considerable down sides to a system that

relies on humans to continuously make repetitive complex decisions (Rall et al.

2009). Subjective processes are prone to error (Allnutt 1987) but in the case of

anaesthesia they represent the pinnacle of practice (Heyer, Adams, Moses, Quest

& Connolly 2000, Leslie 2005).

There are fourteen standard stimuli that are applied to patients when determin-

ing DoA. They are shown in Table 2.2 along with the ten standard responses.

These produce a matrix of 140 stimuli response pairs over which, anaesthetist

considers DoA (Gelb et al. 2009). Fortunately, it is not necessary to character-

ize the response to every stimulus. If we characterize the response to a benign

stimulus, such as shaking and shouting, and several noxious stimuli, such as elec-

trical tetanus, incision, laryngoscopy, and intubation, these capture the clinically

relevant range from benign to noxious. The Observers Assessment of Alertness

and Sedation (OAAS) scale was defined by Chernik (Jensen et al. 2004) in order

to have a standardized and graduated assessment of hypnosis. Cherniks scale is

provided in Table 2.3.

Evoked potential indexes fall into this category. The auditory evoked potentials
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Table 2.3: OAAS scale (adapted from Jensen et al. 2004).

Score Responsiveness

5 Responds readily to name spoken in normal tone

4 Lethargic response to name spoken in normal tone

3 Responds only after name is called loudly and/or repeatedly

2 Responds only after mild prodding or shaking

1 Responds only after painful trapezius squeeze

0 No response after painful trapezius squeeze

are the most common. These devices rely on sound stimuli of 70 dB (Jensen,

Strays, Vazquez, Rodriguez & Litvan 2003) to produce a change in the electroen-

cephalogram (EEG). Detection of the response to the stimuli is a demanding

task. Requiring complex signal processing up to 256 segments are needed to

detect the responses. These methods suffer with poor signal to noise ratio. The

other monitoring methods fall into the second category.

2.4.2 Measurement and correlation

This method relies on measurement of a feature that statistically represents the

subjective assessment for a limited set of patient states, commonly five (awake,

moderate sedated, sedated, deeply sedated, iso-electric (Showing no variation in

electric potential)). Predominantly process EEG is used to produce an index

that correlates with a subjective assessment of sedation (Glass, Bloom, Kearse,

Rosow, Sebel & Manberg 1997). The method relies on assumptions that hypnosis

is DoA and the effects of hypnotic agent upon EEG are consistent (Kelley 2007).

Both assumptions are false. The response surface modelling (Bouillon, Bruhn,

Radulescu, Andresen, Shafer, Cohane & Shafer 2004, Schumacher, Dossche,

Mortier, Luginbuehl, Bouillon & Struys 2009) based on the work of (Kissin 1997)

demonstrated that DoA requires consideration of the effects of analgesia along

with hypnosis. While it is well known that ketamine anaesthesia does not pro-

duce the typical progression in EEG (Voss & Sleigh 2007).

There are currently a number of commercially available DoA monitors. Gover

& Bharti (2008) listed them in Table 2.4. These monitors belong to five groups

based on the source of the bio-signal used to determine the anaesthetic state.

The two largest groups are the evoked potentials and the EEG derived indexes.

Bowdle (2006) and Voss & Sleigh (2007) provide an extensive review of anaes-
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Table 2.4: Curentaly avaiable DoA monitoring methods (adapted from Gover &

Bharti 2008).

1. Spontaneous surface electromyogram (SEMG)

2. Lower oesophageal contractility (LOC)

3. Heart rate variability (HRV)

4. Electroencephalogram derived indices

(a) Spectral edge frequency

(b) Median frequency

(c) Bispectral index

(d) Entropy

(e) Narcotrend

(f) Patient state index

(g) Snap index

(h) Cerebral state index

5. Evoked potentials

(a) Auditory evoked potentials

(b) Visual evoked potentials

(c) Somatosensory evoked potentials

(d) Auditory evoked potentials index

(e) A-Line autoregressive index
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Figure 2.3: Probability of movement as a function of BIS at different sites. Site 5

had no movements, (adapted from Bowdle 2006).

thesia monitoring. They listed the following limitations to EEG in determining

DoA:

• Low amplitude EEG

• Drug choice

• Paradoxical delta activity

• Processing time

• Sleep

Voss & Sleigh (2007), in part concludes

... there is no known qEEG measure that can be shown to be

causally related to either consciousness or memory 100% of the time.

Existing EEG monitors use cortical activity as a proxy for conscious-

ness.

The multi centre study of Bowdle (2006) shows that BIS values do not predict

movement in the practice of anaesthesia. Figure 2.3 shows the logistic regres-

sions for the probability of movement as a function of BIS value for each of the

seven centres involved in the study. The differences result from the anaesthetic

regiment at each site. Although the presence of movement dose not indicate the

patient is consciousness, it dose impede the progress of the surgery.
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Figure 2.4: Population distributions for two anaesthetic regiments. Both regiments

require a blood plasma concentration of propofol of 4µg/ml. The second regiment

a co-administration of remifentanil of 4ng/ml. Part a shows the estimate of BIS

value while b shows the estimate of the probability of conciseness returing after

incision.

The PD modeling of Bouillon et al. (2004) demonstrates the differences between

the BIS monitor and the probability that the patient will wake when their name

is shouted and they are shaken. Figure 2.4 shows the difference between patients

drawn from the models parameter population of Bouillon’s PD models for BIS

and probability of response to shaking and shouting (SnS).

In all four cases the patients have the same propofol effect cite concentration of

4µg/ml in the first pane the effect of 4ng/ml of remifentanil can be seen on the

estimate of the BIS index. The addition of the analgesic reduces the average BIS

index from 52 to 47 units. This is in contrast to the estimate of the probability

that the patient regains consciousness after incision. The probability of the return

of consciousness changes from 95% to 4% with the addition of remifentanil to the

drug regiment. The box in each plot represents the population between the 25

and the 75 percentile, with the mean and its confidence interval marked by the
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notch. The points marked (+) are statistical outliers. Figure 2.4 encapsulates

the criticism that EEG based DoA monitors receive from anaesthetists (Jensen

et al. 2004, Leslie 2005, Leslie 2007, Myles et al. 2003).

A DoA monitoring index value has to be interpreted in the context of the drugs

that have been given to produce it. Bouillon et al. (2004) experimental work

measured the BIS index values while they determined the 95% boundary for the

suppression of movement responses to the stimuli of shouting and shaking and

laryngoscopy for Propofol / Remifentanil Anaesthesia. Dependent on the relative

concentrations, BIS index value between 70 and 30 formed the boundary between

an adequate and inadequate level of hypnosis. The anaesthetist is interested in

whether the patient level of anaesthetic depth is stable to the ongoing experience

of the surgery. The BIS monitor cannot directly answer the anaesthetist question.

Aspect medical systems in their pocket guide (Kelley 2007) provide Table 2.5 to

demonstrate the way in which there monitor should be used in conjunction with

intraoperative response to manage anaesthetic producers.

Table 2.5: BIS Guided Hypnosis and Anaesthetic Management (adapted from

Kelley 2007)

Intraoperative

Response

BIS

value

Treatment

Increase BP,

HR, Autonomic

or Somatic

Response

>65 Increase Hypnotic - Increase Analgesic Iden-

tify Strong Stimuli Source

50-60 Rule out Artifact, then Increase hypnotic

<50 Support BP Decrease Analgesic Consider

Amnesic

Stable

>65 Increase Analgesic / Maintain Hypnotic An-

tihypertensive add NMB

50-60 Titration Target Maintain Vigilance

<50 Support BP & Decrease Analgesic

Hypotension

Unstable

>65 Decrease Hypnotic - Increase Analgesic - An-

tihypertensive

50-60 Decrease Hypnotic & Decrease Analgesic

<50 Support BP Decrease Hypnotic and Anal-

gesic

Other researchers have questioned the underling tenet, that the primary site

for anaesthesia is the central nervous system. Rampil, Mason & Singh (1993)

measured isoflurane minimum alveolar concentration (MAC) (effective dose 50%
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for movement) in rats before and after surgical decerebration and found that

MAC was unchanged by removal of cortical and forebrain structures. Antognini,

Carstens & Atherley (2002) devised a goat model in which isoflurane could be

delivered selectively to the brain or to the entire body. Isoflurane MAC was

twice as large when only the brain received isoflurane, as when isoflurane was

administered to the entire body. These studies further question the validity of

measuring EEG changes to predict DoA.

In 2006 the American Society of Anesthesia task force on interoperation aware-

ness, did not recommend routine DoA monitoring be included in the society stan-

dards of care Practice Advisory for Intraoperative Awareness and Brain Function

Monitoring: A Report by the American Society of Anesthesiologists Task Force

on Intraoperative Awareness (2006).

There is a wide range of other electrophysiological monitoring available to the

anaesthetist. Miller’s Anesthesia (Miller, Eriksson, Fleisher, Wiener-Kronish &

Young 2009) contain chapters on Cardiovascular Monitoring (Schroeder et al.

2009), Electrocardiography (Hillel & Landesberg 2009), Respiratory Monitor-

ing (Eskaros et al. 2009), Neuromuscular Monitoring (Viby-Mogensen 2009) and

Temperature Regulation and Monitoring (Sessler 2009).

This group of monitors are generally referred to as objective methods. Although

measurement of changes to the complex systems can be made (Hemmerling &

Charabati 2009, Rampil 1998, Thakor & Tong 2004, Wennervirta, Hynynen,

Koivusalo, Uutela, Huiku & Vakkuri 2008, Zikov et al. 2006), the meaning of

these measurements are unclear, they require interpretation (Kelley 2007), to

determine their significance. The problem with all methods of non-clinical elec-

trophysiological scoring of anaesthetic depth is the inter-individual variation be-

tween the values of different patients during similar clinical depths of anaesthesia

and similar strengths of noxious stimulation. Although the mean values for a

group of patients may be different at different levels of sedation and stimulation,

there is considerable overlap.

2.5 Drugs

Anaesthetic agents belong to a diverse group of chemical compounds. Figure

2.5 shows the evolution of anaesthetic drugs over the last 170 years. 32 agents

have made it to the ranks of anaesthetic. These agents produce a range of

effects as a function of their concentration. Figure 2.1 contains the progression

of effect Alfentanil in the suppression of movement in response to a series of
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Figure 2.5: Time line showing the devlopment of anaesthetic agents (adapted

from Bowdle 2006).

stimuli. The progression of the anaesthetic effect is unique to the agent. Table

2.6 demonstrates this point by listing the median effective dose of four anaesthetic

agents for three anaesthetic end points.

Table 2.6: Median effective dose of thiopental, diazepam, isoflurane, and morphine

for different endpoints of anaesthesia in rats.

drug hypnotic

effect

blockade of

purposeful

movement

suppression

of cardiac

response

lethal effect

thiopental

mg.kg−1

12.3 17.6 43.8 57.6

diazepam

mg.kg−1

9.7 32.6 36.6 60

Isoflurane

%in-

spired

0.7 1.6 2.8 11.8

morphine

mg.kg−1

43.5 5.7 6.3 -

The dose response of anaesthesia generally follows this form at very low con-

centration hyperalgesia exists. Amnesia is the next effect occurring at about

one tenth the concentration required for unconsciousness. After the loss of con-

sciousness, movement is lost and finally the hemodynamic system is supressed

(Nallasamy & Tsao 2011). Analgesia increases slowly across the wide range.
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2.6 Pharmacodynamic

Pharmacodynamics (PD) describe the effect of the anaesthetic as a function of

drug concentration. PD models exist for a wide range of agents and effects

(Calvey & Williams 2008).

Figure 2.6 from Millars Anaesthesia (Gelb et al. 2009) shows the PD modeling

for Alfentanil for a seriese of end points. At the top of the figure it can be

seen the blood plasma concentration of Alfentanil was determined for the time

at which the stimulis was applied then patients were divided into those who

respond and those who do not. Part A of the Figure 2.6 shows the population

results from the logistic regression of the data. The error bars indicate the error

for the effect site concentration for the median response. The low part shows

response curves, for incision, calculated for individual patients. Although, there

is considerable variation in drug effect across the population, population PD

models are well defined. The use of PD modelling is limited by determination

of the drug concentration. There are no real time methods available to measure

blood plasma drug concentration.

2.7 Measuring drug concentration

For inhaled agents, the blood plasma concentration can be accurately estimated

from the end tidal concentration. This underlies the dominance of inhaled agents

in the maintenance phase of the anaesthetic. Eger II, Saidman & Brandstater

(1965) defined the minimum alveolar concentration (MAC) of inhaled anaesthet-

ics as the concentration required to prevent 50% of subjects from responding

to painful stimuli. The level of the anaesthetic is set in terms of the MAC

equivalent dose. The concept of MAC has been extended to cover a range of

other end points, MACawake, MACincision , MACintubation, and MACbar (Kaul &

Bharti 2002).

The practice of minimization of the drug concentration requires a periodic as-

sessment of effect. An assessment that the anaesthesia is adequate results in a

reduction of agent supply; when the assessment is that the anaesthetic is inad-

equate the supply is returned to the previous level. The PK systems have long

time constants with equilibrium only being reached after hours.

In the case of infused agents there are no measurement systems available for real

time use. Infusion of intravenous agents is achieved with a pump, that uses open
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Figure 2.6: Probability of response vs alfentanil conc. (adapted from Gelb et al.

2009). Logistic regression of the data upper part of fig A population curves. Fig

B individual curves for incision
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loop control to achieve the desired blood plasma concentration. These pumps

require a pharmacokinetic model to estimate drug concentration.

2.8 Pharmacokinetics

The development of pharmacokinetic (PK) models is based on the use of com-

partment models (Clewell, Reddy, Lave & Andersen 2007). The compart-

ments are traditionally defined by physiological features. Commonly anaesthesia

models have three compartments. The three compartment model is defined as

Cp(t) = Ae−at+Be−bt+Ce−ct (Gentilini 2001). The first compartment represents

the blood and blood rich organs; the second compartment represents muscle; the

third compartment represents body fat. Non-linear mix effect models ( NON-

MEM), the gold standard for PK modeling, a software package developed by Beal

and Sheiner in the late 1970s (Sheiner, Rosenberg & Marathe 1977) is used to

fit non-linear mixed effects models to data. NONMEM allows for the statisti-

cal analyses of covariates. The population of the parameters can be assessed in

terms of both inter- and intraindividual variability.

PK models are a vital part of modern anaesthesia they make continuous infusion

of anaesthetic agents possible this allows the use of strong agents with short

half-lives to be used to meet the anaesthetic requirements of the patient to the

procedure. Through the use of close loop control for administration of anaesthetic

agents (Abdulla 2012, Gentilini 2001).



Chapter 3

Population pharmacokinetic

modelling

3.1 Introduction

Population PK is the study of the variability of drug concentration between

individuals when a standard dosage regiment is administered. PK models are

a major part of any drug therapy. Being able to estimate the time course of

the drug disruption within the body allows for calculation of dose regiments for

the chemical agent. The modern practice of anaesthesia relies on the use of PK

models to estimate the blood plasma drug concentration (Calvey & Williams

2008, White & Ghouri 1991).

There is an increasing body of work that suggests that higher doses of anaesthetic

agent reduce the long term life expectancy of patient. This result has driven a

move to minimise the administration of anaesthetic during surgical procedures.

This has seen the development of methods to administer the high potency short

acting agent Propofol with syringe pumps that rely on a population PK model

to calculate the infusion rate required to achieve the desired blood plasma con-

centration (Cp).

3.1.1 Compartment models

The standard modelling structure used in the development of a PK model is

the mammillary compartment model. Many pharmaceuticals can be represented
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Figure 3.1: Single compartment PK model.

as single compartment model. A single compartment model is represented as a

volume and a clearance rate (see Figure 3.1). These models represent exponential

decay. Anaesthetic agents are better represented as a three compartment model.

A block representation of the three compartment mammillary model is shown in

Figure 3.2.

The compartments are; the central; the fast peripheral; and the slow peripheral.

Often these will be referred to in terms of physiology. It is common for the fast

compartment to be referred to as the vessel rich group and the slow compartment

is thought of as the fat or vessel poor group. However, for the most part the

model is a mathematical construct that describes the drug distribution over

time. Compartment models do not, in fact, describe drug concentration, they

represent the distribution of the drug mass. Only the central compartment needs

a volume to convert the mass to a concentration. The three compartment model

is described by the following set of differential equations (Abdulla 2012, Gentilini

2001).

dC1(t)

dt
= − (k10 + k12 + k13)C1(t) + k21C2(t) + k31C3(t) + I(t) (3.1)

dC2(t)

dt
= k12C1(t)− k21C2(t) (3.2)

dC3(t)

dt
= k13C1(t)− k31C3(t) (3.3)

Cp(t) =
C1(t)

V1

(3.4)

where Ci(t) is the concentration of the ith compartment, k10 is the drug clerance

rate, kij is the drug transfer rate from the ith compartment to the jth, V1 is the

volume of the central compartment and, Cp(t) is the plasma concentration over

time t.

The blood plasma concentration as a function of time resulting from a bolus

injection is represented as Cp(t) = Ae−αt+Be−βt+Ce−γt (Gentilini 2001), where
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Figure 3.2: Three compartment PK model. The flow of drug into the model is

represented as the function I(t) representing the time course of the infusion. The

flow of the agent between the compartments by the four rate constants. The agent

is cleared from the central compartment according to k10.

A, B, and C are the initial concentrations of the compartment, and α; β; and γ

are the rate constants for each compartment. Gentilini (2001) was able to show

that the standard three compartment model used in pharmacokinetic modelling,

of anaesthetic, can be represented in the Laplace domain as a single input single

output transfer function with two-zeros, and three-poles (see equation 3.5).

C(s)

I(s)
=

(s+ k21)(s+ k31)

(s+ α)(s+ β)(s+ γ)
(3.5)

3.1.2 Physiologically based models

PK models have also been developed using physiology (Hang, Xuan & Xin-

zhong 2005, Upton & Ludbrook 2005) to construct the model. The Upton model

is shown in Figure 3.3. Each compartment of the model is defined by an ap-

parent volume of distribution (V) and a blood flow (Q). The lung compartment

consists of a sub model, three, series, tank models. While the brain and slow

compartments are two compartments, membrane limited, sub models, the model

considers three drug clearance, lungs, liver, and kidneys.

3.1.3 Modeling methods

The three common approaches for population pharmacokinetic modelling are

outlined below.

Näıve pooled data. In this method the data is pooled and a model is fitted

as if all the data came from a single source. Population PK models esti-
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Figure 3.3: Upton drug distribution model (adapted from Upton & Ludbrook

2005).

mated from balanced pharmacokinetic data using a pooled approach com-

pare favourably with other methods (Egan, Kern, Johnson & Pace 2003).

Two-stage approaches. Initially, model parameter estimates are obtained for

each patient, then, a population parameter set is obtained by averaging the

individual parameter estimates. This method requires that the data from

each patient is sufficient to allow the fitting of the individual models and

that each individual is described by the same structural model.

NONMEM (Sheiner et al. 1977) is a software package that was developed in

the mid 70s by Beal and Sheiner, University of California San Francisco,

to calculate nonlinear mix effect population PK models. The NONMEM

approach uses extended least squares in its minimization algorithm and

weights values and individuals appropriately. Mixed effect models seek to

explain inter-patient variability with covariate analysis, and, in some ap-

proaches, to characterize the unexplained inter-individual variability. They

take into account both fixed and random effects. The steps required in the

formulation of a NONMEM model, according to Minto et al. (1997) are:

1. Explore data to examine distribution of and correlation among patient

covariates.

2. Determine basic population pharmacokinetic and residual variance

models.

3. Obtain Bayesian estimates of individual pharmacokinetic parameter

estimates, and examine distribution.

4. Select covariates using multiple linear regression, case deletion diag-

nostics, generalised additive models and tree based models.

5. Determine final population pharmacokinetic model.

6. Evaluate final pharmacokinetic parameter estimates by use of model
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selection criteria, examination of standard error estimates and evalu-

ation of clinical significance (repeat steps 5 and 6 as required).

NONMEM has grown to dominate the PK modelling, however there are

two main disadvantages. Both arise from the complexities involved in the

estimation process. First, many assumptions need to be made about the

form of the structural model and the form of inter-individual variation be-

tween parameters. Second is the overhead the computational time required

to calculate, relative modest problems may take hours to produce a sin-

gle estimation, when extensive data exists it is not uncommon for a single

estimate to take several days (Wright 1998).

In Figure 3.4 the estimates of the propofol concentration are shown for the

models of Hughes, Glass & Jacobs (1992), Masui, Kira, Kazama, Hagihira,

Mortier & Struys (2009), and Schüttler & Ihmsen (2000b) calculated for

patient 201 from Gepts, Camu, Cockshott & Douglas (1987) along with

the Gepts data. Each of these models was formulated to achieve different

goals; the Masui model aims to capture the early phase kinetics of propofol

infusion. The Schüttler model encompasses both bolus and infusion.

NONMEM allows the estimation of the parameter populations these can be

used to demonstrate the variation in plasma concentration within the pop-

ulation for patients that have the same covariate values. Figure 3.5 shows

the distribution of the steady state blood plasma concentration, using the

Schüttler & Ihmsen (2000b) model, for one thousand patients who are 43

years old, with a body weight of 72 Kg and a height of 1.84 meters given

an infusion of 5 mg/kg/hr propofol. Parameters for the individual patients

are randomly drawn from the parameter population estimates produced

for the NONMEM model. The range of the resulting steady state blood

plasma concentration is between 2 and 8 mg/ml. From Figure 3.5 it is easy

to understand the uncertainty that exists when a patient is administered

an anaesthetic. The majority of patients will either be, under dosed, or

more commonly over dosed. Over dosing of the patient results from the

need to assure that the patient receive an adequate anaesthetic.

Improvements in population PK modelling represent a clear opportunity to im-

prove the practice of administering intravenous anaesthetic agents. With the

potential to improve the outcomes of patients through the reduction of incidence

of mismatch doseing.
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Figure 3.4: Comparison of three current population PK models to the measured

blood concentration, during and following, infusion of propofol. The difference

between a estimate of propofol concentration and the measured concentration can

be large.
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3.1.4 Data

The data obtained from Gepts et al. (1987). It consists of 16 patients receiving

an infusion of propofol lasting at least two hours at an infusion rate of 3,6, or 9

mg/Kg/Hr. Arterial blood samples were collected at selected times during and

up to eight hours after infusion. High performance liquid chromatography with

fluorescence was used to measure whole blood propofol concentrations. The data

for each of the sixteen patients can be seen in Figure 3.6. There was one data

point in the record for patient 3 that was found to be a statistical outlier. It is

assumed the value of 266 was missing the decimal point and set to 2.66.

3.1.5 Modelling

There are a number of modelling methods available with the System Identi-

fication toolboxTM8.1 in Matlab R©, MathWorks Inc. Their performance was

assessed, four methods were capable of estimating the measured blood concen-

trations with a high level of fit. The four methods were; a Hammerstein-Wiener

model (Ljung 2010) using piecewise linear functions as its input and output non-

linearity estimators. A fourth order state space model (Ljung 2010) with all

parameters free, a 10-poles, 10-zeros model that was fitted with auto regressive

(AR) method (Ljung 2010), and a 5-poles, 4-zeros model that was fitted using

an auto regressive moving average (ARMA) method (Ljung 2010). As it can be

seen in Table 3.1 no method was able to model the blood concentration of every

patient. That is a common problem in PK modelling as not all patients are well

described with a single model (Gepts et al. 1987).

These methods made no concessions to the physiology that is often referenced

in construction of a pharmacokinetic model. One of the models however coin-

cides with the structure of a five compartment model (Yasuda, Lockhart, Eger,

Weiskopf, Liu, Laster, Taheri & Peterson 1991). In this work, the ARMA model

and the standard three compartment model were used to assess the ability of a

neural network to map the patient covariates to the individual model parameters

as a method for generating a population PK model.

3.2 Population model

The time domain data was sparse with 31 datum points representing each 10 hour

period. The data was resampled using cubic interpolation to obtain concentration
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Figure 3.6: Gepts et al. (1987) data. Measured blood concentration (propofol)

for each patient as a function of time. The time scale of the x axis is in minutes

while the drug concentration is in mg/ml
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Table 3.1: Four methods that produce high levels of fit (%) for the blood concen-

tration data of each patient.

Patient NLhw10 ARX10 10 1 SS 4 ARMX 5411

201 89.1 87.0 86.0 87.9

202 78.5 75.9 77.5 80.6

203 88.9 87.2 85.5 87.6

204 90.6 90.0 87.4 93.2

206 68.8 64.3 59.3 68.2

207 82.4 81.2 77.2 87.0

208 88.6 85.7 83.3 88.4

209 95.7 80.7 84.7 90.9

210 89.4 84.9 79.1 84.7

211 92.4 84.4 86.3 86.3

212 77.2 75.1 75.2 78.0

213 74.7 55.5 67.1 73.6

214 90.2 87.2 83.3 87.8

215 93.7 91.2 87.4 87.3

217 70.0 76.9 68.2 78.8

219 70.7 81.1 85.6 90.0

estimated for each minute. The interpolation should also have the effect of

removing some of the error associated with the data collection process.

Two population PK models were investigated. The first utilised the standard

three compartment model show in Equation 3.5. The re-sampled data for each

patient was fitted to a 2-zero 3-pole model with a delay of 1 time unit using the

ARX method (Ljung 2010).

The second model used the five pole four zero model in Table 3.1 as it structurally

represents the five compartment model from Yasuda et al. (1991).

3.2.1 Covariates

Covariates are features observed in the patients that reduce the unexplained

error in PK models (see Section 3.1.3). The following seven covariates are used

as inputs to an artificial neural network (ANN) to estimate either the ARX model

or the ARMAX for each patient. The covariates are, 1. age; 2. height; 3. weight;

4. gender; 5. infusion rate, milligrams per minute; 6. dose rate, milligrams per

kilogram per hour; and 7. blood volume, Nadler’s formula (Andrijauskas 2008).
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3.2.2 Mapping

An ANN was used to map the patient covariates to the coefficients of the model

of each patient. ANNs are a diverse range of computational tools that mimic the

function of biological neurons. They consist of a number of highly interconnected

elementary units. ANNs are manily used for pattern recognition, prediction,

optimization, and classification. An ANN is characterized by:

1. the transfer function of each neuron,

2. the architecture of the network, and

3. the learning rule used to adjust the network.

The problem is represented as a series of exemplars that represent the problem

and the output the exemplar represents. Neural networks build a representa-

tion of the problem recursively. The training exemplars are processed forwards

through, initially a random weighted network, to produce an output. A back

propagation training function updates the weight and bias states of the network.

This process is repeated until either the mean squared error (MSE) reached zero

or the gradient of the MSE is less than 10−7. In this work all the ANN have all

been developed with the neural network toolboxTMfor Matlab R© (Beale, Hagan

& Demuth 2010).

An ANN was constructed and trained for each of the individual model estima-

tion. In both cases the inputs to the networks consisted of the seven covariates.

Both networks used a three layer feed-forward structure. For the three compart-

ment model, the hidden layer consisted of 10 hyperbolic tangent sigmoid transfer

functions and the output layer contained seven pure line transfer functions. For

the ARMAX model, the hidden layer consisted of 12 hyperbolic tangent sigmoid

transfer functions and the output layer contained 10 pure line transfer functions.

The networks were trained according to Levenberg-Marquardt optimization to

map the patient covariates to the coefficients that described each model. The

performance of the network training was assessed with a MSE algorithm.

Linear regression was used to assess the variation between the network estimates

and the individual model coefficients and between the estimated concentration

and the measured concentrations for each patient and for the population.
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Table 3.2: Performance of the individual ARX models.

patient 201 202 203 204 206 207 208 209

percentage fit 97.6 97.1 97.2 98.8 97.1 98.0 97.8 98.1

MSE (10−5) 17.4 2.1 4.6 8.9 1.1 5.7 10.9 7.2

patient 210 211 212 213 214 215 217 219

percentage fit 97.0 98.6 97.0 96.7 96.7 98.5 96.7 98.5

MSE (10−5) 1.9 0.8 3.1 8.0 9.5 2.0 1.7 7.4

3.3 Results

Two population PK models were assessed. The first produced a three compart-

ment model, the second produced a five compartment model.

3.3.1 Three compartment ANN PK model

Table 3.2 contains the performance data for the individual ARX modelling. Top

row is the percentage fit and bottom row is the MSE for each individual model

(×10−5). The neural network training stoped after 718 iterations (approximately

0.1 seconds per iteration) when the gradient reached 3.84 × 10−9. The MSE at

this iteration was 1.61× 10−8. A linear regression between the coefficients of the

three compartment model and the output of the ANN gave a value of 1.

Figure 3.7 contains comparisons between the population three compartment

model and the measured concentrations for each patient. The linear regres-

sions for the individual patients ranged between 0.837 (patient 213) and 0.983

(patient 215). The comparison between the model and the measured concentra-

tions for the population can be seen in Figure 3.8. The linear regression for the

population was found to be 0.943. The line of best fit would suggest that the

method overestimates the concentration by 11%.

3.3.2 Evaluation of ARMAX ANN PK model

Table 3.3 contains the performance data for the individual ARMAX modelling.

The neural network training stoped after 1359 iterations (approximately 0.1 sec-

onds per iteration) when the gradient of the MSE reached 9.99×10−8. The MSE
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Figure 3.7: Scatter plots population three compartment model estimates and

the measured propofol blood concentration of each patient (circles). The dotted

line is y = x and the solid line is the line of best fit, linear regression, between the

model and the patient the r value along with the patient No. can be found in the

title of each plot.
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Table 3.3: Performance of the individual ARMAX models.

patient 201 202 203 204 206 207 208 209

percentage fit 98.1 97.8 98.3 99.5 97.2 98.7 98.7 98.5

MSE (10-5) 11.1 1.2 1.6 1.8 1.0 2.5 3.9 4.5

patient 210 211 212 213 214 215 217 219

percentage fit 97.8 99.1 97.7 97.7 98.6 99.4 97.3 99.1

MSE (10-5) 1.1 0.3 1.9 4.0 1.7 0.3 1.2 2.9

at this iteration was 3.26× 10−9. A linear regression between the coefficients of

the ARMAX models and the output of the ANN had a value of 1.

Figure 3.9 contains comparisons between the population ARMAX model and the

measured concentrations for the individual patients. The linear regressions for

the individual patients ranged between 0.784 (patient 212) and 0.978 (patient

204). The comparison between the model and the measured concentrations for

the population can be seen in Figure 3.11. The linear regression for the popula-

tion was found to be 0.929. The line of best fit would suggest that the method

overestimates the concentration to a greater extent than the three compartment

model.
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Figure 3.9: Scatter plots of population five compartment model estimates and

the measured blood propofol concentration of each patient (circles). The dotted

line is y = x and the solid line is the line of best fit, linear regression, between the

model and the patient the r value along with the patient No. can be found in the

title of each plot.
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Table 3.4: MSE compaired

Schütter model Landers 3 compartment Landers 5 compartment

0.6413 0.2835 0.4213

3.4 Discussion

Two population pharmacokinetics models are developed using this method, a

three compartment model Equation 3.5 and a five compartment model (Yasuda

et al. 1991). A neural network was able to learn the relationship between the

patient covariates and the individual PK model parameters. The standard three

compartment model produced a higher level of fit than the Yasuda model. The

MSE caculated for the each of the new models and Schubert, Simanski, Janda,

Hofmockel & Lampe as comparsion can be found in tabel 3.4. The MSE of the

three compartment model is less than half that of Schubert, Simanski, Janda,

Hofmockel & Lampe.

The use of the neural network to learn the relationship between the covariates

and the individual model coefficients removes the need to define the relationship

as with the NONMEM approach ie. V1 = Θ2 × BW
70

Θ12 × age
30

Θ13 (Schüttler &

Ihmsen 2000a). Which defines the volume of compartment 1 as a function of

body weight (BW) and age with the three parameters Θ2,Θ12 and,Θ13. This

approach is very fast compared to NONMEM.

This method cannot produce the population statics of NONMEM. It however

does not require any assumptions, and models can be produced in minutes. The

ARX 321 method produces a model with the structure of the three compartment

mammillary model. Figure 3.12 shows the data of patient 201 along with the

estimates from the individual model (green line) and the population model (blue

line). Similar plots for each patient can be found in Appendix A. This population

model produces a better fit than the current population models pressented in

Figure 3.4.
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3.5 Summary

A black box population PK model for anaesthetic agent propofol was developed.

The method was able to produce a model that better fitted the experimental

data of Gepts et al. (1987) than the models of (Hughes et al. 1992, Schubert,

Simanski, Janda, Hofmockel & Lampe 2007, Masui et al. 2009), and dramatically

reduced the time to compute the population PK model compaired to NONMEM.





Chapter 4

Depth of anaesthesia from raw

EEG

4.1 Introduction

This study involved the development and assessment of a method to assess DoA

from the surface potential of the human forehead. This potential typically be-

tween 10mV–300mV., contains a number of bio-signals: EEG; electrocardiogram

(ECG); electrooculogram (EOG); electromyogram (EMG); and electrical noise.

As outlined in chapter 2 anaesthesia is a complex process, the measurement of

which still remains a challenge. The subjective assessment considers states that

exist below unconsciousness. A DoA monitor needs to assess information from a

broader range of sources beyond EEG if improvements in patient care are to be

achieved.

4.1.1 Depth of anaesthesia (DoA) monitoring.

EEG is a complex signal resulting from the summation of thousands of post

synaptic currents flowing in the dendrites of pyramidal neurons. EEG was char-

acterized by Thakor (2001) as a linear stochastic process with great similarities

to noise, while, Hazarika, Ah Chung & Sergejew (1997) describe EEG as non-

stationary and possible nonlinear. Most quantitative EEG (qEEG) monitors

require two things, the selection of the perfect feature that represents the effect

of anaesthesia and a method to improve the quality of the EEG. Methods for
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noise reduction and artefact detection are integral to the operation of current

qEEG devices.

All current DoA monitors analyse electrical potential from the patients forehead.

The digitized signal is pre-processed, removing noise and identifying artefacts.

Signal containing artefacts is rejected before determination of the index (Rampil

1998). Performance of artefact algorithms are crucial for the reliability of the

monitors. There are six commercial monitors which have reached some level of

acceptance.

The BIS monitor produces an index ranging from 100 (awake) to 0 (isoelec-

tric). The index is a function of four features (β ratio, synch-fast-slow, burst-

suppression ratio and QUAZI-Suppression) (Rampil 1998). The performance

of the index is degraded by the presence of EMG and the monitor is limited to

agents that mediate GABAA synapses (Johansen 2006). For Propofol there is ex-

cellent correlation with effect site concentration (Ce). The index value has no real

world meaning and there is no independent method through which to validate

the monitor (Heyse, Van Ooteghem, Wyler, Struys, Herregods & Vereecke 2009).

Narcotrend R© was introduced to the market in 2000 by Schiller AG (Russell

2006). It classifies features from EEG into five stages where each stage has three

subsequent sub stages. The monitor uses an AR model and seven frequency do-

main features along with burst suppression analysis as inputs to a classification

algorithm. Surrogate parameters are used to assess the plausibility of the calcu-

lated state. Recent versions of the monitor also produce an index analogous to

BIS index. Narcotrend has excellent correlation between BIS and Ce.

Patient State Analyser 4000 was released by Physiometrix Company in 2001

(Bruhn, Myles, Sneyd & Struys 2006). Unlike the other monitors the PSA,

utilises four EEG channels to calculate an index based on a set of frequency

domain features that best describe the variances of the EEG to produce a di-

mensionless number ranging from 100 (awake) to 0 (iso-electric).

Danmeter released the cerebral state index monitor in 2004 (Disma, Tuo, Astuto

& Davidson 2009). It uses fuzzy logic to calculate an index from frequency

domain features (α ratio, β ratio and β-α ratio) of a single EEG channel. Burst

suppression and EMG are utilized as well. It has acceptable correlation with

Ceprop and the BIS index.

The Entropy module from General Electric Healthcare is unique in that it does

not attempt to produce an index (Voss & Sleigh 2007). It outputs directly the

normalised values calculated for state and response entropy from a single EEG
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channel. The interpretation of the values is left to the anaesthetist.

Morpheus Medical Company produce the latest monitor (2007) the Index of

Consciousness (IoC) (Kent & Domino 2009). It uses fuzzy inference to produce

the index from metrics for β ratio, suppression ratio and nonlinear dynamic

analysis. The IoC monitor has acceptable correlation with the subjective OAAS.

The literature contains a proliferation of proposed methods for DoA estimation.

Continuing interest results from the lack of a robust monitor, one that can pro-

duce an estimate at all times for all agents. There is also the continuing search

for methods that answer the questions, characterized by; will the patient move

(Leslie, Sessler, Smith, Larson, Ozaki, Blanchard & Crankshaw 1996, Zbinden,

Maggiorini, Petersen-Felix, Lauber, Thomson & Minder 1994) and the more

problematic will the patient remember (Drummond 2000, Sandhu & Dash 2009).

The features that describe the anaesthetic effect are functions of the agents.

Current monitors perform well with regard to the GABAA hypnotic agents; there

utility degrades when analgesics and non GABAA hypnotics are used (Heyer

et al. 2000).1

There are a wide range of methods in the literature that have been used to address

the determination of DoA. Improvements in signal quality dominate. The best

frequency range is a common goal of the pre-processing of the signal. Zikov et al.

(2006) and Zoughi & Boostani (2010) both utilised EEG frequency domain above

16 Hz. Ferenets, Vanluchene, Lipping, Heyse & Struys (2007) used frequencies

in the range of 6 to 47 Hz they showed that frequencies above 32 Hz reflected

the changes in OAAS assessment due to stimuli. The CSI monitor according to

Ferenets et al. (2007) uses frequencies above 6 Hz. Nguyen-Ky, Wen & Li (2009b)

looked at frequencies in the range of 0.3 to 64 Hz. Dressler et al (see (Särkelä,

Mustola, Seppänen, Koskinen, Lepola, Suominen, Juvonen, Tolvanen-Laakso &

Jäntti 2002, p45)) showed that the least useful range was 15 to 26 Hz.

Commonly each epoch of EEG is de-trended (Zoughi, Boostani & Gifani 2010,

Zikov et al. 2006, Nguyen-Ky et al. 2009a) and normalized with energy of the sig-

nal (Zikov et al. 2006, Rampil 1998). Jospin, Caminal, Jensen, Litvan, Vallverdu,

Struys, Vereecke & Kaplan (2007) used detrend fluctuation analysis to study the

scaling behaviour of EEG as a measure of the level of consciousness. Statisti-

cal analysis demonstrated that their proposed three indexes allowed significant

discrimination between awake, sedated and anesthetized states.

1 For readers interested in a detailed comparison of the commercial monitors the author

recommend the review of Musialowicz, Mervaala, Klviinen, Uusaro, Ruokonen & Parviainen

(2010).
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Zikov et al. (2006) proposed a technique for assessing anaesthetic state based on

the analysis of a single-channe EEG signal using stationary wavelet transform

(SWT). The wavelet coefficients calculated from the EEG are pooled into a

statistical representation, which is then compared to two well-defined states:

awake, and isoelectric.

Garrett, Peterson, Anderson & Thaut (2003) compared linear discriminant anal-

ysis, ANN, and support vector machines in the classification of spontaneous EEG

to five mental tasks. They found that the nonlinear methods performed better

than the linear method. Selection of the features was a major issue.

Hemmings (2009) assessed nociception with features extracted from MAP and

HR. Huiku, Uutela, van Gils, Korhonen, Kymlinen, Merilinen, Paloheimo, Ranta-

nen, Takala, Vierti-Oja & Yli-Hankala (2007), used features extracted from

photoplethysmography (PPG) and ECG to assess surgical stress. Changes in

parasympathetic and sympathetic tone have been studyed using HRV (Soo young,

Do un, Jung Man, Byeong Cheol & Gye Rok 2004, Xiao, Mukkamala & Cohen

2004). Soo young et al. (2004) used frequency features. They found that changes

in body temperature, rennin-angiotensin, baroreceptor, and vasomotor modula-

tion were present in low frequency below 0.15 Hz while the mechanical influence

of ventilation was present in frequencies between 0.15 and 0.5 Hz. Xiao et al.

(2004) used Weighted-Principal Component Regression to produce indexes for

parasympathetic tone and sympathetic tone.

Raw EEG data contains considerable amounts of noise from a variety of sources

this needs to be removed if the electrical changes that occur in the brain are

to be assessed. Removing this noise however reduces the information pertain

to anaesthetic depth. The other bio electrical signals that contaminate raw

EEG, (EMG, EOG, and ECG) are all affected by anaesthetic agents. Similar to

EEG they are indicative of DoA. They are relied on when making a subjective

determination of anaesthetic depth. ECG is one of the physiological features

required to be monitored during any anaesthetic see Table 2.1 procedure such is

its intrinsic value to patient care.

This chapter assesses the ability of ANN classifier to reproduce the index from

BIS monitor from long segments of raw EEG. The advantage of using ANN

over other methods is that no assumptions, about the relationship between the

features and the output, are required.
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Table 4.1: Patient Details

Patient Age Gender Weight Height

1 56 Male 81 168

2 58 Female 83 160

3 22 Male 86 184

4 51 Female 93 168

5 44 Male 84 167

4.1.2 Artificial neural networks

There has been little interest in the use of ANN for DoA since the review of

(Robert, Karasinski, Arreto & Gaudy 2002). Since the work listed by Robert

there has been the work of (Ranta, Hynynen & Räsänen 2002, Li & Ye 2006,

Ortolani, Conti, Di Filippo, Adembri, Moraldi, Evangelisti, Maggini & Roberts

2002). The majority of these studies used data from EEG to assess DoA. ANN

allows a variety of features to be considered without having to pick winners. Due

to the broad range of treatments that are considered to be anaesthesia. A method

that assess anaesthesia will need to work across a range of methods including;

• Linear;

• Nonlinear;

• Classification;

4.1.3 Data

The data was recorded from patients undergoing surgical procedures at local hos-

pitals. The University of Southern Queensland ethics committee approved the

data collection. Patients also gave their written consent. A BIS XPTM monitor

was used to record both the raw EEG and the index. The raw EEG signal was

sampled at a frequency 128 samples per second. The index value is calculated

by the BIS XPTM monitor once per second. The details of the patients are listed

in Table 4.1. The data is shown in Figures 4.1, 4.2, 4.3, 4.4, and 4.5. The upper

figure contains the raw potential recordings. The lower pane contain the time

course of the BIS XPTM monitor. The anaesthesia was achieved through a pre-

medication with Midazolam and either Fentanyl or Alfentanil. The patients were

induced with Propofol and then maintained with either Desflurane or Sevoflurane

in air or NO2.
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Figure 4.1: Data for patient one. The upper figure show the BIS index. The lower

figure contain the raw EEG.
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Figure 4.2: Data for patient two. The upper figure show the BIS index. The lower

figure contain the raw EEG.
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Figure 4.3: Data for patient three. The upper figure show the BIS index. The

lower figure contain the raw EEG.
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Figure 4.4: Data for patient four. The upper figure show the BIS index. The lower

figure contain the raw EEG.
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Figure 4.5: Data for patient five. The upper figure show the BIS index. The lower

figure contain the raw EEG.
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Table 4.2: Process EEG variables extracted from data.

No. Feature description

1-10 Coefficients of the 9th order AR model (Burg Method)

11 Power in the frequency range 0—64 Hz (data)

12 Power in the frequency range 0.5—48 Hz (EEG)

13 Power in the frequency range 51—64 Hz (EMG)

14 Power in the frequency range 0.5—3.5 Hz (δ)

15 Power in the frequency range 3.5—7.0 Hz (θ)

16 Power in the frequency range 7.0—13.0 Hz (α)

17 Power in the frequency range 13.0—30.0 Hz (low β)

18 Power in the frequency range 30.0—48.0 Hz (high β)

19 Theta ratio (log(P6−12/P11−21)

20 Beta ratio

21 Burst suppression ratio

22 Spectral edge (95% of spectrum below this frequency)

23 Median frequency

24 Power in the frequency range 0.1—0.5 Hz

25 Power in the frequency range 0.01—0.1Hz

26 Total Energy Operator

27 Nonlinear Total Energy Operator

28 Spectral entropy

4.1.4 Features

There are a large number of features that have been used in the determination

of anaesthetic depth (Rampil 1998, Vairavan, Eswaran, Haddad, Rose, Preissl,

Wilson, Lowery & Govindan 2009, Yang & Guo 2007, Estrada, Nazeran, Nava,

Behbehani, Burk & Lucas 2004, Jordan, Schneider, Hock, Hensel, Stockmanns

& Kochs 2006). The features used here are not a definitive set they, however,

allow an ANN to learn the BIS XP monitor algorithm. The features are listed

in Table 4.2.

Time domain features

The first ten time domain features are the coefficients of an AR model of the

EEG segment. AR models have been used to characterize EEG (Sharma &

Roy 1997, Estrada et al. 2004) for assessment of anaesthetic effect. They have

better resolution than fast fourier transform (FFT) (Tonner & Bein 2006). For

an AR model of order p, the current output is a linear combination of the past p
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outputs plus a white noise input. Coefficients for the p past outputs, minimize

the mean-square prediction error, of the auto regression. If y[n] is the current

value of the output and x[n] is a zero mean white noise input, the AR(p) model

is:

yn +

p∑
k=1

ak yn−k = xn (4.1)

The AR all-pole model parameters were estimated using Burg method (Kay

1988). The Akaike information criteria (AIC) (Akaike 1974) was used to assess,

model order. Figure 4.6 shows AIC as a function of model order (4 to 24) for

EEG segments with a range of BIS values. The optimum model order occurs

when an increase of model order dose not produces a reduction in the AIC value.

The best model order is between 8 and 10. This confirms the assessment of

Sharma & Roy (1997). The remaining three time domain features are the total

energy operator (TEO) (Kvedalen 2003);

teo =
n−1∑
i=2

zi−1 ∗ zi+1 − z2
i (4.2)

Nonlinear total energy operator (NTEO) (Kvedalen 2003); and

nteo =
n−2∑
i=2

zi−1 ∗ zi+2 − zi ∗ zi+1 (4.3)

The burst suppression ratio (Rampil 1998) was calculated with a threshold

method. This was achieved by calculating the percentage of time domain samples

that were within 4 millivolts of the linear trend for each EEG segment.

Frequency domain features

The power spectrum was calculated for each time domain segment with the Welch

method (Welch 1967) using a Blackman window (Oppenheim & Schafer 1999).

The power spectrum was used to find the following features;

• Power in the frequency range 0-64 Hz (total)

• Power in the frequency range 0.5-48 Hz (EEG)

• Power in the frequency range 51-64 Hz (EMG)

• Power in the frequency range 0.5-3.5 Hz (delta)

• Power in the frequency range 3.5-7.0 Hz (theta)
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Figure 4.6: Akaike information criterion calculated for AR model orders from 4 to

24. The figure shows comparisons for epochs across the range BIS index.
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• Power in the frequency range 7.0-13.0 Hz (alpha)

• Power in the frequency range 13-30 Hz (low beta)

• Power in the frequency range 30-48 Hz (high beta)

• Power in the frequency range 0.1-0.5 Hz

• Power in the frequency range 0.01-0.1 Hz

• Theta ratio (Rampil 1998)

• Beta ratio (Rampil 1998)

• Spectral edge (Rampil 1998)

• Median frequency (Rampil 1998)

• Spectral entropy (Rampil 1998)

Spectral entropy (Ferenets et al. 2007) is calculated by replacing the amplitude

probability function of Shannon entropy with the normalised power spectral den-

sity function;

SE = −
∑
i

Pi

P
∗ log

Pi

P
(4.4)

where P is the average power of the signal.

4.2 Method

The method started with segment length selection. The best length was assessed

by comparing the correlation between the ANN estimate and the BIS monitor

index. In this process, the EEG recordings were broken into segments, beginning

with duration of two seconds until the segment length reached one hundred and

twenty seconds. The segments were indexed along the EEG by 128 samples

(one second). The BIS value from the next second was assumed to belong to

the EEG segment. The linear trend was removed from the segment before the

features were extracted. The extracted features were used to train a Levenberg-

Marquardt back propagation neural network with Bayesian regularization (Beale

et al. 2010). Bayesian regulation reduces the effect of network size on network

performance (Baum & Haussler 1989, Mirchandani & Cao 1989) (some neuron

weights can remain zero). The ANN needs to be trained until convergence. The

network was a three layer feed-forward network. The hidden layer consisted of
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15 hyperbolic tangent sigmoid transfer functions. The output layer was a single

pure line transfer function. The training function randomly broke the training

exemplars into three groups; training set (6642 exemplars), validation set (1423

exemplars), and test set (1423 exemplars) the linear regression for each segment

length was calculated for the test set.

The ability of the method to generalize the relationship between the raw EEG

data and the BIS monitor was assessed. The above network was reset and trained

using all the exemplars from four patients. The performance of the network was

then compared between the BIS values of the fifth patient and the network output

for the EEG features of that patient.

4.3 Results

The value of each linear regression as a function of segment length can be seen

in Figure 4.7. Initially increasing the segment length has a pronounced effect

on the performance of the network. The performance of the network on short

segments is similar to that of previous studies by Watt, Sisemore, Kanemoto &

Mylrea (1995). They trained ANN to classify conventional power spectral anal-

ysis (PSA) features extracted from 16 second segments and bispectral analysis

to three anaesthetic states with an accuracy of 83% for the PSA features and

89% for the bispectral features. Ghanatbari, Mehri Dehnavi, Rabbani & Ma-

hoori (2009) used 10 second segments from which they extracted 15 features.

Their best network had a correlation of 89% [88.9%,93.44%] to the BIS index.

Improvement in the performance of the network stops at windows greater than

40 seconds. This confirms the findings of Gudmundsson, Runarsson, Sigurdsson,

Eiriksdottir & Johnsen (2007). They found that reliability of several well-known

qEEG features improves with increassing segment length up to a ceilin of 40

seconds. As the frequency domain features requires the use of FFT the segment

length was set to 64 seconds (213 samples).

Figure 4.8 shows the output of ANN trained with the first twenty three features

shown in Table 4.2, and extracted from the de-trended segments. The three

layer feed forward ANN was able to learnt the BIS algorithm from the features.

De-trending is a common practice in the processing of EEG (Zikov et al. 2006,

Nguyen-Ky, Peng & Yan 2010, Zoughi & Boostani 2010). It allows the ANN

to learn the BIS algorithm. The trained network achieved a correlation, linear

regression, of 99.963% between the network output and the BIS XPTM monitor.
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Figure 4.7: Effect of segment length on the fit of the network to the BIS monitor.

Increasing the segment length improves the ability of the method to reproduce the

DoA estimate from the BIS monitor.



4.3 Results 61

20 40 60 80 100
20

30

40

50

60

70

80

90

100

BIS Value

N
et

w
or

k 
O

ut
pu

t

Test set: R=0.99963

 

 

Data
Fit
Y = T

Figure 4.8: ANN trained with 23 features using de-trended EEG segments, of 64

seconds length, was able to learn the relationship between the first 23 features and

the BIS XPTM monitor.
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Table 4.3: Performance of ANN trained with different feature sets extracted from

raw EEG estimation of the BIX monitor Index for the EEG. The correlation was

calculated with linear regression.

Network No. Features Correlation

1 1:28 97.8283%

2 1:21 97.3925%

3 1:23 97.6232%

4 11:23 95.1395%

5 19:28 93.0970%

6 1:19, 22:28 97.4309%

7 11:28 96.1880%

8 1:10,19:28 97.5043%

Reproduction of the BIS index was not a primary goal of this study. My aim

was to assess the effects of the raw data on the DoA estimate. The raw EEG

allows access to information that is normally lost in the filtering process. This

extra information reflects changes in the function of the nervous system of the

patient. The performance of a group of ANN trained with different exemplars

extracted from raw data can be seen in Table 4.3. The correlation between the

output of the network and the monitor was assessed with linear regression.

Figure 4.9 shows the performance of network 1 trained with all 28 features. The

ANN is able to learn the BIS algorithm from the raw data of the four patients

that made up the training set. The performance of the network for the new

patient can be seen in the upper pane. This network was able to generalise the

BIS monitors output.

4.4 Discussion

A DoA estimate comparable to that of the BIS XPTM monitor can be produced

by this method from long data segments which have had their linear trend re-

moved. There are several regions in which the BIS monitor value is constant

during the progress of the surgery. Rampil (1998) amongst others states that

BIS monitor reject epochs that contain artefacts outputting the value for the

previous good epoch. The ANN is able to produce a DoA estimate during these

periods that lie within the trend of the BIS index.

This study shows that a wide range of features, that reflect anaesthesia, can

be combined with a neural network to reproduce the BIS XPTM monitor index
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Figure 4.9: DoA estimate from ANN, trained with all 28 features using raw data

segments of 64 seconds length, and the output of the BIS XPTM monitor. The

upper part shows the output of the ANN for the new patient. The network is able

to re-generalise the BIS index.
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Figure 4.8. Inclusion of a large number of features, statistical reduces the chances

of conflicting exemplars, improving the classification of the data to the BIS index.

The ability of the method to classify the raw data allows the ANN access to the

anaesthetic effect on ECG, EMG, OEG, and respiration. The inclusion of low

and very low frequencys require the use of long data segments. The effect of

segment length greatly improves the ability of a network to learn the BIS XP
TM monitor algorithm (see Figure 4.7). This confirms the findings of Kortelainen,

Vayrynen & Seppanen (2011), that longer segment length improved the fit of the

method. Use of a long segment improves the resolution of the frequency domain

and reduces the non-stoic nature of EEG. There are two significant rhythms

present which have low frequency ranges, respiration between 0.05 - 0.2 Hz and

ECG with a range 0.5 - 3 Hz.

This method is able to generalise changes in the data that result from changes

due to the anaesthetic. The comparison of different networks to the BIS monitor

can be seen in Figures 4.10, 4.11, and 4.12. Each figure includes the available

information regarding the administration of the anaesthetic. Unfortunately there

was no information at the time regarding the progression of the surgical procedure

or the subjective assessment of the anaesthetist. The networks differ in the

features that were used to train them.

Each of these networks initial produce a very high value that falls sharply prior

to the administration of the alfentanil. This drop may indicate the changes in

responsiveness caused by the premedication (midazolam). All of the indexes

jump following the administration of alfentanil and propofol. These may repre-

sent changes in stimuli caused by the injection in the awake patient (propofol

is a known irritant). Each index drops sharply following the propofol. The BIS

monitor lages considerably (Abdulla 2012) at the transition between awake and

unconsciousness. Each index then trends up wards to a peak that occurs close to

the insertion of the Laryngeal mask airway (LMA). This is a high level noxious

stimuli event with second highest ranking. Shown in Table 2.2 the BIS index at

this point contains a constant period which indicates that the monitor did not

calculate an index value at this time. At this point the progress of the indexes

diverge.

The results from network 1 can be seen in Figure 4.10. Network 1 shows a clear

spike at 3 minutes. This may well represent the initial assault, incision. The

other two indexes (Figures 4.11 and 4.12) produce a peak, to a lesser extent, at

this time. The index value of network 1 remains relatively flat until the fifteen

minute mark at which it begins to trend down. During this time there is a

significant increase in the index around twelve minutes. The point of the return
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of consciousness is unknown. The BIS index gives no indication as to the timing

of this event. The index of network1 appears little better as it is trending down.

However this network gave very low values initially when the patient was awake

and relaxed.

The results from network 2 can be seen in Figure 4.11. The estimate from

network 2 more closely follows the BIS monitor for the period between insertion

of the LMA and the end of the anaesthetic. This index produces a step change

around twelve minutes trending upwards from fourteen minutes until the end of

the procedure. Unlike the BIS monitor this index returns to a level above the

initial awake sedated period.

The results from network 3 can be seen in Figure 4.12. It drops to a very low

level after the LMA insertion well below the BIS index. The clear spike at three

minutes is just present. Just before the four minutes the network index returns

to the BIS level. The index follows the BIS monitor well until just before the

end of the anaesthetic where it steps up to a higher plane for four minutes before

transitioning back to the lower state. This network does not produce the rapid

change due to induction with propofol of the others nor does it demonstrate a

return to consciousness.

Current EEG DoA monitoring devices require the removal of EMG from the

EEG signal for an accurate assessment of the patients state. The frequency

spectra of EEG and EMG overlap in the range of 30Hz to 60Hz. The output of

qEEG monitors is degraded by the presence of EMG in the signal. It is common

to remove EMG with the use of a NMB agent. Murphy & Brull (2010) found

that residual NMB is a primary and frequent anaesthetic risk for postoperative

complications. They recommended that NMB agents only be used when prudent.

A DoA monitor that does not rely on the administration of a NMB for accuracy

may increase patient safety and improve patient outcomes.

Although EEG monitors are described as objective measures of anaesthetic ef-

fect, actually they are not. Current monitors performance is a function of the

anaesthetic regiment. The validity of the qEEG index is subjectively assessed in

terms of the regiment shown in Table 2.5. The hypnotic effect is only part of any

anaesthetic state; as such the qEEG index only provides information that forms

part of a subjective DoA assessment.

Given the limitations inherent in the use of four individuals to develop an esti-

mator for DoA this method preforms well compared to the BIS monitor (Figures

4.10, 4.11, and 4.12). The fit of the networks to the BIS index for the new pa-

tient indicates the potential of the method to be developed further. The results
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Figure 4.10: Output of ANN 1 for patient one. AAN1 was trained with all 28

exemplars extracted from 64 second segments of raw EEG from the other four

patients. The network estimates the patients state changed at 40 seconds followed

by a brief spike at 90. A similar spike occurs at the two minute mark. The BIS

monitor is known to lag the state of the patient. The network index drops rapidly

after the propofol bolus. It is common for the anaesthetic agent to be stopped

prior to the end of the procedure, so that the patient regains consciousness quickly

at the end of the procedure. The ANN estimated Index may reflect this occurrence

at around 13 minutes.
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Figure 4.11: Output of ANN 2 for patient one. AAN2 was trained with the first

21 exemplars extracted from 64 second segments of raw data from the other four

patients. This index classifies the EEG similarly to the BIS XPTM the index

drops quickly following the induction unlike the BIS monitor. There is a peak at

the insertion of the LMA. This index shows the patient as awake at the end of the

procedure unlike the BIS monitor.
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Figure 4.12: Output of ANN 3 for patient one. AAN 3 was trained with the

first 23 exemplars extracted from 64 second segments of raw EEG from the other

four patients. This index falls after the administration of each agent. The DoA

produced increases after each agent. This index appears to respond to stimuli.

This index like the first trends down at the end of the procedure this does not

demonstrate a return to consciousness.
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of network 1 (Figure 4.10) promise a device that reflects the effect of stimuli

on the anaesthetic state. This index appears to show the increases in neuronal

activity resulting from the stimuli of infusion, intubation and the lesser effect of

incision.

4.5 Summary

Electrical potential from the forehead can be used to determine DoA. The un-

identified noise and artefacts provide information that reflects changes in respon-

siveness of the patient caused by the anaesthetic. The ANN monitor produced

was able to re-generalise the BIS values from a small population and the method

is easy to implement.





Chapter 5

Subsystem effects and analysis of

anaesthesia

5.1 Introduction

We observe anaesthesia at the whole body level, however anaesthetic effect occurs

at the sub-cellular level. A comprehensive representation of the changes in overal

brain activity, due to anaesthetic agents, requires understanding of the dynamics

of the brain at an intermediate level, typically neural networks. Before a model

of the anaesthetic effects on the brain can be constructed, understanding of two

fields of research needs to be acquired.

Initally the functional interactions between brain regions modified by anaesthetic

agents can be accuried from functional human brain imaging (Franks 2008, Nal-

lasamy & Tsao 2011). Although none of the current imaging techniques directly

measure neuronal activity, changes in activity can be inferred from changes in

blood flow, glucose metabolism or oxygen concentration. Care should be taken

when assessing the results of these studies as anaesthetics may induce changes

independently of changes in neuronal activity, nonetheless, important generaliza-

tions can be drawn. Interpretation of anaesthetic effect is considerably a more

complex challenge.

Anaesthesia defined as drug induced suppression of responses from the nervous

system to the stimuli of medical procedures that assures comfort, wellbeing,

and compliance of the patient. Although a number of anaesthetic targets have

been identified (Campagna et al. 2003, Coyne & Lees 2002, Villars, Kanusky

& Dougherty 2004) the choice is diverse. The issue of anaesthetic effect is



72 Subsystem effects and analysis of anaesthesia

further complicated when we consider that ion channel receptor isoforms have

been shown to respond differently to the same anaesthetic agent (Caraiscos,

Newell, You-Ten, Elliott, Rosahl, Wafford, MacDonald & Orser 2004, Krasowski

et al. 1997).

5.2 Mechanisms of anaesthesia action

The human brain has long been the interest of research. Study of the brain

blossomed after the development of the microscope. Camillo Golgi (Dröscher

1998) used silver chromate salt staining to reveal the intricate structures of sin-

gle neurons in the 1890s. Since, Paul Broca (Dronkers, Plaisant, Iba-Zizen &

Cabanis 2007) first hypothesised, that certain brain regions were responsible for

certain brain functions, much has been deduced about the basic neurophysiol-

ogy underlying communication within the central nervous system. Requisite to

understanding the mechanism of action of anaesthesia is an understanding of:

• neuronal cell membrane concentration gradients, action potential genera-

tion;

• synaptic function;

• localised function, neuron networks; and

• functional connectivity.

5.2.1 Neurons and synapses

The brain is made from cells known as neurons. These neurons form a network

of large scale networks. There are thought to be 100 billion (1011) neurons in

the average human brain. Neurons inter connect at regions know as synapses.

Information is passed between neurons at the synapses. There are about 1000

synapses on the average neuron. Synapses form where two neurons connect,

changes in electrical activity in one neuron is transferred to a neighbour across

a synapse through the release of a neural transmitter (NT). Synapses predomi-

nately form on the dendrites, they can also occur on soma, axon and terminal

button. The form of the cell can be seen in Figure 5.1.

The boundary of neurons consists of bi-lipid layer. A concentration gradient

exists across the cell membrane for a number of ionic species. The charge sep-



5.2 Mechanisms of anaesthesia action 73

Figure 5.1: Representation of a neuron. The soma, main cell body, has several

dendrites with profuse branching which act as the information receiving network.

An action potential will be generated when the integration of this information

increases the cells membrane potential above a threshold. The action potential

propagates along the axon. The axon branch to form synapses between terminal

buttons and target neurons (sourced from public domain 2013).

aration caused by the concentration gradient gives the membrane a differential

potential. Changes in this potential drive all brain function. All neurons pos-

sess a myriad of different ion channels which span their plasma membranes. A

conformational change in the proteins that form the channel produce a gating

process which controls the flow of permeative ions thus altering the charge sepa-

ration across the membrane. These ion channels are responsible for the function

of the brain. They are divided into two main groups; voltage gated; and ligand

gated. Opening of the voltage gated ion channels (VGIC) is dependent on the

membrane potential. Changes in the membrane potential result in changes in

the rate of flow of ions. VGIC are responsible for the formation and propagation

of action potentials along the axon. An action potential on reaching the terminal

button causes the release of a NT into the synaptic cleft. Readers interested in a

fuller understanding of action potential generation and propagation the author

recomends the work of Hodgkin & Huxley (1952).

The cleft is the space across which the information is transmitted. It divides

the synapse into two functional areas. In the pre synapse action potentials (AP)

cause the release of neural transmitter into the cleft. The transmitter on crossing
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Table 5.1: Brain receptors of the two main superfamilys (adapted from Campagna

et al. 2003).

Receptors Subunit types Conductance

Nicotinic receptor superfamily

Nicotinic acetylcholine α1−10, β1−4, γ, δ, ε Na+ / excitatory

GABAA α1−6, β1−3, γ1−3, δ, ε, ρ1−3, π, η Cl− / inhibitory

Glycine α1−3, β1−2 C− / inhibitory

5HT3 5HT3A, 5HT3B Na+ / excitatory

Glutamate receptor family

AMPA GluR1−4 Na+ / excitatory

Kainate GluR5−7 Na+ / excitatory

NMDA NRi,NR2A−D, NR3 Ca2+ / excitatory

the void reacts with receptors in the post synapse. These receptors are the ligand

gated ion channels (LGIC). Table 5.1 (Campagna et al. 2003) shows the recep-

tors of the two main receptor supper families of the brain. The receptors can

be either inhibitory or excitatory. Inhibitory receptors cause hyper polarization

of the membrane while the excitatory receptors cause polarization. The trans-

mitter, on binding with the receptor, allows the flow of the permeate ion across

the cell membrane. These post synaptic currents (PSC) add to determine the

membrane potential of the soma. If the potential at the action hillock reaches the

threshold an AP is generated and information is transmitted to the next neuron.

Polarization increases the frequency of action potentials, while hyperpolarization

reduces the generation. When the membrane potential of the soma passes the

threshold of the voltage gated ion channels a spike in potential is generate. This

localised spike in potential causes neighbouring channels to open thus the action

potential propagates along the axon. Action potentials are the means by which

information is transferred between neurons.

LGIC are responsible for either varying the membrane potential or altering the

resting potential of the neuron. This is achieved when either a hormone or a neu-

ral transmitter bind to the LGIC and cause it to open. LGIC are commonly asso-

ciated with synaptic transmission there are however LGIC found extra- synaptic

(both pre and post synapse). These LGIC mediate the resting potential of the

neuron altering the release of transmitter presynaptic or generation of action

potentials post synapse.

Anaesthetic agents are thought to modify the functioning of LGIC (Forsythe

1995, Franks 2008, Urban 2002). Changes in the kinetics of the LGICs alter

the potential of the neuron on which they are situated. Changes in membrane

potential affect the initiation of action potentials and hence brain function is
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altered through the effect of the anaesthetic.

Neurons form local or regional networks; Figure 5.2 shows the composition of

the cortex. The cortex consists of six different neuron types; bouble bouquet;

chandelier; spiny stellate; glia; large basket; and pyrmidal.

5.2.2 Brain circuits and altered functionality

Immobility from anaesthetics according to Campagna et al. (2003), and John &

Prichep (2005), is primarily achieved, at the level of the spinal cord. In modern

anaesthesia immobility is achieved with a neural muscular blocking agent. This

has removed the need to achieve immobility with anaesthetic agents. The effects

of anaesthetic agents on mobility are outside the scope of this work. Amnesia is

the property that takes up much of the research into anaesthesia, which results

in the cessation of memory formation. Intraoperative awareness is another major

issue in the administration of general anaesthesia, occurring in 0.1% of cases,

which results in devastating experiences for the patient (Myles, Leslie, McNeil,

Forbes & Chan 2004), and is a complex issue.

Conscious perception requires 2 processes:

• propagation of information along a neuron; and

• communication of this information across the cleft to the next neuron.

Anaesthetic agents alter the normal function of both these process. Propagation

of information along the neuron is an electrical process, action potentials (AP),

while communication between neurons is a chemical process. An action poten-

tial results when the membrane potential exceeds the threshold, voltage gated

sodium channels open and an action potential is initiated. A neural transmit-

ter is released from the presynaptic terminal button in response to an action

potential, into the synaptic cleft. Receptors in the post synapse open causing

ion flows across the cell membrane. Anaesthesia is the disruption of this com-

munication. Basic science and clinical practice indicate that anaesthetic agents

induce unconsciousness by altering neurotransmission in the cortex, brain stem

and thalamus.
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Figure 5.2: Structure of the cortex. The blue shading represents the six layers

of the cortex. The central orange axon is a projection from a thalamic relay

neuron, bringing sensory information into the cortex. Both the spiny stellate and

pyramidal cell have excitatory synapses. The other neurons of the cortex produce

inhibition. The axons of the pyramidal cell project down into the mid brain

(sourced from public domain 2013).
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5.2.3 Regional effects of anaesthesia

Imaging studies indicate discrete brain structures that are related to the effects

of anaesthetics (Heinke & Schwarzbauer 2002). The thalamus is central in the

processing of afferent sensory information. All but afferents from olfaction, pass

through the thalamus on their way to the higher processing centres of the cortex.

This funnelling of sensory information has long made the thalamus a prime can-

didate as the site of integration of percepts into the unified experience we refer

to as consciousness (Nallasamy & Tsao 2011).

The recent work (Gili et al. 2013) using eigenvector centrality characterized the

functional connectivity differences between functional magnetic resonance imag-

ing (fMRI) in subjects before and after mild sedation with propofol. A summary

of their findings is presented in Table 5.2. Gili et al. (2013) found 17 centres in

which the connectivity with the thalamus decreased durring mild sedation with

propofol was compared to awake. Gili et al. (2013) also found four regions that

had increased connectivity with the brainstem; this was interpreted as the lower

level brain functions remaining unaffected at concentration that produce mild

sedation. Nallasamy & Tsao (2011) summarised the important functional con-

nections that diminish with anaesthesia as thalamocortical, frontoparietal, and

posterior cingulate cortex connectivity.

Table 5.2: Brain regions with altered functional connectivity during mild propofol

sedation (apapted from Gili et al. 2013).

Brain regions with decreased functional connectivity with the thalamus

during mild propofol sedation

Cerebellar right crus l Caudate (R)

Cerebellar left crus l Putamen (R)

Lingual gyrus (L) Hippocampus (R)

Lingual gyrus (R) Inferior temporal gyrus (L)

Lateral occipital cortex (L) Caudate (L)

Primary somatosensory cortex BA2 (L) Anterior cingulate cortex caudate (R)

Primary somatosensory cortex BA1 (L) Superior temporal gyrus (L)

Putamen (L)

Pollard et al. (2011), using functional electrical impedance tomography by evoked

response (fEITER), a novel neuroimaging technique, were able to measure changes

in brain conductance at a temporal resolution of 10 ms. Figure 5.3 shows a sum-

mary of the effect of propofol on conductance across the brain as the anaesthetic

agent spreads. The anaesthetic can be seen to change conductance of a wide
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Figure 5.3: Changes in brain conductance during induction with propofol

(adapted from Pollard et al. 2011).

range brain regions across a range of concentrations.

Alkire et al. (2008) notes that thiopental, at equivalent hypnotic dose, deactivate

poster brain regions, while propofol deactivates both poster brain regions and

frontal cortex. Anaesthesia induced unconsciousness is usually associated with

deactivation of mesial parietal cortex, posterior cingulate cortex and precuneus.

Brown et al. (2010) provides Figure 5.4 to demonstrate the regions of the brain

currently believed to participate in the loss of consciousness due to propofol.

Interactions of the cortex with:

• dorsal raphe nucleus;

• lateral dorsal tegmental nucleus;

• pedunculopontine tegmental nucleus;

• locus ceruleus;

• ventral tegmental area;

• lateral hypothalamus;



5.2 Mechanisms of anaesthesia action 79

Figure 5.4: Brain regions and connections thought to mediate consciousness during

propofol anaesthesia. Propofol is thought to potentate the GABAA receptors of

interneurons in the cortex (adapted from Brown et al. 2010).

• tuberomammillary nucleus; and

• basal forebrain nucleus

are altered when propofol potentiates GABAA receptors in the cortex.

5.2.4 Anaesthesia effect site

Often in research into anaesthesia there will be reference to effect site rarely does

this involve more than a superficial reference. Modeling of anaesthetic effects on

EEG requires that the site be defined and the effect quantified. Until recently

thinking on the mechanisms underlying anaesthesia were dominated by the uni-

tary hypothesis and the Meyer-Overton rule. Claude Bernard put forward the

unitary hypothesis in the early 1870s (Mashour 2006). Meyer (1899) and Overton

(1901) based there works on the strong correlation between volatile anaesthet-

ics potency and lipid solubility. Although anaesthetic effects on a number of

LGIG have been measured the work, outlined by (Urban 2002), demonstrating

weather the drug binds to the receptor forming a specific effect site or the drug

acts through a non specific mechanism still remains undone. None the less, uni-

tary hypotheses is generally out of favour having been replaced with multisite

hypothesis involving particularly γ-aminobutyric acid type A (GABAA) recep-

tors. Inhibitory GABA receptors are ubiquitous within the CNS; GABA is the
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primary inhibitory NT within the brain. GABAA receptors mediate an increase

in Cl− conductance across the cell membrane causing hyperpolarization. While

GABA is the endogenous ligand, binding sites for:

• benzodiazepines;

• barbiturates;

• anaesthetic steroids;

• volatile anaesthetics; and

• ethanol

have been reported (Villars et al. 2004). There are a significant numbers of other

cellular targets for anaesthetics. Figure 5.5 (Alkire et al. 2008) includes:

• voltage gated sodium channels;

• nicotinic acetylcholine receptors;

• NMDA receptors; and

• GABAA receptors.

The GABAA receptor is a pentameric complex formed by different glycoprotein

subunits. There are 19 known subuints (α1−6, β1−3, γ1−3, δ, ε, ρ1−3, π, η) (McKernan

& Whiting 1996). The subunit composition of GABAA receptor determines their

pharmacological and biophysical properties as well as subcellular distribution

patterns. Schofield & Huguenard (2007) studied the affinity of GABAA receptor

of the thalamus to GABA. Using patchclamp electrophysiology and computa-

tional modelling they found that thalamocortical relay neurons of the ventrobasal

nucleus (VB) exhibit fast decaying IPSC, while neurons in the adjacent reticular

nucleus (RTN) exhibit slow decaying IPSC. The desensitization and gating prop-

erties of VB and RTN were found to be similar. The differences in the IPSC could

be simulated by changing the GABA affinity for the GABAA receptor. Although

Schofield and Huguenard did not determine the GABAA receptor sub-unit types

present in each of the neuron populations they are known to have heterogeneous

distributions.

Most of the receptors of the nicotinic acetylcholine receptor (nACHr) superfamily

show sensitivity to anaesthetics at clinically relevant concentrations (see Table
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Figure 5.5: The effects of a number of anaesthetic agents across a range of anaes-

thetic targets. All eight agents result in unconsciousness (sourced from Alkire

et al. 2008).

5.1). The nACNr superfamily can be subdivided into cation channels and anion

channels. The excitatory cation channels are nACHr and 5-hydroxytryptamine

(5HT3) receptors. The inhibitory anion channels are GABAA and glycine recep-

tors. Member of this family are thought to share a common pentameric structure.

Each subunit potentially, is one of a number of unique amino acid chains that

form the receptor. Figure 5.5 (Alkire et al. 2008) summaries the known receptors

of interest in anaesthesia and the effect that 8 popular anaesthetic agents have

on them. Garcia, Kolesky & Jenkins (2010) recently outlined understanding of

GABAA receptors and the role they play in anaesthesia.

The spatial distribution of the receptors is assumed to be non-uniform. The

system has enormous capacity for information processing (Byrne 2004). Carais-

cos et al. (2004) assessed the response to low concentration isoflurane of the α5

GABAA receptor and found that recombinant human α5β3γ2 GABAA receptor

were potentiated by 25µM isoflurane. Caraiscos et al. (2004) speculate as to the

possible role of α5 GABAA receptor in the amnesic effects of anaesthetics.

Krasowski et al. (1997) investigated the role of α subunit in the modulation of

GABAA receptor by propofol, using distinct stable fibroblast cell lines expressing

α1β3γ2 and α6β3γ2 GABAA receptor. They found that the α6 GABAA receptor

has a higher affinity for GABA than α1 receptor. The α6 form of the receptor
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Figure 5.6: Propofol potienates GABA induced currents (adapted from Krasowski

et al. 1997).

was directly gated to a greater extent than the α1. Propofol caused a greater

potentiation of the current produced from a submaximal GABA concentration.

The enhancement of the GABA current by propofol can be seen in Figure 5.6.

Hong & Wang (2005) studied the effects of etomidate on GABAA receptors of

the sacral dorsal commissural nucleus in rats, using nystatin-perforated patch-

recording configuration under voltage-clamp conditions, found that etomidate

potentiated GABAA receptor responses at low concentrations; direct activation

at moderate concentrations; and a fast blocking action at high concentrations.

Bai, Pennefather, MacDonald & Orser (1999) used a fast perfusion system to

study the effects of propofol on the current produced by saturating concentrations

of GABA on nucleated patches excised from hippocampal neurons.

Li & Pearce (2000) used rapid solution exchange techniques to study the effects of

GABA on α1 GABAA cell lines in the absence and presence of halothane. Using

a kinetic scheme incorporating two agonist binding steps, open, and desensitized

states. They found that halothane slows IPSC decay by slowing dissociation of

agonist from the receptor.

Windels & Kiyatkin (2004) measured the effect of an anaesthetic (chloral hy-

drate) on the activity of the substantia nigra reticulate neurons in un-restrained

rats using iontophoretic application to stimulate GABAergic projections to the
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Table 5.3: Distribution of major GABAA receptors subtypes in the rat brain

(adapted from McKernan & Whiting 1996).

Subtype Relative Location Function

abundance %

α1β2γ2 43 interneurons; hippocam-

pus, cortex

sedation, anticonvul-

sant

α2β2−3γ2 18 forebrain, spinal cord anxiety, muscle relax-

ant

α3βnγ2−3 17 cortex anticonvulsant

α2βnγ1 8 glia

α5β3γ2−3 4 extrasynaptic hippocam-

pal pyramidal cells

tonic inhibition

α6βγ2 2 cerebellar granule cells

α6βδ 2 cerebellar granule cells tonic inhibition

α1βδ 3 extrasynaptic; thalamus,

hippocampal

tonic inhibition

substantia nigra pars reticulate. Windels & Kiyatkin (2004) found that anaes-

thesia reduces the firing rate by 16.6+- 2.66% of the base line with a current of

10 to 20 nA. The effect of the current injection on mean activity can be seen in

Figure 5.7.

The work of Kleinle, Vogt, Luscher, Muller, Senn, Wyler & Streit (1996) must

influence interpretation of the role of extra synaptic receptors and there role in

the manifestation of anaesthesia. Kleinle modelling indicates that vestile contain

only enough transmitter for one receptor. The source of transmitter for extra

synaptic receptors remains un-explained.

5.3 Anaesthetic drug effect

Anaesthesia is a pharmacologically induced reversible state, characterized by

dose related impairment of cognitive functions, primarily mobility and memory

(Eger II & Sonner 2006, John & Prichep 2005, Mashour 2008). In this study,

the changes in EEG that correspond to increasing doses of hypnotic agent will

be the primary goal.
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Figure 5.7: Changes in action potential rate. Upper pane is the control result

for awake un-restrained rat. The lower section shows the results for anaesthetized

rats. The bars above each figure indicate the iontophoretic current (sourced from

Windels & Kiyatkin 2004). Anaesthesia causes a change in the distribution of

the firing rate, with both a reduction in the mean and standard deviation. The

anaesthetic produces a marked increase in the inhibition of the neural activity.

The * represents p < 0.05 students t test.

5.3.1 Hypnotic effect

There are a large number of anaesthetic agents that produce hypnotise in pa-

tients. These agents are drawn from a diverse group of chemical compounds

(see Chapter 2) and as such there is a large number of effect cites. There are

a number of agents that have been shown to alter the current from GABAA re-

ceptors. Hong & Wang (2005) found that etomidate produced a range of effects

on GABAA receptors of the sacral dorsal commissural neurons, rat, in nystatin-

perforated patch-recordings under voltage-clamp conditions. Li & Pearce (2000)

studied the effects of halothane on GABAA receptors kinetics and found evidence

for slowed agonist unbinding.

A large group of hypnotics are known to the mediate GABAA receptors, in

particular propofol (Bai et al. 1999, Krasowski et al. 1997). Bai et al. (1999) found

that propofol slows the deactivation and desensitization of GABAA receptors.

Krasowski et al. (1997) found that propofol potentiates the inhibitory effect

of GABA in α1 GABAA receptors while it acts as agonists with α6 GABAA

receptors.

The release of the neural transmitter, pre synaptically, is an important step in
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the transmission of information between neurons. Calcium ions act as an intra-

cellular messenger tying presynaptic depolarization caused by an action potential

to the act of neurosecretion. Transmitter release is a discrete process. According

to Kleinle et al. (1996) each vesicle contain a saturating dose for the adjacent re-

ceptor. For a fuller understanding of neurotransmitters release the author refers

the reader to the work of (Zucker, Kullmann & Schwarz 2004).

Ligand gated ion channel are the consensus targets, for therapeutic dose, anaes-

thetic agents are the postsynaptic ligand-gated ion channels. These channels are

classified into families based primarily on their structure.

5.4 Summary

Anaesthesia is the system wide effect of anaesthetic agents on the functional

units of the brain system. The functional unit in the brain is the ion channel.

There are two main groups of ion channels, VGIC and LGIC. VGIC is responsible

for the generation and propagation of action potentials, the impulse produced

when a neuron fires, while LGIC modulates the membrane potential of the cell

in response to the presence of a neurotransmitter or hormone. Neurotransmitter

is released into the synapse from the terminal button due to an action potential.

Anaesthetic agents alter the dynamics of the LGIC.

GABA receptors are the consensus targets for many hypnotic agents. α1 GABAA

is the most common form of GABAA receptor in the brain. Propofol magnifies

α1 GABAA receptors responses to GABA.

Anaesthetic agents produce changes in the functional relationships between high

function brain regions (cortex) and the low function centeres. The thalamus

is involved in the passing of most sensory information to the cortex. Interac-

tions between the thalamus and the cortex appear responsible for control of

conciouness.





Chapter 6

Brain and neuron modelling

6.1 Introduction

There are a number of methods with which brain models can be constructed.

These methods fall into two general groups. The first is the explicit models

they use neurons as the basic unit. Models are constructed by interconnecting

several basic units to build a model. The other approach models the brain as

neural masses, representing the response of thousands of neurons as the basic

unit. Neural mass models use either the Mean Field (Wilson & Cowan 1973) or

Lumped Parameter (Lopes da Silva, Hoeks, Smits & Zetterberg 1974) method.

The work on anaesthesia brain models has mostly used mean field methods these

models have been until recently limited to modelling only the cortex (Bojak &

Liley 2005, Liley et al. 2011, Molaee-Ardekani, Senhadji, Shamsollahi, Vosoughi-

Vahdat & Wodey 2007, Molaee-Ardekani et al. 2011, Steyn-Ross et al. 2001).

Additionally Hindriks & van Putten (2012) considered a thalamo- cortico model.

While, Oshima (2008) and Chinga, Cimensera, Purdona, Browna & Kopellc

(2010) used neuron networks to develop thalamo-cortico models.

6.2 Neuron models

The brain consists of a number of different neuron types, based on the ion chan-

nels that populate the cell membrane. There are a number of modelling methods

that describe single neurons;
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• Integrate and fire (Burkitt 2006);

• FitzHugh Nagumo (Izhikevich & FitzHugh 2006);

• Morris Lecar (Lecar 2007);

• Hindmarsh Rose (Hindmarsh & Rose 1984); and

• Hodgkin - Huxley (Hodgkin & Huxley 1952).

Hodgkin & Huxley (1952) developed the first mathematical description of the

changes in membrane potential for the giant squid axon. They did this through

understanding the ion channels present in the giant squid axon, where they

modelled the current flowing through an ion channel with the following equation:

Ii = gi (Vm − Vi) (6.1)

where Vi is the reversal potential of the i-th ion channel and Vm is the membrane

potential, as measured with respect to the resting potential. gi is the conductance

per unit area of the i-th ion channel. Hodgkin & Huxley (1952) recognized the

presence of two ion channels in the giant squid axon, potassium and sodium,

along with a leak current.

The total current through the membrane was given by:

Im = Cm
dVm
dt

+
∑
i

Ii (6.2)

where Im is the total membrane current per unit area, Cm is the membrane

capacitance per unit area. The conductances of the potassium and sodium chan-

nels were found to be time and voltage dependent. They are dictated by the

equations below.

gi (Vm(t)) = gim
αhβ (6.3)

where m and h are gating variables for activation and inactivation, respectively,

representing the fraction of the maximum conductance available at any given

time and voltage. gi is the maximal value of the conductance. α and β are

constants. The gating variables can be represented by a differential equation;

the following represent the m form;

dm

dt
=
m∞ −m

τm
(6.4)

where τm or τh is the time constant for activation or inactivation, respectively.

m∞ or h∞ is the steady state value for activation or inactivation, respectively,

these are usually represented by Boltzmann equations as functions of Vm.
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There have been two models of anaesthetic effect identified based on Hodgkin–

Huxley neurons (Chinga et al. 2010, Oshima 2008). Both of these works produced

thalamocortical models, representing the interaction between cortex, of pyrami-

dal cells (PY) and interneurons (IN), and thalamus, of thalamocortical relay

cells (TRC) and thalamic reticular formation (TRF) cells. Chinga et al. (2010)

introduced propofol into the model as a two fold increase of the base line values

of both GABAA synapses conductance and decay time. There model was able

to reproduce propofol induced rhythms. They argue that increased GABAA

conductance facilitates thalamocortical feedback.

6.3 Mean field neural mass models

The number of neurons and synapses in even a small piece of brain tissue is

immense. Because of this a popular modelling approach has been to take a

continuum limit and study neural networks in which space is continuous and

macroscopic state variables are mean firing rates. The continuum approximation

of neural activity began in the 1950s with the work of Beurle (Coombes 2006).

Additionally Wilson & Cowan (1973) described the mean field approach. They

modelled synaptic input current is a function of the pre-synaptic firing rate func-

tion. The mean field modelling method underpins many of the current anaes-

thesia effect models (Bojak & Liley 2005, Foster, Bojak & Liley 2008, Liley

et al. 2011).

These infinite dimensional dynamical systems are typically variations on the

form:
1

Φ

δu (x, t)

δt
= −u+

∫ ∞
−∞

dy w(y) f

(
u(x− y, t− |y|

v
)

)
(6.5)

Here, u(x, t) is interpreted as a neural field representing the local activity of a

population of neurons at position x and time t. The second term on the right

represents the synaptic input, with f interpreted as the firing rate function of

a single neuron. The strength of connections between neurons separated by a

distance y is denoted w(y), and the function w is often referred to as the synaptic

footprint (This formulation assumes that the system is spatially homogeneous

and isotropic.) The parameter Φ is the temporal decay rate of the synapse. The

delayed argument to u under the spatial integral represents the axonal conduction

delay arising from the finite speed of signals travelling over a distance y (Wilson

& Cowan 1973); namely |y|/v where v is the velocity of an action potential along

axonal fibres.

Steyn-Ross et al. (2001) is recognised as the first use of the mean field method
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to study the effects of anaesthesia. They used a simplified Liley model (Liley,

Cadusch & Wright 1999) to explain the biphasic response of the brain to low

doses of anaesthetic. They concluded that the transition, from the excited brain

states to one reflecting sedation, was a dynamic phase transition of the cerebral

cortex.

Hindriks & van Putten (2012) used a mean field method to model a thalamo-

cortical system, to reproduce the dominate changes in EEG during maintenance

of anaesthesia. They concluded that changes in EEG are caused by amplifications

of the resonances with in the thalamo-cortical system. Their modelling suggest

that these changes are bought about through increased inhibition within cortical

interneuron circuits.

6.4 Lumped parameter neural mass models

Lump parameter models are similar to mean field as they model populations of

neurons and utilize the average values of the population. The lumped parameter

method consist of two transforms that describe the neural mass.

The first converts the average pulse density of action potentials afferent to

synapse P (t) to the average post synaptic membrane potential Vm(t).

The transform, hi(t), represents the average post synaptic potential (PSP) due

to an action potential (AP) as a function of time (Lopes da Silva et al. 1974)

and has the following mathematical forum;

h(t) =

{
Aate−at t ≥ 0

0 t < 0
(6.6)

where A represents the maximum amplitude of the PSP. The value of A can be

either negative or positive dependent on whether the synapse is inhibitory or

excitatory respectively. a is the reciprocal, of the lumped representation, of the

time constant of the passive membrane and all other spatially distributed delays

in the dendritic network.

The membrane potential Vn(t) of a single neuron can be calculated by summing

the scaled linear convolution of, a unit impulse function, pi(t) and the synaptic

response hi(t), thus:

Vn(t) =
∑
i

Ci hi(t)⊗ pi(t) (6.7)

As the convolution of a function and an impulse function is the function, the
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membrane potential reduces to;

Vn(t) =
∑
i

Ci hi(t) (6.8)

where Ci is the synaptic connectivity constant. The synaptic connectivity con-

stant represents the proportionally the ratio of synapses formed by the neu-

ron population and its efferent populations. These values have been prevously

reported (Bhattacharya, Coyle & Maguire 2011, Jansen & Rit 1995, Zavaglia,

Astolfi, Babiloni & Ursino 2006).

The membrane potential of the neural mass Vm(t) is determined by the membrane

potential of a neuron multiplied by the density of action potential in the mass.

Vm(t) =
∑
i

Ci hi(t)P (t) (6.9)

The second transform uses a sigmoid function to converts the average membrane

potential, Vm(t), of the neurons into the average pulse density of action potentials,

P (t). The general form of which is:

P (t) =
2e0

1 + ev(s0−Vm(t))
(6.10)

where 2e0 is the maxium firing rate of the neuronal population, S0 is the resting

membrane potential and v is the steepness of the sigmoid function.

This method has been used to model EEG generation and study a variety of

brain phenomena. Jansen & Rit (1995) used, anatomically acceptable values

as parameters in, a lumped parameter model to study EEG and visual evoked

potential generation in coupled cortical columns. This paper forms the underpin-

ning for all the following works. Zavaglia et al. (2006) used three parallel lumped

parameter models to reproduce power spectral density (PSD) of high resolution

EEG during cognitive or motor tasks. This model was able to mimic the PSD of

cortical activity with three parameters, for each neuronal population, the mean

and variance of exogenous input noise and the average gain of fast inhibitory

synapses. Sotero, Trujillo-Barreto, Iturria-Medina, Carbonell & Jimenez (2007)

produced a model that could produce EEG across the whole head. It consisted

of 71 brain areas.

By including a reactivity test, the topographic distribution of EEG power from

different stimuli were studied. Pons, Cantero, Atienza & Garcia-Ojalvo (2010)

built on the work of Sotero et al to study age related anatomical degradation

responsible for changes in α waves generation. Molaee-Ardekani, Benquet, Bar-

tolomei & Wendling (2010) studied the onset of neocortical partial seizures. They
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found that the subtle balance between excitatory and inhibitory feedback is re-

quired in the model for reproducing realistic fast activity, reduction of frequency

with simultaneous increase in amplitude. Bhattacharya et al. (2011) studied

α rhythms in Alzheimers disease, and found that synaptic connectivity in the

inhibitory thalamic cell populations mediated alpha band power and frequency,

increasing the total number of active synapses in the thalamic populations simul-

taneously decreases, both the band power and peak frequency of the α rhythms.

6.5 Summary

Brain models are built up by interconnecting a number of basic units to represent

the neuronal feature of interest. The basic unit is either a single neuron or a mass

of neurons. The single neuron models better represent the actual brain. Large

scale implementations of neuron models are harder to implement than the mass

neuron models. Both neuron and mean field models have been constructed for

anaesthesia.
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Anaesthesia brain model and

implementation for EEG

7.1 Introduction

This chapter covers the development of a brain model to assess neuronal interac-

tions that produce changes in EEG due to GABAA hypnotic agents and a step

change in stimuli.

This investigation started by attempting to construct a network of (Hodgkin &

Huxley 1952) neurons. Based on the work of Oshima (2008) this approach was

abandoned in part due to the complexity of the resultant model. For example,

a small network of four neurons and six synapses required 74 first order differ-

ential equations to describe. Seven first order differential equations, on average,

were needed to describe each synapse. The implementation of Oshimas original

network of 225 neurons with 15 500 synapses hence became intractable.

7.2 Base model

This model is based on the model of Bhattacharya et al. (2011). The model

is constructed from seven lumped parameter neuronal mass models (Lopes da

Silva et al. 1974). The neuron masses are divided into two distinct brain regions,

thalamus and cortex. The thalamus, has three neuron populations, thalamic

relay cells (TRC), thalamic reticular formation cells (TRF) and interneurons

(IN). While the cortex, (Zavaglia et al. 2006), consist of four cell types pyramidal
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cell (PY), excitatory interneurons (eIN), slow inhibitory interneurons (sIN) and

fast inhibitory interneurons (fIN). The model uses synaptic connectivity as a

measure of the total number of synapse by afferent fibres from one population

to the dendrites of the other neurons population.

The model is constructed from lumped parameter representations of neuronal

masses. These neuronal masses often represent a voxel (unit resolution from

fMRI) representing 1mm3 of brain. This volume represents upwards of 100 000

neurons. Each neuronal population has a number of inputs that represent the

postsynaptic potential (PSP) for each synapse type on the neurons dendrites.

The membrane potentials of the population is the sum of the scaled effects due

to each synaptic connection in the population.

The Bhattacharya et al. (2011) model was chosen as a starting position as it

details the interaction between the thalamus and cortex. These interaction are

a significant part of the interaction between brain regions that are thought to

be influenced by anaesthetic agents (John & Prichep 2005). The model contains

a number of GABAA synapses these are, as previously discussed chapter 5 ,

thought to represent the major cite for the action of hypnotic agents. The model

also has excitatory glutamate synapses these are potential effect cites for opioid,

N2O and Ketamine. The model also contains afferents to the thalamus which

can represent stimuli from pain.

The model has been implemented using Simulink R© (MathWorks Inc. Natick,

Massachusetts; U.S.A). Simulink R© is a block diagram environment for multido-

main simulation. Which has the advantage that the graphical implementation

clarifies the structural relationship across different levels of the model.

Figure 7.1 shows the base model from the top level as the brain with one output

EEG. At the second level, Figure 7.2, the interconnections between brain regions,

of the model, can be identified. At this level the brain consist of four brain

regions; retina, afferent cortex, thalamus and cortex. Both, retina and afferent

cortex represent the unknown input into system. These afferent are modelled

as random normal noise with the mean and standard deviations representing

neurophysiological data corresponding to the resting firing rates with eyes open

(Bhattacharya et al. 2011, Tables 1 and 3). These action potentials densities are

transformed to the PSP through excitatory synapses.

The thalamus has two inputs, post synaptic potential from retina (PSPAr) and

post synaptic potential from synapse with cortex neurons (PSPC). PSPAp rep-

resents the projections to the thalamus from afferent stimuli entering the system

from the retina. PSPC is the projections from the cortex into the thalamus these
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Figure 7.1: Block diagram showing the top level of the base model. The EEG is

the only output of the base model.

Figure 7.2: Block diagram showing the second level of base model showing the

source of the EEG as the cortex. At the regional level the brain model consist of

four blocks, Retina, afferent cortex, thalamus and cortex.
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Figure 7.3: Block diagram showing the connections of the neuronal masses in the

thalamus.

projections have been limited to pyramidal neurons.

Figure 7.3 shows the thalamus at the level of neural populations. The intercon-

nections between three populations of neurons can be seen. The TRC population

has four inputs, representing afferent PSP from IN, PY and TRF neurons and

the retina and one output, the efferent PSP. The IN population has two afferent

inputs from PY neurons and the retina, and one output, the efferent PSP. The

TRF neurons have two afferent inputs, from PY and TRC neurons, and a single

output of efferent PSP.

The cortex is similar with two inputs, post synaptic potential from afferent cor-

tex region (PSPAc) and PSPT . The cortex has two outputs the PSPC and EEG.

Figure 7.4 shows the neuron populations of the cortex, it consists of PY neurons

and three subpopulations of interneurons. The subpopulation represents the dif-

ferent synapses present in the IN population. The PY population contains five

inputs, afferent PSP from neighbouring cortex, thalamus and the three IN sub-

populations. There two outputs from the PY population, the efferent PSP and

EEG. The cortex contains a population of excitatory IN that provide feedback

to the PY population. There are also two populations of inhibitory IN. They

have fast and slow dynamics each. The slow population has afferent PSP from

PY neurons and provides efferent PSP to both the PY and fIN populations. The

fIN population also recieves afferent input from the PY population. The fIN

population provied feed back to the PY neurons.
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Figure 7.4: Block diagram showing the connections of the neuronal masses in the

cortex.

As indicated in Section 6.4, lumped parameter neuron mass models rely on two

linked transforms. The first transforms the average density of afferent action po-

tentials into the mean membrane potential see equation 6.6. The second trans-

form converts the average membrane potential back to the average density of

action potentials see equation 6.10. The model was implemented in the Laplace

domain by taking the Laplace transform of the synaptic response function.

L (h(t))) = H(s) (7.1)

L (h(t))) = L
(
Aate−at

)
(7.2)

H(s) =
Aa

(s+ a)2
(7.3)

The model has the synaptic connection rates implemented as a function of the

total synapses in the brain region. The synaptic connections of the cortex come

from the work of Zavaglia et al. (2006). Who combined the cortex model of

Jansen & Rit (1995) with the fIN model from Wendling, Bartolomei, Bellanger

& Chauvel (2002). The synaptic connections in the thalamus were introduced

by Bhattacharya et al. (2011).

Figure 7.5 illustrates the structure of the seven neuron populations. The afferent
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Figure 7.5: Block diagram showing the interneuron population

inputs are scaled by the synaptic connection rates before being summed. The

total is passed to the transform to convert the potential to the average spiking

rate. The spiking rate is then transformed to the post synaptic potential efferent

from the population.

This model was chosen as a starting position as it details the interaction between

the thalamus and cortex. These interactions represent a significant part of the

brain in which anaesthetic agents are thought to influence brain function (John

& Prichep 2005).

7.2.1 Synaptic response

The model contains five different synapse types; two excitatory; and three in-

hibitory. Figure 7.6 shows the response of each synaptic function to an action

potential.

7.2.2 Action hillock response

The action hillock transform was introduced by (Jansen & Rit 1995). The re-

sponse of the action hillock was modelled as a Sigmoid function. The transform

converts the membrane potential Vm of the soma into the mean density of action

potentials Sa with three parameters e, s and, v. Where e is the maximum firing

rate of the population, s is the resting membrane potential and v is the sigmoid

steepness. The action hillock transform is defined as:

Sa =
e

1 + ev(s−Vm)
(7.4)
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Figure 7.7: The response of the action hillock to a range of membrane potentials

for three different membrane resting potentials.

Figure 7.7 shows the response of the action hillock to a range of membrane

potentials for three different resting membrane potentials.

7.3 Implementation

There are five parameters in each of the seven neuron populations. The pa-

rameters are; G, gain of the synapse; τ , time constant of synapse; e, maximum

firing rate of neuron; v, sigmoid steepness; and s, resting membrane potential of

neuron. The actual parameter values in the base model are listed in Table 7.1.

The parameter values in the action hillock function were first used in the work of

Jansen, Bourne & Ward (1981). They were selected for their ability to produce

α activity in their frontal cortex model. The parameters of the synaptic response

models represent five different synapses systems. In the case of the thalamus the

excitatory synapses are mediated by glutamate and the inhibitory synapses have
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Table 7.1: Brain model prameters

PY eIN fIN sIN TRF TRC IN Ap Ac

G 2.7 2.7 -39 -4.5 -22 3.25 -22 3.25 2.7

τ 40 40 300 20 40 100 40 100 40

e 5 5 5 5 5 5 5 5 5

v 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56

s 6 6 5.8 6.5 0 6 6 6 6

GABA as neurotransmitter.

The model is simulated by numerically solving the differential equations that

represent the system. A Dormand-Prince variable-step solver (ode45) with the

shape preservation enabled was used to perform the simulation. The time domain

EEG output of the model was sampled at a 128 samples per second using cubic

interpolation. The sampled EEG was filtered using a tenth order, band pass (1-

50 Hz), Butterworth filter. The filter was implemented as as IIR filter using the

butter function from the signal processing toolboxTM, Matlab R©. An estimate of

the PSD was achieved using the Welch method. Both the interpolation and the

PSD were calculated with Matlab R© functions.

Bhattacharya et al. (2011) model was originally used to study the age related

changes in α waves due to, the degenerative brain disease, Alzheimers. The base

model is modified to achieve the anaesthetic state.

7.4 Modifying base model for Anaesthesia

As the only measure of anaesthetic effect comes from EEG the modelling of

EEG generation allows a window through which to view anaesthetic changes in

neuronal function.

Anaesthesia, as outlined in chapter 2, is the accumulative effect of a number of

processed. As a minimum the model will need to respond to an input of hypnotic

agent altering the EEG output of the model to reflect the changes in frequency

and power associated with the increased levels of unconsciousness. An increase in

the stimuli should result in the EEG moving to a lighter state of unconsciousness.

The base model undergo the following modifications to achieve a model capable

of representing an anaesthetized brain.



102 Anaesthesia brain model and implementation for EEG

7.4.1 Unconsciousness

α1 GABAA receptors have been used as the effect cite of the hypnotic agent

propofol. The response of α1 GABAA receptors to propofol were measured by

(Krasowski et al. 1997) they found that propofol did not antagonise the receptor.

It potentates the effect of GABA on the receptor and increases the time constant

for the decay of the PSC. Modifying the lumped model to include the potentiation

of the GABA synapes by propofol is simple enough addition of propofol increases

the gain of the synaptic transform function. The drug effect was implemented

as a gain of 1+ hypnotic effect. Implementation of the change in rate of decay

of the PSC produced by propofol was a more complicated task.

Although the lumped parameter model contains a time constant in the synaptic

response function, equation 6.6, it is a lumped parameter representing all the

temporal spatial delays in the neuron. It may be possible to separate the decay

time constant from the lumped representation.

Bazhenov, Timofeev, Steriade & Sejnowski (1998) and Destexhe & Sejnowski

(2003) describe the time constant for the decay of GABAA synapses between

interneurons and pyramidal neurons as:

τr = 1/([T ]× 10 + 0.25) (7.5)

where [T] is the concentration of GABA in the synapse. Figure 7.8 shows the

effect of transmitter concentration on the time constant for the synapse. The

change in rate of decay of the PSP (Krasowski et al. 1997) may be resulted from

the concentration of NT required to gate the receptor.

Assume that the coordination number of the receptor is six and GABA is a mon-

odentate ligand. The change in the PSC from a receptor infused with propofol

and GABA. The drug might forms bonds at five of the six coordinate sites. The

ion channel opens when GABA binds to the remaining cites. Li & Pearce (2000)

concluded that halothane slows the dissociation of the agonist from α1 GABAA

receptors. The rate of decay of the PSC is then a function of the clearance of the

transmitter. One sixth the concentration of transmitter is required to activate

the same number of receptors in the presence of a saturating concentration of

propofol compared to that required without the drug. The question then is ”does

the lumped model represent the changes that are in the synapse model”. It is

assume that the changes in rate of decay of the PSC reported by (Krasowski

et al. 1997, Caraiscos et al. 2004) are due to the reduced concentration of GABA

bound to the receptor. Hindriks & van Putten (2012) noted that changes in the

decay rate of the PSC indirectly change the efficacy of the synapse. Assuming

that the decay constant does not change in the lumped parameter model resolves



7.4 Modifying base model for Anaesthesia 103

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (mS)

C
ur

re
nt

 (
uA

)

Effect of transmiter concentration on rate of decay.

 

 
[T] = 0.1
[T] = 0.5

Figure 7.8: Effect of transmitter concentration on the decay of PSC.

the issue.

Windels & Kiyatkin (2004) reported the pulse density, generated, in substantia

nigra pars reticulate neurons in both awake, unrestrained, and anaesthetized,

chloral hydrate, rats. They found that, the firing rate in awake rats was ap-

proximately twice that of anaesthetized rates, 28± 2.27 and 12.68± 1.62 pulses

per minute respectively. Anaesthesia produces a significant change in the action

potentials produced.

7.4.2 Stimuli

For the model to represent the brain during anaesthesia it needs to respond

appropriately to changes in stimuli. The un-anaesthized model should transion

from low to high frequency with incressing stimuli. The level of stimuli required

for the transition should increase along with the anaesthetis concentration.
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Table 7.2: Afferent stimuli leves for the base model.

Location Average Standard dievation

Thalamus 11 5

Cortex 30 5

In the Bhattacharya et al. (2011) mode afferentl stimuli exists in both the cortex

and thalamus. It is produced by a random normal process. The population of

which corresponds to neurophysiological data corresponding to neuronal firing

rates for resting with eyes open, shown in Table 7.2.

The base model, originally, was tuned to produce α wave. The stimuli used, eyes

open, produce β waves. A lower spiking rate (6) in the thalamus and unchanged

in the cortex were assumed to produce α waves . The base model uses the

Matlab R© function randn, to generate the stimuli, negative spiking rates are

possible. The model was altered so that all negative afferents were set to zero to

indicate no firing.

7.5 Summary

The lumped parameter neural mass models have been used to generate EEG

across a wide range of frequency. These models can achieve the dynamic range

expected. Hypnotic agents are included by potentiating the synaptic responses

of α1 GABAA receptors. Changes in PSC decay rate due to propofol results

from reduction in transmitter concentration required to open each ion channel.

Changes in the level of stimuli is achieved by changing the average spiking density

afferent to the thalamus. The full block digram for the implementation of the

model can be found in apendix B.



Chapter 8

Brain model assessment

8.1 Introduction

This chapter consist of the results and discussion for the testing of the brain

model outlined in Chapter 7. The parameter space of the model was searched

for parameter sets capable of producing β−α transition due to a step change in

stimuli. These models were simulated to assess the EEG characteristics for both

hypnotic and stimuli effects.

The base model (Bhattacharya et al. 2011) was modified into a series of models

with hypnotic input. These were assessed in terms of the changes in the EEG

due to increasing levels of hypnotic agent. In general the EEG progression due to

increasing anaesthesia is a move to lower frequencies with increasing amplitude.

This continues until the EEG switches to a pattern known as burst suppression

(Rampil 1998). The high amplitude slow wave is punctuated with very low am-

plitude activity. The periods of the irregular wave form increases with increasing

drug effect, until the irregular wave form becomes continuous. This is known

as an isoelectric EEG. The progression in EEG due to increasing anaesthetic

concentration follows the progression shown in Figure 8.1.

8.2 Methodology for assessment

As outlined in chapter 5 there are a number of anaesthetic effects that appear to

have independent processes in the brain. This model was limited to the anaes-

thetic agent propofol during a step change in stimuli. The model was assessed
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Figure 8.1: Examples of the EEG of each band.

in terms of its ability to produce EEG that followed the changes experienced in

man.

After that the parameter space of the model was searched to identify parameter

sets that allowed the model to produce β waves at average stimuli of twelve

action potentials afferent to the thalamus, eyes open (Bhattacharya et al. 2011),

and α wave, eyes closed, when the average afferent action potentials drop to six.

The best models resulting from the search were assessed for their response to

changes in both hypnotic effect and stimuli.

8.2.1 Hypnotic effect

The hypnotic agent propofol is known to mediate GABAA receptors (Franks

2008, Orser 2007). The base model contains four populations of GABAA synapses.

As noted in chapter 5 the α1 GABAA is 40% of all GABAA receptors. As there is

no clear indication of the spatial distribution of α1 GABAA receptors, the drug

effect of propofol was implemented as a potentiation of the synapse gain in each

of the four GABAA synapses of the base model. The sixteen possible models

were simulated across a range of drug effect values. A number of the models

produced changes in the EEG excepted for increasing levels of hypnotic agent.

Table 8.3 contains the synapse combinations that were considered to reflect the

changes in EEG outlined in Figure 8.1.
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Table 8.1: Synapse combinations that produce EEG similar to that presented in

Figure 8.2

Slow interneurons Fast interneurons Reticular formation

X X

X X

X X X

X

The simplest model that produces the expected progression has only the drug

action in the synapses of the slow interneurons of the cortex. The EEG generated

by this model can be seen in Figure 8.2. This model produces the expected

changes in both the amplitude and frequency of the EEG with increases drug

concentration.

Initially there is no drug present in the model. The model produces a low am-

plitude wave of a high frequency. Increasing the drug to 0.2 causes a change

in the EEG generated, higher amplitude and more regular at a lower frequency.

Increasing the drug up to 0.6 predominantly increases the amplitude of the EEG

generated. Once the drug level in the model is increased to 0.8 the model switches

output producing a wave form that oscillates between high and very low ampli-

tude. Increasing drug effect further, results in longer periods of very low am-

plitude. Finally the model produces only very low amplitude EEG representing

isoelectric.

8.2.2 Reactive model

Anaesthetic state is assessed in terms of the stability of the state to supress the

normal responses in the CNS to the stimuli of the procedure. For the model to

represent the brain during anaesthesia the model needs to respond to changing

stimuli. The base model is static, produces only one EEG patern (α waves).

The base model was defined to produce α waves for a give noise input. The

data used to define the noise distribution was for eyes open. Eyes open EEG is

actually in the β range. The parameter space of the base model was assessed to

find parameter sets capable of producing β wave when the spiking rate afferent

to the thalamus had a mean of twelve spikes and α waves when the afferent mean

spikes to the thalamus drops to six.
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Figure 8.2: EEG from base model with hypnotic agent potentiating the GABA

synapses of slow interneurons in the cortex. The drug effect increases after each ten

seconds. The amplitude if the EEG clearly increased as the drug effect increases

from left to right. In the last 10 seconds (t = 70 to 80) however the model produces

very low amplitude EEG.
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Table 8.2: Values across which the model was simulated to find sub set of models

that switch output due to a change in stimuli.

Parameter Base value Search range

A 3.25 1.5,1.75, 2.0, . . . , 5.5

B -22 -34, -32, -30, . . . , -10

C 2.7 2.0, 2.25, 2.5, . . . , 3.5

D -4.5 -3.5, -3.25, -3.0, . . . , -1

E -39 -42, -41, -40, . . . , -36

8.2.3 Model searching

The parameter spaced of the gain of each of the synapse transforms were searched

around the parameter values of Bhattacharya et al. (2011). The ranges over

which the gain for each synapse varied are set out in Table 8.2. Of the 119

119 possible models the initial search resulted in 509 models for which the PSD

estimate had a peak above 13 Hz when simulated for eyes open and a peak

frequency less than 13 Hz when simulated for eyes closed.

The PSD estimates of the resultant models were visually assessed to determine a

sub set of models that clearly switch frequency without generating other frequen-

cies. This inspection reduced the good model set to 69 members. A representative

PSD estimate of the good models can be seen in Figure 8.3. In the upper graph

the spectrum of the generated EEG from the eyes closed simulation can be seen.

The frequency of the EEG is predominantly in the α band. In the lower graph

the effect of opening the eyes can be seen on the spectrum of the EEG generated.

As expected the model produces a significant reduction in the power of the EEG

and a shift of the frequency clearly into the β band when eyes open is compared

to eyes closed.

Each of the 69 good models was simulated to determine its response to changes

in both hypnotic and stimuli. Five of them were capable of producing EEG that

represented both the hypnotic effects of anaesthesia and a change in stimuli. The

parameters found are listed in Table 8.3. Note the values of both the C and E

parameters are constant these values must be critical in defining the solution to

the model.

In Figure 8.4 the changes in the PSD can be seen for increasing drug levels. The

power values have been normalized by dividing the individual values by the total

power of each EEG so that the PSD can by plotted on the same figure. The

EEG generated by the model in the absence of drug and the eyes closed has

a peak frequency of 13Hz. Increasing the drug potentiation of the sIN of the
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Table 8.3: Gain parameters found to produce anaesthetic effect in the brain model.

Model no A pram B pram C pram D pram E pram

56 3.25 -18 2.25 -2.25 -42

55 3.00 -18 2.25 -2.25 -42

53 3.25 -20 2.25 -2.25 -42

41 2.25 -34 2.25 -2.50 -42

9 2.50 -32 2.25 -2.50 -42
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Figure 8.3: A typical power spectral density estimate for the EEG from a good

model. The model shows a clear transition between α and β generation with the

change in the stimuli. In the upper pain the PSD is clearly in the α range. Opening

the eyes causes the model to produce EEG in the β range.
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Figure 8.4: Changes in power spectral density due to increasing drug effect.

cortex causes a reduction of the peak frequency of the EEG generated by the

model. This is similar to the effect of increased concentration of Isoflurane in

the model of Molaee-Ardekani et al. (2011). A small drug effect lowers the peak

frequency to 11Hz. Increasing the drug potentiation of the sIN to 0.5 causes

the peak frequency of the model to drop to 8 Hz along with a second peak in

the δ range. The next two steps produce EEG with a PSD in the θ band with

peak frequencys at 4 to 5Hz. For drug potentiations of 2 and above the model

produces a bursting pattern. When potentiation of sIN synapse reach 4.4, the

model switches to the production of iso-electric EEG.

Figure 8.5 shows the changes in the PSD of the generated EEG due to changes

in stimuli under mild hypnotic effect. The model produces θ range EEG for

stimuli between 6 and 12. At stimuli of 14 the model switches to an EEG wave

form that is similar to the awake state. The hypnotic agent causes the model

to generate EEG in the θ band. This state is stable to increasing stimuli until

abruptly moving to a α pattern. The model appears to mimic the actual response

of patients resulting from stimuli above the stable range of the anaesthetic.
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Figure 8.5: Change in the PSD of the EEG generated by good model 55, with a

drug effect of 0.9 across a range of stimuli. The anaesthesia brain produces EEG

with an average frequency in the theta range. Increasing the stimuli to 14 caused

the brain to switch from an unconscious state to an awake state.
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8.3 Discussion

The model is capable of switching between 5 distinct EEG patterns β, α, θ,

burst, and isoelectric.

Increasing concentrations of GABAA hypnotic cause the frequency of the EEG

produced by the model to reduce in a dose dependent fashion. Initially the un-

anaesthesia model produces the EEG with a peak of 13Hz. A small addition of

agent causes the model to produce low frequency alpha waves (11Hz). Increasing

the drug to 0.9 causes the model to producing EEG in the θ range (peak of 5Hz).

Once the drug effect reaches 2 the model switches to a bursting pattern. The

duration of the suppression increases with the drug increasing until the drug

effect reaches 4.5, then the model switches to an iso-electric EEG pattern.

This new model has the advantage over mean field models that it directly cal-

culates the sum of the post synaptic potentials for each neuron population. The

model can also estimate the average spiking rate of each neuron population. This

information may have greater value than the generated EEG as it allows inter-

pretation of the interaction of the neuron populations within the brain regions

represent by the model.

The neuronal activity at each phase in the drug effect Figures 8.6 to 8.11 suggest

that the switching of state results from changes in activity in individual popula-

tion of neurons. These includes switching between a bursting state and a tonic

state or between synchronised and asynchronous neuronal activity.

Figure 8.6 shows the neuronal activity of each population of the model with no

drug and eyes closed. The PSD lower right shows that the EEG generated in the

lower left pane has a peak frequency in the alpha band. The eIN population is

fully saturated with neural activity at its maximum level.

The major change in the model at a drug effect of 0.5 is that of the hyperpolar-

ization of fIN. The loss of their inhibition causes both PY and sIN populations

to increase activities. There is a loss of dynamic range in the PY, TRC, and

TRF. This appears to result in the reduction of the EEG frequency shown in

Figure 8.6.

The addition of a small drug effect causes the PY neurons to switch between

a very low spiking and a saturated spiking rate. While the slow interneurons

switch between a low state and a saturated state the fast interneurons show a

low level of spiking. The change in neuronal activity in the model at a drug

potentiation of 1.5 can be seen in Figure 8.7. The inhibition from the sIN start
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Figure 8.6: Temporal changes in neuronal activity across model 55 without anaes-

thesia. The main figure shows the time course of the average neuronal activity in

each population of the model. The lower left figure is five seconds from the EEG

generated by the model to the right is the power spectral density estimate for the

generated EEG.
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Figure 8.7: Temporal changes in neuronal activity across model 55 with a low

drug effect.

to change the activity in the eIN population of neurons.

Bursting EEG wave forms appear once the excitatory interneurons start to oscil-

late between a tonic state and a lower frequency. In Figure 8.8 the eIN population

begin to have periods in which the spiking rate is not saturated. This decrease

in spiking coincides with a drop in the spiking of the slow interneurons of the

cortex. As the drug effect increases the duration of the supressed eIN lengthens

in Figure 8.9. The increase in eIN causes polarization in PY which feeds back

to both fIN and sIN then the inhibitory effects quickly reduce the activity of the

PY, and the eIN then return to a non-spiking pattern.

The model suggest that an isoelectric EEG is produced when the excitatory

interneurons of the cortex hyperpolarise completely shown in Figure 8.10.

Figure 8.11 shows the temporal neuronal activity of the model at a stimuli of eyes

open. The model clearly changes the frequency of the generated EEG, with the

peak in the PSD moving to 17Hz. The change in stimuli increases the activity of



116 Brain model assessment

4.8 5 5.2 5.4 5.6 5.8
0

1

2

3

4

5

stimuli =6  drug =1.5

time (s)

sp
ik

es

 

 

6 8 10
−20

0

20

40
EEG

time (s)
0 10 20

0

0.1

0.2
Relative PSD

Hz

PY
eIN
sIN
fIN
IN
TRC
TRF

Figure 8.8: Temporal changes in neuronal activity across model 55 with a moderate

drug effect.
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Figure 8.9: Temporal changes in neuronal activity across model 55 with a high

drug effect.
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Figure 8.10: Changes in neuronal activity across the model populations due to a

high level of drug. The high potentiation of the sIN neurons cause all the neuron

populations of the cortex to hyperpolarize. The resultant EEG has a very low

amplitude less than 1 mV the neurons of the thalamus show some activity due to

the afferent stimuli.
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Figure 8.11: Temporal changes in neuronal activity across model 55 populations

in an un-anaesthetized brain with the eyes open.

the thalamus interneurons. This appears to hyperpolarize the TRC population.

The resultant reduction in the spiking of the PY neurons oscillate at a higher

frequency due to an increase in the prominence of the inhibitory effects of the

interneurons in cortex. This suports the conclusion of Hindriks & van Putten

(2012).

EEG in the β range would appear to form when the fast interneurons and pyra-

midal neurons interact with the fast interneurons switching between no spines

and a low spiking rate while the PY neurons produce action potentials at a con-

sistently high rate. When the stimuli rate afferent to the cortex drops with eyes

close, there is a change in the activity of the neurones in the cortex, where the

fast interneurons stop producing action potential while both the pyramidal and

the slow interneurons move to a bistable pattern. The PY neurons spike rate is

between 2 and 4 the rate in the slow interneurons switch between 3.5 and 5, and

the excitatory interneurons remain saturated.

When compared to the models of (Bojak & Liley 2005, Foster et al. 2008, Hin-
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driks & van Putten 2012, Liley et al. 2011, Molaee-Ardekani et al. 2007, Molaee-

Ardekani et al. 2011) this model has a greater dynamic range. For example,

it produces β band EEG, approximates burst suppression patterns, and at sat-

urating levels of anaesthetic the model moves to an EEG pattern similar to

iso-electric.

The model of Liley et al. (2011) shown a pronounced peak in the δ band is

not present in this model. This may be due to a difference in procedure when

calculating the PSD. The initial output of the model contains a low frequency

peak in the δ band. The initial 10% of the EEG generated by the model was

revoved as the model is initialised with all the state variables as zero. This results

in the model taking time to settle. Removal of the initial EEG from the unsettled

model removes the δ peak from PSD of the un-anaesthetised models.

This model produces a similar change in the PSD as the model of Molaee-

Ardekani et al. (Molaee-Ardekani et al. 2011, Figure 9.2, p199). This model

is reactive and produces the transition from α to β EEG generation assioated

with the opening of the eyes. The model also appears to wake up transitioning

from a θ wave form to a high α in response to escalation in stimuli. This is novel,

with no other models the author is aware of having this feature.

8.4 Summary

This brain model is the only one that uses the lumped parameter method to

study the effect of GABAA hypnotics on brain function. This model is capable of

five distinct EEG patterns representing the expected progression in EEG caused

by increasing concentrations of hypnotic agents like propofol. The model also

responds to stimuli: switching from α to β pattern when the eyes open and un-

anaesthetized; and transitions from θ to α pattern during mild hypnotic effect

at elevated stimuli levels. The model suggests that the effect site for GABAA

hypnotics is the α1 GABAA synapse of the slow interneurons of the cortex.



Chapter 9

Conclusion

Anaesthesia appears a simple process. A chemical agent is added to the system

to produce a desired change in the systems response to stimuli. Despite the

simplicity the construct, anaesthesia remains a field where there are more ques-

tions than answers. This thesis reports on three aspects of anaesthesia. Two,

remain as challenges, in the practice of anaesthesia estimation of effect site con-

centration and estimation of DoA. The third addresses the limited understand

of the anaesthetic state. Two black box methods were presents which combine

features that, potentially, reflect anaesthesia to produce population PK models,

and estimators of DoA. A grey box model was used to study anaesthetic induced

changes in brain function.

9.1 Population pharmacokinetics model

Chapter 3 covered the assessment of a black box method for the development

of population pharmacokinetic models for propofol. This method is able to re-

solve the impediments encountered when generating population pharmacokinetic

models with NONMEM. This two stage method allows the modelling process

to determine the best model for the drug distribution data of each individual.

Then the relationship between the covariates (see Section 3.2.1) and the model

coefficients is learnt using the neural network. Two population pharmacokinet-

ics models were developed using this method, the standard three compartment

model and a five compartment model.

A neural network was able to learn the relationship between the patient’s covari-

ates and the individual PK model parameters. The standard three compartment
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model produced a higher level of fit than the Yasuda et al. (1991) model. The

MSE calculated for each of the new models were compared with that of Schubert

et al. (2007). It was found that the MSE of the three compartment model is less

than half of that of the Schubert et al. (2007) model.

The neural network is able to generalise the relationship between the covariates

of the sixteen patients and the coeffcients of each model. The small numbers of

patients required to produce the new model and the ease in which they are formed

have significant impact in potentially improving population pharmacokinetics

modelling techniques.

9.2 DoA

Chapter 4 described a method to estimate the BIS index with features extracted

from raw EEG using a neural network. The neural network classifier was able to

learn the algorithm of the BIS XPTM monitor from a range of features extracted

from long detrended segments of raw EEG. The ANN was able to generalise

the relationship. The correlation between the ANN and the BIS monitor for

new data was 99.963%. This result is two orders of magnitude improved than

previously reported results (Ghanatbari et al. 2009, Shalbaf, Behnam, Sleigh,

Steyn-Ross & Voss 2013, Watt et al. 1995). The improvement in the performance

of this method is due to the effect of the segment length. The long length

used here may better reflect the effect of the smoothing algorithm applied to

the output of the BIS XPTM monitor (Rampil 1998). Although the method

can estimate the BIS index during periods in which the monitor does not, the

generation of a unit less index is limited. This study was able to demonstrate

that the noise and artefacts that contaminate raw EEG contain information

that can be utilised in the determination of a DoA index. The use of long

segments allows access to information present in low frequency signals present

(Hemmings 2009, Wennervirta et al. 2008, Yang & Guo 2007) to complement the

information of the EEG.

Detrending segments causes information to be lost. Changes in skin conduc-

tion caused by anaesthetic produce changes in the potential recorded without

corresponding change in the current. This feature was considered in raw data

segments to assess the effect of inclusion of the information lost during detrend-

ing on the anaesthetic depth determination. Produced by a network trained

with features extracted from raw EEG data the index is similar to the index of

the BIS monitor. The benefit of the method lies in the differences between the

two. The network estimate shows a clear peak following the administration of
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the agents. This could represent the paradoxical excitement phase due to low

initial concentrations of agent or it is a result of the agent being an irritant. The

greatest difference occurs after the termination of the anaesthetic. From the BIS

monitor it is impossible to determine when the patient regained consciousness.

The ANN DoA estimate shows a clear increase after the anaesthetic stops and

is trending upwards this DoA estimate method is above the initial level of the

patient prior to induction.

9.3 Brain model

The human brain is a complex structure, a network with 100 billion units and

100 trillion connections. Regional population brain model form sub-networks

responsible for discrete cognitive tasks. This model shows that anaesthesia in-

duced changes in EEG is the result of individual sub populations of neurons

transitioning from a tonic firing state to a bursting state. The progression of the

EEG due to increased concentration of agent appears to result from the changes

in interaction between sub populations. This model demonstrates that the po-

tentiation of α1 GABAA receptors in the slow interneurons of the cortex is only

required for the model to respond appropriately to changes in drug effect and

stimuli. Unlike the current models, this new model is dynamic and responds to

a change in stimuli. The effect of change in stimuli is supressed with the intro-

duction of anaesthetic. The un-anaesthesized model transition to a β pattern

occurs at stimuli of 8 spikes afferent to the thalamus. At a moderate drug effect,

the model produces EEG in the θ band at stimuli levels below 12 spikes afferent

the thalamus. At a level of 14 spikes the model switches to generate an EEG

with a peak in the high α band. The model appears to represent the human

response to stimuli better than the anaesthetic, and is capable of generating ap-

propriate output in real-time. The model also suggests the mechanisms for the

αβ transition.

The model is able to transition from a α pattern to a β pattern when the stimuli

afferent to the thalamus changes from eyes closed to eyes open. The model sug-

gest the change in EEG is predominantly driven by an increase in the neuronal

activity of thalamic relay and thalamic reticular neurons. The thalamic reticular

formation is understood to be involved in the filtering of incoming stimuli and

regulation of the sleep-wake cycle. The thalamic relay cells project the infor-

mation into the cortex. Modelling of neural structures allows investigation into

how changes in iPSP, due to anaesthetic potentiation of GABAA receptors, alter

the function / interaction between neuron populations in the brain. The model

developed here is capable of producing EEG representative of that produced in
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life.

The model also demonstrates the need for neuronal activity to produce the anaes-

thetic effect. Direct gating of the GABAA receptors has not been considered as

α5 and α6 GABAA receptors are predominantly extra synaptic. α1 GABAA

receptors potentate the receptors response to the release of GABA. As a conse-

quence neuronal activity is required to produce the anaesthetic effect. Whether

this activity is considered to be awareness is a philosophical exercise beyond the

scope of this dissertation.

The model suggest that burst suppression occurs when the eIN population tran-

sition between a high activity state, tonic firing, and a low firing pattern. The

burst activities appear to be driven by an increase in activity in fIN. The fre-

quency of the EEG at this point appears to correspond to the period of the fIN

activity.

9.4 Future work

Durring this study more questions were generated than answers found, the fol-

lowing are those worthy of invesgation.

Estimating DoA: A monitor to estimate anaesthesia in terms that meet the

expectations of the anaesthetists will need to consider information from

sources other than EEG. The data required to determine if the anaesthetic

will be stable to a given stimuli requires the classication of the EEG into two

classes adequate or inadequate based on the response of the patient. The

assessment could be carried out using a subset of the possible combinations

of stimuli-response pairs. Data in this format should allow determination

of metrics that represent the boundary between inadequate and adequate

anaesthesia. This might answer questions like: Will the patient wake? and

Will the patient remember?.

Brain model: The model assumes that there was no change in the neuronal

activity afferent to the cortex. The model could be extended to the model

of Pons et al. (2010). This would remove the use of the Gaussian noise as

afferent input from neighboring cortex. The Pons et al. (2010) model con-

tained two cortex populations which were interconnected. The modelling

carried out in this study leads to several predictions that can, principally,

be experimentally verified. The results reported in this study are encour-

aging and demonstrate that EEG phenomenology associated with GABAA
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hypnotic agents can be reproduced by the use of a lumped parameter thala-

mus cortical thalamic model. This model appears to contains the essential

physiological mechanisms underling anaesthesia. It should be noted that

this model does not represent surface EEG recordings. The model may

approximate subcutaneous EEG. For the model to represent surface EEG

requires the use of a conductivity head model (Bashar 2011).

9.5 Summary

In this dissertation it was demonstrated that the electrical potential from the

forehead can be used to determine DoA. The ANN monitor produced was able

to re-generalise the BIS values from a small population and the method is easy

to implement. The ANN model is able to learn the underlining patters in raw

EEG.

A black box population PK model for the distribution of the anaesthetic agent

propofol within the human body was developed for the data. The method was

able to produce a model that better fitted the experimental data of Gepts et al.

(1987) than the models of (Hughes et al. 1992, Schubert et al. 2007, Masui

et al. 2009), and dramatically reduced the time to compute the population PK

model. It also removes the assumptions needed for a NONMEM model.

A brain model was utilised to assess changes in regional interaction that produces

EEG due to the presence of a GABAA hypnotic agent in the structure. This brain

model appears to be unique among the literature. It is the only model that uses

the lumped parameter method to study the effect of GABAA hypnotics on brain

function. This model is capable of five distinct EEG patterns representing the

expected progression in EEG caused by increasing concentrations of hypnotic

agents like propofol. The model also responds to stimuli: switching from α to β

pattern when the eyes open and un-anaesthetized; and transitions from θ to α

pattern during mild hypnotic effect at elevated stimuli levels. The model suggests

that the effect site for GABAA hypnotics is the α1 GABAA synapse of the slow

interneurons of the cortex.
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Appendix A

PK modeling results

A.1 Three compartment model results

0 100 200 300 400 500 600
0

1

2

3

4

5

6

Time (minutes)

C
p (

m
g/

m
l)

Patient 201

 

 
NN321
ARX
Gepts data

Figure A.1: Comparasion between NN population PK model, individual AR model

and data for patient 201.
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Figure A.2: Comparasion between NN population PK model, individual AR model

and data for patient 202.
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Figure A.3: Comparasion between NN population PK model, individual AR model

and data for patient 203.
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Figure A.4: Comparasion between NN population PK model, individual AR model

and data for patient 204.
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Figure A.5: Comparasion between NN population PK model, individual AR model

and data for patient 206.
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Figure A.6: Comparasion between NN population PK model, individual AR model

and data for patient 207.
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Figure A.7: Comparasion between NN population PK model, individual AR model

and data for patient 208.
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Figure A.8: Comparasion between NN population PK model, individual AR model

and data for patient 209.
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Figure A.9: Comparasion between NN population PK model, individual AR model

and data for patient 210.
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Figure A.10: Comparasion between NN population PK model, individual AR

model and data for patient 211.
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Figure A.11: Comparasion between NN population PK model, individual AR

model and data for patient 212.
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Figure A.12: Comparasion between NN population PK model, individual AR

model and data for patient 213.
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Figure A.13: Comparasion between NN population PK model, individual AR

model and data for patient 214.
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Figure A.14: Comparasion between NN population PK model, individual AR

model and data for patient 215.
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Figure A.15: Comparasion between NN population PK model, individual AR

model and data for patient 217.
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Figure A.16: Comparasion between NN population PK model, individual AR

model and data for patient 219.





Appendix B

Brain Model

This appendix contains the block digrams for the brain model.

B.1 Brain regions

Thalaums
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pain
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Figure B.1: Block digram of the brain model. At this level the model consits of

four functional regions: afferent pain; thalamus; cortex and; afferent cortex.
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Figure B.2: Block digram of the afferent pain to the thalamus.
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Figure B.3: Block digram of the afferent cortex. This block represent afferents

from negibouring cortex regions.
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Figure B.4: Block digram of the brain model, cortex. The cortex consits of four

neuron populations; fast internurons; slow internurons; excitatory internurons and;

pyramidal cells.
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Figure B.5: Block digram of the pyramidal cells, cortex.
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Figure B.6: Block digram of the slow internurons, cortex.
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Figure B.7: Block digram of the fast internurons, cortex.
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Figure B.8: Block digram of the excitatory internurons, cortex.
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B.3 Thalamus
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Figure B.9: Block digram of the brain model, thalamus. The thalaus consists of

three neuron populations; internurons; thalamic relay cells and; thalamic recitic-

ular formation cells.
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Figure B.10: Block digram of the internurons, thalamus.
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Figure B.11: Block digram of the thalamic relay cells, thalamus.
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Figure B.12: Block digram of the thalamic reciticular formation cells, thalamus.
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