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Abstract In Mai-Duy and Strunin (Eng Anal Bound Elem 125 (2021) 12-22) [1], it was

shown that the inclusion of nodal values of high-order derivatives in compact local integrated-

radial-basis-function (IRBF) stencils results in a significant improvement in the solution

accuracy. The purpose of this work is to examine in detail the numerical performance of

several approximation schemes based on one-dimensional IRBFs for computing high-order

derivatives along the grid lines. The extended precision floating point arithmetic is utilised

to achieve a high level of accuracy, and the efficiencies of the approximation schemes are

improved by employing overlapping domain decomposition and mixed-precision calculations.

In solving partial differential equations (PDEs), the proposed 1D-IRBFs are implemented

using the RBF widths that are fixed and vary with grid refinement. A simple framework

is presented to cover the two RBF width cases, and a numerical analysis is carried out

for differential problems with slow and rapid variations in their solutions. In solving the

convection-diffusion equations, the proposed 1D-IRBFs are also incorporated into the upwind

schemes for effectively simulating highly-nonlinear flows. Numerical results show that high

rates of convergence with respect to grid refinement are achieved with both fixed and variable
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46312529
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widths.

Keywords: high-order derivatives, high-order upwind schemes, compact approximations,
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1 Introduction

High-order methods, which are usually referred to as methods of at least third-order conver-

gence, have gained increasing attention in recent decades. Examples of high-order methods

include spectral methods [2], compact finite-difference (FD) methods [3] and RBF methods

[4]. One can use spectral methods to solve a PDE defined on a simple domain to high ac-

curacy if the solution to the problem is smooth. At lower accuracies, spectral methods still

require less computer memory than the other methods. Compact FD methods have been

used extensively as a substitute for spectral methods. However, it is not straightforward

to extend compact FD schemes to irregular grids. On the other hand, RBF methods can

be used to solve a PDE on a complex domain as they can work well with unstructured

nodes. The RBF methods have been developed into three different types of discretisations:

global (e.g. [4,5,6,7,8,9]), local (e.g. [10,11,12,13,14]) and compact local (e.g. [15,16,17,18])

schemes. The use of Cartesian grids to represent a complex domain in the RBF methods

has received considerable attention in recent years owing to its efficient preprocessing (e.g.

[16,19,20,21,22]).

An attractive feature of compact local FD/RBF schemes is that a high level of sparseness

of the system matrix and a high level of accuracy of the solution can be achieved together.

For one-dimensional compact 3-point and two-dimensional compact 5-point stencils, where

nodal values of the second derivatives are included in the approximations, fourth-order con-

vergence is typically obtained. In Mai-Duy and Strunin [1], it was shown that the inclusion

of higher-order derivative values enables the order of grid convergence to be much higher

than 4; however, the main focus of the work in [1] was the development of one-dimensional 3-

point and two-dimensional 5-point stencils. Numerical calculation of high-order derivatives
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presents a great challenge. Any error in the original function is magnified, and therefore

results in much larger errors in its derivative functions. The main objectives of this work are

to investigate several numerical schemes based on IRBFs in one dimension for computing

derivatives along the grid lines, and how to utilise them in solving PDEs. Extended pre-

cision floating point arithmetic [23,24,25] is utilised. Large global systems are constructed

and solved with standard/double precision (16-digit accuracy), while small local systems are

handled using a higher level of numeric precision (32-digit accuracy). Utilisation of domain

decomposition is explored to improve efficiency in solving local systems. In this work, two

forms of the RBF widths, namely fixed and variable values with respect to grid refinement,

are considered, and they are implemented in a simple framework. For the variable-width

case, the RBF width is chosen as a linear function of the grid size. Utilisation of negative

values of the slope is discussed for the first time. It should be pointed out that nega-

tive slopes can yield better accuracy for problems with rapid variations in their solutions.

The proposed 1D-IRBF schemes are also utilised in the upwind schemes employed with the

deferred-correction strategy [26] to maintain a high level of accuracy of the IRBF solution

in simulating viscous flows.

The remaining of the paper is organised as follows. Section 2 is concerned with 1D-IRBF

schemes for approximating a function and its derivatives, where extended precision and

domain decomposition are explored to improve the quality of the IRBF approximations.

The proposed 1D-IRBF schemes are incorporated into the two dimensional 5-point compact

IRBF stencils for the solutions of Poisson’s equation and the convection-diffusion equations

in Section 3. Section 4 gives some concluding remarks.

2 Global one-dimensional IRBF schemes

For an IRBF scheme, one of the derivatives of function u is approximated using RBFs, and

the approximate function u is then defined through integration. With dqu/dxq taken as the

derivative to be approximated by RBFs, the IRBF scheme can be mathematically described
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as

dqu(x)

dxq
=

N∑
i=1

wiGi(x) =
N∑
i=1

wiI
(q)
i (x), (1)

dq−1u(x)

dxq−1
=

N∑
i=1

wiI
(q−1)
i (x) + c1, (2)

· · · · · · · · ·

du(x)

dx
=

N∑
i=1

wiI
(1)
i (x) + c1

xq−2

(q − 2)!
+ c2

xq−3

(q − 3)!
+ · · ·+ cq−1, (3)

u(x) =
N∑
i=1

wiI
(0)
i (x) + c1

xq−1

(q − 1)!
+ c2

xq−2

(q − 2)!
+ · · ·+ cq−1x+ cq, (4)

where N is the number of nodes on a grid line, Gi(x) the RBF, I
(q−1)
i (x) =

∫
I
(q)
i (x)dx,

I
(q−2)
i (x) =

∫
I
(q−1)
i (x)dx, · · · , I(0)i (x) =

∫
I
(1)
i (x)dx, (w1, w2, · · · , wN) the coefficients, and

(c1, c2, · · · , cq) the integration constants. In the of case of the multiquadric function, Gi(x) =√
(x− xi)2 + a2i , where ai is the width/shape-parameter and xi the centre. The multiquadric

function is a conditionally positive definite function; from a theoretical point of view, one

needs to add to the interpolant a polynomial to acquire an invertible interpolation matrix.

However, from numerical experiments reported, to our best knowledge, a singular interpo-

lation matrix was never observed when the RBF approximations were not augmented with

polynomial terms.

To replace the IRBF coefficients and integration constants in (1)-(4) with nodal values of u,

equation (4) is applied at x = xi, i = (1, 2, · · · , N), resulting in

û = Cŵ, (5)

which is called the conversion system, C is the conversion matrix

C =



I
(0)
1 (x1), I

(0)
2 (x1), · · · , I

(0)
Nx

(x1),
xq−1
1

(q−1)! , · · · , x1, 1

I
(0)
1 (x2), I

(0)
2 (x2), · · · , I

(0)
Nx

(x2),
xq−1
2

(q−1)! , · · · , x2, 1

· · · · · · · · ·

I
(0)
1 (xN), I

(0)
2 (xN), · · · , I

(0)
N (xN),

xq−1
N

(q−1)! , · · · , xN , 1


,
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and û and ŵ are vectors

û = (u1, u2, · · · , uN)′ ,

ŵ = (w1, w2, · · · , wN , c1, c2, · · · , cq)′ .

The minimum-norm solution to (5) is then substituted into (1)-(4).

Derivatives of u at x = xj can now be computed using nodal values of u

duj
dx

=

[
I
(1)
1 (xj), · · · , I(1)N (xj),

xq−2

(q − 2)!
, · · · , 1, 0

]
C−1û, j = (1, 2, · · · , N) (6)

· · · · · · · · · · · · · · · · · ·
dquj
dxq

=
[
I
(q)
1 (xj), · · · , I(q)N (xj), 0, · · · , 0, 0

]
C−1û, j = (1, 2, · · · , N) (7)

or

d̂u

dx
= D1û, (8)

· · · · · · · · ·

d̂qu

dxq
= Dqû, (9)

where

d̂ku

dxk
=

(
dku1
dxk

,
dku2
dxk

, · · · , d
kuN
dxk

)′
, k = (1, 2, · · · , q),

and Dk is the differentiation matrix for computing nodal values of the kth-order derivative

of u.

The IRBF scheme is said to be of order q (denoted by IRBFq) if RBFs are used to approx-

imate the qth-order derivatives. For IRBFq, the RBFs and their integrated basis functions

can be used to compute derivatives of orders up to q. To compute derivatives of higher orders,

derivative functions can be taken as the original function. In this work, three IRBF schemes,

namely IRBF2, IRBF4 and IRBF6, are considered, and we are interested in computing the
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derivatives of orders up to 6. For each scheme, we take the differentiation matrices D1 and

D2 as the base, and compute the derivatives of u according to

d̂u

dx
= D(q)

1 û, (10)

d̂2u

dx2
= D(q)

2 û, (11)

d̂3u

dx3
= D(q)

1

d̂2u

dx2
, (12)

d̂4u

dx4
= D(q)

2

d̂2u

dx2
, (13)

d̂5u

dx5
= D(q)

1

d̂4u

dx4
, (14)

d̂6u

dx6
= D(q)

2

d̂4u

dx4
, (15)

where superscript (q) is used to denote the order of the IRBF scheme.

Consider function u = sin(2πx), 0 ≤ x ≤ 1. Let h be the grid size. We employ M uniform

grids, (h1, h2, · · · , hM), to represent the domain, and measure the solution accuracy in the

form of relative L2-norm for each grid as

Ne =

√∑N
i=1 (ui − uei )

2√∑N
i=1(u

e
i )

2

, (16)

where N is the number of grid points, and u and ue are the approximate and exact functions,

respectively. We fit the power function Ne = bhm, where m and b are the two coefficients,

to the obtained data (i.e. (hi, Nei), i = (1, 2, · · · ,M)). The value of m is considered

here as the average of convergence. We also measure local rates of convergence defined

as (logNei − logNei−1
)/(log hi − log hi−1), where i run from 2 to M . For all grids employed,

we use a fixed value a = 0.15 for the RBF width.
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2.1 Extended precision

First, the three IRBF schemes are performed with extended precision (100-digit accuracy).

The domain is discretised using N = (11, 21, · · · , 201). The obtained results are shown in

Figure 1.

Using IRBF2, the average rates of convergence for approximating the 1st, 2nd, 3rd, 4th,

5th and 6th derivatives are 11.76, 10.59, 9.34, 8.04, 6.54 and 5.05, respectively. Its local

convergence rates are in range of 4.07 to 27.67 for the first derivative, 3.00 to 26.47 for

the second derivative, 1.69 to 25.21 for the third derivative, 0.40 to 23.92 for the fourth

derivative, -1.05 to 22.55 for the fifth derivative, and -0.83 to 21.11 for the sixth derivative.

Using IRBF4, the average rates of convergence for approximating the 1st, 2nd, 3rd, 4th,

5th and 6th derivatives are 13.71, 12.59, 11.39, 10.19, 8.87 and 7.48, respectively. Its local

convergence rates are in range of 6.72 to 29.57 for the first derivative, 5.66 to 28.39 for

the second derivative, 4.40 to 27.18 for the third derivative, 3.22 to 25.93 for the fourth

derivative, 1.75 to 24.62 for the fifth derivative, and 0.23 to 23.27 for the sixth derivative.

Using IRBF6, the average rates of convergence for approximating the 1st, 2nd, 3rd, 4th,

5th and 6th derivatives are 15.76, 14.67, 13.50, 12.34, 11.09 and 9.83, respectively. Its local

convergence rates are in range of 9.43 to 31.49 for the first derivative, 8.38 to 30.34 for

the second derivative, 7.17 to 29.15 for the third derivative, 6.03 to 27.94 for the fourth

derivative, 4.74 to 26.67 for the fifth derivative, and 3.47 to 25.38 for the sixth derivative.

These results indicate that the approximation accuracy is significantly enhanced with an

increase in the order of the IRBF scheme. However, Figure 1 also shows that higher-order

IRBF schemes produce larger values of the matrix condition number.

For small grid sizes (i.e. h ≤ 0.017 or N ≥ 61), the three IRBF schemes all produce

exponential rates of convergence (with respect to grid refinement) for all the derivatives

under consideration. The data form a straight line when displayed on a semilog plot whose

y axis is logarithmic. For each IRBF scheme, we fit exponential functions, Ne = Kχa/h, to
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the data of the derivative functions (Table 1). The obtained values of χ are between 0 and

1.

Figure 2 compares the condition number and approximation accuracy in the IRBF6 and

conventional differentiated RBF (DRBF) schemes. Both schemes use the same RBF width

(a = 0.15). The present IRBF6 scheme has a higher condition number but is more accurate

than the DRBF scheme.

2.2 Double precision

The three IRBF schemes are implemented with double precision. The obtained results are

shown in Figures ??-3. When compared to the extended precision approach, as expected,

the double-precision approach is only able to produce similar results at the first few values

of N .

2.3 Mixed precision

The IRBF schemes are to be used in solving PDEs, where the discretisation involves grid

lines in the x and y directions. The algebraic systems derived from discretising PDEs are

typically large. In engineering practice, one does not need to have full accuracy. It is

desirable to work with double precision in solving PDEs. In this regard, the case of using

mixed precision is considered here. The matrices D1 and D2 in (10)-(15) are constructed

with 32-digit accuracy and then converted to double precision. The original functions in

(10)-(11) are evaluated in double precision. Results by the mixed-precision approach are

shown in Figure 3 for IRBF6, which indicate that (i) much higher values of N (much smaller

values of h) can be employed here when compared to the double-precision approach; (ii)

highly-accurate results are obtained; and (iii) for a given grid size, the higher the order of

the IRBF scheme the more accurate the solution will be.

Periodic conditions: For some problems, function u(x) is periodic. It should be em-
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phasised that the IRBF schemes allow one to impose the equal condition on values of the

derivatives (up to the second order for IRBF2, the fourth order for IRBF4 and the sixth

order for IRBF6) at the two end nodes in an exact manner. The imposition can be carried

out in the conversion system. Taking IRBF6, for example, the matrix and vectors in the

conversion system can now take the form

C =



I
(0)
1 (x1), · · · , I

(0)
Nx

(x1),
x51
5!
, · · · , x1, 1

I
(0)
1 (x2), · · · , I

(0)
Nx

(x2),
x52
5!
, · · · , x2, 1

· · · · · ·

I
(0)
1 (xN), · · · , I

(0)
N (xN),

x5N
5!
, · · · , xN , 1

I
(1)
1 (xN)− I(1)1 (x1), · · · , I

(1)
N (xN)− I(1)N (x1),

x4N
4!
− x41

4!
, · · · , 0, 0

I
(2)
1 (xN)− I(2)1 (x1), · · · , I

(2)
N (xN)− I(2)N (x1),

x3N
3!
− x31

3!
, · · · , 0, 0

I
(3)
1 (xN)− I(3)1 (x1), · · · , I

(3)
N (xN)− I(3)N (x1),

x2N
2
− x21

2
, · · · , 0, 0

I
(4)
1 (xN)− I(4)1 (x1), · · · , I

(4)
N (xN)− I(4)N (x1), xN − x1, · · · , 0, 0

I
(5)
1 (xN)− I(5)1 (x1), · · · , I

(5)
N (xN)− I(5)N (x1), 0, · · · , 0, 0

I
(6)
1 (xN)− I(6)1 (x1), · · · , I

(6)
N (xN)− I(6)N (x1), 0, · · · , 0, 0



,

û = (u1, u2, · · · , uN , 0, 0, 0, 0, 0, 0)′ ,

ŵ = (w1, w2, · · · , wN , c1, c2, · · · , c6)′ .

As shown in Figure 4, by applying the periodic boundary conditions, the levels of accu-

racy for all IRBF schemes are improved by several orders of magnitude, particularly for

approximating high-order derivatives.

Domain decomposition: With the domain replaced with a set of overlapping subdomains,

the computation becomes much more efficient as one needs to deal with smaller algebraic

systems. In this work, the overlapping regions have a length of 4h. The solution accuracy

versus grid size using 2 subdomains and 4 subdomains by IRBF6 are plotted in Figure 5.

When compared to the single domain results (hollow symbols), similar levels of accuracy are

achieved. At small values of h, the domain decomposition approach yields slightly better

accuracy. Perhaps the reasons for these are that the systems in the domain decomposition
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approach are much smaller, and far-away points do not affect much the approximation

qualities.

RBF width: The accuracy and stability of an IRBF solution are dependent on not only

the grid size but also the RBF width. For the solution accuracy, the optimal value of the

RBF width is problem-dependent. The width can take a relatively-large value for a smooth

function. For the numerical stability, as shown in Figure 6, the matrix condition number is

significantly reduced with a decrease in the RBF width, particularly at dense grids. It also

shows that when the RBF width is reduced to 0.005, the solution is observed to be stable

for all values of N considered, where the rates of grid convergence are 6.61, 5.61, 4.58, 3.49,

2.54 and 1.51 for the 1st-, 2nd, 3rd-, 4th-, 5th- and 6th-order derivatives, respectively.

3 Solving PDEs

In [1], the domain of interest, which can be non-rectangular, is discretised by means of Carte-

sian grids. Interior nodes are simply grid points, while boundary nodes are the intersections

of the grid lines with the boundaries. At each interior node, there are two 3-point stencils

constructed: one in the x direction and the other in the y direction. The interpolant on a

stencil is

d2ui
dx2

= η1ui−1 + η2ui + η3ui+1 + η1
d2ui−1
dx2

+ η2
d2ui+1

dx2
+ · · ·+ η9

d6ui−1
dx6

+ η10
d6ui+1

dx6
, (17)

which involves nodal values of not only function u but also its derivatives of orders up to 6.

For simplicity, the method is described in detail for the solution of

∂2u

∂x2
+
∂2u

∂y2
= f(x, y), (18)

subjected to Dirichlet boundary conditions and defined on a rectangular domain that is

discretised by a set of Nx×Ny points. Consider an interior node (i, j) (intersection between

the ith horizontal and jth vertical grid lines). Its four neighbours are (i − 1, j), (i + 1, j),
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(i, j − 1) (i, j + 1). The IRBF approximation in the x and y directions are constructed on

(xi−1, xi, xi+1) and (yj−1, yj, yj+1), respectively by means of (17). The discretisation process

leads to a set of algebraic equations:

∂2ui,j
∂x2

+
∂2ui,j
∂y2

= fi,j, (19)

where 2 ≤ i ≤ Nx−1 and 2 ≤ j ≤ Ny−1. In (19), ∂2ui,j/∂x
2 is a linear function of ui,j, ui−1,j,

ui+1,j, ∂
2ui−1,j/∂x

2, ∂2ui+1,j/∂x
2, ..., ∂6ui−1,j/∂x

6 and ∂6ui+1,j/∂x
6, and ∂2ui,j/∂y

2 a linear

function of ui,j, ui,j−1, ui,j+1, ∂
2ui,j−1/∂y

2, ∂2ui,j+1/∂y
2, ..., ∂6ui,j−1/∂y

6 and ∂6ui,j+1/∂y
6.

The nodal derivative values here are unknown, and we employ a Picard-type iteration scheme

to find their values:

1. Set nodal derivatives of the 2nd, 3rd, 4th, 5th and 6th orders of u along the grid lines

to zero.

2. Solve the algebraic equation set derived from (19).

3. Relax the solution

solk = ζsolk + (1− ζ)solk−1, (20)

where subscript k denotes a current iteration, “sol” a vector containing interior nodal

values of u, and ζ a relax factor (0 < ζ ≤ 1).

4. Compute the derivatives using IRBF2/IRBF4/IRBF6.

5. Compute Convergence Measure defined as

CM =
norm(solk − solk−1)

norm(solk)
. (21)

6. Check CM . If CM is less than a specified tolerance, stop the iteration and output the

result. Otherwise, repeat from Step 2.

11



RBF width: In solving PDEs, we investigate two cases: a fixed width and a linearly-variable

width that can be described in the following single function

a = β(h− hmin) + ā, (22)

where ā is a fixed width, hmin the smallest grid size used, β a chosen constant controlling

the rate of change of the RBF width with respect to the grid size. Value of β is zero for

the fixed-width case and non-zero for the variable-width case. The two width cases have

the same value at h = hmin. It is recommended that one can choose ā where the IRBF

approximations at h = hmin are still stable. With 32-digit accuracy employed here, for an

accurate and stable solution, the condition number of the conversion matrix can be in range

of 1015 to 1032, which means that the fixed width ā can be selected from a wide range of

values.

Problems with slow-variation solutions: it is known that the optimal width here takes a

relatively-large value at which the coefficient matrix is highly ill-conditioned. As shown

in Section 2 (IRBFs for approximating a smooth function and its derivatives), exponential

convergence results are obtained at small values of the grid size h. At larger values of h,

the matrix condition number is lower and it is possible to employ larger values of the RBF

width to achieve better accuracy. With β > 0, values of a are larger at coarse grids than at

fine grids. Positive values of β can thus be used effectively to improve the level of accuracy

at coarse grids.

Problems with rapid-variation solutions: values of the RBF width to be used here should

be smaller in order to capture rapid changes in the solutions. It can be seen that the RBF

approximations at coarse grids using relatively-large widths are not be able to capture the

rapid-variation solutions. With β < 0, values of a are smaller at coarse grids than at fine

grids. Negative values of β can thus be used effectively to improve the level of accuracy at

coarse grids.
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3.1 Problems with slow-variation solutions

Consider Poisson equation with the RHS given by

f(x, y) = 4(1− π2) sin(2πx) sinh(2y) + 16(1− π2) cosh(4x) cos(4πy), (23)

and the domain of interest: −1/2 ≤ x, y ≤ 1/2. The exact solution to this problem is

u(e)(x, y) = sin(2πx) sinh(2y) + cosh(4x) cos(4πy),

from which boundary values of u can be derived. It can be seen that the solution is a smooth

function.

We choose hmin = 1/150. The domain is discretised using Nx = Ny = (11, 13, · · · , 151).

Results concerning the effects of the RBF width on (i) the condition number of the conversion

matrix, denoted by cond(C), in the process of approximating function u and its derivatives

on the grid lines, (ii) the condition number of the system matrix, denoted by cond(A), in

the process of solving the PDE, and (iii) the solution accuracy, denoted by Ne, are shown in

Figure 7 for IRBF2, Figure 10 for IRBF4 and Figure 12 for IRBF6.

It can be seen that for all IRBF schemes, the growths of the matrix condition number with

respect to grid refinement are low for the system matrices (rates of about 2) and high for

the conversion matrices. The RBF width has a strong effect on the condition number of

the conversion matrix, but has no effect on the condition number of the system matrix.

The condition number is high for the conversion matrix (and thus there is the need for

using extended precision here) and low for the system matrix (and thus one can use double

precision here). Reducing the RBF width significantly improves the condition number for

the conversion matrix particularly at fine grids. The figures also include results for the fixed-

and variable-width cases, which are discussed in detail next.
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IRBF2: The parameters in (22) are chosen as

hmin = 1/150, ā = (0.05, 0.06, 0.07, 0.08), β = (0, 4).

In terms of hmin, ā = (7.5, 9.0, 10.5, 12)hmin. It can be seen that the errors reduce quick

for both fixed (β = 0) and variable (β > 0) width cases. Figure 8 shows the convergence

of the solution with respect to grid refinement for (β = 0, ā = 0.08) and (β = 4, ā = 0.08).

The case of β > 0 yields higher degrees of accuracy but a slower average rate of convergence

than the case of β = 0. It can also seen that the IRBF approximations using any value of β

between 0 and 4 also produce very good results. Figure 9 shows a comparison of convergence

rates for the variable-width case. The average rates of convergence are O(h4.56) for a = 0.05,

O(h4.94) for a = 0.06, O(h5.33) for a = 0.07 and O(h5.74) for a = 0.08.

IRBF4: The parameters in (22) are chosen as

hmin = 1/150, (ā, β) = [(2hmin, 2), (3hmin, 3), (4hmin, 4), (5hmin, 5)].

With these choices, the variable width is simply computed as a = βh, where β = (2, 3, 4, 5).

Similar remarks can also be made here. Figure 11 shows a comparison of convergence rates

for the variable-width case. The average rates of convergence are O(h5.66) for β = 2, O(h5.77)

for β = 3, O(h5.87) for β = 4 and O(h5.84) for β = 5.

IRBF6: The parameters in (22) are chosen as

hmin = 1/150, (ā, β) = [(2hmin, 2), (3hmin, 3), (4hmin, 4), (5hmin, 5)].

With these choices, the variable width is simply computed as a = βh, where β = (2, 3, 4, 5).

Similar remarks can also be made here. Figure 13 shows a comparison of convergence

rates for the variable-width case. For the first 16 values of Nx and Ny (i.e. Nx = Ny =

(11, 13, · · · , 41)), the solution converges as O(h7.74) for β = 2, O(h8.54) for β = 3, O(h8.98)

for β = 4 and O(h9.38) for β = 5. As expected, with a tolerance of 10−10 used in the
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Picard-type iteration scheme, the solution accuracy will not further decrease at fine grids.

Figure 14 compares the solution accuracies of the IRBF schemes employed with their largest

widths. The larger the order of the IRBF scheme, the more accurate the solution will be.

4 Problems with rapid-variation solutions

Consider the following convection-diffusion equation

−ε
(
∂2u

∂x2
+
∂2u

∂y2

)
+
∂u

∂x
= 0, (24)

defined on the domain (0, 1)× (0, 1) and subjected to

u(x, 0) = 0, 0 ≤ x ≤ 1, (25)

u(x, 1) = 0, 0 ≤ x ≤ 1, (26)

u(0, y) = sin(πy), 0 ≤ y ≤ 1, (27)

u(1, y) = sin(2πy), 0 ≤ y ≤ 1. (28)

The exact solution to this problem is

ue(x, y) = exp(Rx/2) sin(πy) [2 exp(−R/2) sinh(σx) + sinh(σ(1− x))] / sinh(σ), (29)

where R = 1/ε and σ =
√
π2 +R2/4.

When ε � 1, the problem is convection-dominated, and numerical simulation becomes

difficult due to the presence of a regular boundary layer along the downstream edge x = 1

(Figure 15). Several numerical schemes for overcoming these difficulties have been proposed.

Most of them are based on upwind differencing of the convective terms. If the diffusion

term is approximated by central differences and the convection terms by suitable forward

or backward differences, the resultant scheme is called the original upwind scheme or the
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UDS. Note that the UDS is of only first-order accuracy and can cause a false diffusion. To

maintain high levels of accuracy of the IRBF solution, we employ the upwind scheme in

conjunction with the deferred-correction strategy

(
∂ui,j
∂x

)k
=

(
ui,j − ui−1,j

h

)k
+ ∆k, (30)

where k denotes a current iteration and ∆ is the correction term defined as

∆k =

(
ui,j − ui−1,j

h

)k−1
+

(
∂ui,j
∂x

)k−1
, (31)

where the last term on the right site is computed using the proposed high-order IRBF

schemes.

This problem has been studied in [27,28]. As in [28], we choose hmin = 1/64. Table 2 shows

results by the upstream IRBF2 scheme (with and without using the deferred-correction

strategy) and the UDS. It is clear that utilisation of the deferred-correction strategy helps

maintain a high level of the IRBF solution in simulating convection-dominated flows.

To compare with those reported in [28], we measure the solution accuracy in the form

of average relative errors, and consider ε = 0.01. The domain is discretised using Nx =

Ny = (33, 37, · · · , 65). Results concerning the effects of the RBF width on (i) the condition

number of the conversion matrix, (ii) the condition number of the system matrix, and (iii)

the solution accuracy, denoted by average RE, are shown in Figure 16 for IRBF2 and Figure

18 for IRBF6.

It can be seen that for all IRBF schemes, the growths of the matrix condition number with

respect to grid refinement are low for the system matrices (rates of about 2) and high for

the conversion matrices. The RBF width has a strong effect on the condition number of

the conversion matrix, but has no effect on the condition number of the system matrix.

Reducing the RBF width significantly improves the condition number for the conversion

matrix particularly at fine grids. The figures also include results for the fixed- and variable-

width cases, which are discussed in detail next.

16



IRBF2: The parameters in (22) are chosen as

hmin = 1/64, ā = 0.15, β = (0,−5)

It can be seen that the errors reduce quick for both fixed (β = 0) and variable (β < 0) width

cases. Figure 17 shows the convergence of the solution with respect to grid refinement for

the two RBF-width cases. The case of β < 0 yields higher degrees of accuracy but a slower

average rate of convergence than the case of β = 0. The average rates of convergence are

O(h6.03) for the fixed width and O(h4.39) for the variable width.

IRBF6: The parameters in (22) are chosen as

hmin = 1/64, ā = 0.1, β = (0,−5)

Figure 19 shows a comparison of convergence rates for the two RBF-width cases. Similar

remarks can also be made here. The average rates of convergence are O(h6.83) for the fixed

width and O(h5.05) for the variable width.

Figure 20 compares the solution accuracy between the central difference (CD), discrete

weighted mean approximation (DWMA) and IRBF6 schemes. The three schemes are all

based on local stencils of 5 points. For a wide range of the RBF width employed, the pro-

posed scheme yields the most accurate results. Note that results by the CD and DWMA

schemes are extracted from [28].

Higher-order IRBF schemes produce higher levels of the solution accuracy and larger condi-

tion numbers for the conversion matrices. In the case of problems whose solutions are highly

oscillating functions, a large number of nodes should be employed for an accurate simulation.

In this situation, the use of lower-order IRBF schemes and smaller values of β is preferable.
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5 Concluding remarks

In this work, several effective schemes of computing high-order derivatives along a grid

line are reported. It is shown that (i) an exponential rate of convergence is achieved by

using integrated RBFs and extended precision, and (ii) their computational efficiencies are

improved by using overlapping domain decomposition and mixed-precision calculations. The

use of the proposed IRBF approximation schemes in solving PDEs is discussed in detail. Two

different ways of choosing the RBF width, namely fixed and variable values with respect to

grid refinement, are implemented in a simple framework. For the latter, the RBF width is

chosen as a linear function of the grid size. Both positive and negative values of the slope are

studied. Positive values can be used effectively for problems with slow-variation solutions,

while negative values can be used effectively for problems with rapid-variation solutions. The

case of using a variable width can yield better accuracy at coarser grids than the case of using

a fixed width. For the convection-diffusion equations, the proposed approximation schemes

can effectively be utilised in conjunction with a deferred-correction strategy to obtain an

accurate solution in simulating convection-dominated flows.

References

1. Mai-Duy N, Strunin D. New approximations for one-dimensional 3-point and two-

dimensional 5-point compact integrated RBF stencils. Engineering Analysis with

Boundary Elements 2021;125:12-22.

2. Canuto C, Hussaini MY, Quarteroni A, Zang TA. Spectral Methods in Fluid Dynamics.

Berlin: Springer-Verlag; 1988.

3. Hirsh RS. Higher order accurate difference solutions of fluid mechanics problems by a

compact differencing technique. Journal of Computational Physics 1975;19(1):90-109.

4. Kansa EJ. Multiquadrics - A scattered data approximation scheme with applications to

computational fluid-dynamics - II. Solutions to parabolic, hyperbolic and elliptic partial

18



differential equations. Computers & Mathematics with Applications 1990;19(8/9):147-

161.

5. Mai-Duy N, Tanner RI. Computing non-Newtonian fluid flow with radial basis function

networks. International journal for numerical methods in fluids 2005;48(12):1309-1336;

6. Mai-Duy N, Tran-Cong T, Integrated radial-basis-function networks for computing

Newtonian and non-Newtonian fluid flows. Computers and Structures 2009;87(11-

12):642-650.

7. Jankowska MA, Karageorghis A. Variable shape parameter Kansa RBF method for the

solution of nonlinear boundary value problems. Engineering Analysis with Boundary

Elements 2019;103:32-40.

8. Liu C, Han X, Zhang L. Unconditional convergence of iterative approximation methods.

Engineering Analysis with Boundary Elements 2021;126:161-168.

9. Zeng Y, Duan Y, Liu B-S. Solving 2D parabolic equations by using time parareal cou-

pling with meshless collocation RBFs methods. Engineering Analysis with Boundary

Elements 2021;127:102-112.

10. Shu C, Ding H, Yeo KS. Local radial basis function-based differential quadraturemethod

and its application to solve two-dimensional incompressible Navier-Stokes equations.

Comput. Methods Appl. Mech. Engrg. 2003;192:941-954.

11. Harris MF, Kassab AJ, Divo E. A shock-capturing meshless scheme using RBF blended

interpolation and moving least squares. Engineering Analysis with Boundary Elements

2019;109:81-93.

12. Safarpoor M, Shirzadi A. A localized RBF-MLPG method for numerical study of heat

and mass transfer equations in elliptic fins. Engineering Analysis with Boundary Ele-

ments 2019;98:35-45.

13. Dehghan M, Mohammadi V. Two-dimensional simulation of the damped Kuramoto-

Sivashinsky equation via radial basis function-generated finite difference scheme com-

19



bined with an exponential time discretization. Engineering Analysis with Boundary

Elements 2019;107:168-184.

14. Mramor K, Vertnik R, Sarler B. Application of the local RBF collocation method to

natural convection in a 3D cavity influenced by a magnetic field. Engineering Analysis

with Boundary Elements 2020;116:1-13.

15. Tolstykh AI, Shirobokov DA. On using radial basis functions in a “finite difference

mode” with applications to elasticity problems. Computational Mechanics 2003;33(1):68-

79.

16. Wright GB, Fornberg B. Scattered node compact finite difference-type formulas gener-

ated from radial basis functions. Journal of Computational Physics 2006;212(1):99-123.

17. Mai-Duy N, Tran-Cong T. Compact local integrated-RBF approximations for second-

order elliptic differential problems. Journal of Computational Physics 2011;230(12):4772-

4794.

18. Mai-Duy N, Tran-Cong T. A compact five-point stencil based on integrated RBFs for

2D second-order differential problems. Journal of Computational Physics 2013;235:302-

321.

19. Mai-Duy N, Le TTV, Tien CMT, Ngo-Cong D, Tran-Cong T. Compact approximation

stencils based on integrated flat radial basis functions. Engineering Analysis with

Boundary Elements 2017;74:79-87.

20. Mai-Duy N, Dalal D, Le TTV, Ngo-Cong D, Tran-Cong T. A symmetric integrated

radial basis function method for solving differential equations. Numerical Methods for

Partial Differential Equations 2018;34(3):959-981.

21. Le TTV, Mai-Duy N, Le-Cao K, Tran-Cong T. A time discretization scheme based on

integrated radial basis functions for heat transfer and fluid flow problems. Numerical

Heat Transfer, Part B: Fundamentals 2018;74(2):498-518.

20



22. Bhanot RP, Strunin DV, and Ngo-Cong D, Numerical solution of a highly nonlinear

and non-integrable equation using integrated radial basis function network method.

Chaos: An Interdisciplinary Journal of Nonlinear Science 2020;30:083119.

23. Cheng AH-D. Multiquadric and its shape parameter-A numerical investigation of error

estimate, condition number, and round-off error by arbitrary precision computation.

Engineering Analysis with Boundary Elements 2012;36(2):220-239.

24. Huang C-S, Lee C-F, Cheng AH-D. Error estimate, optimal shape factor, and high

precision computation of multiquadric collocation method. Engineering Analysis with

Boundary Elements 2007;31(7):614-623.

25. Sarra SA. Radial basis function approximation methods with extended precision float-

ing point arithmetic. Engineering Analysis with Boundary Elements 2011;35(1):68-76.

26. Khosla PK, Rubin SG. A diagonally dominant second-order accurate implicit scheme.

Computers and Fluids 1974;2(2):207-209.

27. Gartland EC. Discrete weighted mean approximation of a model convection-diffusion

equation. SIAM J. Sci. Stat. Comput. 1982;3(4):460-472.

28. Gupta MM, Manohar RP, Stephenson JW. A single cell high order scheme for the

convection-diffusion equation with variable coefficients. Int. J. Numer. Meth. Fluids

1984;4(7):641-651.

21



Table 1: Derivative approximations, N = (61, 63, · · · , 201), a = 0.15, extended precision
(full accuracy): The coefficients of exponential functions, Ne = Kχa/h, used to represent
the data collected from the IRBF approximations of the derivative functions. It can be seen
that 0 < χ < 1. Note that α(γ) means α× 10γ.

Derivatives χ K
IRBF2

1st 0.3727 5.8514(-4)
2nd 0.3980 2.1689(-2)
3rd 0.4264 5.0973(-1)
4th 0.4582 8.7532(+0)
5th 0.4956 1.0346(+2)
6th 0.5399 8.7663(+2)

IRBF4
1st 0.3358 4.4347(-6)
2nd 0.3579 1.8119(-4)
3rd 0.3823 4.7662(-3)
4th 0.4091 9.5545(-2)
5th 0.4398 1.4120(+0)
6th 0.4743 1.6678(+1)

IRBF6
1st 0.3019 3.6286(-8)
2nd 0.3212 1.5915(-6)
3rd 0.3426 4.5375(-5)
4th 0.3657 1.0121(-3)
5th 0.3917 1.7278(-2)
6th 0.4203 2.4779(-1)
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Table 2: Convection-diffusion equation, mixed precision, IRBF2, Nx = Ny = 65, ā = 0.125,
β = 0: comparison of the solution accuracy Ne between the upstream IRBF2 scheme (with
and without using the deferred-correction strategy) and the UDS. Note that α(γ) means
α× 10γ.

Upwind IRBF2
ε UDS without correction with correction
1/10 2.03(-2) 1.98(-2) 1.16(-6)
1/20 2.41(-2) 2.30(-2) 8.01(-6)
1/40 2.70(-2) 2.51(-2) 6.83(-5)
1/100 3.00(-2) 2.68(-2) 8.83(-4)
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Figure 1: Derivative approximations, N = (11, 13, · · · , 201), a = 0.15, extended precision
(full accuracy): Matrix condition number and accuracy versus grid size produced by IRBF2,
IRBF4 and IRBF6. For accuracy, the same axis scales are used. It can be seen that (i) the
errors by the 3 IRBF schemes decrease very rapidly when h ≤ 0.017 or N ≥ 61, and (ii) an
IRBF scheme of higher order yields greater accuracy.
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Figure 2: Derivative approximations, N = (11, 13, · · · , 201): Comparison of the condition
number and accuracy in the differentiated RBF and integrated IRBF schemes that use the
same width (a = 0.15). The latter has a larger condition number but is more accurate than
the former.
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Figure 3: Derivative approximations, a = 0.15: Accuracy versus grid size by IRBF6 im-
plemented with double precision (magenta solid symbols) and mixed precision (blue solid
symbols). Results by the extended precision approach (hollow symbols) are also included
to produce the base for comparison purposes. It can be seen that the double-precision
implementation can produce similar results for N from 11 to 17, and the mixed-precision
implementation can produce similar results for N from 11 to 49.
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Figure 4: Derivative approximations, mixed precision: Comparisons of accuracy between two
cases: with and without imposition of periodic conditions by IRBF2 (top), IRBF4 (middle)
and IRBF6 (bottom). By applying the periodic boundary conditions, the levels of accuracy
are improved by several orders of magnitude, particularly for high-order derivatives.
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Figure 5: Derivative approximations, a = 0.15, mixed precision: Accuracy versus grid size
by IRBF6 using 2 subdomains (top) and 4 subdomains (bottom). When compared to the
single domain results (hollow symbols), slightly-better accuracy is achieved at small values
of h, probably due to the fact that the systems in the domain decomposition approach are
smaller. Note that the domain decomposition approach is much more efficient than the single
domain approach.
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Figure 6: Derivative approximations, mixed precision, 4 subdomains, IRBF6: The matrix
condition number is significantly improved with a decrease in the RBF width particularly at
dense grids (top), and when the RBF width a is reduced to 0.005, the solution is observed
to be stable for all values of N considered (bottom).
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Figure 7: Poisson equation, mixed precision, IRBF2, Nx = Ny = (21, 31, · · · , 151): Plots of
the matrix condition numbers and the solution accuracy versus the RBF width for several
grid sizes. For a given grid size, the RBF width has a strong effect on the condition number
of the conversion matrix and no effect on the condition number of the system matrix. The
condition number is high for the conversion matrix and low for the system matrix. Results
by two different ways of implementing the RBF width, fixed (ā = (0.05, 0.06, 0.07, 0.08),
β = 0) and variable (ā = (0.05, 0.06, 0.07, 0.08), β = 4) values with grid refinement, are also
included. The variable-width case generally yields more accurate results than the fixed-width
case.
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Figure 8: Poisson equation, mixed precision, IRBF2, Nx = Ny = (11, 13, · · · , 151), 0 ≤ β =
4 ≤ 4, ā = 0.008: Plots of the solution accuracy versus grid size for the fixed (β = 0) and
variable (β = 4) width cases. The errors reduce quick for both cases. The latter yields
higher levels of accuracy but a slower average rate of convergence than the former. It can
be seen that the proposed method using any β between 0 and 4 can also produce very good
results.
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Figure 10: Poisson equation, mixed precision, IRBF4, Nx = Ny = (21, 31, · · · , 151): Plots of
the matrix condition numbers and the solution accuracy versus the RBF width for several
grid sizes. For a given grid size, the RBF width has a strong effect on the condition number
of the conversion matrix and no effect on the condition number of the system matrix. The
condition number is high for the conversion matrix and low for the system matrix. Results by
two different ways of implementing the RBF width, fixed (ā = (2hmin, 3hmin, 4hmin, 5hmin),
β = 0) and variable (ā = βhmin, β = (2, 3, 4, 5)) values with grid refinement, are also
included. The variable-width case generally yields more accurate results than the fixed-
width case.
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for the variable-width case. The solution converges as O(h5.66) for β = 2, O(h5.77) for β = 3,
O(h5.83) for β = 4 and O(h5.84) for β = 5.
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Figure 12: Poisson equation, mixed precision, IRBF6, Nx = Ny = (31, 41, · · · , 151): Plots of
the matrix condition numbers and the solution accuracy versus the RBF width for several
grid sizes. For a given grid size, the RBF width has a strong effect on the condition number
of the conversion matrix and no effect on the condition number of the system matrix. The
condition number is high for the conversion matrix and low for the system matrix. Results by
two different ways of implementing the RBF width, fixed (ā = (2hmin, 3hmin, 4hmin, 5hmin),
β = 0) and variable (ā = βhmin, β = (2, 3, 4, 5)) values with grid refinement, are also
included. The variable-width case generally yields more accurate results than the fixed-
width case.
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Figure 13: Poisson equation, mixed precision, IRBF6, Nx = Ny = (11, 13, · · · , 151), ā =
βhmin, a = βh: Plots of the solution accuracy versus grid size for four different values of
β for the variable-width case. The solution converges as O(h7.74) for β = 2, O(h8.54) for
β = 3, O(h8.98) for β = 4 and O(h9.38) for β = 5 for the first 16 values of Nx and Ny (i.e.
Nx = Ny = (11, 13, · · · , 41)). As expected, with a tolerance of 10−10 used in the Picard-type
iteration scheme, the solution accuracy will not further decrease at fine grids.
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Figure 14: Poisson equation, mixed precision, Nx = Ny = (11, 21, · · · , 151), variable width:
Plots of the solution accuracy versus grid size for IRBF2, IRBF4 and IRBF6 employed with
their largest widths. The higher the order of the IRBF scheme the more accurate the solution
will be: O(h5.74) for IRBF2, O(h5.84) for IRBF4 and O(h9.38) for IRBF6. It is noted that a
tolerance of 10−10 is used in the Picard-type iteration scheme.
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Figure 15: Convection-diffusion equation, ε = 0.01: Exact solution.
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Figure 16: Convection-diffusion equation, ε = 0.01, mixed precision, IRBF2, Nx = Ny =
(33, 37, · · · , 65): Plots of the matrix condition numbers and the solution accuracy versus the
RBF width for several grid sizes. For a given grid size, the RBF width has a strong effect
on the condition number of the conversion matrix and no effect on the condition number
of the system matrix. The condition number is high for the conversion matrix and low for
the system matrix. Results by two different ways of implementing the RBF width, fixed
(ā = 0.15, β = 0) and variable (ā = 0.15, β = −5) values with grid refinement, are also
included. The variable-width case generally yields more accurate results than the fixed-width
case. 39
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Figure 17: Convection-diffusion equation, ε = 0.01, mixed precision, IRBF2, Nx = Ny =
(33, 37, · · · , 65), ā = 0.15: Plots of the solution accuracy versus grid size for the fixed (β = 0)
and variable (β = −5) width cases. The errors reduce quick for both cases, O(h5.20) for the
fixed width and O(h3.82) for the variable width. The latter yields higher levels of accuracy
but a slower average rate of convergence than the former.
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Figure 18: Convection-diffusion equation, ε = 0.01, mixed precision, IRBF6, Nx = Ny =
(33, 37, · · · , 65): Plots of the matrix condition numbers and the solution accuracy versus
the RBF width for several grid sizes. For a given grid size, the RBF width has a strong
effect on the condition number of the conversion matrix and no effect on the condition
number of the system matrix. The condition number is high for the conversion matrix and
low for the system matrix. Results by two different ways of implementing the RBF width,
fixed (ā = 0.1, β = 0) and variable (ā = 0.1, β = −5) values with grid refinement, are also
included. The variable-width case generally yields more accurate results than the fixed-width
case. 41



0.016 0.018 0.02 0.022 0.024 0.026 0.028 0.03

h

10
-4

10
-3

10
-2

A
v
e
ra

g
e
 R

E

fixed RBF width

variable RBF width

Figure 19: Convection-diffusion equation, ε = 0.01, mixed precision, IRBF6, Nx = Ny =
(33, 37, · · · , 65), ā = 0.1: Plots of the solution accuracy versus grid size for the fixed (β = 0)
and variable (β = −5) width cases. The errors reduce quick for both cases, O(h6.83) for the
fixed width and O(h5.05) for the variable width. The latter yields higher levels of accuracy
but a slower average rate of convergence than the former.
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Figure 20: Convection-diffusion equation, ε = 0.01, mixed precision, IRBF6, Nx = Ny = 65:
Comparison of the solution accuracy between the central difference (CD), discrete weighted
mean approximation (DWMA) and IRBF6 schemes. These schemes are all based on local
stencils of 5 points. For a wide range of the RBF width employed, results by the proposed
scheme are more accurate than the other two results that are extracted from [28].
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