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Abstract 

Axial flow through gaps between aligned straight yarns with realistic cross-sectional shapes, described by 

power-ellipses, was analysed numerically. At a given fibre volume fraction, equivalent gap permeabilities have 

a maximum at minimum size of elongated tapering parts of the gap cross-section and a ratio of gap width to 

height near 1. When the yarn spacing is given in addition to the fibre volume fraction, calculated maximum and 

minimum values for the equivalent permeability of inter-yarn gaps, which occur at near-rectangular and 

lenticular cross-sections, differ by factors of up to 3.3. Novel approximations for the shape factor and the 

hydraulic diameter in Poiseuille flow were derived as a function of the fibre volume fraction, the yarn cross-

sectional aspect ratio and the exponent describing the shape of the power-elliptical yarn cross-section. This 

allows the equivalent gap permeability to be predicted with good accuracy for any fibre volume fraction and 

yarn cross-section. 

 

Keywords: A. Fabrics/textiles; B. Permeability; C. Numerical analysis; E. Resin flow 

 

1 Introduction 

In the manufacture of polymer composite components employing Liquid Composite 

Moulding (LCM) processes, dry fibrous reinforcements are impregnated with liquid resin 

systems. To assess the risk of dry spot formation and predict cycle times, the impregnation 

process is frequently modelled as flow of a viscous liquid through a porous medium, i.e. a 

network of interconnected hydraulic ducts. Introduction of a macroscopic permeability, as in 

Darcy’s law [1], implies homogenisation of the properties of individual ducts to describe how 

easily a liquid can flow through the medium. Since the fibre volume fraction, which 

significantly affects the mechanical properties of finished composite components, is a 

parameter commonly used for material specification, it is useful to describe the dependence 
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of the permeability of fibrous reinforcements on the fibre volume fraction. The Kozeny-

Carman equation [2], which was originally derived for the permeability of porous media 

consisting of spherical particles, is sometimes used successfully for description of this 

dependence, albeit with adapted geometrical constants [3]. The frequently cited equations 

derived by Gebart [4] describe the permeability as a function of the fibre volume fraction for 

parallel and transverse flow in media with uniform periodic arrangement (square or 

hexagonal) of aligned fibres. While the spacing of the fibres may vary as a function of the 

fibre volume fraction, the circular cross-sectional shape of the fibres and the basic fibre 

arrangement is constant. Hence, Gebart’s model does not apply to flow in dual-scale 

reinforcements made from filaments bundled in deformable yarns, where the yarn shape and 

reinforcement architecture may change as the fibre volume fraction is varied. 

The impregnation of dual-scale reinforcements (fabrics) is determined mainly by resin 

flow through inter-yarn gaps, since their dimensions are typically large compared to those of 

intra-yarn gaps [5]. Hence, the permeability of fabric structures can be estimated from 

analysis of flow through gaps in the fabric architectures. While, strictly speaking, a 

permeability value is only defined for a porous medium, not for an individual hydraulic duct, 

it may be convenient to characterise the ratio of average flow velocity and pressure drop in 

duct flow by an “equivalent permeability”. Common examples for flow though individual 

hydraulic ducts with different cross-sections are discussed in monographs on duct flow [6, 7] 

and textbooks on fluid mechanics [8]. Ni et al. [9] list examples for the equivalent 

permeability of channels with geometries considered relevant in composites processing. 

Lundström et al. [10] discuss the permeability of non-crimp fabrics (NCF) and derive an 

analytical expression for the equivalent permeability of inter-yarn ducts with different cross-

sections, including elliptical and parabolic.  

In a previous study on the permeability of braids [11], the equivalent permeability of inter-

yarn gaps was approximated by the permeability of rectangular ducts. To account for the 

actual duct shape, the permeability was corrected by applying a geometrical factor. It was 

pointed out that this correction factor is not constant but depends on the effect of yarn 
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deformation, which is caused by through-thickness reinforcement compaction and 

reinforcement shear. In a recent study [12], a model was presented for the permeability of 

fabrics consisting of two layers of aligned yarn (as in NCF), subject to deterministic and 

stochastic non-uniformity. The model was limited by the simplifying assumption that yarns 

have elliptical cross-sections.  

This study systematically assesses the sensitivity of resin flow through inter-yarn gaps in 

fibrous reinforcements to yarn cross-sectional shapes. To allow this fundamental effect to be 

identified clearly, the simple example of a single layer of aligned straight yarns was analysed, 

although, in reality, reinforcements tend to be geometrically more complex. Numerical flow 

simulation is employed to characterise flow through inter-yarn gaps at different yarn cross-

sectional shapes, varying between rectangular and lenticular, and fibre volume fractions. A 

novel analytical approximation is derived, which allows the equivalent permeability of layers 

of aligned yarns to be predicted with good accuracy for any fibre volume fraction and yarn 

shape. 

 

2 Theory 

2.1 Reinforcement permeability 

For layers of aligned yarns, the permeability parallel to the yarn axes depends on the axial 

yarn permeability and the equivalent permeability of inter-yarn gaps. It can be approximated 

by applying a rule of mixtures according to the fraction of the layer cross-sectional area 

occupied by the gaps, . On the other hand, the in-plane layer permeability perpendicular to 

the yarn axes is dominated by the transverse yarn permeability. For aligned yarns with 

minimum inter-yarn gap width (i.e. adjacent yarns are in contact) and no (transverse) fixation, 

the axial in-plane layer permeability was observed experimentally to be at least one order of 

magnitude greater than the in-plane permeability perpendicular to the yarn axes [13]. With 

increasing gap width, the ratio of in-plane layer permeabilities parallel and perpendicular to 

the yarn axes can be expected to increase. Since the permeability of reinforcement structures 

comprising several layers of aligned yarns (all at the same orientation or at different 
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orientations) is dominated by axial flow along channels formed between the yarns in each 

layer, this study focuses on the axial layer permeability. 

In the following, the permeability will be discussed for a periodic layer of aligned yarns, 

where the geometry is characterised by the yarn spacing, s, the yarn thickness, h, and the 

width, 2R, of the yarns. The layer can be represented by the repetitive unit cell shown in Fig. 

1, where an empty gap is bounded by yarns (left and right) and flat impermeable walls (top 

and bottom). This may represent a single layer confined between tool surfaces or a layer in a 

multi-layer structure where no fluid exchange occurs between layers.  

Applying a rule of mixtures, the axial layer permeability, Kl, can be approximated as 

 ygl KKK )1(    , (1) 

where Kg is the equivalent axial gap permeability, and Ky the axial yarn permeability. For a 

unit cell with width (yarn spacing), s, and height (yarn thickness), h, the total cross-sectional 

area is 

 hsAUC    , (2) 

and the perimeter is  

 hsPUC 22    . (3) 

If the yarn cross-sectional area is Ay, the fraction of the total cross-sectional layer area 

occupied by the gap is 

 
UC

y

A

A
 1  (4) 

The contribution of the axial yarn permeability to the layer permeability is generally small 

compared to the contribution of the equivalent gap permeability [14] and will be neglected 

here, i.e.   

 gl KK    . (5) 
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2.2 Yarn geometry model 

The cross-sectional shape of a multifilament yarn in a fabric structure is determined by 

effects of through-thickness and lateral compression [15]. Yarn cross-sections may be 

approximated by generalised power-ellipses [16], which are described by points (x, y) 

satisfying the equation 

 1
2

/22


















n

h

y

R

x
  . (6) 

Here, the exponent, n, describes the shape of the power-ellipse. As in Fig. 1, 2R is the yarn 

width, and h is the yarn height. The characteristics of power-ellipses are shown in Fig. 2 for 

different values of n, resulting in rounded rectangular, elliptical and lenticular shapes. 

 

2.3 Applicability 

A unit cell as described above is representative for the gap geometry in preforms from 

aligned yarns or tapes produced by Automated Fibre Placement (AFP). Since polymeric 

binder, which may block inter-filament gaps, is typically applied to provide stability to the 

yarns or tapes, the assumption of negligible permeability of the yarns appears particularly 

appropriate for this type of preform. Experimental observations documented by Belhaj et al. 

[17] confirm that the preform permeability is determined by inter-yarn gaps.  

The unit cell in Fig. 1 is also similar to that of yarn layers in NCFs, where Eq. (6) was 

found to be generally a reasonable approximation of yarn cross-sectional shapes [18]. 

Asymmetry and local random variations [19, 20] of yarn cross-sections in fabrics will not be 

discussed here. In reality, stitching threads are frequently used to provide yarn fixation, which 

reduce the fabric permeability by locally affecting the inter-yarn gap geometry. This was 

analysed numerically by Hu et al. [21] and Nordlund and Lundström [22]. In other NCFs, 

grids (“scrims”), adhesively bonded onto the aligned yarns, are used for yarn fixation. Their 

effect on the permeability through localised layer compaction was studied experimentally 

[13]. For both yarn fixation strategies, the localised effect on the permeability can be 

significant. 
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Three-dimensional woven reinforcements typically comprise layers of aligned yarns at 

alternating orientation with additional through-thickness yarns. The example in Fig. 3 shows 

the network of ducts formed in this type of reinforcement. Each layer can be represented by 

unit cells as in Fig. 1, while the effect of the through-thickness yarns can be modelled as a 

local disturbance of the geometry [23].  

For other fabrics (e.g. 2D woven or braided), permeability estimation based on a unit cell 

as in Fig. 1 is less appropriate because of the effect of crimp, although configurations of the 

type analysed here may be found locally. Generation of detailed geometrical models of multi-

layer reinforcements from woven fabrics and lay-up permeability prediction based on these 

models is addressed elsewhere [24]. However, any model of this kind can only apply to one 

specific reinforcement, while the purpose of the present study is systematic analysis of the 

sensitivity of resin flow through inter-yarn gaps to changes in yarn cross-sectional shape. 

Here, it is necessary to use a simple geometry, although it does not necessarily represent a 

specific reinforcement at the highest possible accuracy. If more complexity is added, various 

effects will be superimposed which may obscure the influence of the yarn shape. 

 

2.4 Duct flow analysis 

For fully developed laminar flow of an incompressible fluid through a duct with constant 

cross-section, the Navier-Stokes equations describing the fluid motion reduce to the Poisson 

equation,  
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  . (7) 

Here, u(x,y) is the local axial flow velocity, assuming that the duct is aligned with the z-

direction,  the fluid viscosity, L the length of the duct, and p the pressure drop along L. 

With u = 0 on the duct boundary, this equation can be solved numerically to determine u(x,y), 

from which the average flow axial velocity, v, can be calculated. Applying Darcy’s law (for 

the case of uni-directional flow in a porous medium) to axial flow in a single duct, the 

equivalent axial duct permeability,  
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Kg





  , (8) 

can be determined. To describe the pressure loss in viscous flow along a hydraulic duct 

(Darcy-Weisbach equation), the equivalent permeability can be identified as 

 
c

D
K h

g

22
   . (9) 

Here, Dh is the hydraulic diameter of the gap. It is defined as 

 
g

g

h
P
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D

4
   , (10) 

where Ag is the gap cross-sectional area and Pg the perimeter of the gap cross-section. Dh is a 

measure for the relative effect of the perimeter (the axial flow velocity is zero on the gap 

boundary) on flux along the duct. The quantity c in Eq. (9) is a shape factor, corresponding to 

four times the Poiseuille number. It can be expressed as the product of the Darcy friction 

factor,  
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  , (11) 

which indicates the ratio between the local shear stress and the local kinetic energy density, 

and the Reynolds number,  

 


 hDv
Re    , (12) 

i.e. the ratio of inertial forces and viscous forces, for the respective flow problem. In Eqs. 

(11) and (12),  is the density of the fluid. The value of c is a measure for the effect of 

viscous friction on flux. Hence, it is related to the length of boundaries between fluid layers 

moving at different velocity in laminar flow, which in turn depends on the flow velocity 

distribution across the duct cross-section.  

While flow through ducts with a wide variety of cross-sections is discussed in the 

literature [7], only a special case of the geometry described above was analysed by Gunn and 

Darling [25]. Here, the ultimate aim is to derive generalised analytical approximations for c 
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and Dh as a function of geometrical duct parameters, which would allow equivalent gap 

permeabilities to be predicted for any power-elliptical yarn cross-sectional shape. 

 

3 Numerical flow simulation 

3.1 Method 

Here, modelling yarn geometries as described above in TexGen [26] was combined with 

numerical analysis in Ansys
®
 CFX

®
, where a finite volume method is implemented, to solve 

the duct flow problem described above. Using pre-defined functions for the yarn cross-

sections, three-dimensional geometrical models of inter-yarn gaps (length along yarn axis L = 

0.05 mm) were generated and meshed with tetrahedral cells. Translational periodicity was 

applied along the yarn direction to represent continuous parallel yarns with constant cross-

section. Hence, the solution is independent of the model length. No-slip wall boundary 

conditions, i.e. u = 0, were applied on the entire gap perimeter. At the top and bottom 

boundaries of the duct, this is consistent with the presence of impermeable walls. Since inter-

yarn gaps are typically one order of magnitude larger than pore spaces in the yarns [5, 27], 

and the flow velocity in the yarns is small compared to the flow velocity in the inter-yarn gap, 

no-slip boundary conditions were also applied on the yarn surfaces, i.e. the left and right 

boundaries of the gap. Use of a slip boundary condition [28] would be essential if the 

dimensions of inter-yarn gaps were comparable to the dimensions of intra-yarn pores, and 

intra-yarn flow contributed significantly to the permeability of the yarn layer (Nedanov and 

Advani [14] report that the effect of intra-yarn flow is small, even at relatively small inter-

yarn porosity down to 0.13). The assumption of steady state (saturated) flow implies that 

transient capillary effects, which in reality may affect the applied flow-driving pressure 

gradient during reinforcement impregnation (as documented e.g. by Pillai [29]), were not 

considered in the simulations. 

For a given axial pressure gradient, p/L, and fluid viscosity, , the average axial flow 

velocity, v, in the inter-yarn duct was calculated from the flow velocities, ui, and the areas, Ai, 

of cells representing the cross-section, Ag, according to 
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The equivalent axial channel permeability was determined from v according to Eq. (8). A 

mesh sensitivity study, where two unit cell geometries were analysed (one with s = 0.65 mm 

and h = 0.84 mm, the other with s = 1.96 and h = 0.28 mm; both at n = 1.00 and  = 0.40), 

indicated that the solution converged if the average edge length of cells in the numerical 

simulations was 0.01 mm or less.  

 

3.2 Validation 

Before new results were generated for geometries described above, the numerical method 

employed here for flow simulation and permeability calculation was validated for the 

example of a duct with rectangular cross-section, for which Kg can be expressed analytically. 

The equivalent permeability of a rectangular duct is given by Eq. (9), where Dh is easy to 

calculate. The dependence of the shape factor on the aspect ratio, , can be approximated [12] 

by the relation  

 17.04.56 c   , (14) 

which is based on data tabulated by White [8]. In Eq. (14), the duct cross-sectional aspect 

ratio is defined as  
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Alternatively, the equivalent permeability can be expressed as 
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which is the analytical solution of the Navier-Stokes equation for flow through a rectangular 

duct with no-slip boundary conditions on all walls [30].  

The values for Kg listed in Table 1 indicate that agreement between results from the 

numerical simulations and from Eq. (16), where five terms were considered in the 
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approximation, is very good (less than 1 % difference). The slight difference (less than 3 %) 

between simulation results and results from Eq. (9) can be explained by the fact that the 

approximation for the shape factor in Eq. (14) may show some local deviation from the actual 

value of c. Based on comparison with the theoretical approximations in Eq. (9) and in Eq. 

(16), it can be concluded that the numerical simulation results are plausible, and that the 

proposed method is suitable for quantitatively analysing duct flow. 

 

4 Results and discussion 

4.1 Characteristics of equivalent duct permeability 

Unit cell models with different yarn cross-sectional shapes were analysed here. Values of 

n were varied between 0.25 and 2.00, which corresponds to rounded rectangular and 

lenticular cross-sections, respectively (Fig. 2). While the yarn cross-sectional area, Ay, was 

kept constant at 0.33 mm
2
, values for the gap volume fraction, , were set (between 0.07 and 

0.50) through appropriate combination of the geometrical parameters. A total of 239 models 

were analysed. To facilitate discretisation of the tapering elongated parts of the inter-yarn 

gap, a minimum width of 1.5×10
-3

 mm was enforced. This does not have a significant effect 

on Ag or Pg, and the induced error in calculated permeabilities is small. 

Examples for equivalent permeability values derived from numerical simulations at  = 

0.50 and  = 0.30 are plotted in Fig. 4 as a function of s at different values of n. To realise 

the selected combinations of n and , the yarn width, 2R, was varied between 0.50 mm and 

3.50 mm, the yarn height, h, between 0.10 mm and 0.99 mm, and the yarn spacing, s, 

between 0.51 mm and 6.33 mm. The yarn spacing was selected as independent variable since 

its values can in reality be obtained relatively easily through measurement, and it can 

typically be set in manufacture of reinforcements (e.g. in textile processes). In the diagram 

for  = 0.30, the range of n is narrower than for  = 0.50 since adjacent yarns are in contact 

with each other where the condition 2R = s is met. Hence,  = 0.30 cannot be obtained for 
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yarns with lenticular cross-section (n = 1.75 and n = 2.00). Minimum obtainable values of the 

gap volume fraction, min (at 2R = s), are listed in Table 2. 

The data in Fig. 4 indicate that, as expected, Kg decreases with decreasing  at given s and 

n, since the total gap cross-sectional area decreases. There is a trend for the gap permeability 

to decrease with increasing n, implying that Kg is higher if the yarn cross-sections are 

rectangular than if they are lenticular. The equivalent permeability as a function of the yarn 

spacing shows a maximum, the position of which depends on  and n. In Figs. 5 and 6, this 

is illustrated for two examples, where the equivalent permeability is related to gap geometries 

and resulting flow velocity distributions. The gap geometry is characterised by the yarn cross-

sectional aspect ratio, 2R/h, the yarn spacing, s, and the aspect ratio of the largest rectangle 

that can be inscribed in the gap, , defined according to Eq. (15). 

For n = 2.00, i.e. lenticular yarn cross-sections, Fig. 5 shows one maximum in the flow 

velocity distribution if s is greater than approximately 1.32 mm. On the other hand, there are 

two maxima in the flow velocity distribution for s < 1.32 mm. This qualitative change in 

axial flow velocity distribution is consistent with the data plotted in Fig. 4, where Kg (at  = 

0.50 and n = 2.00) has a maximum at s = 1.32 mm and decreases towards larger and smaller 

values of s. For yarns with almost rectangular cross-sections, i.e. n = 0.25, Fig. 6 shows that 

the gap between yarns is approximately square ( = 1.12) for s = 1.32 mm. This coincides 

with the maximum in calculated equivalent permeability values (Fig. 4, at  = 0.30 and n = 

0.25). While a transition in the flow velocity distribution from one maximum to two maxima 

can be observed for all combinations of  and n when s is reduced, here it occurs at a value 

of s smaller than 0.66 mm. Hence, the examples in Fig. 6 do not include a case with two 

maxima. Figures 5 and 6 are consistent with results presented in a recent study [12] for the 

case with n = 1.00, where  was varied through variation of 2R/h at constant s, and similar 

flow velocity distributions as shown here (with either one or to two maxima) were found. 
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A quantitative comparison of flow through an almost rectangular duct (Fig. 6,  = 0.30, n 

= 0.25, s = 0.66 mm) and a rectangular duct with identical values of s - 2R and h (Table 1) is 

presented in Table 3. While the cross-sectional area is larger for the duct with n = 0.25 than 

for the rectangular duct, the average flow velocity in Eq. (8) is smaller (at identical values for 

, p and L). This indicates that the tapering elongated parts of the duct cross-section (for n = 

0.25) contribute to the cross-sectional area, but not significantly to flux. As a result, the 

equivalent permeability is smaller for the duct with n = 0.25 than for the rectangular duct. 

This illustrates that increasing duct cross-sectional area does not necessarily translate into 

increasing equivalent permeability. 

For rectangular ducts at given total duct cross-sectional area, Kg is determined by the 

aspect ratio, , and is independent of the orientation of the long and short duct cross-sectional 

axes. On the other hand, Fig. 6 shows that this is not the case for ducts with n = 0.25, where 

values for Kg are almost identical at s = 0.66 mm and s = 2.62 mm, but the corresponding 

values of  are different. 

Table 4 summarises maximum and minimum equivalent permeabilities, Kgmax and Kgmin, 

for the data plotted in Fig. 4. If Kgmax and Kgmin are picked from the entire range of s, i.e. if 

they correspond to different values of s and n, Kgmax/Kgmin has values of up to approximately 

20 (at  = 0.30, where Kgmax/Kgmin is the highest). If, at given gap volume fraction, Kgmax and 

Kgmin are picked at the same value of s (such that they lie on the same vertical line in Fig. 4), 

the ratio Kgmax/Kgmin can still have values of up to 3.3 (at  = 0.30). In this case, the 

difference between Kgmax and Kgmin is caused only by the yarn cross-sectional shape. This is 

consistent with experimental results from a recent study [31], where specimens of a twill 

weave fabric were repeatedly sheared to defined angles and then unsheared. After being 

subjected to sequences of defined shear operations, increases in inter-yarn gap width at 

constant yarn spacing were observed, which translated into increases in measured fabric 

permeabilities by factors of up to 2 compared to the virgin material (at identical fibre volume 

fraction). The experimental observations for the twill weave fabric confirm that the shape of 
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inter-yarn gaps has a significant effect on the in-plane permeability of a reinforcement, even 

if the actual yarn arrangement is geometrically more complex than in the straight aligned 

layers analysed here. On the other hand, the difference in factors between maximum and 

minimum permeability (factors 3.3 for the equivalent gap permeability in the simulations and 

approximately 2 for the fabric permeability in the experiments) reflects the influence of 

different fibre volume fractions ( = 0.30 in the simulations; in the experiments, the global 

porosity was 0.44) and of geometrical features such as crimp, which is not considered in the 

simulations. It is thought that the effect of variation in gap shape between specimens 

contributes (among other factors) to the occasionally very significant scatter observed in 

experimentally acquired permeability data of macro-scale fabric specimens [32]. Figure 4 

also indicates that values of Kg at different n converge for large s, implying that the effect of 

yarn shape is reduced with increasing width of inter-yarn gaps. 

For the special case with n = 1.00, Lundström et al. [10] presented an analytical 

approximation for the equivalent permeability of ducts as described above. Comparison of 

the proposed approximation with simulation results, for all 28 examples with n = 1.00 

evaluated here, indicates that equivalent permeabilities are predicted with good accuracy for 

large values of  (at  = 0.50, the coefficient of correlation, R
2
, is 0.998). On the other hand, 

differences between simulation results and predictions become significant when  is reduced 

(R
2
 = 0.533 at  = 0.30). This is thought to be related to changes in flow velocity 

distributions at small gap widths, which are not described by the predictions.

 

4.2 Analytical characterisation of duct flow 

To characterise duct flow in terms of hydraulic diameter and shape factor, Dh is calculated 

by substituting the geometrical parameters of the flow channel, Pg and Ag, in Eq. (10), and c 

is determined according to Eq. (9), where Kg is obtained from simulations. A general relation 

between the duct cross-sectional area, Ag, and the yarn cross-sectional area, Ay, as illustrated 

in Fig. 1, is 
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 yUCg AAA    . (17) 

Similarly, the relation between the duct perimeter, Pg, and the yarn perimeter, Py, is 

 yg PsP 2   . (18) 

Here, Ag and Pg are calculated numerically, which is facilitated by discretisation of the 

geometry (Fig. 1) for flow simulation to determine Kg. Meshing of the geometry results in the 

perimeter of the power ellipse to coincide with a closed loop formed by cell edges. 

Approximating the perimeter by the total length of the corresponding cell edges allows Pg to 

be determined according to Eq. (18). The value of Ag can be approximated directly by 

summarising the areas of cells representing the gap cross-section.  

Since, at given , combinations of values for 2R, h, s and n are unique, duct cross-

sectional shapes are fully characterised by three parameters: The gap volume fraction, , the 

aspect ratio of yarn width to yarn height, 2R/h, and the exponent, n. Values for c are plotted 

in Fig. 7 as a function of 2R/h at different values of n for the example of  = 0.30, and in Fig. 

8 as a function of  at different values of 2R/h for the example of n = 0.25. The hydraulic 

diameter, Dh, is plotted in Fig. 9 as a function of 2R/h at different values of n for the example 

of  = 0.30 (corresponding to Fig. 7).  

Figure 7 indicates that c decreases with increasing value of 2R/h and decreasing n. 

Similarly, Fig. 9 indicates that Dh decreases with increasing 2R/h, while the effect of n on Dh 

is very small. The steep gradients for small 2R/h (c drops from 34.2 at 2R/h = 0.71 to 8.1 at 

2R/h = 2.82 for the example of n = 0.25) reflect the quick increase in perimeter length at 

constant cross-sectional area and its effect on the flow velocity distribution with increasing 

2R/h. On the other hand, c is approximately constant for 2R/h > 10. This indicates that, in this 

range, flow characteristics are identical for ducts with similar cross-sectional shape but 

different dimensions, as discussed by Mortensen et al. [33]. Values of Dh decrease only by 

small amounts for 2R/h > 10. In reality, cross-sectional aspect ratios of yarns in 

reinforcement fabrics are frequently in this range. Figures 5 and 6 relate the significant drop 
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in values for c and Dh to changing duct cross-sections and flow velocity distributions as 2R/h 

is increased. 

In Fig. 8, the yarn shape stays the same for each value of 2R/h, while the yarn spacing is 

changed to vary Starting at small values of , c increases until a maximum is reached, 

which is related to changes in flow patterns at the transition from two maxima in the flow 

velocity distribution to one maximum. The maximum in c is shifted towards higher values of 

 with decreasing value of 2R/h. When  is increased further, c goes through a local 

minimum. Since the minimum coincides with approximately square duct cross-section (as in 

Fig. 6, for s = 1.32 mm), it is shifted to higher values of  as the ratio 2R/h is decreased. Dh 

decreases monotonously with decreasing , since this implies a reduction in duct cross-

sectional area. 

The special case with n = 1.00, 2R/h = 1, and s = 2R, which corresponds to a gap between 

yarns with circular cross-section at min = 0.21, was also analysed by Gunn and Darling [25] 

employing a finite difference method. They found a Poiseuille number of 6.5 (i.e. c = 26), 

which is in good agreement with simulation results obtained here (where c = 25.5). 

To predict duct flow characteristics, Bahrami et al. [34] approximated c analytically for a 

selection of convex duct geometries, based on the duct cross-sectional area, perimeter and 

polar moment of inertia (exploiting the analogy to torsion of a bar, where stress distributions 

are also described by the Poisson equation, Eq. (7)). However, analysis of several examples 

for flow through a gap between yarns with power-elliptical cross-section suggested that the 

proposed method fails to produce values of c which are in satisfactory agreement with values 

derived from simulations. It is thought that this is related to the simplification of results 

obtained in torsion theory for prismatic bars, which is implied in the analytical 

approximation. In particular, the stresses in torsion, expressed in terms of the moment of 

inertia, are exact only for bars of a circular cross-section and become inaccurate for concave 

cross-sections. For reference, the derived equations, which may be of use elsewhere, are 

compiled in Table 5.  
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In a recent study, where only the special case with n = 1.00 was considered, the 

dependence of the shape factor, c, on the aspect ratio of the yarn cross-section, 2R/h, was 

modelled as a power function [12]. Since more data are available here than in the limited 

study for n = 1.00, a generalised approximation for c was found,  

 31
2)/2( BhRBc B



  . (19) 

Here, the dependence of Bi on  can be approximated by fourth-order polynomials,  

 



5

1

5

j

j

iji BB   . (20) 

Similarly, the dependence of Bij on n can be approximated by  

 



5

1

5

k

k

ijkij nBB   . (21) 

The coefficients Bijk (63 different non-zero values), which allow approximations of c to be 

calculated for any given combination of n, 2R/h and, are listed in Table 6. The examples 

plotted in Figs. 7 and 8 show that the quality of the approximation described by Eqs. (19) to 

(21) is generally satisfying. The fit to values of c as a function of 2R/h (at  = 0.30) is 

characterised by coefficients of correlation (R
2
) between 0.994 and 1.000 (for different values 

of n). Coefficients of correlation for the fit to values of c as a function of (at n = 0.25) are 

between 0.910 and 0.993 (for different values of 2R/h). 

For the dependence of Dh on , the expression 

  2

3

1 EEDh  (22) 

was found. Here, the dependence of Ei on 2R/h and n can be approximated by  

 2)/2(1
iE

ii hREE    . (23) 

and 

 



4

1

4

k

k

ijkij nEE   . (24) 

Values for the 16 coefficients, Eijk, are listed in Table 7. The quality of the fit of Eqs. (22) to 

(24) with the coefficients Eijk to values of Dh is generally good. For the example in Fig. 9 ( 
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= 0.30 and n = 0.75), the coefficient of correlation for Dh as a function of 2R/h has a value of 

0.974. 

 

4.3 Implications for reinforcements at changing fibre volume fraction 

If the fibre volume fraction in a reinforcement is increased in through-thickness 

compaction, the effect on the yarn cross-sectional shape is generally not known. A decrease 

in h to reduce could result in a change in 2R, n, or both. The yarn deformation mechanisms 

may also differ for different reinforcements. The problem is simplified when adjacent yarns 

are in contact, i.e. R can be assumed to be constant, and n decreases with decreasing h. On the 

other hand, if the fibre volume fraction is increased by reducing s, e.g. in shear or lateral 

reinforcement compression, h, R and n can be assumed to be constant as long as 2R < s. Once 

adjacent yarns are in contact, R and n decrease with decreasing s.  

For illustration, Figs. 10 and 11 show the permeability of a reinforcement layer, Kl, as a 

function of , which was calculated according to Eq. (5) from additional simulation results 

for Kg. For both examples (14 simulations each), the yarn cross-sectional area, Ay = 0.33 

mm
2
, was assumed to be constant. At  = 0.33, the geometry was characterised by n = 2.00, s 

= 1.98 mm, 2R = 1.98 mm, and h = 0.25 mm. Figure 10 illustrates the case of through-

thickness compaction, where s is constant. For 2R < s, 2R is increased from 1.34 mm to 1.83 

mm to compensate for a reduction in h from 0.37 mm to 0.27 mm, while n = 2.00 is assumed 

to be constant here. For 2R = s, n is reduced from 2.00 to 0.25 to allow 2R and Ay to stay 

constant, while h is reduced from 0.25 mm to 0.18 mm (as also proposed by Swery et al. 

[36]). In Fig. 11, the case of reducing yarn spacing, which may occur when a uni-directional 

layer is sheared, is illustrated, where h is constant. For 2R < s, 2R is constant at 1.98 mm and 

n = 2.00, while s is reduced from 3.00 mm to 2.00 mm. When adjacent yarns are in contact, 

2R and s are reduced simultaneously from 1.98 mm to 1.42 mm, and n is reduced from 2.00 

to 0.25 to allow Ay to stay constant.  
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Comparison of the two examples indicates that, at identical , Kl has greater values in 

lateral compression than in through-thickness compaction if  < 0.33. On the other hand, if 

 > 0.33, Kl is greater in through-thickness compaction. Although the values of Kl are 

identical at  = 0.33, the mechanism for changing  has a significant effect on the 

reinforcement permeability.  

In addition, values for Kl were predicted based on the approximations for c and Dh 

described above. In the range with  < 0.50, for which the approximations were derived, the 

coefficient of correlation between predicted values and simulation results is 0.997 for the case 

of through-thickness compaction (Fig. 10). For the case of lateral compaction (Fig. 11), it is 

0.995. The predictions show generally good quantitative agreement with simulation results, in 

particular for small . 

The figures also show curves indicating approximations for Kl() based on Gebart’s 

equation for axial flow in aligned fibrous media, 

 
2

3

)1( 


 FKl   , (25) 

which was devised for fibres with circular cross-section and regular periodic arrangement 

(the same dependence on  was formulated by Cozeny-Karman [2]). The factor F depends 

on the fibre radius and the shape factor, c, as defined above. In Figs. 10 and 11, F was 

replaced by (constant) fitting factors. Although Gebart’s approximation cannot quantitatively 

predict appropriate values of F for flow through inter-yarn gaps, the fitted trend curve for 

Kl() according to Eq. (25) shows good agreement (R
2
 = 0.996) with values derived from 

simulations if  is changed in though-thickness compression (Fig. 10). However, if  is 

changed in lateral compression (Fig. 11), the fitting factor, F, is significantly different, and 

the dependence of Kl on  is not approximated with the same accuracy (R
2
 = 0.965). This 

indicates that, to obtain reliable results, describing the permeability of a reinforcement as a 
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function of the fibre volume fraction only is not sufficient, and an approximation as derived 

in Section 4.2 is required.  

The extensive analysis presented here lends itself to further enhance the predictive 

capabilities of a recent model for the permeability of fabrics with deterministic and stochastic 

non-uniformity [12], where the fibre volume fraction and the shape of inter-yarn gaps vary 

locally, through elimination of the limiting assumption that yarns have elliptical cross-

sections.  

 

5 Conclusion 

For examples of single layers of aligned straight yarns, axial duct flow through gaps 

between adjacent yarns was analysed employing numerical simulations. Yarn cross-sectional 

shapes, which were different for each example, were approximated by power ellipses. The 

simulations indicate that, at given fibre volume fraction, equivalent duct permeabilities have a 

maximum, when the size of elongated tapering parts of the duct cross-section has a minimum, 

and the ratio of duct width to duct height is near 1. As a rule of thumb, higher equivalent 

permeabilities can be obtained for ducts bounded by yarns with near-rectangular cross-

section than by yarns with lenticular cross-section. This implies also that increasing the duct 

cross-sectional area by changing the duct shape does not necessarily translate into increasing 

equivalent permeability. 

At any fibre volume fraction and yarn spacing studied here, the maximum and minimum 

values for the equivalent permeability of inter-yarn gaps differ by factors of up to 3.3. This 

may contribute to the wide variation in experimental permeability data for fabrics, and 

explain why accurate permeability prediction is in practice found to be difficult, even if the 

fibre volume fraction is known. It illustrates also that, in numerical prediction of textile 

permeabilities, accurate modelling of yarn cross-sections is critical. If the equivalent 

permeability of inter-yarn ducts is approximated by the equivalent permeability of ducts with 
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abstracted geometry, the error can be significant even if the duct cross-sectional area is 

matched. 

Approximations for the shape factor and the hydraulic diameter in Poiseuille duct flow 

were derived as a function the fibre volume fraction, the yarn cross-sectional aspect ratio and 

the exponent describing the shape of the power-elliptical yarn cross-section. This allows the 

equivalent gap permeability to be predicted quantitatively for any fibre volume fraction and 

yarn cross-section, while more general approximations found in the literature only describe 

trends for the permeability as a function of the fibre volume fraction. 

While geometrically more complex cases may occur in reality, such as gaps bounded by 

yarns with non-symmetrical cross-section or crimped yarns in woven fabrics, analysis of the 

simplified case of a uniform single layer of aligned straight yarns allows fundamental 

assessment of the sensitivity of fabric permeability to yarn cross-sectional shapes. 
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Figure 1. Abstracted unit cell cross-section with yarns (shaded) and duct (blank); 2R is the yarn width, h the 
yarn thickness, and s the yarn spacing; example: elliptical yarn cross-section. 
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Figure 2. Examples for generalised power ellipses at given cross-sectional aspect ratio, 2R/h = 5, for different 

values of n. 

 

 

 

 
 

Figure 3. Network of inter-yarn gaps in 3D orthogonal weave carbon fibre reinforcement, from micro-

Computed Tomography data of composite. 
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Figure 4. Equivalent duct permeability, Kg, as a function of the yarn spacing, s, at different gap volume 

fractions, , and different exponents, n. 
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Figure 5. Results of numerical simulations at  = 0.50, n = 2.00; different yarn cross-sectional aspect ratio, 

2R/h, yarn spacing, s, and gap cross-sectional aspect ratio, , as defined in Eq. (15); contours indicate different 
axial flow velocity distributions in inter-yarn gaps (qualitatively); equivalent permeabilities, Kg, hydraulic 

diameters, Dh, and shape factors, c, are also given. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Results of numerical simulations at  = 0.30, n = 0.25; different yarn cross-sectional aspect ratio, 

2R/h, yarn spacing, s, and gap cross-sectional aspect ratio, , as defined in Eq. (15); contours indicate different 
axial flow velocity distributions in inter-yarn gaps (qualitatively); equivalent permeabilities, Kg, hydraulic 

diameters, Dh, and shape factors, c, are also given. 

 

 

 

2R/h = 0.71,  

s = 0.66 mm,  = 4.39 

Kg = 17.82×10-10 m2,  

Dh = 17.44×10-5 m, c = 34.15 

2R/h = 2.82, s = 1.32 mm,  = 1.12 

Kg = 33.19×10-10 m2, Dh = 11.56×10-5 m, c = 8.05 

 

2R/h = 6.35, s = 1.97 mm,  = 1.96 

Kg = 26.31×10-10 m2, Dh = 8.03×10-5 m, c = 4.90 

 

2R/h = 11.28, s = 2.62 mm,  = 3.41 

Kg = 17.53×10-10 m2, Dh = 6.09×10-5 m, c = 4.23 

2R/h = 0.51,  

s = 0.66 mm,  = 6.03 

Kg = 49.14×10-10 m2,  

Dh = 35.30×10-5 m, c = 50.72 

2R/h = 2.02, s = 1.33 mm,  = 1.53 

Kg = 54.63×10-10 m2, Dh = 26.02×10-5 m, c = 24.79 

 

2R/h = 4.55, s = 1.98 mm,  = 1.45 

Kg = 37.69×10-10 m2, Dh = 18.47×10-5 m, c = 18.10 
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Figure 7. Shape factor, c, as a function of the yarn cross-sectional aspect ratio, 2R/h, at different exponents, n; 

gap volume fraction ; markers indicate results from numerical analysis, lines represent analytical 
approximation described in Section 4.2.  

 

 

 

Figure 8. Shape factor, c, as a function of the gap volume fraction, , at different yarn cross-sectional aspect 

ratios, 2R/h; exponent n ; markers indicate results from numerical analysis, lines represent analytical 
approximation described in Section 4.2.  
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Figure 9. Hydraulic diameter, Dh, as a function of the yarn cross-sectional aspect ratio, 2R/h, at different 

exponents, n; gap volume fraction  markers indicate data from numerical analysis, the line represents 
the analytical approximation for n = 0.75 (as described in Section 4.2). 
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Figure 10. Permeability of a reinforcement layer, Kl, as a function of porosity, ; porosity is reduced in 

through-thickness compaction, i.e. through reduction of h; markers indicate simulation results (data points for  
> 0.50 are omitted); continuous line indicates approximation based on c and Dh (Section 4.2); dashed line 

indicates approximation according to Eq. (25) with F = 39×10-10 m2.  
 

 

 

 

 

Figure 11. Permeability of a reinforcement layer, Kl, as a function of porosity, ; porosity is reduced through 

reduction of s; markers indicate simulation results (data points for  > 0.50 are omitted); continuous line 
indicates approximation based on c and Dh (Section 4.2); dashed line indicates approximation according to Eq. 

(25) with F = 22×10-10 m2. 
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Table 1. Comparison of equivalent permeability, Kg, for a rectangular duct with given width and height, derived 

from numerical simulation and analytical approximations.  

 

width / mm height / mm aspect ratio 
Kg / 10-10 m2 

simulation Eq. (9) Eq. (16) 

0.16 0.71 4.39 18.80 19.22 18.77 

 

 

 
Table 2. Minimum obtainable gap volume fraction, min, at different values of n (at 2R = s). 
 

n min 

0.25 0.07 

0.50 0.13 

0.75 0.17 

1.00 0.21 

1.25 0.25 

1.50 0.28 

1.75 0.31 

2.00 0.33 

 
 

 
Table 3. Cross-sectional area, Ag, average flow velocity, v, equivalent permeability, Kg, for ducts with s-2R = 

0.16 mm and h = 0.71 mm, but different cross-sectional geometry. 

 

geometry Ag / mm2 v / mm/s Kg / 10-10 m2 

n = 0.25 0.14 1.92 17.82 

rectangular 0.12 2.02 18.80 

 

 

 
Table 4. Minimum and maximum calculated permeability values, Kgmin and Kgmax, and ratio, Kgmax/Kgmin, at 

different gap volume fractions, ; Kgmin and Kgmax are picked either from the entire range of s, or at the same 
value of s; for the latter case, Kgmin and Kgmax are listed for the value of s where Kgmax/Kgmin has a maximum at the 

respective . 
 

 Kgmin / 10-10 m2 Kgmax / 10-10 m2 based on Kgmax/Kgmin 

0.50 8.00 89.26 entire range of s 11.15 

 54.63 89.26 s = 0.93 mm 1.74 

0.30 1.67 33.19 entire range of s 19.85 

 8.92 33.19 s = 1.32 mm 3.27 
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Table 5. Set of equations to approximate the shape factor, c, as suggested by Bahrami et al. [34] for flow 

through a gap between yarns with power-elliptical cross-section (characterised by exponent, n); yarn width, 2R, 

yarn height, h, yarn spacing, s. 

geometrical parameter analytical expression 

shape factor 

 

gap cross-sectional area Ag, see Eq. (17) 

gap perimeter Pg, see Eq. (18) 

polar moment of inertia of 
inter-yarn gap  

moment of inertia of gap 
relative to y-axis 

 

moment of inertia of yarn 

relative to y-axis 
 

moment of inertia of yarn 
relative to x-axis 

 

yarn cross-sectional area 

[35] 
 

yarn perimeter,  n  2 

  

yarn perimeter,  0  n < 2 

  

 here,  and  are the Gamma- and Beta-function, respectively 
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Table 6. Values of coefficients, Bijk, for approximation of the shape factor, c, according to Eqs. (19) to (21). 

 

 k 

ij 1 2 3 4 5 

11 0 0 0 0 -7118 

12 -9061 10370 21060 -18630 12630 

13 13630 -24620 -8414 13880 -7031 

14 -6641 15360 -4511 -1639 1302 

15 1048 -2831 1741 -320.7 -17.84 

21 0 0 0 0 -333 

22 -241.3 588.9 -323 221.1 314.8 

23 320.1 -834.1 525.3 -287.1 -62.11 

24 -139.8 386.8 -268.4 115.3 -11.39 

25 20.12 -58.99 44.3 -14.11 1.43 

31 0 0 0 0 1161 

32 12330 -24650 -1036 11410 -3841 

33 -16850 38600 -11060 -7771 2738 

34 7651 -19730 10650 -18.79 -490.2 

35 -1153 3293 -2427 525.2 -20.34 

 

 

 
Table 7. Values of coefficients, Eijk, for approximation of the hydraulic diameter, Dh, according to Eqs. (22) to 

(24). 

 

 k 

ij 1 2 3 4 

11 -14.330×10
-5

 m 54.138×10
-5

 m -71.849×10
-5

 m 94.514×10
-5

 m 

12 -0.004 -0.010 0.079 -0.591 

21 3.441×10-5 m -12.828×10-5 m 14.418×10-5 m 42.258×10-5 m 

22 -0.009 0.037 -0.026 -0.382 

 

 

 

 


