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Abstract:  Inthis paper, 2-node integrated radial basis function el@s(IRBFES)
[CMES, vol.72, no.4, pp.299-334, 2011] are further devetbfor the simulation

of incompressible viscous flows in two dimensions. Emphiagi@aced on (i) the
incorporation ofC?-continuous 2-node IRBFEs into the subregion and point col-
location frameworks for the discretisation of the streamction-vorticity formu-
lation on Cartesian grids; and (ii) the development of higiheo upwind schemes
based on 2-node IRBFEs for the case of convection-dominawsfl High levels

of accuracy and efficiency of the present methods are denatedtby solutions of
several benchmark problems defined on rectangular andewtangular domains.
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1 Introduction

Cartesian-grid-based subregion/point collocation nadhean be very economical
owing to the facts that (i) generating a grid and integratirgygoverning equations
in these methods are low-cost; and (ii) FFT can be applie¢telarate computa-
tional processes, e.g. Huang and Greengard (2000). Thexapations for the
dependent variables and their spatial derivatives can h&temted globally on the
whole grid or locally on small segments of the grid. ExamplElecal approxima-
tion schemes include standard control-volume (CV) metlarmdkfinite-difference
methods. For the former, the fluxes are estimated by a lirer&ation between two
grid points, e.g. Patankar (1980); Huilgol and Phan-Thi&9{). The use of two
grid points allows for the consistency of the fluxes at CV facene of the four ba-
sic rules to guarantee a physically realistic solutiongRlgar (1980)). For the latter,
local approximations can be constructed in each directidependently using two
nodes (first-order accuracy) and three nodes (second-ambeiracy). With two-
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node-based local approximations, Cartesian grid basedouetypically produce
solutions which are continuous for the fields but not foritipartial derivatives, i.e.
CO continuity. The grid thus needs to be sufficiently fine to gite the effects of
discontinuity of partial derivatives.

The Navier-Stokes (N-S) equations involve two main terrasyely convection and
diffusion. At high values of the Reynold number, the coniatterm is dominant
and the numerical simulation of the N-S equations becomaleciging. Various

treatments for the convection term have been proposed ititénature. Those
which take the influence of the upstream information of the flato account, e.g.
the upwind differencing (Courant, Isaccson, and Rees (1%5entry, Martin, and

Daly (1966)), hybrid (Spalding (1972)), power-law (PatankL981)) and QUICK

(Leonard (1979)) schemes are known to provide a very stahiéign. To maintain

a high level of accuracy, an effective way is to employ higtilen upwind schemes
with the deferred-correction strategy, e.g. Khosla andiR(®974); Ghia, Ghia,

and Shin (1982).

Radial basis functions (RBFs) have been successfully useithé approximation
of scattered data. They have recently emerged as an attramtil for the solution
of ordinary and patrtial differential equations (ODEs andERR e.g. Fasshauer
(2007); Atluri and Shen (2002); Chen, Karageorghis, and r8s{2008). RBF-
based approximants are able to produce fast convergeneeiabp for regular
node arrangements such as those based on Cartesian grigy. cdim be con-
structed through a conventional differentiation procesg, Kansa (1990), or an
integration process, e.g. Mai-Duy and Tran-Cong (2001)i-May and Tanner
(2005); Mai-Duy and Tran-Cong (2005). The latter helps @ubie reduction of
convergence rate caused by differentiation and providectfe ways of impos-
ing the derivative boundary values. RBF-based approxisneah be constructed
globally or locally. Global RBF-based methods are very aai@) e.g. Cheng,
Golberg, Kansa, and Zammito (2003); Huang, Lee, and Cheb@gj7j2 However,
they result in a system matrix that is dense and usually hidrtonditioned. The
use of RBF-approximants in local forms has the ability tawnvent these dif-
ficulties, e.g. Shu, Ding, and Yeo (2003); Sarler and Ver(@®06); Divo and
Kassab (2007). Recently, a local high order approximargdas 2-node elements
and integrated RBFs (IRBFs) for solving second-order tidliproblems in the CV
framework has been proposed by An-Vo, Mai-Duy, and Trangd@011). In such
2-node elements (IRBFESs), the integration constants guligéad to include the
first derivatives at the element extremes in the approxonati It was shown that
such elements lead toG2-continuous solution rather than the usG&continuous
solution.

In this studyC?-continuous 2-node IRBFESs are incorporated into the siitmeznd



point collocation frameworks for solving the N-S equatiimshe stream function-
vorticity formulation on Cartesian grids. Unlike convemtal finite-element-based
methods, the proposed methods can guarantee inter-eleo@imuity of deriva-
tives of the stream function and vorticity of orders up to 2.hgh values of the
Reynolds number, to achieve both good accuracy and syapilitperties, several
high-order upwind schemes are proposed. The resultargrsyat algebraic equa-
tions is sparse and banded; the solution accuracy can beoledtby means of
the number of RBFs and/or the shape parameter. Severalusgidtmws defined
on rectangular and non-rectangular domains are considenastify the proposed
methods.

The remainder of the paper is organised as follows. Bridgerewy of the governing
equations and integrated RBF elements are given in Sectiond 3, respectively.
Section 4 describes the propogg#icontinuous subregion/point collocation tech-
niques for the stream function-vorticity formulation. le&ion 5, two benchmark
problems, namely the lid-driven cavity flow and the flow pasiraular cylinder in

a channel, are presented to demonstrate the attractivefhigspresent techniques.
Section 6 concludes the paper.

2 Governing equations

The dimensionless N-S equations for steady incompresplatear viscous flows,
subject to negligible body forces, can be expressed in tefrtie stream function
 and the vorticityw as follows
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whereRe=UL/v is the Reynolds number, in whidhis the characteristic length,
U the characteristic speed of the flow andhe kinematic viscosity. The vorticity
and stream function variables are defined by
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whereu andv are thex andy components of the velocity vector. In this study, the
method of modified dynamics or false transients (e.g. Msdimand Davis (1973);



Pozrikidis (1997)) is applied to obtain the structure ofeasdly flow. The governing
equations (1) and (2) are modified as
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Solutions to (5) and (6), which are obtained from integiatihe equations from
a given initial condition up to the steady state, are alsatsmis to (1) and (2)
respectively.

In the case of subregion collocation, one needs to defineatordlumes for grid
nodes. Integrating (5) and (6) over a CV of a grid péinfp, leads to the following
equations
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which ensure that the flow field is conservative for a finite CV.
Applying the Green theorem to (7) and (8), one has
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wherel p is the CV boundary. The governing differential equationjsaftd (6) are
thus transformed into a CV form (7)-(8) or (9)-(10). It is edtthat no approxima-
tion is made at this stage.

3 Definition of integrated-RBF elements
3.1 Brief review of integrated RBFs

For a given ODE/PDE, the integrated-RBF approach consistsdtomposing highest-
order derivatives in the ODE/PDE into RBFs and then intéggathese RBFs to
yield expressions for lower-order derivatives and findflg original function itself
Mai-Duy and Tran-Cong (2003). In the case of second-ordeESIPDES such
as (1) and (2), integrated-RBF expressions employed wéhrthltiquadric (MQ)



function are given by
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whereQ is the domain of interestp a function, ¢, 8) the two components of,

n the number of RBFs{w; }{! ; the set of RBF weightsZ;(6) andC;(6) the con-
stants of integration which are functions@qﬂ 2 ( ) conveniently denotes the MQ
whose centre and shape parameter are, respecm/at}da., I ( )=/ 1 ( )an,
andli ( )= flil)( x)dn. Explicit forms ofli( )( X) andli ( ) can be found in
Mai-Duy and Tran-Cong (2001). In Mai-Duy and Tran-Cong (20@he shape pa-
rameter was simply chosen as= Sh; in which 3 is a given positive number and
h; the distance betweeas and its nearest neighbour.

When the analysis domaf is a line segment, e.g. in the Cartesian directign
expressions (11) (12) and (13) reduce to
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whereC,; andC; are simply constant values.

Expressions (14), (15) and (16), called 1D-IRBFs, can atsaiged in conjunc-
tion with Cartesian grids for solving 2D problems. Advarga®f 1D-IRBFs over
2D-IRBFs ((11)-(13)) are that they possess some “localperties and are con-
structed with a much lower cost. However, numerical expenits show that 1D-
IRBFs still cannot work with large values gf In An-Vo, Mai-Duy, and Tran-Cong
(2011), 1D-IRBF-based schemes were further localisedriod®z IRBF elements
(IRBFES).

3.1.1 Two-node IRBFEs

These elements are applicable to problems defined on ret#auamnd non-rectangular
domains. The problem domain is simply discretised by usi@adesian grid. In



the case of non-rectangular domain, grid points outsid@tbielem domain are re-
moved while grid points inside the problem domain are takepetinterior nodes.

Boundary nodes are defined as the intersection of the grid lamd the bound-
aries. Over straight-line segments between two adjacedlmmwints, 1D-IRBFs

are utilised to represent the variation of the field variairid its derivatives, which
are called 2-node IRBFEs. It can be seen that there are tves tgpelements,

namely interior and semi-interior elements. An intericeraént is formed using
two adjacent interior nodes while a semi-interior elemsrgenerated by an inte-
rior node and a boundary node (Fig. 1).

3.1.2 Interior elements

1D-IRBF expressions for interior elements are of similanfs. Consider an inte-
rior elementy) € [n1,N32], and its two nodes are locally named as 1 and 2.¢i(g1)
be a function andn, d@/dn, @ andd@/dn be the values op andd@/dn at the
two nodes, respectively (Fig. 2). The 2-node IRBFE schenpecegmateso(n)
using two MQs whose centres are locateqagndn,. Expressions (14), (15) and
(16) become

32
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whereli(l)(n) = fli(z)(n)dn, Ii(o)(n) = fli(l)(n)dn with i = (1,2), andC; andC;
are the constants of integration. By collocating (19) arg) @t n, and n,, the
relation between the physical space and the RBF coefficpamesis obtained
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where is the nodal-value vector# the conversion matrix, and the coefficient
vector. It is noted that not only the nodal valuesgbut also ofd@/dn are incor-
porated into the conversion system and this imposition iedo an exact manner



owing to the presence of integration constants. Solving yids
W=.7"1¢. (21)

Substitution of (21) into (19), (18) and (17) leads to
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They can be rewritten in the form
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Where{dJi(n)}f‘:l is the set of basis functions in the physical space. Thesesxp
sions allow one to compute the values@fdp/dn, andd?@/dn? at any pointn

in [n1,n2] in terms of four nodal unknowns, i.e. the values of the fieldakde and
its first-order derivatives at the two extremes (also grimh{®) of the element.

3.1.3 Semi-interior elements

As mentioned earlier, a semi-interior element is definedaaytodes: an interior
node and a boundary node. The subscripts 1 and 2 are now edpléth b (b
represents a boundary node) an an interior grid node), respectively. Assume
that the value ofp is given atn,. The conversion system can be formed as

® (o) 1g” () Mo 1\ (0
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It can be seen that the conversion matrix in (28) is undezrdehed and its in-
verse can be obtained using the SVD technique (pseudosiovgr Owing to the
facts that point collocation is used and the RBF conversi@trimis not over-
determined, the boundary conditigp is imposed in an exact manner. For other
types of semi-interior elements, the reader is referredtd/, Mai-Duy, and Tran-
Cong (2011) for details.

4 ProposedC2-continuous subregion/point collocation methods

In this study, 2-node IRBFEs are extended to the solutiomefstream function-
vorticity formulation. In addition, several high-orderwind schemes are incor-
porated into the 2-node IRBFE methods to enhance their peafioce for the case
of convection-dominant flows. The proposed methods leadsfmaese system and
their solution is &2 function across IRBFES.

4.1 Discretisation of governing equations

Two formulations, namely subregion collocation and poioliacation, are em-
ployed to discretise the governing differential equatiodss mentioned earlier,
the structure of a steady flow is found through the methodlséfaansients. Time
derivative terms in (5) and (6) are simply approximated et a first-order back-
ward difference.

4.1.1 Subregion collocation

Consider a grid poinP surrounded by a rectangular control volu@e (Fig. 3).
There are no gaps and overlapping regions between confrohes. For integrals
involving the rate of change and generation, the value ofgtentity atP is as-
sumed to prevail ove®Rp. Using the middle-point rule to evaluate the integrals of
the convection and diffusion terms ovM@p, equations (9) and (10) become

Ap oy oy oy oy _ o, W8
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where the superscript 0 represents the value obtained frerprevious time level;
the subscript®,w,n ands denote the values of the property at the intersections of
grid lines and the east, west, north and south faces of a QYAarthe volume

of Qp. It can be seen that equations (32) and (33) require the atbimof first
derivative values ofy andw at the interface points,w, n ands.

4.1.2 Point collocation

Consider a grid poinP. Collocating (5) and (6) &, one obtains

Wp  0%p  O*Yp o, W
A T ay? WA ) (34)
2 2 0
_wp dap+r9 WP o dPpdwp  JdYpduwp _ @ (35)
At 0x? ay? dy dx  0x ady At

It can be seen that equations (34) and (35) require the dstimaf both first and
second derivative values @f andw at the collocation poine.

4.2 Approximations of diffusion term

The diffusion term is treated implicitly. Its role is impartt at regions where the
strength of the convection term is small. 2-node IRBFEs arpleyed here for the
approximation of the second terms on the LHSs of (32) andi(88)e subregion
collocation framework and (34) and (35) in the point colkima framework. Let
E,W,N and S denote the east, west, north and south neighbouring nodes of
respectively. One can form 4 two-node IRBFES, nanvély PE, SPandPN.

4.2.1 Subregion collocation

In the case thatV P andPE are interior elements, the values of the fluxxat xe
andx = x,, are computed by using (26)

09\ _ddi(xe) ~~ dfa(xe)  dP3(xe) O  dda(xe) ¢

(W)e T P T BT Tk ax T ox) (36)
dp\  déi(xw) dé2(xw) dos(xw) 0@ | dga(Xw) O

(W)W T Tax M P T ox dx  dx’ (37)



10

where@ representg and w.

In the case thatVP is a semi-interior element, the value of the fluxxat x,, is
computed by using (30)

<d_(p> _ dpi(xw) | dgo(xw) | dis(xw) O

ox /).~ dx P+ dx %+ dx Jx’ (38)

Expressions for the flux at=y, andy = ys are of similar forms.

4.2.2 Point collocation

The values 0b?/9x? andd?w/dx? atP can be derived from 2-node IRBFESs in
the x direction, i.e. WP and PE. It will be shown later that these two elements
give the same results, and one can thus choose one of theralfoitation, e.g.
WP. Through (27) ifWPis an interior element and (31) WP is a semi-interior
element, the required values are, respectively, estinsged

g dPp1(xp) o (xp) Pos(xp) Oy Pha(xp) I

o2 dx? P+ dx2 W+ d  Ix + a2 dx (39)
and

0’gp _ Pi(xp) FPha(xe) — Fos(xe) Igp

o2 ad MWt T ge @ ox’ (40)

where@ representg and w.
The values 0B?y/dy? andd?w/dy? atP can be computed in a similar fashion.

4.3 Approximations of convection term

At high values of thdRenumber, the third term (i.e. convection term) on the LHS
of (33) or (35) is dominant and strongly affects the stapiita numerical solution.
From a physical point of view, convection is directed by tlkéoeity field from the
upstream to the downstream of the flow. Three high-order mgwchemes, namely
Scheme 1, Scheme 2 and Scheme 3, are proposed here for tietishsion of the
convection term.

4.3.1 Scheme 1 for subregion collocation

This scheme is concerned with an upwind treatment with tfierasl correction
strategy. Letf be the intersection of the CV face and the grid line. The vafu®
at pointf is computed as

wr = wy +Awy, (41)
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wherewy is the upstream value aiddo; the correction term that is a known value.
It is noted thatf representsy,e, s andn. Aw; is presently derived from the 2-node
IRBFE approximation, i.e. (25) and (29). As an example, wheaw andu,, > 0,
one has

w = ww, (42)

17} 17}
et = (91 00) — D)y + b0 -+ 900) Sl 1, 1) 2%, (43)
where the superscript 0 is used to denote the values obtioradhe previous time
level. For a special case, whakéis a boundary point, expression (43) reduces to

0
8x = (910%0) — )l + Bo000) R + () T (44)

When the solution reaches a steady stabes are purely predicted by 2-node
IRBFEs and their accuracy is thus recovered. Velocity \&lnethe convection
term are simply estimated by a linear profile

(5.2 (% %) 0
().~ (aww aaq;P>’ 9
(o)1)
(‘;—X> (% aa"f) “8)

4.3.2 Scheme 2 for point collocation

Without loss of generality, assuming that > 0. W thus becomes an upstream
node. A special approximation is constructed dwae for the purpose of comput-
ing dawp/dx; not only wy anddwy /dx but alsod?wy/dx? are employed in the
conversion process

wp |(§°)> (xp) |(§°)> ) % 1 Wy
W 119 (x 159 (x xw 1 W
56& = I%l)( w) I%l)( w) XV 0 CZ (49)
54 L (Ow) 2 (Ow) Cl
on? |§_ )(XV\/) |§ )(XV\/) 0 O 2

This leads to

dap _ dd1(xp) dé2(xp) dps(xp) dww | dda(xp) 9wy

OX dx Tax Pt dx O dx  9x dx dx2 -’ (50)
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4.3.3 Scheme 3 for point collocation

Assuming thatp > 0. W becomes an upstream point. The valu@af/dx atP is
estimated ovew Pwith the deferred correction strategy

(1) ()

whereh is the length ofV P, the first term on the RHS is simply a standard linear
estimation; and the second term is a correction amount dkfiae

dap Wl — dap\°
A(W)“( o )T ) (2)
The value(dcq:/dx)o in (52) is obtained using (26) WP is an interior element
and using (30) iV Pis a semi-interior element. When the flow is steady, the first

term on the RHS of (51) and the first term on the RHS of (52) vaiticel out each
other.

4.4 C? continuity solution

It can be seen from IRBFE expressions for computing the #4x/@x or d¢@/dy)

at the CV faces (e.g. (36), (37)) aadq/dx* and 9%@/dy? at a nodal poinP,
e.g. (39), there are three unknowns, nanglyg ¢/dx andd@/dy, at a nodal point
P. Itis noted thatp representsy andw. Unlike conventional subregion/point col-
location methods, the nodal valuesap/dx andd@/dy at P here constitute part
of the nodal unknown vector. One thus needs to generate ittitependent equa-
tions. The first equation is obtained by conducting subrggiint collocation at
P, i.e. (32)-(33) or (34)-(35), respectively. The other twyuations can be formed
by enforcing the local continuity a??¢g/dx? andd?¢/dy? across the elements at
=]

@\ [P
<W>L = <W>R’ (3)

%@\ (@
(W) - <W> &9

where(.), indicates that the computation @f is based on the element to the left
of P, i.e. elemenWP, and similarly subscriptR,B,Tdenote the righ{PE), bottom
(SP)and top(PN) elements.

Substitution of (24) into (53) and (54) yields

(1?2157 (12).0.0 #~19) = (|11 (n2).157 (m).0.0] 7). (55)
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wheren represents andn, = n1 = Xp, and

(1?2157 (12).0.0] #~19) = (1 (1).17(12),0,0] #7¢) . (56)

wheren representyy and n, = n1 = yp. The conditions (53)-(54) or (55)-(56)
guarantee that the solutignacross IRBFEs is @2 function.

Collection of the governing equations and the continuityaippns at the interior
grid points leads to a square system of algebraic equatinse local approxima-
tions are presently based on two RBFs only, the resultatesymatrix is sparse
and a wide range @8 can be used. One can thus control the solution accuracy by
means of the number of RBFs and/or the shape parameter. hiece@en that two-
point line elements are well suited to discretisation méshbased on Cartesian
grids.

5 Numerical examples

The performance of the propos@? discretisation methods with three upwind
schemes, i.e. Scheme 1, Scheme 2 and Scheme 3, is studiadhtth® simu-
lation of lid-driven cavity flows and flows past a circular iogler in a channel.
The subregion collocation version is from now on denotedRBHE-CVM while
IRBFE-CM is used to represent the point collocation versiéor all numerical
examples presented in this study, the MQ shape paramé&eaimply chosen pro-
portionally to the element lengtiby a factorB3. The effects of the shape parameter
on the solution accuracy is thus investigated through tnepeter. In the case of
non-rectangular domains, there may be some nodes thatoackote to the bound-
ary. If an interior node falls within a distance lof2 to the boundary, such a node
is removed from the set of nodal points. A steady solutiorbimioned with a time
marching approach starting from a computed solution at aild®eynolds number.
For the special case of Stokes equation, the starting ¢ondg the rest state.

The solution procedure involves the following steps

(1) Guess the initial distributions of the stream functiowl &orticity in the case of
Stokes flow. Otherwise, take the solution of a lower Reynaladsber as an initial
guess.

(2) Solve the stream-function equation (32)/(34) subje®itichlet boundary con-
ditions, and calculate the nonlinear terms in the vortieigpation (33)/(35) by the
upwind schemes.

(3) Estimate Dirichlet boundary conditions for the vottiaequation (33)/(35) from
the Neumann boundary conditions of the stream function.

(4) Solve the vorticity equation (33)/(35).

(5) Check to see whether the solution has reached a steadyistaugh a condition
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on convergence measure

Mz

2 (U —yP)?
CM(y) = - <107, (57)

N
\ 2 W
i=1

whereN is the total number of grid nodes.
(6) If CM is not satisfactorily small, advance pseudo-time and tefpeia step (2).
Otherwise, stop the computation and output the results.

5.1 Lid-driven cavity flow

Lid-driven cavity flow is a very useful benchmark problem tioe validation of new
numerical methods in CFD because of its simple geometry @hdflow physics
at different Reynolds numbers. The cavity is taken to be tatpiare, with the lid
sliding from left to right at a unit velocity. The boundaryrmhtions foru andv

become

Y=0, dY/dx=0, x=0, x=1,
Y=0, dyY/dy=0, y=0,
Y=0, dy/dy=1, y=1

Both IRBFE-CVM and IRBFE-CM are considered here. We takécbiet bound-
ary conditionsy = 0, on all walls for solving (32) and (34). The Neumann bound-
ary conditionsdy/adn (i.e. dy/dn= Oy - A, wheren'is the outward unit normal
vector at a point on the boundary), are used to derive cortipng boundary con-
ditions for w in solving (33) and (35). Making use of (1), the valuesuwbn the
boundaries are computed by

2

woz—%, x=0andx=1, (58)
2

W= — aa;‘gb, y=0andy = 1. (59)

In computing (58) and (59), one needs to incorpogg/dx into 32y, /dx?, and
dyn/dy into d%yn/dy?, respectively. We present a simple technique to derive
boundary values fow in the context of 2-node IRBFEs. Assuming that node 1
and 2 of an IRBFE are a boundary node and an interior grid nesfeectively (i.e.
1=band 2= g). Boundary values of the vorticity are obtained by appl\iag) as

0% [(Pa(nw) 2 (Np) Pp3(np) O Pa(np) Iy
=02 __( dn? a2 % Az an T dn? 00)’
(60)

Yo+
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wheren representsg andy; Y, anddyy,/dn are the Dirichlet and Neumann bound-
ary conditions fory, andyy anddyiy/dn are known values taken from the solu-
tion of the stream-function equation (32)/(34). Itis notieak (i) all given boundary
conditions are imposed in an exact manner; and (i) thisrtigeke only requires the
local values ofyy anddy/dn at the boundary node and its adjacent grid node to
estimate the Dirichlet boundary conditions for the votyi@quation (33)/(35).

It can be seen that the set of 2-node IRBFES is generated toanegfid lines that
pass through interior grid nodes. As a result, the set ofpntation points does
not include the four corners of the cavity and hence cormeguarities do not
explicitly enter the discrete system.

Simulation is carried out for a wide range Rg namely (100, 400, 1000, 3200).
Grid convergence is studied using 12 uniform grids, i.e. 11, 21x 21, ...,
121x 121). Results obtained are compared with the benchmarkicwutaken
from Ghia, Ghia, and Shin (1982) and Botella and Peyret (L898ssess the per-
formance of the present methods. The former was obtained ashulti-grid based
finite-difference method with fine grids. For the latter, dp&l scheme and analyti-
cal method were employed to calculate the regular and singalts of the solution
and the benchmark results were given Re= 100 andRe= 1000. In addition,
global 1D-IRBF subregion/point collocation (1D-IRBF-CVEM) results and also
standard CV results, recently given in Mai-Duy and Tran-@@009, 2010), are
also included. It is noted that, in Mai-Duy and Tran-Congl@Q CD-CD means
that both the convection and diffusion terms were approtechavith a central dif-
ference, while UW-CD means that the convection term is é&ckatith a first-order
upwind.

Time-step convergenceThe convergence behaviours of IRBFE-CVM and IRBFE-
CM with respect to time are shown in Figs 4, 5 and 6. Resultsomit an upwind
treatment are also presented. It can be seen that solutomverge remarkably
faster for those with upwind than those without upwind. Mu&tger time steps
can be used for the former. Consider the casRef 1000 and a grid of 8% 81
(Figs 4 and 5). IRBFE-CVM reaché3M < 10~° after about 5« 10* iterations
for its no-upwind version and after aboubX 1@ iterations for Scheme 1, while
IRBFE-CM requires about.8 x 10* for its no-upwind version and about5x 103

for Scheme 2, B8 x 10° for Scheme 3. It was reported in Mai-Duy and Tran-Cong
(2010) that the global 1D-IRBF-CVM takes aboub& 10* and 12 x 10* itera-
tions to haveCM < 108 for its no-upwind and upwind versions, respectively. It
appears that local IRBF versions help make the convergexsterf In the case of
Re= 3200 and a grid of 9% 91, in contrast to the upwind version, the no-upwind
version is not able to reac®M = 10~ as shown in Fig. 6.
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Grid-size convergence:The convergence of velocity profiles on the vertical and
horizontal centrelines &e= (0,100,400,1000 3200 with respect to grid refine-
ment is presented in Figs 7 and 8 and Tabs 1-4. BenchmarksdsuGhia, Ghia,
and Shin (1982) and Botella and Peyret (1998) are also iedlddr comparison
purposes. It can be seen that (i) errors relative to the meadtresults are consis-
tency reduced as the grid is refined; and (ii) converged pofire obtained with
relatively coarse grids (e.g. 2121 forRe= 100 and 61x 61 for Re= 1000).

Solution quality: The solution qualities of IRBFE-CVM and IRBFE-CM are shown
in Tabs 1-4 and Figs 9-10. Tabs 1-4 reveal that the preseunltiseme closer to
the benchmark spectral solutions than the benchmark fiifference results and
also those of the global 1D-IRBF-CVM. Errors relative to ttenchmark spectral
results are less than 1% f&e= 100 using a grid of 4k 41 (Tab. 1) and for
Re= 1000 using a grid of 9% 91 (Tab. 3). These IRBFE results correspond to
B = 15. Tab. 4 indicates that the solution accuracy can be dtedrby means of

B. The quality of the solution can be significantly improvedrsg optimal value

of B. It can be seen from Figs 9-10 that smooth contours are @utdor both the
stream function and vorticity fields and the corner eddiescdearly captured at
relatively coarse grids.

5.2 Flow past a circular cylinder in a channel

We further verify IRFBE-CVM and IRBFE-CM through the simtitan of flow
past a circular cylinder in a channel (Fig. 11). Works inuodyv simulation of
such a flow are reported in, for example, Chen, Pritchard, Tavener (1995),
Sahin and Owens (2004) and Singha and Sinhamahapatra (2D0&0p be the
cylinder diameter andl the channel height. One important geometric parameter
to characterise the flow is the blockage ratio defineg-adD/H. Chen, Pritchard,
and Tavener (1995) did a numerical linear stability analgsid identified the curve
of neutral stability for Hopf bifurcation at values gfup to Q7. Sahin and Owens
(2004) extended the linear stability analysis to a widegeaafy from 0.1 to 09
and uncovered the complex dynamics of the flow at sufficiehifyh values of
the Reynolds number and the blockage ratio. The paper byasagpoulos and
lliadis (1996) provided the flow patterns fgr= (0.05,0.15,0.25) andRe= 106
using the finite element technique. Recently, Singha antda@mahapatra (2010)
reported the flow patterns féte= (45,100,150) andy = (0.5,0.25,0.333 0.125)
using the finite volume technique.

The problem domain is multiply-connected as shown in Fig. \Me choose the
geometry and boundary conditions here as those in Chegh@rmit, and Tavener
(1995). The ratio between the upstream and downstreamhiengttaken to be
1/3 and the length of the channel is chosen to Het6 assure the fully developed
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conditions of the flow at upstream and downstream boundétasn, Pritchard,
and Tavener (1995)). All lengths are scaled by the channighhél (Fig. 11).
Parabolic velocity profiles can thus be imposed at the imdtautlet as

1

Uin = Uout = Up (Z - )’2> ) (61)
Vin = Vout = 0. (62)

Usingup = 1, the flow rate takes the value

12 /1 1
o= [ (3-¥) w5 63

and we define the Reynolds numberRes= 1/(6v). Fig. 11 displays boundary
conditions for the stream function variable, which aretifrom (61)-(62) at the
inlet and outlet, and non-slip conditions at the remainingriwaries. The imposi-
tion of boundary conditions fow on the walls, inlet and outlet are similar to that
used in the lid driven-cavity flow, i.e. (60). On the cylinderface, analytic formu-
lae for computing the vorticity boundary condition on a meatangular boundary
Le-Cao, Mai-Duy, and Tran-Cong (2009) are utilised here

_ tx 2 aZL.Ub
Wy = — [l+ <E> ] ENAR (64)
for anx-grid line, and

_ ty\*| 9%
w=—|1+ (r)] - (65)

for ay-grid line. In (64) and (65)tx andt, are thex- andy-components of the
unit vector tangential to the boundary. The approximatior($4) and (65) require
information abouty in one direction only and they are conducted here by means
of 2-node IRBFEs, i.e. (27).

We implement Scheme 1 of IRBFE-CVM and Scheme 3 of IRBFE-CHhh Wiree
different grids, (12% 22 247x 42,367x 62), to study the flow aRe= (0, 25, 35,60)
andy = (0.3,0.5,0.7).

The convergence behaviours of IRBFE-CVM and IRBFE-CM wibpect to time
in the case off = 0.5, Re= 60 and a grid of 36% 62 are shown in Figs 12 and 13.
Results without an upwind treatment are also included.rntaseen that solutions
converge faster for those with upwind than those withoutingwLarger time steps
can be used for the former. In the case of IRBFE-CVM (Fig. TN = 10"°is
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obtained after about.3x 10° iterations for the no-upwind version and after about
1.8 x 10? iterations for Scheme 1. In Fig. 13, IRBFE-CM reacld = 10~°
after about 17 x 10* iterations for the no-upwind version and after abo®>810°
iterations for Scheme 3.

Results concerning the criticRlenumber and the length of recirculation zones be-
hind the cylinder are shown in Tabs 5 and 6, respectively. aildhree grids and
different values of3 used, the obtained values are in satisfactory agreemeimt wit
those reported in Chen, Pritchard, and Tavener (1995) aigh&iand Sinhamaha-
patra (2010).

Contour plots for the stream function and vorticity fielde aresented in Figs 14,
15 and 16, while the velocity vector field is displayed in FiF. Stronger interac-
tion in regions between the cylinder and the walls is obskatehigher values of
the blockage ratio (Figs 14 and 15). Re= 60 andy = 0.5, symmetrical recircu-
lation zones appear behind the cylinder in the stream fondield (Fig. 16a). The
flow features are similar to those obtained by Singha anda@iaihapatra (2010)
at Re= 45 (i.e. Re= 60 according to the present definition R andy = 0.5.
Fig. 18 shows velocity profiles on the centreline behind Wiender for the case
of y=0.5. It can be seen that the incipience of recirculation zoppgars around
Re= 25.

6 Concluding remarks

In this paper, we have extended our 2-node IRBFEs to theigolof the stream
function-vorticity formulation governing fluid flows in reangular and non-rectangular
domains. Several high-order upwind schemes based on 2iR&FEs were also
proposed and investigated. Attractive features of thegweg point/subregion col-
location methods include (i) a simple preprocessing (Gantegrids); (ii) a sparse
system matrix (2-node approximations); and a higher orderoatinuity across
grid nodes C2-continuous elements). Numerical results show that (i) macger
time steps can be used with the upwind versions; and (ii) b keigel of accuracy

is achieved using relatively coarse grids.
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Table 1: Lid-driven cavity flow, IRBFE-CVMRe= 100: extrema of velocity profiles on the vertical and hortabcentre-
lines of the cavity[x] is Ghia, Ghia, and Shin (1982) aifiek] is Botella and Peyret (1998).

Vinin Error % X

Method Grid Umin Error % y Vimax Error % X
IRBFE-CVM 11x11 -0.20604 3.74 0.505 0.15971 11.06 0.225 2145 14.32 0.804
21x21 -0.21190 1.00 0.466 0.17609 194  0.235 -0.24673  2.79.8090
31x31 -0.21288  0.55  0.462 0.17798 0.89 0.236 -0.25077  1.20.8100
41x41 -0.21327  0.36  0.460 0.17857 056  0.237 -0.25203  0.70.8100
FDM (¢ — w) [] 129x129 -0.21090 1.47  0.453 0.17527 240 0.234 -0.24533 4 3.30.805
Benchmarkxx] -0.21404 0.458 0.17957 0.237 -0.25380 0.810




Table 2: Lid-driven cavity flow, IRBFE-CVMRe= 1000: extrema of the vertical
and horizontal velocity profiles through the centrelineshef cavity. [] is Ghia,
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Ghia, and Shin (1982) arex| is Botella and Peyret (1998).

Method Grid Umin y Vimax X Vimin
IRBFE-CVM 31x31 -0.36093 0.195 0.35084 0.167 -0.48074 9.89

41x41 -0.37140 0.182 0.36144 0.162 -0.50172 0.905

51x51 -0.37720 0.177 0.36673 0.160 -0.51083 0.907

61x61 -0.38057 0.176 0.36980 0.160 -0.51588 0.908

71x71 -0.38266 0.174 0.37166 0.159 -0.51897 0.908

81x81 -0.38407 0.174 0.37293 0.159 -0.52097 0.909

91x91 -0.38502 0.173 0.37377 0.159 -0.52233 0.909

101x101 -0.38569 0.173 0.37437 0.158 -0.52330 0.909

111x111 -0.38619 0.173 0.37482 0.158 -0.52402 0.909

121x121 -0.38657 0.172 0.37515 0.158 -0.52454 0.909

FDM (¢ — w) [+] 129x129 -0.38289 0.172 0.37095 0.156 -0.51550 0.906

Benchmarkxx]

-0.38857 0.172

0.37694 0.158

-0.52708 0.909
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Table 3: Lid-driven cavity flow, IRBFE-CVMRe= 1000: percentage errors rela-
tive to the spectral benchmark results for the extreme gadfiehe velocity profiles
on the centrelines. Results of upwind central differenc@/{0D), central differ-
ence (CD-CD) and global 1D-IRBF-CVM are taken from Mai-Dunda ran-Cong
(2010).

Error (%)
Grid UW-CD CD-CD 1D-IRBF-CVM IRBFE-CVM

Umin
31x31 46.10 29.19 11.86 7.11
41x41 38.17 18.13 6.50 4,42
51x51 32.92 12.11 4.09 2.93
61x61 29.12 8.63 2.80 2.06
71x71 26.21 6.46 2.03 1.52
81x81 23.88 5.02 1.54 1.16
91x91 21.95 4.01 1.19 0.91
101x101 20.33 3.28 0.96 0.74
111x111 18.94 2.73 0.78 0.61
121x121 17.74 2.31 0.65 0.51

Vmax
31x31 48.01 29.98 11.91 6.92
41x41 39.71 18.45 6.55 4.11
51x51 34.43 12.32 4.13 2.71
61x61 30.62 8.79 2.83 1.90
71x71 27.68 6.58 2.05 1.40
81x81 25.31 5.12 1.56 1.06
91x91 23.34 4.09 1.21 0.84
101x101 21.67 3.35 0.97 0.68
111x111 20.23 2.79 0.79 0.56
121x121 18.98 2.36 0.66 0.48

Vmin
31x31 40.12 29.83 11.53 8.79
41x41 30.42 18.08 6.25 4.81
51x51 24.70 11.90 3.87 3.08
61x61 20.94 8.40 2.58 2.12
71x71 18.24 6.25 1.85 1.54
81x81 16.19 4.83 1.39 1.16
91x91 14.56 3.85 1.07 0.90
101x101 13.24 3.14 0.85 0.72
111x111 12.14 2.61 0.70 0.58

121x121 11.22 2.20 0.58 0.48




Table 4. Lid-driven cavity flow, IRBFE-CMRe= 1000: effects of3 on the solution accuracy. The present results at the
“optimal” value (i.e. about 3) with a grid of 5% 51 are in better agreement with the benchmark spectraltseain those

by 1D-IRBF-CM using the same grid and by FDM using a much degsd. [x] is Mai-Duy and Tran-Cong (2009)«] is
Ghia, Ghia, and Shin (1982), affiei x| is Botella and Peyret (1998).

Method Grid g Umin Error % y Vimax Error % X Vimin Error % X

IRBFE-CM 51x51 1 -0.36134 7.00 0.188 0.35048 7.02 0.168  8%B2 7.92 0.898
51x51 3 -0.38803 0.14 0.174 0.37677 0.05 0.161 -0.52184 0.90.906

51x51 5 -0.38948 0.23 0.174 0.37832 0.37 0.161 -0.52357 0.60.906

1D-IRBF-CM [] 51x51 -0.37985 2.25 0.174 0.36781 2.42 0.160 -0.51469 2.35.9080

FDM (Y — w) [*#] 129x129 -0.38289 1.46 0.172 0.37095 1.59 0.156 -0.51550 0 2.20.906

Benchmark{x x x| -0.38857 0.172 0.37694 0.158 -0.52708 0.909

T4
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Table 5: Flow past a circular cylinder in a channel, IRBFENCW = 0.5: The
critical Reynolds numbeRe,j; for the formation of the steady recirculation zone
behind the cylinder.

Method Grid Reyit

IRBFE-CVM 127x22 27.498
247x42 26.133
367x62 25.078

Chen, Pritchard, and Tavener (1995) 24.3
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Table 6: Flow past a circular cylinder in a channgk= 0.5, Re= 60: minimum
velocity umin and its position on the centreline, and the length of retatén zones
behind the cylinderl(,). It is noted that the case &e= 60 andy = 0.5 here is
equivalent to the case &e= 45 andy = 0.5 in Singha and Sinhamahapatra (2010).

Method Grid g Umnin X Ly

IRBFE-CVM 127x22 15 -0.067 0.141 0.269
247x42 15 -0.074 0.140 0.270

367x62 15 -0.076 0.139 0.270

IRBFE-CM 367x62 1 -0.076 0.141 0.271
367x62 3 -0.076 0.141 0.270

367x62 5 -0.075 0.140 0.269

0.284

Singha and Sinhamahapatra (2010)
(Re= 45)
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Interior element Interior grid node

Semi-interior element

Boundary node

Figure 1: A domain is embedded in a Cartesian grid with intesind semi-interior
elements.
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Figure 4: Lid-driven cavity flow, IRBFE-CVMRe= 1000, grid= 81x 81, solution

at Re= 400 used as initial guess: convergence behaviour. Schersiad aitime

step of 3x 10~ converges remarkably faster than the no-upwind versiomguai
time step of 7 1076, It is noted that the latter diverges for time steps gredian t
7 x 10-6. CM denotes the convergence measure as defined by (57).
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Figure 5: Lid-driven cavity flow, IRBFE-CMRe= 1000, grid= 81 x 81, solution

at Re= 400 used as initial guess: convergence behaviour. Schemé 3cheme

3, using a time step of 8 10* and 104, respectively, converge remarkably faster
than the no-upwind version using a time step of B0~°. It is noted that the latter
diverges for time steps greater thar 80-6. CM denotes the convergence measure
as defined by (57).
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Figure 6: Lid-driven cavity flow, IRBFE-CVMRe= 3200, grid=91x 91, solution

atRe= 2000 used as initial guess: convergence behaviour. Schersiad a time

step of 10“ converges remarkably faster than the no-upwind versiamgusitime

step of 8x 1077, It is noted that the latter diverges for time steps gredtant
8x 10~7. CM denotes the convergence measure as defined by (57).
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Figure 7: Lid-driven cavity flow, IRBFE-CVM: velocity profis on the vertical

(left) and horizontal (right) centrelines at differentdgj results by Ghia, Ghia, and
Shin (1982) were obtained at a grid of 12929. [« is Ghia, Ghia, and Shin (1982)
and[«x] is Botella and Peyret (1998).
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Figure 8: Lid-driven cavity flow, IRBFE-CVM: velocity profis on the vertical
(left) and horizontal (right) centrelines at differentdgj results by Ghia, Ghia, and
Shin (1982) were obtained at a grid of 12929. [«] is Ghia, Ghia, and Shin (1982)
and[xx| is Botella and Peyret (1998).
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Figure 9: Lid-driven cavity flow, IRBFE-CVM: stream and isotticity lines for
severalRenumbers and grid sizes. The contour values are taken to tsathe as
those in Ghia, Ghia, and Shin (1982) and Sahin and Owens (2883ectively.
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Figure 10: Lid-driven cavity flow, IRBFE-CVM: stream and isorticity lines for
severalRenumbers and grid sizes. The contour values are taken to Isathe as
those in Ghia, Ghia, and Shin (1982) and Sahin and Owens Y288Bectively.
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Figure 11: Flow past a circular cylinder in a channel: sch@mapresentation of
the computational domain.
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—— Scheme 1
— — - Without upwinding
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Figure 12: Flow past a circular cylinder in a channel, IRBEEM, y = 0.5,

Re= 60, grid= 367x 62, solution aiRe= 35 used as initial guess: convergence
behaviour. Scheme 1 using a time step of 20~ converges faster than the no-
upwind version using a time step of 10 It is noted that the latter diverges for
time steps greater than 1§ CM denotes the convergence measure as defined by
(57).
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Figure 13: Flow past a circular cylinder in a channel, IRBEK y= 0.5, Re= 60,

grid = 367 x 62, solution aRe= 0 used as initial guess: convergence behaviour.
Scheme 3 using a time step of TOconverges faster than the no-upwind version
using a time step of 5 107°. It is noted that the latter diverges for time steps
greater than 5 10-°. CM denotes the convergence measure as defined by (57).
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Figure 14: Flow past a circular cylinder in a channel, IRBE¥ZM, Re= 0, grid
= 367x 62: streamlines at different values of the blockage ratio.
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Figure 15: Flow past a circular cylinder in a channel, IRBE¥ZM, Re= 0, grid

= 367x 62: iso-vorticity lines at different values of the blockaggio.
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Figure 16: Flow past a circular cylinder in a channel, IRBEZM, y = 0.5, Re=
60, grid= 367x 62: streamlines and iso-vorticity lines.
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Figure 17: Flow past a circular cylinder in a channel, IRBEZM, y = 0.5, Re=
60, grid= 367x 62: velocity vector field.
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Figure 18: Flow past a circular cylinder in a channel, IRBEEM, y = 0.5: ve-
locity profiles on the centreline behind the cylinder ateli#int Reynold numbers.



