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Abstract: This paper describes a design-based research project that investigates the learning 
of scientific knowledge about climate change through computational models. The design 
experiment used two NetLogo models and problem-based learning materials developed in 
partnership with a high school science teacher. In the study, three classes of year nine science 
students were divided into two groups based upon different levels of structure that was 
provided during learning activities with the models. The results indicate that there was 
significant learning of concepts about greenhouse gases and the carbon cycle through 
engagement with the models. We also describe the process analysis techniques being 
developed to analyze the log files of the interactions the students had with the computer 
models. 

 
This paper presents results from the first iteration of a design-based research project that is exploring how 
students may learn scientific knowledge about climate systems using computer models as part of a four year 
federally funded project in Australia. There are three main research areas of this project. The first area is 
investigating if different patterns for the sequencing and structure of pedagogical guidance during learning 
activities can enhance learning with computer models. Whereas the notion of strict discovery-learning has been 
largely discredited (Mayer, 2004) there is recent evidence that a sequence of low-structured activities followed 
by high structured activities can result in enhanced learning outcomes when compared to purely high-structured 
activities only (Kapur, 2008, 2010; Schwartz & Bransford, 1998; VanLehn, Siler, & Murray, 2003).  

Second, there are increasing calls for students to learn important scientific knowledge about systems, 
including topics related to complex climate systems and global warming (ACARA, 2011; National Research 
Council, 2012). An important recent approach for helping students to successfully learn more standard science 
education topics involves model-based learning (MBL) (Clement, 2000; Zhang, Liu, & Krajcik, 2005). In 
general, MBL approaches engage the learners with computer simulation and visualization systems and learning 
the targeted science concepts interactively via problem solving. There has also been research involving the use 
of agent-based models (ABM), which computationally represent phenomena as a number of agents or elements 
that each has particular rules they follow, and for which the apparent complexity of the system being modeled 
emerges from the interactions of the agents in the systems (Railsback & Grimm, 2011). A number of recent 
studies have documented significant learning with ABMs, especially for learning about various types of 
complex physical and biological systems (Goldstone & Wilensky, 2008; Jacobson, Kapur, So, & Lee, 2011; 
Wilensky & Reisman, 2006). In this study, we investigate how ABMs can help students learn important 
concepts about climate systems. 

Finally, when students work with computer models, a large stream of fine-grained process data can be 
collected. Recently, researchers have begun to explore various process analysis techniques for analyzing data of 
human-computer interactions, such as data mining, process mining, and learning analytics (Reimann, 2009; 
Romero, Ventura, Pechenizkiy, Ryan, & Baker, 2010; Trčka, Pechenizkiy, & van der Aalst, 2011; van der 
Aalst, 2011). These techniques have demonstrated potential for discovering student learning patterns and 
predicting unproductive behaviors where early intervention may be possible. However, research is needed to 
investigate how these techniques might be used to assist teachers and students during MBL. Therefore, the third 
area of our research is to provide a proof of concept for specific data mining techniques that might be useful for 
analysis of MBL. This study involved MBL of scientific knowledge about climate change to explore these three 
areas. In particular, the research design involved different sequences of learning activities as students worked 
with agent-based computer models of the carbon cycle and the greenhouse effect. In addition to the pre-post test 
assessments of conceptual understanding of climate change knowledge, our analysis of students’ learning makes 
use of process discovery techniques involving log file data of student dyads using the computer models. 

Method 
A classroom experiment was devised in which students from three year nine science classes were randomly 
assigned to two treatment groups: Challenge and Guided Learning (CGL) (i.e., low-to-high sequence of 
pedagogical structure) and Guided Learning (GL) (i.e., high-to-high sequence of pedagogical structure). Both 
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groups experienced two classroom periods of learning with two computational models relating to climate 
science (described below). For each of the two models, three problem-based activities were prepared. The two 
experimental groups (CGL and GL) differed only in the structure provided in the first of two activities with each 
model, so that the second activity and assessment were identical across both groups. For the CGL group, this 
involved the posing of an initial challenging question with no instructional support, e.g., “What is the difference 
between the behavior of visible light (yellow rays) and infrared light (red rays)?” The GL group had the same 
question but was provided additional instructional support in the form of small guiding tasks that structured 
their exploration of the models in a way intended to help them answer the question successfully. This 
experimental design was used in previous studies in which significant learning outcomes were found (Kapur, 
2006; Pathak, Kim, Jacobson, & Zhang, 2009). Students individually completed a pre-test and a post-test in 
which their knowledge about climate science was assessed, and then all learning activities with the computer 
models were carried out in dyads.  
 

 
Figure 1: A NetLogo model of the greenhouse effect 

The agent-based models of the carbon cycle and the greenhouse effect were developed with NetLogo 
(Wilensky, 1999). The models were co-created by the first author and a collaborating schoolteacher with a PhD 
in physics, and were then verified by an earth sciences graduate. The carbon cycle model represents a fixed 
number of carbon molecules within a closed system. Carbon molecules exchange at the boundaries between 
atmosphere, land, and ocean. Students can alter the rates of transfer at these boundaries as well as control the 
rate of release of deeply stored carbon into the atmosphere. Carbon moves in different regions as well as in 
different life forms, represented as trees (plants) and sheep (animals). The greenhouse effect model allows 
students to explore the interaction between the sun’s energy (i.e., electromagnetic radiation) and the carbon 
cycle. This model builds on the simpler carbon cycle model that the students use first. Students can release 
carbon dioxide into the atmosphere and observe the effects over time. The output shows atmospheric gases and 
surface temperatures. The model includes parameters for the quantity of the greenhouse gasses of CO2 and H2O 
and includes a parameter for the Earth’s albedo or reflectiveness. Rules are specified for the interaction between 
electromagnetic radiation from the sun and the Earth’s surface (reflection, absorption) as well as for heat 
released from the Earth’s surface (infrared radiation [IR]) and greenhouse gases (CO2 and H2O). The resulting 
complex system has the emergent property of “global heat” that changes based upon the proportions of solar 
radiation/greenhouse gases/reflection in the system. The simulation generates output that was calibrated to be an 
approximation of real data for carbon and temperature (Intergovernmental Panel on Climate Change, 2007). 
Students interact with the models by changing the parameters and observing the effects. For example, in the 
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model of the greenhouse effect shown in Figure 1, releasing CO2 into the atmosphere (by changing a slider, left 
side) leads to real-time visual feedback (in the visualization window, right side) as well as more CO2 molecules 
being present and an increased incidence of re-radiation of IR light leaving Earth’s surface. This is displayed in 
the graphs of temperature and carbon (lower left) that show an increase in the former and a shift in the 
equilibrium in the latter over time. 
 The study was conducted in 2011 at an all girl’s high school in Australia, with three year nine classes 
(third year of secondary school) and a total of 90 students (30 students each). Students completed individual 
pre-tests and post-tests of their knowledge of climate science and complex systems. The pre- and post-tests 
consisted of 20 questions—six multiple choice and 14 open-ended short answer questions—that were intended 
to assess both declarative and conceptual knowledge of climate science. Students were given 20 minutes to 
complete each test. During the experiment, students carried out three activities with each of the two models in 
pairs (45 dyads in total). Each pair was randomly assigned to one of two conditions: (a) CGL where dyads had 
no structure for the first activity of each model, and (b) GL where dyads had a structured task for the first 
activity with each model. Students were allocated 80 minutes for working with each of the two models and 
completing the given activities. Computer screen recordings were made and log files of NetLogo interactions 
were maintained for all dyads. Additional webcam audio and video recordings were made for six dyad groups 
(three in each of the treatment groups).  

Results 
This section presents the main results related to our three research areas from the first year of the project. First 
we discuss the pre- and post-test assessment results. Second, we illustrate the potential of process analysis 
techniques to detect student behavior patterns from the NetLogo log files in our analysis of one high achieving 
and one low achieving dyad from CGL group. 

Of the initial 90 students, one of the classes was used as a pilot to tune data collection processes, and 
therefore was not included in the final analysis. Of the remaining 60 students, only 33 completed all tasks due to 
absences and technical difficulties (e.g., computer failures resulting in missing data). 

Ten short answer questions related to scientific knowledge of climate change phenomena were coded 
using an adapted five-point knowledge integration rubric (Gerard, Spitulnik, & Linn, 2010). This coding scheme 
elucidates students’ capabilities to make connections between different elements of the phenomenon, thus was 
appropriate for investigating the depth of students understanding.  One question was removed as we determined 
it had unclear language, leaving nine questions. Initially, two individuals each coded 60% of the results with a 
20% overlap for reliability. Cohen’s Kappa on this initial 20% was 0.64. The coders then met to discuss 
discrepancies and coded the remaining results so that each had rated all of the responses. Following discussion 
of discrepancies, 100% agreement was reached. These scores were scaled to a maximum of 100 and Table 1 
summarizes these results. 
 
Table 1: Pre- and post- test results 
 
 N Pre-Test Post-Test 
  Mean SD Mean  SD 
Challenge & Guided 
Learning 

15 31.73  (15.81) 41.07  (14.38) 

Guided Learning 18 34.67  (12.27) 38.89  (13.22) 
All students 33 33.33  (13.84) 39.88  (13.58) 
 
Overall, there was a significant increase in the mean post-test scores of all the students, F(1,31)=9.367, p=.005, 
η2 =.232. Repeated measures ANOVA on the summed short answer responses with a between-subjects factor of 
the CGL/GL group found no significant differences, F(1,31) = 1.532, p = .225, η2 =.047, although the CGL 
group did have a higher score on the post-test than the GL group. The problem-based activity and assessment 
questions the dyads worked on were similarly coded and scaled (Table 2). Repeated measures ANOVA on the 
activity and assessment responses with a between-subjects factor of the CGL/GL group found no significant 
group differences, F(1,12) = 0.300, p = .594, η2 =.024, although again the CGL group had a higher mean scores 
than the GL group on both of the assessment tasks for each models. 
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Table 2: Student scores for activity and assessment questions 
 
 N (Dyads) Model 1 (Carbon Cycle) Model 2 (Greenhouse Effect) 

  Mean SD Mean SD 
Challenge & Guided Learning 6 61.11 (16.39) 38.89 (18.26) 
Guided Learning 8 55.21 (9.90) 37.50 (18.72) 
All dyads 14 57.74 (12.85) 38.10 (17.82) 

Process Analysis 
In this section we outline an approach that we are developing for analyzing the stream of data that is available 
from students engaged in learning activities with NetLogo agent-based models. The main goal of this early 
phase of our work is to explore possible ways that data mining techniques may provide insights into the 
students’ interactions with the NetLogo models. Educational data mining employs various algorithmic 
techniques on large amounts of institutional data records or student learning log files that are associated with 
online learning activities in order to discover student learning patterns (Romero & Ventura, 2006; Romero et al., 
2010). This information then could be used to improve the design of software and learning materials or provide 
individualized feedback and support for learners during MBL activities. As a part of our initial analysis we are 
exploring several possible techniques to analyze students’ interaction patterns: Hidden Markov Model (HMM), 
process mining, and various statistical visualization techniques.  

In our initial analysis, we used the HMM constructing algorithm adapted from Jeong, Biswas, Johnson, 
& Howard, (2010). On the basis of sequences of student interactions with NetLogo models recorded in log files, 
the algorithm extracted HMMs consisting of hidden states that depict how students interact with the models. 
Student activities or actions are equivalent to the use of controls on the model interface: Setup button, Go button 
(that initiates Start and Stop of the simulation), Speed control, Fossil Fuel Use control, and Tracking CO2 
Molecule control. The HMM shows the composition and the percentage of activities in each state as well as 
transitioning probabilities between these states. Students’ activities within individual states and likelihoods with 
which they move from one state to another together depict students’ overall behavior patterns.  

Each HMM is made up of a set of states and transitions: the behavior probabilities associated with each 
state and the transition probabilities between the states. For example, the HMM in Figure 2 shows that a high 
achieving dyad in State D (Fossil Fuel and Speed) explored the model by controlling the simulation in two 
distinct ways: by changing the amount of fossil fuel use 61% of the times (14 actions in total) and by changing 
modeling speed 39% of the time (9 actions in total). The link from one state to another and the percentage 
associated with the link indicate how likely it is that a certain state will be followed by another. For example, 
the HMM in Figure 2 shows the probabilities that the dyad would transition from State A (in which the they set 
up the simulation) to states B, C, and D. Specifically, the HMM for the high achieving dyad was composed 
from five states (Figure 2). Three simple states were associated with model control: Setup (State A), Stop (State 
C), and Stop Tracing of a CO2 molecule action (State E). Two composite states were associated with the model 
exploration: (a) start simulation and initiate tracing of a CO2 molecule actions (State B), and (b) control the 
fossil-fuel use and speed control (State D). The HMM shows that the high achieving pair often moved from the 
initial model setup (State A) to the control of the main model parameters and speed (State D), with the transition 
probability as high as 70%. The transition probability between the model manipulation (State D) and Start 
(State B) was also relatively high (48%). In contrast, the likelihoods of transition between Setup (State A) and 
Start (State B) and Setup (State A) and Stop (State C) were as low as 20% and 10% respectively. This suggests 
that after resetting the model (State A), the dyad often initially configured the main model parameters and only 
then started exploration of the model by switching on CO2 tracking or pressing Start (State B). The HMM also 
indicated that these students often explored the model by running and pausing it, with the transition probabilities 
between Start (State B) and Stop (State C), and vice versa, ranging between 47% and 50%.  

The HMM for the low achieving pair indicates that these students interacted with the model differently 
than did the high achieving dyad. The model was composed of four states only (Figure 3). Two simple states 
and one composite state were similar to the states in the HMM for high achieving students: Setup (Sate A); Stop 
(State C), and model manipulation (State D). One further simple state was formed from Start action (State B) 
only. The transitions indicated that the low achieving dyad’s behavior patterns could be characterized by two 
dominant moves between the three basic control buttons: Setup, Start, and Stop. The transition probabilities 
between Setup (State A) and Start (State B), and between Start (State B) and Stop (State C) were as high as 65% 
and 70%, respectively. All other students’ transitions among a range of states had medium or low probabilities, 
suggesting that the exploration was less systematic. In contrast to the high achievers’ HMM, the transition 
probability from the initial Setup (State A) to the model manipulation (State D) was only 10%. This result 
suggests that these students rarely setup the main parameters after resetting the model, but rushed to start the 
simulation (State B). Nevertheless, this dyad sometimes also manipulated some model parameters (State D). 
The students often stopped the simulation (State C), changed the parameters (State D), and then resumed (State 
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B). It is also interesting to note that log file analysis revealed this dyad never attempted to track an individual 
CO2 molecule, unlike the high achieving dyad.  

 

 
Figure 2: Hidden Markov Model of the high achieving dyad 

 
These results indicated that the model exploration strategies adopted by two dyads were different. The 

HMM for the high achieving dyad indicates that their explorations can be characterized by the interaction with 
the model, systematic control of the parameters, and model tracking behaviors. It also suggests that these 
students combined qualitative and quantitative explorations depicted by State D and State B, respectively. Their 
dominant interaction behavior can be broadly called a “Setup-Configure-Start/Follow” pattern. The HMM for 
the less successful dyad depicts more passive student interactions with the model and more surface exploration 
behaviors. Their dominant behavior pattern can be broadly called “Setup-Start-Stop,” which was then followed 
by the manipulation of model parameters. Overall, the HMM for the low achieving dyad indicates that these 
students did not engage in systematic explorations of the agents depicted in the carbon cycle model. 
 

 
Figure 3: Hidden Markov Model of the low achieving dyad 

 
In order to triangulate the HMM results, we used other core process visualization and statistical 

techniques to explore student interactions by constructing interaction graphs (Figure 4 and Figure 5). These 
graphs depict dyads’ interactions with the carbon cycle models during the experimental period. The vertical axis 
represents the time line, and the horizontal axis shows the total number of various model control actions taken 
from the beginning of the session. 

The interaction graph for the high achieving dyad confirms that the students actively explored the 
model during the entire experimental sequence by using three main simulation controls and parameters: fossil 
fuel use, speed, and tracking CO2 molecule (Figure 4). It also depicts that during the first half of the session 
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students changed the fossil fuel rates and speed, which suggests simultaneous quantitative and qualitative 
explorations for tracking of a CO2 molecule. However, it also reveals that there were noticeable changes in the 
student behaviors over time. For example, these students changed the CO2 tracking setting during the first half 
of the session only. This was followed by a shorter, but a noticeable period, when students actively controlled 
the fossil fuel use. At the end of the session, they interacted with the model simply by pausing and resuming the 
simulation without changing its settings.  

 

 
Figure 4: Interaction graph of the high achieving dyad 

 
Similarly the interaction graph for the low achieving dyad generally reaffirmed the pattern depicted by 

the HMM (Figure 5). It showed that these students interacted with the model much longer, but their interaction 
was often limited to Setup, Start, and Stop actions. The interaction graph further revealed noticeable changes in 
the student behavior during the session. For example, in more than half of the session, these two students 
changed only the fossil fuel use values. This was followed by a short interval when the students started to 
change and manipulate only speed, and they then proceeded to changing the two parameters simultaneously.  

 

 
Figure 5: Interaction of the low achieving dyad 

Discussion and Conclusion 
In terms of the implications of these findings for the research interest related to sequences of pedagogical 
structure, we note that participants in both the Challenge and Guided Learning (CGL) and Guided Learning 
(GL) sequences made significant learning gains. Although there were not significant learning differences 
between the two treatment groups, the main findings were actually in the hypothesized directions, with the CGL 
group scoring higher on the model problem solutions (especially Model 1) and on the posttest than did the GL 
group. We note that this study involved a relatively small number of students, and we are planning future 
studies that will involve larger numbers by collecting data in additional schools, which should provide greater 
statistical power to further investigate aspects of the sequencing of pedagogical guidance for agent-based 
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models and learning. Still, given there have been few reported empirical studies of learning in this area, an 
important finding in this study is that on average all participants significantly enhanced their understanding of 
important scientific knowledge about greenhouse gases and the carbon cycle.  

The process analysis is an ongoing research theme in this project. We aim to find key patterns of 
students’ interactions with the models, and find ways to identify “on-the-fly” effective and inefficient behaviors 
for learning with agent-based computer models. A current limitation is that the algorithm that we used to 
construct the HMMs has a local maxima problem and the log data files are relatively small. In our study, we 
executed the algorithm one hundred times with random initializations by sampling the initial parameter values 
from uniform distributions (Jeong et al., 2010; Southavilay, Yacef, & Callvo., 2010). The HMMs were 
constructed when these executions converged to the same configuration. A better solution is needed to execute 
this algorithm if we are to use the HMM for providing feedback to students and teachers in real time. Further, 
the HMM algorithm applied to the student model generated log files identifies patterns that are directly rooted 
in students’ technical fine-grained actions and constructs only one model for the entire interaction sequence. 
Two key challenges need further exploration and solution.  

First, as we illustrated above, students’ behavior patterns may change during their interaction with the 
model. For example, we expect that one of possible reasons for the change in student interactions depicted in the 
timelines (Figure 4 and 5) was the change between the three activities associated with each model. Other 
research (Levy & Wilensky, 2010) has that found students tend to apply similar strategies when they interact 
with different models. In addition, their interaction patterns are not fixed and students, particularly successful 
learners, may flexibly adapt their interaction strategies as their goals change (i.e., when students complete one 
activity or answer a question and move to the other). The analytical techniques should be flexible enough to 
identify such macro level changes (i.e., shifts between stages or goals) in student exploration strategies and then 
construct interaction patterns for each stage separately. Second, when modeling is based on the raw log data, it 
directly links students’ activities to the students’ technical fine-grained interactions with the model via the 
interface (i.e., “button click” is equal to student activity). These “technical actions” are likely not identical to the 
“meaning actions” that are associated with the students’ intentions and conscious behavior. Drawing on 
evidence from cognitive research, we can expect that “meaning actions” are likely to be more abstract “chunks” 
of common sequences of student behavior (i.e., clusters of common strings of “technical actions”). Mining 
techniques are needed for identifying “meaning actions” in student logs initially, which then could be used for 
constructing further student interaction models.  

To address the first challenge, we are currently working on two goals. First, we will put a time/date 
stamp into the NetLogo log files to mark the beginning and ending of the specific problem solving activities the 
students are working on. This time/date stamp will allow us to identify possible changes in students’ strategies 
as they are engaged in the different model-based problem activities; in particular, different model use behaviors 
in sequences of low and high structured tasks associated with Challenge and Guided Learning and Guided 
Learning. Second, in order to gain deeper insights into how students performed their activities, we are also 
exploring possibilities to incorporate process mining techniques, particularly in the initial exploratory stage of 
the analysis (Trčka et al., 2011; van der Aalst, 2011). Addressing the second challenge, we plan to utilize a 
Hidden Markov Model clustering algorithm (Shih, Koedinger, & Scheines, 2010) and explore other similar 
techniques. By clustering and learning HMMs rather than just one for each student group, we can discover 
different strategies that students employed and to use those strategies to understand and, perhaps in the future, to 
predict learning outcomes. This combination of techniques should provide a good fit between automatically 
identified behavior patterns to students’ conscious behavior. In terms of more general research issues 
highlighted at the start of this paper, these results are encouraging for the continuation of this design-based 
research, and we are hopeful that the process mining approaches we are developing may be useful in providing 
further insights into the dynamics of learning scientific knowledge with computer model based learning 
activities.  
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