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H I G H L I G H T S  

• Proposing an optimal feature selection algorithm for medical datasets. 
• Applying binary differential evolution approach and local search algorithm. 
• Applying dimensionality Removal mechanism. 
• Validating on heart disease, several cancer and RNA-seq COVID-19 datasets. 
• Obtaining outstanding performance in generating optimal feature subset.  

A R T I C L E  I N F O   

Keywords: 
Feature selection 
Evolutionary computation 
Differential evolution 
Binary stochastic search 
Dimensionality reduction 
Gene selection 
Optimization 

A B S T R A C T   

Computer systems store massive amounts of data with numerous features, leading to the need to extract the most 
important features for better classification in a wide variety of applications. Poor performance of various ma
chine learning algorithms may be caused by unimportant features that increase the time and memory required to 
build a classifier. Feature selection (FS) is one of the efficient approaches to reducing the unimportant features. 
This paper, therefore, presents a new FS, named BDE-BSS-DR, that utilizes Binary Differential Evolution (BDE), 
Binary Stochastic Search (BSS) algorithm, and Dimensionality Reduction (DR) mechanism. The BSS algorithm 
increases the search capability of the BDE by escaping from local optimal points and exploring the search space. 
The DR mechanism then reduces the dimensions of the search space gradually. As a result of using DR, the local 
optima of the search space and the problem of wrong removal of important features before starting the search 
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process are reduced. The algorithm’s efficiency is evaluated on 20 different medical datasets. The obtained 
outcomes indicate that the BDE-BSS-DR outperforms the BDE and BDE-BSS algorithms significantly. Further
more, the effectiveness of the proposed algorithms in selecting the most important features of the heart disease 
data, several cancer diseases, and COVID-19 are also compared with several other state-of-the-art methods. Our 
results show that the BDE-BSS-DR with SVM classifier has a significant advantage over other methods with an 
average classification accuracy of 95.05% in heart disease and 99.40% in COVID-19 disease. In addition, the 
comparisons made with KNN and SVM classification prove the efficiency of the DR and BSS in generating a subset 
of optimal and informative features.   

1. Introduction 

Efficiency improvement in various data mining and ML applications 
is a benefit of dimensionality reduction, which is a critical step in data 
pre-processing. The curse of dimensionality is an issue that learner 
models often encounter when dealing with a considerable number of 
features, in particular in high-dimensional datasets [1]. In addition, the 
large number of features means more computational resources and 
memory usage in ML and data mining applications. These problems 
make ML methods inefficient and may reduce their scalability. There
fore, dimensionality reduction methods can be used as an effective 
method to reduce the above issues. Two types of methods widely used 
for reducing the number of features in a dataset are feature selection and 
feature extraction methods [2]. 

The purpose of feature extraction algorithms is to reduce the 
dimensionality of data by generating new features from existing ones. In 
contrast, FS algorithms identify an optimal subset of features and 
remove redundant, irrelevant, trivial, and noisy features to improve the 
speed and accuracy of ML methods [3]. The curse of dimensionality, as 
well as memory consumption and high computational costs, can be 
mitigated by using effective feature extraction and FS algorithms [3]. In 
recent years, feature extraction and FS algorithms have attracted re
searchers’ attention, particularly in medical applications. Selecting a 
proper subset of the most significant features can determine the cause of 
diseases in the early stages and reduce medical care costs [4]. For 
instance, extracting information from medical images could help spe
cialists diagnose a disorder. It could also help the specialists reach a 
consensus on some patients’ medical conditions [4]. The selection of the 
most important features from the medical dataset makes it possible to 
discover the most significant and influential factors in various diseases 
and thus prevent various diseases. FS can also play a meaningful role in 
designing medical decision support systems more efficiently. 

The process of FS involves the selection of a relevant subset of fea
tures while eliminating unimportant features from the original feature 
set [3]. One of the most effective ways to choose a feature subset is by 
utilizing search methods. The exhaustive search method involves 
searching the entire problem search space and examining all possible 
feature subsets. Feature selection is an NP-hard problem, and in a 
dataset with n features, the search space has 2n − 1 solutions [3,4,5]. 
However, with the exponential expansion of the number of proposed 
solutions to the problem [5], it is practically impossible to implement an 
exhaustive search algorithm in datasets with numerous features, even 
with the most advanced computers available. 

Recently, a plethora of EC methods have emerged for FS. These 
techniques are recognized for their global search ability and reasonable 
time and memory complexity in FS [3]. However, despite their effec
tiveness in low-dimensional data, the huge search space and local 
optimal points in high-dimensional data often lead to poor performance. 
Therefore, it is imperative to implement strategies that enhance the ef
ficiency of EC methods and maximize FS effectiveness, particularly in 
high-dimensional datasets. Various ideas have been presented by re
searchers to solve the challenges mentioned above. In this section we 
will examine two categories:  

1. Using strategies to reduce the dimensions of the extremely large 
search space of high-dimensional data and using EC methods to 
search for the optimal subset in the reduced search space. Among 
these techniques, we can refer to SFE-PSO [3], BIBE [6], MFI-RFPA 
[7], MTPSO [8] and HFSIA [9]. For example, in [8], important fea
tures are determined using the ReliefF [10] algorithm, then less 
important features are filtered from the dataset, and finally PSO is 
used to search the optimal subset. Similarly, in [9], the Fisher 
method is used to determine the important features, and then the less 
important features are removed from the dataset. Then, the Artificial 
Immune Optimization algorithm is used to search for the optimal 
subset in the reduced search space. Although reducing the search 
space with filter-based algorithms is a good idea, using this idea still 
has problems. For instance, in most of these methods, before starting 
the search process a large number of features that the filter-based 
algorithm has recognized as less important features are removed 
from the dataset. The wrong removal of important and relevant 
features from the dataset causes the algorithm to not achieve the 
expected performance. Therefore, the efficiency of these methods is 
highly dependent on the filter-based algorithm used, and these 
methods may not have the expected efficiency in some datasets.  

2. In another category of presented methods, the search process is 
performed in the original search space. Among these techniques, we 
can refer to SFE [3], SIFE [11], FS-DOS [12], SaWDE [13] and 
MDEFS [14]. For example, in [13] and [14], the DE algorithm with 
different mutation methods is used to select features in the original 
search space with high-dimensional data. Searching in the original 
search space eliminates the problem of mistakenly deleting impor
tant and relevant features. But these methods also have a problem. In 
the search process of the EC methods, making extensive changes in 
the solutions is not possible. Therefore, when these methods are used 
to search the extremely large search space of high-dimensional data 
with a large number of local optima, they encounter problems such 
as stopping at local optima, premature convergence, and high 
computational cost. 

1.1. Objectives and contributions 

The central objective of this research paper is to enhance the effec
tiveness of FS by introducing a novel DR mechanism and a novel BSS 
algorithm. The DR mechanism is proposed to reduce the problem of 
wrongly removing relevant and important features from the dataset. 
This method gradually removes less important features during the 
search process, unlike most of the methods presented in recent years that 
remove a large number of features before the start of the search process. 
The gradual removal of less important features causes the gradual 
decrease of search space dimensions and the problem of wrong removal 
of relevant features is reduced. Moreover, the BSS algorithm is proposed 
to reduce problems such as stopping at local optimal points and early 
convergence of FS, in particular in high-dimensional data. With a sto
chastic approach, BSS is proposed to increase the efficiency of the search 
and the escape of the trapping in local optimal points. The following are 
the main contributions of this research work: 
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• Introduce an efficient FS algorithm based on the DE algorithm, a 
novel DR mechanism, and a new BSS.  

• Introduce a novel DR mechanism to reduce the problem of removing 
important and relevant features from the search space. In addition, 
the proposed DR transforms a large search space into a smaller one to 
increase search algorithms’ efficiency in the FS process and solve the 
problem of trapping local optimal points in high-dimensional 
datasets.  

• Propose a novel stochastic approach for enhancing the effectiveness 
of EC methods for FS through a BSS. The approach follows to goals: 
first, search for better solutions in some parts of the search space that 
the BDE algorithm does not have the ability to search, and second, 
prevent the algorithm from stopping at local optimal points.  

• Application of the proposed algorithm in selecting proper features of 
the heart disease dataset.  

• Application of the FS algorithm for gene selection of several cancer 
datasets and COVID-19 disease datasets. 

The structure of this study is as follows: In Section 2, a comprehen
sive review of recent literature related to the research is presented and 
analyzed. Section 3 presents the proposed BDE-BSS and BDE-BSS-DR 
algorithms. In Section 4, the experimental outcomes conducted for 
performance evaluation are discussed. The paper concludes in Section 5, 
where the findings are summarized, and directions are suggested for 
future research. 

2. Literature review 

In the past few years, EC techniques have gained significant popu
larity due to their fast implementation, ability to find near-optimal so
lutions, and stochastic nature that allows them to escape from local 
optima. EC techniques such as Genetic Algorithm [15], DE [13], PSO 
[8], GWO [16], and other algorithms have been widely used for FS, 
achieving good performance. This section will provide an overview of 
some of the EC methods employed for wrapper-based and hybrid FS in 
recent research. 

2.1. Wrapper-based FS algorithms 

Zorarpacı et al. [17] introduced a new wrapper approach for FS that 
integrates the DE and ABC algorithms. The wrapper approach consists of 
three novel strategies: a binary neighborhood search, a modified 
onlooker bee method, and a binary mutation. The three strategies were 
devised to yield optimal feature subsets. 

Mafarja et al. [18] introduced two new mechanisms to increase the 
performance of the grasshopper optimization method for FS. The first 
mechanism employs a pair of transformation functions to convert the 
continuous space into a binary space, whereas the second mechanism 
introduces a novel mutation operator to enhance the exploration ability 
of the algorithm. 

El-Kenawy and colleagues [19] proposed an enhancement of the gray 
wolf algorithm by utilizing the stochastic fractal search algorithm in FS. 
The objective of this enhancement is to strike a balance between the 
capacity to explore and exploit, leading to an enhancement in 
effectiveness. 

Zhang and team [20] introduced a FS algorithm named MOFS-BDE 
that uses a binary differential evolution approach with a self-learning 
strategy. To improve the DE efficiency in FS, three novel operators 
were employed. The binary mutation operator assists population 
members in swiftly locating optimal regions. The non-dominated sorting 
operator decreases the computational expense of the selection operator 
of the DE algorithm. The one-bit purifying search operator improves the 
self-learning ability of the elite population members situated in the 
optimal areas. 

Tubishat and co-authors [21] improved the efficiency of the Salp 
swarm optimization by implementing Singer’s chaotic map and a local 

search algorithm for FS. Singer’s chaotic map method is used to enhance 
the diversity of population members. The local search also improves the 
exploitation capability of the algorithm, leading to the identification of a 
better solution. Tan et al. [22] suggested DimReM, a method that utilizes 
EC methods to reduce high-dimensionality search spaces. The primary 
objective of this method is to eliminate unimportant features to decrease 
the problem space. However, EC methods have inherent characteristics 
that may cause trapping best population members in a local optimum, 
which can result in trapping others in the population as well. Moreover, 
reducing the search space size to achieve the desired answers can be 
slow, which may lead to a high computational cost. 

In their work, Wang et al. [13] presented a new method, SaWDE, for 
feature selection that utilizes a self-adaptive weighted DE algorithm. 
SaWDE incorporates a multi-population mechanism that helps to in
crease population diversity and identify optimal feature subsets. To 
cater to different datasets, the algorithm includes two self-adaptive 
mechanisms that aid in selecting appropriate mutation operators and 
parameter values. Additionally, a model is employed to assign weights 
to the features indicating the importance of each feature. However, the 
inclusion of self-adaptive and weight model mechanisms makes the al
gorithm computationally expensive. 

In another study, Cheng et al. [23] proposed an FS algorithm for 
high-dimensional data called SM-MOEA, which is based on a 
steering-matrix and uses a multi-objective evolutionary approach. 
SM-MOEA aims to determine the importance of features using a 
steering-matrix and guide the population towards optimal solutions. To 
decrease the size of the search problem and enhance the performance of 
the algorithm, dimensionality reduction and individual repairing oper
ators are utilized. The dimensionality reduction operator removes un
important features, while the individual repairing operator repairs and 
maintains the search agents’ good features. However, constructing a 
steering-matrix for datasets with numerous features can be 
memory-intensive. Moreover, incorrect feature removal during the 
dimensionality reduction phase may lead to local optimums and poor 
algorithm performance. 

2.2. Hybrid FS algorithms 

A novel FS algorithm was proposed by Song et al. [24] that utilizes 
particle swarm optimization and mutual information methods. The 
mutual information method determines the importance of each feature, 
which is then employed in the initialization of the PSO to accelerate the 
convergence rate of the FS algorithm. Additionally, two local search 
techniques are integrated to enhance the exploitation capability of the 
PSO. 

On the other hand, Kilic et al. [25] introduced the multi-population 
particle swarm optimization algorithm to improve the exploration 
capability. This approach assigns a random initialization to each search 
agent based on the rank obtained by the ReliefF feature ranking algo
rithm, and each agent conducts its search process simultaneously. 

Tarkhaneh and colleagues [14] suggested a differential evolution 
algorithm for FS named MDEFS. The algorithm introduces three inno
vative strategies, including two novel mutation strategies and a cross
over operator to attain an acceptable equilibrium between exploring 
new possibilities and exploiting existing knowledge, one must carefully 
navigate and manage the two strategies. The ultimate goal is to generate 
effective feature subsets. 

In their study, Song et al. [26] suggested a hybrid approach for FS in 
high-dimensional datasets. The introduced method involves using 
variable-sized cooperative co-evolutionary PSO. The first step is to 
identify the importance of each feature by employing the SU algorithm, 
which reduces the number of dimensions in the search space. After that, 
smaller subspaces are formed, and multi-swarm PSO is applied to 
explore each subspace. To ensure population diversity, some methods 
are adopted throughout the search process, such as eliminating dupli
cate particles and adding new ones. The final solution is obtained by 
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merging solutions acquired from various sub-swarms using a crossover 
technique. However, this algorithm has some drawbacks, such as sig
nificant computational costs caused by distinct sub-swarms and poten
tial local optimal point entrapment because of the insufficient 
interaction among important features across various sub-swarms. 

On the other hand, Chen et al. [8] proposed the MTPSO algorithm as 
a feature selection method for data with large dimensions. MTPSO uses a 
multitasking approach and PSO divides the large search spaces into 
smaller ones using a ReliefF-based method. The smaller sub-tasks are 
then searched using a multi-population PSO. To improve efficiency, 
knowledge transfer is employed to exchange information about impor
tant features among the sub-populations. 

Seven recent techniques of reducing the dimensions of the search 
space and using EC methods for searching in the reduced search space 
have been summarized in Table 1. 

2.3. Research gaps 

As previously mentioned, EC-based FS algorithms have shown 
promising results. However, they often encounter issues such as pre
mature convergence and being trapped in local optima solutions [3], 
which is particularly problematic for high-dimensional datasets. 
Furthermore, these algorithms face other obstacles such as the curse of 
dimensionality, expensive computations, and high memory usage [31]. 
The FS algorithms discussed in earlier sections have improved the effi
ciency of EC methods by employing various operators, local search 
techniques, and search space reduction methods. Nevertheless, some of 
the algorithms reviewed, including [13] and [23], may require signifi
cant memory and computational resources for FS. Additionally, certain 
algorithms, such as [6] and [7], that conducted dimension removal 
through filter-based methods may lead to local optima solutions in some 
datasets. This occurs when relevant features are not accurately identi
fied, resulting in incorrect filtering from the dataset and poor classifi
cation performance. To summarize, the challenges associated with 
current FS algorithms are due to their limitations in handling 
high-dimensional search spaces, resulting in possible local optima so
lutions, high computational and memory costs, and inadequate classi
fication efficacy. The challenges, existing solutions, challenges of the 
methods presented in recent years, research gaps of feature selection 
from high-dimensional data, and our proposed solutions are summa
rized in Table 2. 

Thus, we present a novel FS approach that utilizes a combination of 

the BDE algorithm, a BSS algorithm, and a DR mechanism to address the 
challenges mentioned earlier. The BSS algorithm amplifies the search 
capacity of the FS algorithm, whereas the DR mechanism gradually re
duces the search space’s size, reducing the algorithm’s memory and 
computational demands. Moreover, it optimizes the search process, thus 
facilitating effective searching. It is crucial to note that the No-Free- 
Lunch (NFL) theorem [36] suggests that no EC-based FS algorithm can 
identify the optimal feature subset across all datasets. This theorem has 
inspired our work to develop a new FS algorithm. 

3. Model description and assumptions 

EC methods are highly efficient in selecting features in low- 
dimensional and medium-dimensional datasets. One of the challenges 
of FS algorithms in low and medium-dimensional datasets is the possi
bility of getting trapped in local optima. In high-dimensional datasets, 
EC methods face further difficulties due to the vast search space and 
numerous local optima. Consequently, EC methods often suffer from 
issues such as the curse of dimensionality, trapping at local optima, and 
premature convergence [3]. DE is a successful EC technique that has 
been utilized in several recent FS algorithms [37,38], [39]. It was first 
presented by Storn and Price [40] in 1995. The DE leverages three 
commonly used operators, namely mutation, crossover, and selection, to 
look for the optimal solution. To search the problem space, the DE al
gorithm employs the mutation operator [37]. The crossover operator 
has a crucial impact in leading the algorithm to the optimal solutions to 
the problem by exchanging information between search agents and 
population agents, creating new search agents [41]. Lastly, it uses the 
selection operator to guide the search space population members toward 
potential optimal solutions [42,43,44]. DE has demonstrated satisfac
tory performance in various problems that require different levels of 
exploration and exploitation. The algorithm has been enhanced using 
self-organizing parameters, local search algorithms, new mutation and 
crossover operators, among other techniques [45]. 

The simple structure, easy implementation, strong search ability, and 
high efficiency of the differential evolution algorithm have used this 
algorithm in various optimization problems [41]. The mutation operator 
has an important impact on the exploitation and exploration capabilities 
of the DE algorithm. Some mutation methods, such as DE/rand/1, have 
high exploration ability but weak exploitation ability. So, the conver
gence speed of the algorithm is slow when using them. In contrast, some 
mutation methods, such as DE/Best/1, have high exploitation ability but 

Table 1 
A summary of the most recent FS methods presented with a search space dimensionality reduction approach.  

No. Reference Method Category, 
Classifier 

No. of datasets, 
Range  

1 BIBE 
(2022) [6] 

Reducing the dimensions of the search space by Fisher score. Using Genetic Algorithm Operators to Search the 
reduced search space. 

Hybrid, 
KNN 

12, 
[2000,12600]  

2 MFI-RFPA 
(2023) [7] 

Reducing the dimensions of the search space of the FPA algorithm before starting the search process using the 
filtering of less important features determined by the three algorithms IGR, Relief-F, and Chi-squared. 

Hybrid, 
C4.5, 
Naive 
Bayes 

18, 
[2000,22283]  

3 MF-CSO 
(2023) [27] 

Reducing the dimensions of the search space of the CSO before starting the search process by converting the search 
space into several tasks and filtering the less important features determined by the three algorithms PCC, Relief-F, 
and TV. Searching with the CSO algorithm and transferring knowledge between tasks. 

Hybrid, 
KNN 

18, 
[2420,12600]  

4 SFE-PSO 
(2023) [3] 

Searching a large space of high-dimensional data with the SFE algorithm, finding important and relevant features in 
the initial search phase, removing unimportant features from the search space, and using the PSO algorithm to search 
the reduced search space. 

Wrapper, 
KNN 

40, 
[1024,24481]  

5 MGWO 
(2023) [28] 

Reducing the dimensions of the search space of the modified GWO algorithm before starting the search process by 
using the filtering of less important features determined by Copula entropy and Relief-F algorithms. 

Hybrid, 
KNN 

10, 
[2308,12600]  

6 ESAPSO 
(2023) [29] 

Reducing the dimensions of the search space of the PSO algorithm through explicit particle representation and 
filtering the less important features determined by the Maximum Information Coefficient method. 

Hybrid, 
KNN 

10, 
[2308,12533]  

7 VGS-MOEA 
(2022) [30] 

Reducing the dimensions of the search space by grouping features (Using PCC, SU, K-Means and other algorithms) 
and using one bit to display several grouped features. Using Genetic Algorithm Operators to Search the reduced 
search space. 

Hybrid, 
KNN 

12, 
[1024,22283]  
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poor exploration ability. For this reason, when these mutation methods 
are used, the algorithm may stop at a local optimum, leading to pre
mature convergence. Therefore, to achieve high performance in various 
problems, achieving a well-balanced distribution of capabilities for both 
exploitation and exploration is imperative for optimal performance 
[41]. 

We, therefore, exhibit both BSS and DE algorithms to propose a novel 
FS algorithm. In this algorithm, the mentioned two mutation methods 
are used in different search stages. Also, the BSS algorithm plays a vital 
role in achieving this goal. In addition, a new method called the DR 
mechanism has been presented to increase the efficiency of FS. This 
study aims to improve the exploration and exploitation capacity of the 
DE algorithm via the implementation of a DR mechanism and BSS al
gorithm. Table 3 provides a summary of the notations utilized in the 
proposed algorithms. 

3.1. Solution methods 

3.1.1. Encoding and initialization of search agents 
Originally, the DE algorithm was designed to solve continuous 

optimization problems; thus, it cannot be used to resolve binary prob
lems like FS directly. This calls for appropriate modifications to adapt 
the algorithm to the requirements of the problem under study. There
fore, a binary version of the algorithm is required. This paper uses a 
binary version of the differential evolution algorithm (BDE) developed 
by Wang et al. [46]. Due to the binary form of the FS, the population 
members of the BDE must be initialized as binary. Assuming that the 
number of features or the dimensions is equal to D, each problem agent 
in the DE algorithm will have a D component; each component repre
sents one of the features. In Fig. 1, we see one of the problem agents in 
binary form. Fig. 1, shows the initialization of a search agent in binary 
form. As shown the Fig. 1, the values 1 and 0 indicate that a feature is 
selected or not selected, respectively. In this section, the population 
members of the algorithm are initialized randomly using binary values. 

3.1.2. Global search based on the BDE algorithm 
The BDE algorithm executes the global search or exploration phase 

throughout the search, where the selection, crossover, and mutation 
operators are employed. Within the mutation stage, a probability esti
mation operator is utilized to determine the values of each search agent 

component. In iteration it +1 of the algorithm, for each component j of 
the ith search agent, Eq. (1) represents the implementation of the 
probability estimation operator: the probability estimation operator is 
used as (1): 

P(xi,j,it) = 1
/(

1 + e− 2×b×(MO− 0.5)/(1+2×F)), (1)  

MO = xr1,j,it +F.
(
xr2,j,it − xr3,j,it

)
, (2)  

where P(xi,j,it) is the probability estimation operator, which is calculated 
for each agent component separately, and b is the bandwidth factor, and 
it is a positive integer used to adjust the extent and outline of the 
probability estimation operator. The proper value of this variable can 
play an influential role in increasing search efficiency and keeping 
population diversity high. F represents the scale factor, and MO denotes 
the mutation operator of the original DE algorithm, which is calculated 
by the values of the three search agents of population members, and 
xr1,j,it, xr2,j,it and xr3,j,it represent the jth component of the three search 
agents that are randomly selected. r1, r2, and r3 are three random 
numbers to select population agents [46]. After generating three random 
numbers in the proposed method, the MO value is determined as follows. 

if ImIter > MaxImIter_BDE 

Table 2 
The challenges, existing solutions and their challenges, research gaps of feature selection from high-dimensional data and solutions of this article.  

Challenges of feature 
selection from high- 
dimensional data 

Existing solutions Challenges of the existing solutions Research gaps and solutions proposed in this 
article 

Curse of dimensionality, 
high computational cost 
and memory consumption 

Removing a large number of irrelevant features 
before starting the search process with different 
methods such as determining important 
features with filter-based methods, and 
searching the reduced search space with EC 
methods to determine the optimal subset.[6,7,8, 
27,28,29]. 

The wrong removal of important features 
and the incorrect determination of the filter 
point to remove features from the search 
space causing poor performance. 

Research gap: Avoid deleting important features 
before starting the search process. 
The proposed solution of this article: Gradual 
removal of unimportant features in the search 
process with Dimensionality Reduction (DR) 
mechanism. 

Optimal subset search in the original search 
space.[3,11,13,14,32,33,34,35]. 

Algorithm stops at the local optimal points of 
the extremely large space of high- 
dimensional data, high computational cost, 
and high memory consumption. 

Research gaps: Finding a solution to increase the 
ability of the algorithm to escape from the local 
optimal points and the ability to search for 
points close to the global optimal. 
The proposed solution of this article to increase 
the search capability: Binary Stochastic Search 
algorithm. 
The proposed solution of this article to reduce 
the computational cost and memory 
consumption: Dimensionality Reduction (DR) 
mechanism.  

Table 3 
Notations used in the proposed algorithms.  

Notations Description 

xbest The best solution for the population 
xnew The solution obtained by the BSS algorithm 
xworst The worst solution in the population 
ImIter Is a counter, and if the algorithm cannot improve the best solution in 

each iteration, a unit is added to its value 
MaxImIter_BDE Maximum number of improvement iterations for switching between 

mutation methods of the BDE algorithm 
BSSMax_it The maximum number of improvement iterations considered to call 

the BSS algorithm 
MaxImIter_DRM The maximum number of improvement iterations considered to call 

the DR mechanism 
Nch The number of changes in the best solution 
Chr Rate of change 
NS The number of features after using the DR mechanism 
Ct Calling time of the BSS algorithm 
Rt Removal threshold 
NSr Rate of non-selection of features  
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MO = xr1,j,it +F.
(
xr2,j,it − xr3,j,it

)

else
MO = xbest,j,it + F.

(
xr1,j,it − xr2,j,it

)

end
(3)  

where, ImIter is a counter, and if the algorithm cannot improve the best 
solution in each iteration, a unit is added to its value. MaxImIter_BDE is the 
maximum number of improvement iterations for switching between 
mutation methods of the BDE algorithm. Also, xbest is the best solution in 
the current repetition it, which means its fitness is maximal so far. The 
reason for using xbest is sharing information obtained by the best agent 
among other search agents. For example, if the algorithm fails to 
improve the classification accuracy in MaxImIter_BDE consecutive itera
tions, then the algorithm uses the DE/rand/1 mutation method to 
improve the exploration capability of the algorithm by generating 
random solutions. But if in MaxImIter_BDE consecutive iterations, the al
gorithm can achieve better solutions. In that case, the DE/best/1 muta
tion method employs the information of the best solution obtained to 
direct the population to the best solution obtained. After that, the 
probability estimation operator value for each of the components is 
calculated using Eq. (4) using the following Equation: 

vi,j,it =

{
1 , if rand

( )
≤ P(xi,j,it)

0 , Otherwise . (4) 

In the above Equation, vi,it is the mutated vector of ith population 
member in iteration it. According to the above Equation, the compo
nents of the search agents, whose probability estimation value is closer 
to 1, have a better chance of becoming 1. The components with the 
smaller probability estimation value have a better chance of becoming 0. 
Therefore, the features selected by the majority of the agents are more 
likely to be selected, and the features with probabilities close to 0 are 
more likely to be removed. The basis of the work of the selection and 
crossover operators in the BDE is similar to the original DE algorithm. A 
brief explanation of the operators and the search process of the original 
DE algorithm can be found in Appendix 1. 

3.1.3. Binary Stochastic Search 

After the global search phase, which includes the use of the mutation, 
crossover, and selection operators, the BSS algorithm will be called to 
improve the xbest of the BDE. The pseudo-code of the BSS is presented 
in Algorithm 1. If the BDE algorithm fails to improve performance in 
MaxImIterLSA consecutive iterations, this algorithm will be executed. 

Therefore, a counter, ImIter, is used to count the consecutive repetitions 
that the algorithm could not find a better solution. If the algorithm 
cannot improve the best solution in each iteration, a unit is added to its 
value. The value of this counter is initialized with 0 after each iteration 
of the BSS algorithm. 

Algorithm 1. Binary Stochastic Search (BSS).  

The goal of this algorithm is to improve the solution of the xbest of the 
population. Throughout the search algorithm, the features of the xbest of 
the population are changed to get a better solution. A number called the 
change rate (Chr) is first selected to conduct a BSS. Then, the value of the 
rate of change in different datasets is selected as follows:   

where Chr is the rate of changes, and D is the number of features in 
the dataset. After determining the change rate, the number of changes is 
calculated using the following equation: 

D…321
001…1011A search agent

UnselectedSelected 

Fig. 1. Encoding of a search agent.  

Chr =

⎧
⎨

⎩

[0.02, 0.04, 0.06, 0.07, 0.08, 0.09, 0.1, 0.2] D <= 100
[0.005, 0.006, 0.007, 0.008, 0.01, 0.03, 0.05, 0.06, 0.08, 0.1, 0.2] 100 < D < 500
Randomly generated numbers between [0, 1] D ≥ 500

(5)   
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Nch = ⌈Chr × D⌉, (6)  

where Nch refers to the count of changes involved. The Nch parameter 
conveys the quantity of feature state transitions occurring during a 
single iteration of the BSS. For example, with a dataset containing 2000 
features, if the number of changes is selected as 0.05, using Eq. (6), the 
number of changes would be 100. Therefore, the algorithm performs the 
stochastic search by making changes in 100 components of the xbest . 
Now, 100 numbers are created in the range of 1 to the number of fea
tures in the dataset, randomly. In the following, two different ap
proaches are used in the BSS algorithm based on the number of features 
in the dataset:  

• High-dimensional data: In high-dimensional datasets such as the 
DNA microarray, many features are irrelevant. In such datasets, 
achieving the least number of features (genes) can demonstrate a 
significant role in identifying important factors in diseases and 
increasing the efficiency of ML methods. Therefore, to FS in these 
datasets, we need to change the number of more features to non- 
selection status (i.e., 0). To achieve this goal in the BSS algorithm, 
a parameter called non-selection rate (NSr) is used. The value of this 
parameter indicates the chance of not selecting the features. There
fore, if we set values close to 1 for this parameter, the chance of not 
selecting features increases at each stage of the search. Therefore, a 
random number between [0,1] is generated first. If the value of this 
number is less than NSr, then the value of all randomly selected 
features changes to 0. If the random number generated is greater 
than NSr, if the value of randomly selected features is 0, it changes to 
1, and if this value is 1, it changes to 0. In this way, we consider a 
larger probability of not selecting the features. This process causes 
important features to be selected without too many unimportant 
features.  

• Low-dimensional data: In a low-dimensional dataset, especially a 
dataset of various diseases, because the features collected in the 
dataset are usually related to the disease, so about half the number of 
features can be important features. In these datasets, considering the 
equal probability of selecting and non-selecting features can improve 
the performance of the FS process. In this dataset, the value of all 
randomly selected features changes to 0 and 1 if they were 1 and 0, 
respectively. 

After each iteration of the BSS algorithm, the objective function 
value of the xnew is compared to that of the xbest . If the objective function 
value of xnew is greater than or equal to the xbest , it is randomly replaced 
with the xbest or xworst . Replacing the obtained solution randomly with 
the xbest or xworst prevents the algorithm from rapidly converging to the 
local optimums. The pseudo-code of the BDE-BSS algorithm is presented 
in Algorithm 2. First, the initialization of the search agents is done, and 
the algorithm enters the search process. In each iteration of the algo
rithm, first, the global search process is performed using the BDE algo
rithm, and then if the BSS algorithm is called, the local search is 
conducted using the search around the xbest. 

Algorithm 2. BDE-BSS Algorithm.  

3.1.4. Dimensionality reduction mechanism 
In high-dimensional datasets, a significant portion of the features 

may lack importance, and therefore, to optimize the FS performance, a 
BSS algorithm was employed to eliminate redundant features. However, 
the sizeable search space coupled with the presence of multiple local 
optima may cause the BDE-BSS algorithm to converge at suboptimal 
points. As a solution to this challenge, an alternative algorithm named 
BDE-BSS-DR is proposed. BDE-BSS-DR reduces the size of the problem 
space to a more manageable size and therefore improves the perfor
mance. The pseudo-code of the BDE-BSS-DR algorithm is presented in 
Algorithm 3. In the BDE-BSS-DR algorithm, the FS process starts with 
Algorithm 2. After performing the search process, if BDE-BSS-DR cannot 
find better solutions in several consecutive iterations, it means that it has 
stopped at a local optimal point. In such cases, we use the dimensionality 
reduction mechanism. That’s why this algorithm is called BDE-BSS-DR. 
DR mechanism consists of three steps: 1) Determining important and less 
important features, 2) Removing less important features and search 
agents, and 3) Re-initialization and re-evolution of search agents and 
continuing the search in the new search space. 

Algorithm 3. BDE-BSS-DR Algorithm.  
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The first step to reduce the size of the problem space via the DR 
mechanism is to find important and unimportant features through the 
xbest of the population, the rest of the search agents, and the ReliefF al
gorithm. This step determines the important and unimportant features 
using the following three methods.  

1. Selected features by the xbest: selected features by the xbest are 
important features, so these features should not be removed from the 
dataset during the physical removal step.  

2. Selected features by most search agents: selected features by most 
search agents are important features. On the other hand, features 
that most search agents do not select are likely to be unimportant 
features. Therefore, identifying and removing unimportant features 
that most search agents have left non-selected can effectively reduce 
the search space. In this method, features that are not selected by 
more than half of the search agents are defined as unimportant fea
tures. Therefore, these features are good candidates for physical 
removal. To gradually reduce the size of the problem, the process of 
identifying important features begins with half of the population. For 
example, if the number of members of a population is 20, features 10 
population agents select are identified as important features. In the 
later search stages, an agent is added to the number of population 
members involved in selecting important features each time the 
dimension reduction method is called. For example, in the second 
call of the DR mechanism, the number of search agents increases 
from 10 search agents to 11 search agents. This method makes the 
search space smaller as the final iterations of the algorithm approach  

3. Important features determined by ReliefF algorithm: Using a 
filter-based algorithm can play an important role in determining 
important and unimportant features. Therefore, determining 
important features by the ReliefF algorithm and not physically 
removing them can play an effective role in deciding unimportant 
features. At each step of the DR mechanism call, 0.1 dataset features 
are used as the most important features defined by ReliefF. For 
example, in a dataset with 2000 features, 200 important features 

determined by ReliefF are used in the first call of the DR mechanism. 
In the second call, if the number of dataset features is reduced to 600 
features through the DR mechanism, 60 important features are used. 

Once the significant and insignificant features have been identified, 
the latter are eliminated from the dataset and search agents using a 
physical removal process. It is important to note that if the number of 
remaining features in the revised search space exceeds the designated 
threshold value (Rt) after the removal process, the deletion operation 
will be executed. In other words, if the delete operation causes the 
number of features to reach less than Rt , the deletion will not take place 
and the algorithm will continue the search process in the same search 
space as before. The parameter Rt is a remove threshold to use the DR 
mechanism. Therefore, the deletion process is carried out until the 
number of remaining features in the dataset is greater than the param
eter Rt. Physical removal of features from the dataset causes the size of 
the problem space to be reduced compared to the dimensions of the 
original dataset. Therefore, Algorithm 2 can find better subsets under 
the new spaces. In addition to physically removing features from the 
dataset, unimportant features are also removed from the search agents. 
This way, the search space is reduced from a larger space to a smaller 
one. 

To pursue the exploration process in the new space, the solution 
obtained by the xbest and half of the population agents are transferred to 
the new space. In other words, after the physical removal of unimportant 
features, the values of the other features are preserved in the xbest and 
half of the search agents (with the best fitness value). This process 
preserves the information obtained in the previous phases of the search 
to continue the search process. In addition, the other half of the popu
lation agents (with the worst fitness value) are randomly initialized in 
the new search space. Using this method increases the diversity of the 
population. Therefore, a new population is formed under the new 
reduced space, and the search process continues. 

The DR mechanism removes unimportant features from the problem 
search space. Therefore, using Algorithm 2 can obtain a subset of 

Fig. 2. Illustration of BDE-BSS-DR scheme.  
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optimal features. Fig. 2 shows the proposed BDE-BSS-DR algorithm in 
global search, BSS, and DR mechanism. As shown in Fig. 2., the search 
process starts using the BDE algorithm. Then, the BSS algorithm is called 
if the BDE algorithm cannot improve the search process. Finally, after 
several iterations of the BDE-BSS search algorithm, if there is no 
improvement in the search process, the DR mechanism is called to 
reduce the search space size. It is important to note that the DR mech
anism may be called several times during the BDE-BSS-DR algorithm 
search process. In addition, determining the calling time of the DR 
mechanism can be optimal in increasing the efficiency of the FS algo
rithm. For example, in the proposed Algorithm 3, as we see in the 
pseudo-code, the DR mechanism is called if the number of iterations of 
the algorithm is more than Ct and the algorithm cannot improve per
formance in the previous MaxImIter_DRM iterations. 

3.1.5. Evaluation function 
Every element in the population is a potential solution to the FS 

problem. To evaluate each of the solutions, the classification accuracy is 
defined as presented in Eq. (7): 

fitness =
TP + TN

TP + TN + FP + FN
× 100%. (7) 

For medical dataset classification, TP and TN are the numbers of 
samples of sick and healthy people that the classifier has correctly 
classified. FP indicates the number of sick people that the classifier has 
wrongly classified as healthy, and FN indicates the number of healthy 
people that the classifier has wrongly classified as sick. The confusion 
matrix and efficiency criteria for the binary classification can be found in 
Appendix 2. 

3.1.6. Analysis of computational complexity 
The BDE algorithm’s computational complexity can be expressed as 

O(Maxit(D× NP + C× NP)), where Maxit denotes the maximum 
number of iterations. D represents the dataset dimensions or the number 
of features, while C signifies the cost of the fitness function evaluation, 
and NP denotes the dimensions of the population. The BSS algorithm’s 
computational complexity is O(Max_BSSit(D + C)), where BSSMax_it 
represents the maximum number of repetitions. In the worst case, the 
BSS algorithm is executed after every five iterations of the BDE algo
rithm, O( Maxit

MaxImIter_BDE
× BSSMax_it(D + C)). Therefore, the computational 

complexity of BDE-BSS in the worst case is 

O
(

Maxit (D × NP+C × NP)+ Maxit
MaxImIter_BDE

× BSSMax_it(D+C)
)
.

The computational complexity of the ReliefF algorithm is O(N2 × D), 
where N denotes the number of samples in the dataset. In the worst case, 
the DR mechanism is called after Ctth iteration and after every 
MaxImIter_DRM iterations of the BDE-BSS algorithm, O(Maxit − Ct

MaxImIter_DRM
× N2 ×

D). Therefore, the computational complexity of BD-BSS-DR in the worst 

case is O
(

Maxit (D × NP + C × NP) + Maxit
MaxImIter_BDE

× BSSMax_it(D + C) +
Maxit − Ct
MaxImIter_DRM

× N2 × D
)
.

Using the BSS algorithm in high-dimensional datasets with huge 
search space and finding solutions with fewer features reduces the cost 
of calculating the evaluation function. Furthermore, the use of the DR 
mechanism in high-dimensional data is crucial in reducing the compu
tational cost of the algorithm during the search process. By transforming 
the large search space into a smaller one, the algorithm becomes more 
efficient in identifying optimal feature subsets. 

4. Experiments and discussions 

4.1. Benchmark datasets 

This section evaluates the efficiency of the proposed algorithms on 
20 medical datasets. The website addresses for downloading the used 
datasets can be found in Appendix 3. The general specification of the 
datasets is presented in Table 4. Datasets 1 to 3 are low-dimensional, 4 to 
8 are medium-dimensional, and the rest are high-dimensional. The 
reason for choosing these datasets is the number of their various fea
tures, which allows us to evaluate the proposed algorithms with 
different characteristics. 

4.2. Experiment design 

The paper’s experiments were conducted using Matlab R2019a on a 
system with an Intel (R) core (TM) i5–5200 U CPU, 2.2 GHz, and 12 
gigabytes of RAM. The experiments and evaluations are performed in 
two parts: 1) comparison of the proposed algorithms with the BDE al
gorithm and presented DE-based FS algorithms in recent years, and 2) 
Application of the proposed BDE-BSS and BDE-BSS-DR algorithms in FS 
of coronary artery disease dataset and gene selection of COVID-19 and 
several cancer datasets and comparing the results with the methods 
presented in recent years. Each experiment sets different parameters for 
the proposed and other algorithms. Therefore, the parameters used in 
the tests of each section are mentioned. 

4.3. Results and analysis 

4.3.1. Comparison of the proposed algorithms and DE-based FS algorithms 
This section aims to evaluate and compare the effectiveness of the 

Table 4 
Description of experimental medical datasets.  

No. Dataset No. of 
features 

No. of 
samples 

No. of 
classes 

Categories  

1 Dermatology  34  366  6 low  
2 SPECTF heart  44  267  2 low  
3 Z-Alizadeh Sani  54  303  2 low  
4 Scadi  206  70  7 medium  
5 Arrhythmia  279  452  16 medium  
6 LSVT  310  126  2 medium  
7 Pomeroy-2002- 

v1  
857  34  2 medium  

8 Alizadeh-2000- 
v1  

1095  42  2 medium  

9 Colon  2000  62  2 high  
10 SRBCT  2308  83  4 high  
11 Leukemia  5327  72  3 high  
12 Bladder Cancer  5724  40  3 high  
13 DLBCL  7129  77  2 high  
14 CNS  7129  60  2 high  
15 ALL-AML  7129  72  2 high  
16 Brain_Tumor2  10367  50  4 high  
17 Prostate Tumor  10509  102  2 high  
18 MLL  12533  72  3 high  
19 Breast Cancer  24481  97  2 high  
20 COVID-19  25534  90  3 high  

Table 5 
Parameter setting for the applied algorithms.  

Algorithm Parameter values 

BDE [46] CR = 0.2,F = 0.8,NP = 30,b = 20 
DimReM-BDE  

[22] 
CR = 0.2,F = 0.8,NP = 30,b = 20 

SaWDE 

[13] 

CR = [0.1, 0.2,0.9, 0.8,0.9,0.1,0.8, 0.2],

F = [0.5,1,0.6,0.9,0.5,0.9,0.6,1],NP = 100 
BDE-BSS F = 0.8, CR = 0.2, b = 20, NP = 21, BSSMax_it = 50,  

NSr = 0.8, MaxImIter BDE = 5, MaxImIter_BSS = 5 
BDE-BSS-DR,  F = 0.8, CR = 0.2, b = 20, NP = 21, BSSMax_it = 50, NSr = 0.8, 

MaxImIter_BDE = 5 , MaxImIter_BSS = 5,

BDE-BSS-DR-r 
Ct =

{
50D < 2000
100D ≥ 2000 , MaxImIterDRM =

{
10D < 2000
20D ≥ 2000 , Rt = 30  
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newly introduced algorithms with the existing ones including the BDE 
[46], DimReM-BDE [22], and SaWDE[13] algorithms on the datasets of 
Table 4. In these experiments, the results of the BDE-BSS algorithm show 
the effectiveness of the BSS algorithm in increasing the efficiency of the 
BDE algorithm. Moreover, the results of the BDE-BSS-DR algorithm 
show the effect of the DR mechanism in increasing the efficiency of the 
BDE-BSS algorithm. In addition, the results of the BDE-BSS-DR algo
rithm with the initialization based on the ReliefF algorithm have been 
examined, to show the impact of the search agents’ initialization in 
increasing the efficiency. Therefore, BDE-BSS-DR represents the pro
posed algorithm with random initialization of search agents and 
BDE-BSS-DR-r represents the proposed algorithm with initialization 
based on ReliefF. In the initialization based on ReliefF, a step value is 
used to initialize the search agents. In the dataset with high dimensions, 
the step value is set to 20. Therefore, the first search agent is initialized 
with the top 20 features determined by ReliefF, the second search agent 
with the top 40 features, the third search agent with the top 60 features, 
and so on. In the low-dimensional and medium-dimensional datasets, 
the step value is set to 5. In the low-dimensional dataset, a number of 
search agents are initialized until reaching the number of features of the 
dataset. For example, in the Dermatology dataset, only 6 search agents 
and in the Z-Alizadeh Sani data set, only 10 search agents with the best 
feature determined by ReliefF are initialized, and the rest of the search 
agents are initialized randomly. The parameters of the proposed algo
rithms and other compared algorithms are given in Table 5. 

In these experiments, the number of repetitions of the algorithms is 
set to 100 in low-dimensional and medium-dimensional datasets. Also, 
200 is set in high-dimensional data. In Breast Cancer and COVID-19 
datasets, which have more than 20,000 features, the number of itera
tions is set to 300. In addition, the number of iterations of the BSS al
gorithm in each call is set to 50. Therefore, for fair competition between 
algorithms in experiments with 100, 200, and 300 iterations, the num
ber of function evaluations of all algorithms is 3000, 6000, and 9000, 
respectively. For example, in the proposed algorithms, assuming that the 
BSS algorithm is called once every five iterations in the worst case, it is 
called 18 times in 100 iterations. In each call, the evaluation function is 
called 50 times. Therefore, the evaluation function is called 900 times by 
the BSS algorithm. In addition, because there are 21 search agents, it is 
called 21 times in each iteration and 2100 times in 100 iterations. 
Therefore, the evaluation function is called 3000 times in one run. For 
this reason, in the BDE and the DimReM-BDE algorithms, the number of 
search agents is set to 30 so that the number of function evaluations in 

100 iterations becomes 3000. On the other hand, in the SaWDE algo
rithm, the population size is 100. Therefore, every 30 function evalua
tions of this algorithm are considered one iteration. 

In the fitness evaluation function, the KNN algorithm is used as a 
classifier due to its simplicity and effectiveness, where the Euclidean 
distance with K= 1 is used. Also, a five-fold cross-validation method has 
been used for training and testing. Therefore, the dataset is divided into 
five equal folds, and the classifier model is trained using four folds and 
evaluated using one remaining fold. This process is repeated five times, 
and finally, the average accuracy of the classification performed on the 
test sets is used as an evaluation criterion for obtaining the optimal 
subset of the features found by the search agents. 

The number of independent runs to compare the efficiency of algo
rithms is 30. The average classification accuracy (Avg CA), the standard 
deviation of the classification accuracy (Std CA), the average running 
time, and the average number of selected features (Avg SF) are used as 
criteria for comparing the performance of algorithms. 

The outcomes of 30 independent runs of the BDE-BSS-DR-r algorithm 
along with other algorithms on 20 datasets are presented in Table 6. The 
Wilcoxon rank-sum test with a significance level of 0.05 is used to assess 
the performance of the BDE-BSS-DR-r algorithm. The signifiers "+ ", "-", 
and "≈ " are used to indicate whether the performance of the BDE-BSS- 
DR-r algorithm is significantly better than, worse than, or equal to other 
compared algorithms. In addition, the Avg ranking of the Friedman test 
is also employed to identify significant improvements in the effective
ness of the BDE-BSS-DR-r algorithm when compared to other 
algorithms. 

Comparing the results of BDE and BDE-BSS algorithms from Table 6 
clearly shows the effect of the BSS algorithm in increasing the efficiency 
of the BDE algorithm. This superiority is especially evident in data with 
medium and high dimensions. The average results of the two algorithms 
show that the BSS algorithm has increased the accuracy of data classi
fication by 11.35% compared to BDE. This shows that BSS has been able 
to achieve the desired goals, i.e., escaping from local optimal points and 
increasing efficiency. Comparing the results of two BDE-BSS and BDE- 
BSS-DR algorithms shows the importance of using the DR mechanism 
in increasing the efficiency of the BDE-BSS algorithm. The average re
sults of the two algorithms show that the DR mechanism has increased 
the accuracy of data classification by 1.2% compared to BDE-BSS. The 
comparison of the two algorithms in data with high dimensions shows 
the importance of the DR mechanism. Therefore, this mechanism can be 
an effective method in increasing the efficiency of FS of high- 

Table 6 
The Avg CA and Std CA achieved through the applied methods.  

No. Dataset BDE[46] DimReM-BDE[22] SaWDE[13] BDE-BSS BDE-BSS-DR BDE-BSS-DR-r 

1 Dermatology 98.66 ± 0.21 (≈) 98.52 ± 0.52 (≈) 98.83 ± 0.16 (≈) 98.74 ± 0.28 (≈) 98.64 ± 0.31 (≈) 98.68 ± 0.28 
2 Spectf heart 83.59 ± 0.85 (+) 85.56 ± 0.82 (− ) 84.94 ± 1.54 (≈) 84.83 ± 1.15 (≈) 84.88 ± 1.26 (≈) 85.08 ± 1.05 
3 Z-Alizadeh Sani 87.63 ± 0.63 (+) 89.43 ± 0.99 (≈) 88.65 ± 0.94 (+) 88.83 ± 0.55 (+) 88.85 ± 0.67 (+) 89.29 ± 0.82 
4 Scadi 87.57 ± 0.76 (+) 89.38 ± 1.03 (+) 90.50 ± 1.42 (≈) 89.85 ± 1.14 (+) 90.85 ± 1.43 (− ) 90.28 ± 1.08 
5 Arrhythmia 62.09 ± 0.84 (+) 64.94 ± 1.48 (+) 67.31 ± 2.23 (+) 66.72 ± 1.18 (+) 66.99 ± 1.22 (+) 68.82 ± 1.15 
6 LSVT 93.65 ± 0.92 (+) 95.81 ± 0.72 (≈) 95.49 ± 1.03 (≈) 95.15 ± 1.19 (≈) 95.68 ± 0.93 (≈) 95.57 ± 1.09 
7 Pomeroy-2002-v1 94.30 ± 2.11 (+) 97.11 ± 0.42 (+) 99.71 ± 0.87 (≈) 99.61 ± 1.24 (≈) 100.00 ± 0.0 (≈) 100.00 ± 0.0 
8 Alizadeh-2000-v1 86.53 ± 1.18 (+) 87.50 ± 1.19 (+) 96.87 ± 2.83 (+) 98.42 ± 2.12 (+) 99.75 ± 0.76 (≈) 100.00 ± 0.0 
9 Colon 79.30 ± 0.91 (+) 79.90 ± 0.99 (+) 95.74 ± 3.30 (+) 95.76 ± 1.50 (+) 96.85 ± 1.35 (+) 98.46 ± 1.06 
10 SRBCT 89.76 ± 0.03 (+) 89.91 ± 0.63 (+) 99.12 ± 0.76 (+) 99.37 ± 0.86 (+) 100.00 ± 0.0 (≈) 100.00 ± 0.0 
11 Leukemia 94.06 ± 0.82 (+) 94.25 ± 0.83 (+) 98.49 ± 0.53 (+) 98.56 ± 0.87 (+) 99.77 ± 0.50 (≈) 100.00 ± 0.0 
12 Bladder Cancer 78.40 ± 2.48 (+) 78.40 ± 2.02 (+) 99.25 ± 0.39 (+) 98.83 ± 1.42 (+) 99.91 ± 0.45 (≈) 100.00 ± 0.0 
13 DLBCL 89.76 ± 0.03 (+) 89.91 ± 0.63 (+) 97.79 ± 1.45 (+) 98.35 ± 1.85 (+) 99.91 ± 0.31 (≈) 100.00 ± 0.0 
14 CNS 73.00 ± 1.10 (+) 73.27 ± 0.92 (+) 85.00 ± 3.16 (+) 89.61 ± 5.66 (+) 91.38 ± 3.06 (+) 98.38 ± 1.27 
15 ALL-AML 88.90 ± 0.50 (+) 88.86 ± 0.51 (+) 98.72 ± 1.65 (+) 98.79 ± 1.58 (+) 99.71 ± 0.57 (≈) 100.00 ± 0.0 
16 Brain_Tumor2 72.46 ± 1.45 (+) 72.73 ± 1.11 (+) 88.75 ± 3.41 (+) 95.40 ± 2.97 (+) 97.13 ± 2.14 (+) 99.53 ± 0.86 
17 Prostate Tumor 89.02 ± 0.69 (+) 89.15 ± 0.86 (+) 94.01 ± 1.17 (+) 94.18 ± 1.73 (+) 97.09 ± 1.18 (+) 99.13 ± 0.49 
18 MLL 90.41 ± 0.50 (+) 90.41 ± 0.61 (+) 96.12 ± 0.91 (+) 97.87 ± 1.70 (+) 100.00 ± 0.0 (≈) 100.00 ± 0.0 
19 Breast Cancer 68.26 ± 0.52 (+) 67.49 ± 0.47 (+) 74.20 ± 1.25 (+) 88.93 ± 5.19 (+) 92.56 ± 1.89 (+) 97.33 ± 1.12 
20 COVID-19 32.05 ± 0.45 (+) 32.66 ± 0.62 (+) 72.38 ± 2.02 (+) 88.62 ± 3.13 (+) 90.44 ± 3.27 (+) 94.00 ± 1.83 
Wilcoxon Test (+ | ≈ | –) 19 | 1 | 0 16 | 3 | 1 15 | 5 | 0 16 | 4 | 0 8 | 11 | 1 - 
Friedman Test (Avg Rank) 5.75 4.60 3.55 3.40 2.23 1.43 
Avg 81.97 82.76 91.09 93.32 94.52 95.73  
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dimensional data. 
Comparing the results of two algorithms BDE-BSS-DR and BDE-BSS- 

DR-r clearly shows the importance of initialization of search agents. The 
results show that the BDE-BSS-DR-r algorithm, in which the initializa
tion of the search agents is performed using the superior features 
determined by the ReliefF algorithm, has an average of 1.21% data CA 
compared to BDE-BSS-DR. Due to the superiority of BDE-BSS-DR-r over 

the other two proposed algorithms, this algorithm is compared with 
other methods. 

It is evident from Table 6 that the BDE-BSS-DR-r algorithm has a 
better average classification accuracy than the DimReM-BDE algorithm 
on 16 datasets out of a total of 20. Although both algorithms produce 
similar results in three datasets, DimReM-BDE outperforms BDE-BSS-DR 
on one dataset. Based on the outcomes of the statistical tests, the BDE- 
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Fig. 3. The convergence diagram of the algorithms.  
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BSS-DR-r algorithm is superior to the DimReM-BDE algorithm. The 
comparison of the BDE-BSSE-DR-r algorithm to the DimReM-BDE algo
rithm indicates that the superiority of the BDE-BSS-DR-r is notably 
enhanced as the number of features increases. Based on the information 
presented in Table 6, it can be concluded that the BDE-BSS-DR-r algo
rithm outperforms the SaWDE algorithm in 15 of the 20 datasets. For the 
remaining five datasets, both methods show similar results. Results from 
both tests, Wilcoxon and Friedman, validate the superiority of the BDE- 
BSS-DR-r, which consistently performs better or is equal to the BDE al
gorithm. Although the BDE-BSS-DR-r algorithm is superior to SaWDE, in 
some datasets its superiority is minimal. The BDE-BSS-DR-r algorithm 
exhibits superior performance to the SaWDE algorithm by 0.88% in the 
SRBCT dataset, whereas in some datasets, the superiority is notably 
high. In particular, the BDE-BSS-DR-r algorithm demonstrates 10.78% 
and 21.62% superiority over the SaWDE algorithm in the Brain_Tumor2 
and COVID-19 datasets, respectively. Comparing the efficiency of the 
BDE-BSS-DR-r algorithm with that of the BDE, DimReM-BDE and 
SaWDE indicates the superiority of 13.76%, 12.97% and 4.64% of these 
algorithms, respectively. 

The convergence diagram depicted in Fig. 3 provides crucial infor
mation regarding the performance of the algorithms during the FS 
procedure. As we can see in Fig. 3, all algorithms have a similar search 
process in three low-dimensional datasets. The superiority of the three 
SaWDE, BDE-BSS, BDE-BSS-DR and BDE-BSS-DR-r algorithms over the 
two BDE and DimReM-BDE algorithms is evident in the five medium- 
dimension datasets. Also, in high-dimensional datasets, the remark
able superiority of the proposed algorithms over other BDE and 
DimReM-BDE algorithms is evident. Fig. 3 clearly illustrates that the 
BDE and DimReM-BDE algorithms exhibit reliable performance in high- 
dimensional spaces. The search process of the algorithms starts with a 
random point, then quickly converges to optimal solutions, and termi
nates at local optima. Moreover, as the number of features grows, these 
algorithms consistently outperform the SaWDE algorithm in the search 
process. 

The behavior of the BDE-BSS and BDE-BSS-DR algorithms in most 
datasets, especially in medium-dimensional and high-dimensional 
datasets, shows that after 10 iterations when the BSS algorithm is 
called, this algorithm can dramatically increase the FS efficiency. As a 
result, the algorithm obtains better solutions from the other algorithms. 
Also, observing the behavior of the BDE-BSS-DR algorithm shows that 
after several calls of the DR mechanism in the final iterations of the 
algorithm, it has obtained a better solution than the BDE-BSS algorithm. 

This is because after calling the DR mechanism several times, the search 
space changes from a huge to a smaller search space, so the algorithm 
can get better solutions. For example, in the Breast Cancer dataset, with 
the DR mechanism, the BDE-BSS-DR algorithm was able to attain an 
average classification accuracy of 92.56%, while, the BDE-BSS achieved 
an average accuracy of 88.93% for classification. The BDE-BSS-DR al
gorithm also outperforms other algorithms with datasets with medium 
to high dimensions. 

Observing the convergence process of the BDE-BSS-DR-r algorithm 
shows the significant impact of initialization at the beginning of the 
search process, especially in high-dimensional data. Therefore, it can be 
concluded that intelligent initialization of search agents, instead of 
random initialization, can play an important role in fast convergence 
and reaching the global optimal points of the algorithm. This issue is 
evident from the observation of the convergence process of the BDE-BSS- 
DR-r algorithm in most medium-dimensional data sets and all high- 
dimensional data sets. For example, the BDE-BSS-DR-r algorithm has 
reached the global optimal point in the MLL dataset with the least 
number of iterations, but the BDE-BSS-DR algorithm has achieved the 
global optimum in the last iterations. 

Table 7 illustrates the average number of selected features by algo
rithms in 30 independent runs. Observing from the table, the BDE-BSS- 
DR-r algorithm has selected fewer features than the BDE algorithm in 19 
out of 20 datasets. However, the outcomes of both algorithms are alike 
in the remaining dataset. Furthermore, the outcomes from the table 
indicate that on 17 out of 20 datasets, the BDE-BSS-DR-r algorithm se
lects a lesser number of features compared to the DimReM-BDE algo
rithm. On three datasets, the DimReM-BDE-r is better than the BDE-BSS- 
DR. With an increase in the number of features, it is evident that the 
BDE-BSS-DR-r is superior to the BDE and DimReM-BDE algorithms by a 
substantial margin, as substantiated by the results of the analysis. On 
average, the BDE and DimReM-BDE algorithms choose approximately 
50% of the dataset’s features. In contrast, the suggested techniques 
select multiple relevant features, regardless of the dataset’s feature 
count. Based on the statistical test outcomes, it is evident that the BDE- 
BSS-DR-r algorithm outperforms both the BDE and DimReM-BDE algo
rithms, as concluded from the analysis. This is mainly evident in the case 
of medium and high-dimensional datasets, where the BDE-BSS-DR-r 
algorithm has tended to select fewer features than the other two 
algorithms. 

According to Table 7, the BDE-BSS-DR-r algorithm outperforms the 
SaWDE algorithm on 15 out of 20 datasets. Analysts observed that in five 

Table 7 
Average number of features selected by each algorithm.  

No. Dataset BDE [46] DimReM-BDE [22] SaWDE [13] BDE-BSS BDE-BSS-DR BDE-BSS-DR-r 

1 Dermatology 14.630 (− ) 9.96000 (− ) 10.000 (− ) 15.100 (≈) 15.900 (≈) 15.930 
2 SPECTF heart 18.200 (+) 11.8000 (− ) 12.700 (− ) 18.630 (+) 18.100 (+) 16.266 
3 Z-Alizadeh Sani 25.330 (+) 16.3000 (− ) 15.660 (− ) 25.030 (+) 25.030 (+) 20.800 
4 Scadi 98.000 (+) 64.4300 (+) 27.600 (− ) 27.600 (− ) 22.530 (− ) 34.766 
5 Arrhythmia 135.00 (+) 111.330 (+) 83.220 (+) 128.26 (+) 124.00 (+) 81.333 
6 LSVT 151.60 (+) 130.000 (+) 85.260 (− ) 152.40 (+) 103.10 (+) 86.933 
7 Pomeroy-2002-v1 421.20 (+) 391.460 (+) 70.260 (+) 72.960 (+) 63.760 (+) 43.133 
8 Alizadeh-2000-v1 543.80 (+) 509.760 (+) 104.06 (+) 39.400 (− ) 48.600 (+) 21.866 
9 Colon 988.10 (+) 936.500 (+) 59.430 (+) 25.380 (+) 22.500 (+) 20.666 
10 SRBCT 1138.0 (+) 1083.00 (+) 134.50 (+) 74.560 (+) 91.200 (+) 25.120 
11 Leukemia 2647.0 (+) 2587.00 (+) 212.00 (+) 187.33 (+) 110.50 (+) 24.060 
12 Bladder Cancer 2820.0 (+) 2487.00 (+) 84.260 (+) 39.600 (− ) 58.530 (+) 42.432 
13 DLBCL 2695.0 (+) 2653.00 (+) 188.80 (+) 69.260 (+) 79.060 (+) 39.235 
14 CNS 3531.0 (+) 3486.00 (+) 531.13 (+) 145.86 (+) 122.63 (+) 23.250 
15 ALL-AML 3541.0 (+) 3493.00 (+) 133.40 (+) 94.230 (+) 90.960 (+) 17.231 
16 Brain_Tumor2 5148.0 (+) 5109.00 (+) 155.20 (+) 30.300 (+) 50.630 (+) 18.866 
17 Prostate Tumor 5214.0 (+) 5189.00 (+) 490.50 (+) 421.70 (+) 188.23 (+) 25.330 
18 MLL 6205.0 (+) 6117.00 (+) 372.88 (+) 114.00 (+) 113.76 (+) 77.235 
19 Breast Cancer 1217.0 (+) 12092.0 (+) 1103.0 (+) 124.23 (+) 113.30 (+) 51.533 
20 COVID-19 12575 (+) 12203.0 (+) 498.50 (+) 12.960 (− ) 28.230 (− ) 38.412 
Wilcoxon Test (+ | ≈ | –) 19 | 0 | 1 17 | 0 | 3 15 | 0 | 5 15 | 1 | 4 17 | 1 | 2 −

Friedman Test (Avg Rank) 5.70 4.35 3.28 3.15 2.73 1.80 
Avg 2456.34 2934.03 218.62 90.94 74.53 36.22  
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of these datasets, the SaWDE algorithm selects fewer features than the 
BDE-BSS-DR-r algorithm. Moreover, the results from both the Wilcoxon 
and Friedman tests also indicate that BDE-BSS-DR-r is superior to the 
SaWDE algorithm since it achieves significantly better performance in 
most datasets. The BDE-BSS-DR-r algorithm has been found superior 
when compared to the BDE-BSS in 15 out of 20 datasets. In one dataset, 
both algorithms have produced similar results, while the BDE-BSS al
gorithm outperformed the BDE-BSS-DR-r algorithm in four datasets. The 
comparison of two algorithms, BDE-BSS-DR and BDE-BSS-DR-r, shows 
the superiority of the BDE-BSS-DR-r algorithm in terms of the average 

number of selected features. This advantage is due to the initialization of 
the search agents. 

Overall, the comparison of all three proposed algorithms with other 
methods in terms of average accuracy and the Friedman test shows that 
these methods have the first to third ranks. Therefore, all three pre
sented methods, BSS, DR mechanism and initialization of search agents 
using the best features determined by the ReliefF algorithm, play a 
crucial role in reducing the number of selected features. 

The runtime of FS algorithms is influenced by several factors, such as 
the running time of the techniques used and the time taken for fitness 

Table 8 
Average time consumed by algorithms in 30 independent runs per second.  

No. Dataset BDE [46] DimReM-BDE [22] SaWDE [13] BDE-BSS BDE-BSS-DR BDE-BSS-DR-r 

1 Dermatology 111.50(− ) 113.04(≈) 141.85(+) 109.45(− ) 114.02(+)  112.78 
2 SPECTF heart 109.61(− ) 108.02(− ) 120.11(≈) 107.61(− ) 113.15(≈)  113.68 
3 Z-Alizadeh Sani 110.71(− ) 114.80(− ) 121.09(+) 110.42(− ) 117.42(+)  115.11 
4 Scadi 107.69(− ) 109.52(− ) 115.12(+) 105.77(− ) 111.88(≈)  112.10 
5 Arrhythmia 153.48(+) 145.64(≈) 136.25(+) 141.64(− ) 145.02(+)  148.76 
6 LSVT 113.42(− ) 109.44(− ) 120.75(+) 111.66(− ) 117.28(≈)  116.89 
7 Pomeroy-2002-v1 105.22(− ) 112.77(≈) 145.98(+) 102.90(− ) 111.77(≈)  110.85 
8 Alizadeh-2000-v1 113.02(+) 109.34(− ) 150.28(+) 108.37(− ) 111.40(≈)  110.25 
9 Colon 283.90(+) 263.49(+) 573.56(+) 210.54(− ) 213.05(≈)  212.82 
10 SRBCT 259.09(+) 272.39(+) 557.90(+) 229.61(− ) 231.18(≈)  230.63 
11 Leukemia 354.06(+) 374.92(+) 2795.3(+) 260.18(≈) 261.02(+)  245.06 
12 Bladder Cancer 290.91(+) 283.85(+) 2603.2(+) 229.09(+) 224.78(+)  219.34 
13 DLBCL 389.24(+) 384.27(+) 2310.3(+) 261.32(+) 246.59(+)  238.15 
14 CNS 380.46(+) 477.13(+) 4644.8(+) 270.74(+) 264.62(+)  251.58 
15 ALL-AML 368.23(+) 358.60(+) 3879.9(+) 275.76(− ) 281.85(+)  258.85 
16 Brain_Tumor2 402.25(+) 405.02(+) 10716 (+) 266.54(− ) 274.59(+)  254.31 
17 Prostate Tumor 593.25(+) 602.26(+) 9207 (+) 384.63(+) 348.63(+)  339.52 
18 MLL 554.35(+) 526.92(+) 12224 (+) 357.13(+) 311.97(+)  335.02 
19 Breast Cancer 1410.1(+) 1382.0(+) 50265 (+) 733.56(+) 621.74(+)  550.74 
20 COVID-19 1475.8(+) 1432.5(+) 48325 (+) 635.84(+) 538.24(+)  480.30 
Wilcoxon Test (+ | ≈ | –) 14 | 0 | 6 12 | 3 | 5 19 | 1 | 0 12 | 1 | 7 13 | 7 | 12  
Friedman Test (Mean Rank) 4.00 3.84 5.75 1.95 3.10  2.35 
Avg 384.31 384.29 7457.67 250.63 238.01  227.83  

Fig. 4. Average classification accuracy, number of selected features and running time(sec) of the algorithms.  
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function evaluation. For instance, certain FS algorithms employ filter- 
based techniques to identify relevant features and minimize the search 
space dimensions on the cost of running time. Notably, the runtime of 
the fitness function evaluation is directly proportional to the number of 
features in the dataset. Thus, evaluating solutions with a large number of 
features consumes more time than solutions with fewer features. 
Therefore, an FS algorithm that achieves high classification accuracy 
with fewer features leads to a significant reduction in computational 
costs. In Table 8, the average runtime of algorithms in 30 independent 
runs per second for each dataset is displayed. The data suggest that the 
proposed algorithms perform at a higher speed compared to other al
gorithms. The BDE-BSS-DR-r algorithm has demonstrated superiority 
over other algorithms as confirmed by the Wilcoxon test. However, it 
should be noted that the DR mechanism increases the runtime of the 
algorithm. Nonetheless, removing unimportant features from both 
datasets and search agents via the DR mechanism results in a substantial 
decrease in the computational cost of the fitness evaluation function, 
particularly in high-dimensional datasets. This issue becomes more 
pronounced in datasets with a high number of dimensions. Furthermore, 
the use of the BSS algorithm for FS, coupled with the exclusion of a large 
number of insignificant features during the first stages of the search 
process, can considerably reduce the cost of computations, particularly 
in medium and high-dimensional data. 

Overall, the initialization of the search agents using the most 
important features determined by the ReliefF algorithm causes the 
search agents to have much fewer features than the random initializa
tion method, and as a result, the time of evaluating the search agents will 
decrease. This issue is evident by comparing the running time of BDE- 
BSS-DR and BDE-BSS-DR-r algorithms, especially in high-dimensional 
data. Fig. 4 displays the average classification accuracy, number of 
selected features and running time(sec) by six algorithms across 20 
datasets. The comparison of the results of the three proposed algorithms 
and other algorithms shows that the BDE-BSS-DR-r algorithm has the 
highest average classification accuracy, the lowest number of selected 
features and the shortest execution time algorithm among the 
algorithms. 

4.3.2. Comparative analysis of the proposed algorithm with other 
algorithms 

In this section, the efficiency of the proposed BDE-BSS algorithm as a 
wrapper-based FS algorithm is compared with that of the SFE algorithm 
[3], which is one of the latest wrapper-based FS algorithms presented for 
feature selection of high-dimensional data. In addition, the efficiency of 
the BDE-BSS-DR-r algorithm as a hybrid FS algorithm is compared with 
efficiency of a hybrid algorithm called VGS-MOEA [30]. The experi
ments performed in this section are different from the experiments 
performed in previous section. In this section, each dataset is randomly 
divided into training (80%) and test (20%) sets. All the algorithms 
perform the FS process using the same training set. After the FS process, 
the performance of the algorithms are compared on the test dataset 
(unseen data). In the evaluation function of all algorithms, KNN classi
fier with K= 5 and Euclidean distance are used. In addition, the five-fold 
cross-validation method is used to divide the training set (80%) into two 
training and test sets to evaluate the solutions obtained by the algo
rithms. In these experiments, the parameters suggested by the author of 
SFE [3] and VGS-MOEA [29] algorithms have been used. In addition, in 
the FS process of each algorithm, the evaluation function is called 5000 
times in order to have the same evaluation condition. Each of the al
gorithms is run 30 times independently on the same training and test sets 
and their results are compared. Table 9 presents the results of the al
gorithms on the training and testing datasets. 

Comparing the results of the two wrapper-based SFE algorithms and 
the proposed wrapper-based BDE-BSS algorithm based on the Wilcoxon 
Test and the average of different classification criteria presented in 
Table 9 shows that the proposed BDE-BSS algorithm has a better per
formance than the SFE algorithm. Nevertheless, the SFE algorithm has 

achieved significant superiority over the BDE-BSS algorithm regarding 
the average running time and the number of selected features. On the 
other hand, as we can see in Table 9, the BDE-BSS-DR-r algorithm shows 
a very impressive performance in the feature selection of the training 
and test sets compared to the SFE and BDE-BSS algorithms. This supe
riority is evident by comparing the results of the algorithms in the 
Wilcoxon Test and the average results of the algorithms. This issue firstly 
shows the effect of using BSS and DR methods in selecting features from 
high-dimensional data, and secondly, it shows the effect of filter-based 
algorithms in increasing the efficiency of hybrid algorithms. 

The comparison of two hybrid algorithms BDE-BSS-DR-r and VGS- 
MOEA in the training dataset shows that the BDE-BSS-DR-r algorithm 
has a significant advantage over the VGS-MOEA algorithm. This supe
riority is evident by observing the results of the Wilcoxon test and the 
average results of the algorithms in different evaluation criteria. More
over, regarding the results obtained from test set, the BDE-BSS-DR-r 
algorithm has an acceptable advantage over the VGS-MOEA algo
rithm. The running time of both algorithms is almost the same, however, 
the remarkable point about the running time of the algorithms is that 
with the increase in the dimension of the data (for example, the datasets 
of COVID-19 and Breast Cancer), the running time of the BDE-BSS-DR-r 
algorithm is reduced, compared to running time of VGS-MOEA algo
rithm. The reason is that the DR mechanism reduces the search time of 
the algorithm by reducing the dimensions of the search space. Also, the 
results of Table 9 show that the BDE-BSS-DR-r algorithm has signifi
cantly better performance than the VGS-MOEA algorithm in terms of the 
number of selected features. 

In general, the results of this section and the previous section show 
that the proposed algorithms have high efficiency compared to other FS 
algorithms, which is due to the use of BSS algorithms and DR mecha
nism. Therefore, these methods can be used for classification and gene 
selection applications. 

4.3.3. Application of BDE-BSS in selecting the feature of heart disease 
Coronary artery disease, a type of cardiovascular disease, is 

responsible for causing the death of over 17.9 million people each year, 
which accounts for approximately 31% of all global deaths. Several 
factors such as age, gender, high blood pressure, obesity, being over
weight, elevated blood cholesterol levels, and maintaining a healthy 
lifestyle are critical to mitigate the risk of this disease [47,48,49]. 
Determining the principal risk factors and using diagnostic systems can 
play a decisive role in reducing mortality caused by cardiovascular 
diseases. Appropriate systems can be designed to diagnose these diseases 
on time using FS algorithms. It should be noted that the BDE-BSS-DR 
algorithm is for FS in datasets with high dimensions, but its efficiency 
in low-dimensional datasets is similar to the BDE-BSS algorithm. 
Therefore, this section evaluates only the BDE-BSS algorithm on the 
heart disease datasets collected by Alizadeh Sani [49]. There is infor
mation on 303 people in this dataset, of which 216 people are sick with 
coronary artery disease and 87 people are healthy [48,49]. 

The SVM with a polynomial kernel and a scale of 5.12 is selected 
after a comprehensive parameter tuning process. The evaluation 
approach used is the 10-fold cross-validation. The size of the population 
is set to 100 for the BDE-BSS algorithm. In addition, the number of it
erations of the BDE-BSS and BSS algorithms is set to 200 and 30, 
respectively. The proposed algorithm is executed 30 times to ensure the 
reliability of the results. The outcomes are provided in Table 10. The 
average, the best performance, and the worst performance with different 
evaluation criteria are shown. The proposed algorithm demonstrated its 
high accuracy with a top-performing classification rate of 95.05%, and 
even in the worst-case scenario, the accuracy remained at 94.72%. This 
comparison highlights the algorithm’s stability and its ability to 
consistently identify optimal subsets. 

The confusion matrices, ROC curve, and convergence curves of the 
best run can be found in Appendix 4. In addition, the features’ name, 
their values and 20 features selected by the BDE-BSS algorithm can be 
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Table 9 
The results of proposed algorithms and compared algorithms.  

Dataset  SFE [3] BDE-BSS VGS-MOEA [30] BDE-BSS- DR-r 

Metric Train (80%) Test (20%) Train (80%) Test (20%) Train (80%) Test (20%) Train (80%) Test (20%) 

Colon Accuracy 92.26±2.81 (+) 82.22±8.85 
(− ) 

92.93±3.29 
(+) 

81.11±7.25 
(+) 

93.06±1.82 (+) 81.11±7.19 (+) 94.53 
±1.73 

81.66±5.33 

Recall 93.53±7.20 (+) 77.44±17.2 (+) 92.86±5.58 
(+) 

81.47±15.5 
(+) 

91.88±5.76 (+) 78.00±16.2 (+) 94.22 
±5.11 

84.47 
±15.6 

Precision 79.89±6.10 (+) 66.66±18.9 (− ) 82.73±6.89 
(≈) 

63.33±18.8 
(≈) 

90.34±6.31 
(− ) 

68.33±17.9 
(− ) 

82.45±6.03 63.33±16.8 

F1_score 86.57±6.26 (+) 69.73±16.2 
(− ) 

87.04±5.21 
(+) 

66.79±15.2 
(+) 

88.10±6.12 (+) 69.40±12.1 (− ) 90.07 
±5.11 

68.56±10.3 

Time 
(sec) 

178 (¡) – 207 (+) – 188 (− ) – 204 – 

Avg SF 13.13 (¡) – 18.8 (− ) – 23.06 (+) – 19.33 –  
Accuracy 98.52±1.46 (+) 81.66±8.11 (+) 98.91±2.13 

(+) 
82.50±2.82 
(+) 

100.0±0.00 
(≈) 

91.25±5.11 (+) 100±0.0 95.41 
±1.11  

Recall 98.81±1.25 (+) 84.89±7.21 (+) 99.08±1.77 
(+) 

86.14±4.11 
(+) 

100.0±0.00 
(≈) 

93.08±3.44 (+) 100±0.0 96.92 
±1.59 

SRBCT Precision 100.0±0.00 
(≈) 

85.05±6.32 (+) 98.70±2.32 
(+) 

84.94±3.69 
(+) 

100.0±0.00 
(≈) 

91.83±5.21 (+) 100±0.0 96.16 
±1.58  

F1_score 98.59±1.47 (+) 82.62±8.45 (+) 98.94±2.08 
(+) 

83.67±3.84 
(+) 

100.0±0.00 
(≈) 

91.09±5.58 (+) 100±0.0 96.20 
±1.36  

Time 
(sec) 

178 (¡) – 222 (+) – 192 (− ) – 209 –  

Avg SF 31.86 (¡) – 274.6 (+) – 74.33 (− ) – 85.33 –  
Accuracy 95.39±3.12 (+) 80.95±6.98 (+) 96.65±2.31 

(+) 
83.80±7.28 
(+) 

99.64±0.73 
(≈) 

91.42±5.62 
(¡) 

99.53±0.79 90.00±7.86  

Recall 95.30±3.99 (+) 78.83±11.7 (+) 97.16±3.12 
(+) 

85.91±12.1 
(+) 

99.71±2.14 
(− ) 

88.81±12.1 
(≈) 

99.20±2.14 88.78±11.7 

Leukemia Precision 95.71±4.28 (− ) 75.96±13.1 (+) 95.89±4.71 
(− ) 

82.05±12.2 
(+) 

99.77±0.86 
(− ) 

89.75±9.12 
(≈) 

93.98±7.20 89.47±10.1  

F1_score 93.86±4.02 (+) 73.79±14.3 (+) 96.10±3.78 
(+) 

82.43±12.0 
(+) 

99.58±0.91 
(− ) 

88.38±11.2 
(≈) 

98.97±1.54 88.10±11.0  

Time 
(sec) 

183 (¡) – 250 (+) – 205 (− ) – 220 –  

Avg SF 45.46 (¡) – 320.2 (+) – 76.06 (+) – 42.25 – 
Bladder 

Cancer 
Accuracy 92.22±4.75 (+) 69.16±12.2 (+) 98.15±2.52 

(+) 
66.66±14.1 
(+) 

98.82±1.84 (+) 74.16±11.9 (+) 99.58 
±1.09 

80.00 
±9.11 

Recall 90.87±6.13 (+) 61.22±20.1 (+) 98.07±3.12 
(+) 

60.11±18.7 
(+) 

99.17±2.58 (≈) 71.96±16.3 (+) 99.22 
±2.58 

78.62 
±14.8 

Precision 94.29±5.62 (+) 63.51±18.4 (+) 99.82±0.68 
(− ) 

63.88±15.8 
(+) 

100.0±0.00 
(¡) 

71.85±14.7 (+) 97.19±2.52 78.14 
±11.9 

F1_score 90.24±5.35 (+) 58.79±17.7 (+) 97.65±3.53 
(+) 

59.71±16.0 
(+) 

98.75±1.88 (+) 69.37±15.9 (+) 99.25 
±2.32 

75.16 
±13.2  

Time 
(sec) 

179 (¡) – 224 (+) – 196 (− ) – 212 –  

Avg SF 31 (¡) – 40.93 (+) – 61 (+) – 51.1 –  
Accuracy 97.48±1.91 (+) 85.06±7.02 (+) 98.37±1.05 

(+) 
83.73±7.81 
(+) 

99.93±0.35 (≈) 91.73±7.01 (+) 99.81 
±0.47 

89.86 
±6.26  

Recall 97.24±2.15 (+) 90.15±6.79 (+) 98.51±1.07 
(+) 

89.68±6.91 
(+) 

99.92±0.38 (≈) 95.37±4.21 (+) 99.85 
±0.38 

92.34 
±4.93 

DLBCL Precision 100.0±0.00 
(¡) 

90.90±6.95 (+) 98.94±2.34 
(+) 

89.72±9.74 
(+) 

100.0±0.00 
(¡) 

93.96±6.35 (+) 99.28±2.70 94.72 
±5.91  

F1_score 98.41±1.21 (+) 90.14±4.51 (+) 98.94±0.69 
(+) 

89.08±5.97 
(+) 

99.95±0.22 (≈) 94.43±5.71 (+) 99.87 
±0.31 

93.29 
±3.88  

Time 
(sec) 

195 (¡) – 248 (+) – 229 (+) – 219 –  

Avg SF 34.44 (¡) – 87.4 (+) – 78.76 (+) – 25.12 –  
Accuracy 85.80±2.25 (+) 53.75±9.89 (+) 87.15±2.98 

(+) 
62.50±8.21 
(+) 

93.17±1.95 (+) 64.58±7.52 
(≈) 

96.57 
±0.56 

64.58 
±7.86  

Recall 86.84±3.01 (+) 62.38±11.1 (+) 89.43±2.29 
(+) 

69.11±8.11 
(− ) 

94.66±1.75 (+) 69.91±8.12 
(¡) 

95.34 
±1.23 

68.80±8.35 

CNS Precision 87.89±1.86 (+) 66.33±9.51 (+) 88.65±1.96 
(+) 

75.08±8.01 
(+) 

93.61±2.56 (+) 78.30±9.69 (+) 100.0 
±0.00 

82.94 
±6.82  

F1_score 86.49±2.11 (+) 63.57±9.69 (+) 89.76±1.85 
(+) 

71.02±8.18 
(+) 

94.51±2.26 (+) 73.49±8.36 (+) 97.44 
±0.84 

74.63 
±7.58  

Time 
(sec) 

198 (− ) – 276 (+) – 221 (− ) – 238 –  

Avg SF 33.65 (+) – 240.3 (+) – 88.8 (+) – 31.45 –  
Accuracy 97.53±2.18 (+) 83.21±7.85 (+) 98.61±1.84 

(+) 
85.35±0.82 
(+) 

99.81±0.55 (≈) 91.07±6.22 
(− ) 

99.91 
±0.37 

88.57±7.12  

Recall 99.30±1.71 (+) 84.75±15.2 (+) 99.75±1.11 
(+) 

90.14±0.82 
(− ) 

100.0±0.00 
(≈) 

94.66±8.18 
(− ) 

100.0 
±0.00 

89.25±10.3 

ALL-AML Precision 94.62±9.51 (+) 65.00±16.1 (+) 94.07±9.65 
(+) 

70.00±0.82 
(+) 

98.38±7.22 (+) 80.00±14.1 
(− ) 

100.0 
±0.00 

78.00±15.2 

(continued on next page) 
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Table 9 (continued ) 

Dataset  SFE [3] BDE-BSS VGS-MOEA [30] BDE-BSS- DR-r 

Metric Train (80%) Test (20%) Train (80%) Test (20%) Train (80%) Test (20%) Train (80%) Test (20%)  

F1_score 96.15±2.30 (+) 72.60±14.5 (+) 97.80±6.53 
(+) 

75.24±0.82 
(+) 

99.60±1.23 (≈) 85.68±10.3 
(− ) 

99.88 
±0.49 

82.39±11.6  

Time 
(sec) 

171 (− ) – 241 (+) – 201 (− ) – 213 –  

Avg SF 30.45 (+) – 62.6 (+) – 50 (+) – 13.1 –  
Accuracy 85.00±4.90 (+) 71.33±7.91 

(− ) 
88.50±3.75 
(+) 

65.33±14.6 
(+) 

88.00±3.56 (+) 66.66±13.3 (+) 96.33 
±2.25 

68.66±12.2  

Recall 84.77±6.32 (+) 68.31±13.1 
(− ) 

88.80±5.96 
(+) 

61.88±18.1 
(≈) 

91.85±2.95 (+) 64.36±16.6 (− ) 96.83 
±2.95 

61.86±20.2 

Brain_ 
Tumor2 

Precision 95.59±3.30 (+) 69.30±6.71 
(− ) 

98.23±1.44 
(+) 

63.61±14.2 
(+) 

98.31±1.17 (+) 64.44±13.4 (+) 98.77 
±1.66 

65.55±17.1 

F1_score 82.42±6.06 (+) 65.52±9.62 
(− ) 

86.99±5.35 
(+) 

59.68±16.6 
(+) 

89.20±3.56 (+) 61.67±14.8 (− ) 96.38 
±3.04 

60.69±17.3  

Time 
(sec) 

179 (− ) – 253 (+) – 208 (− ) – 226 –  

Avg SF 35.73 (+) – 68.33 (+) – 134.2 (+) – 33.33 – 
Prostate 

Tumor 
Accuracy 94.38±2.30 (+) 84.00±6.51 (+) 95.10±2.12 

(+) 
86.75±4.91 
(+) 

96.87±1.13 (+) 90.50±4.82 (+) 98.68 
±0.86 

91.75 
±4.21 

Recall 94.86±3.28 (+) 85.15±8.01 (+) 96.38±2.84 
(+) 

87.91±7.85 
(+) 

98.30±1.01 (+) 92.68±6.95 (≈) 99.27 
±1.01 

92.82 
±5.39 

Precision 85.86±7.51 (+) 83.51±10.6 (+) 90.52±4.71 
(+) 

86.56±6.15 
(+) 

86.36±7.40 (+) 89.00±7.89 (+) 100.0 
±0.00 

91.50 
±6.98 

F1_score 94.61±2.09 (+) 83.69±7.56 (+) 95.19±2.01 
(+) 

86.75±4.98 
(+) 

96.88±1.18 (+) 90.31±4.74 (+) 98.69 
±0.83 

91.60 
±4.17 

Time 
(sec) 

176 (− ) – 317 (+) – 231 (+) – 221 – 

Avg SF 45.75 (+) – 213 (+) – 134.5 (+) – 44.15 –  
Accuracy 96.47±2.88 (+) 82.85±8.06 (+) 96.89±2.71 

(+) 
87.61±6.14 
(+) 

99.43±0.82 (+) 90.95±4.86 (+) 100±0.0 95.23 
±3.83  

Recall 96.72±2.90 (+) 85.42±6.26 (+) 97.20±2.17 
(+) 

88.73±6.66 
(+) 

99.41±0.40 (+) 91.87±4.17 (+) 100±0.0 96.66 
±2.91 

MLL Precision 99.75±0.34 (+) 82.59±7.42 (+) 99.68±0.62 
(+) 

87.18±7.57 
(+) 

100.0±0.00 
(≈) 

95.75±4.88 
(− ) 

100±0.0 94.77±4.11  

F1_score 95.95±3.37 (+) 81.53±8.92 (+) 96.72±2.78 
(+) 

86.97±7.11 
(+) 

99.37±0.92 (+) 90.62±4.91 (+) 100±0.0 94.98 
±4.03  

Time 
(sec) 

183 (− ) – 322 (+) – 320 (+) – 250 –  

Avg SF 54.66 (− ) – 231 (+) – 56.8 (− ) – 101.3 –  
Accuracy 84.21±2.53 (+) 54.38±7.25 (+) 84.16±3.48 

(+) 
57.89±7.53 
(+) 

90.07±2.26 (+) 64.21±7.32 
(− ) 

95.00 
±1.95 

63.15±9.76  

Recall 81.93±3.29 (+) 56.38±7.32 (+) 83.42±4.46 
(+) 

60.28±7.81 
(+) 

93.00±2.50 (+) 67.06±7.85 
(− ) 

95.10 
±2.50 

63.68±9.36 

Breast Cancer Precision 97.78±1.94 (+) 68.00±12.8 (+) 98.49±0.94 
(+) 

60.66±11.3 
(+) 

98.52±2.28 (+) 64.66±12.9 (+) 99.76 
±0.50 

72.66 
±13.1 

F1_score 85.89±2.79 (+) 60.64±6.89 (+) 85.35±3.16 
(+) 

59.95±8.24 
(+) 

90.11±2.14 (+) 64.95±8.58 (+) 95.22 
±1.89 

67.22 
±9.01  

Time 
(sec) 

208 (− ) – 589 (+) – 339 (+) – 325 –  

Avg SF 108 (+) – 627.0 (+) – 184.4 (+) – 70.93 –  
Accuracy 74.92±5.35 (+) 51.85±8.24 (+) 75.07±9.25 

(+) 
55.55±11.3 
(+) 

77.34±4.47 (+) 64.44±9.20 
(− ) 

87.80 
±2.24 

64.07±7.25  

Recall 77.30±5.45 (+) 52.41±8.55 (+) 76.06±7.71 
(+) 

59.75±9.13 
(+) 

78.39±2.89 (+) 64.97±12.6 
(− ) 

88.63 
±2.81 

61.41±10.8 

COVID-19 Precision 83.97±2.00 (+) 51.85±5.12 (+) 97.83±0.95 
(+) 

55.55±11.3 
(+) 

96.96±1.39 (+) 64.44±9.20 
(− ) 

98.32 
±0.71 

64.07±7.22  

F1_score 73.44±6.52 (+) 51.18±7.14 (+) 73.22±8.98 
(+) 

55.82±11.2 
(+) 

75.02±5.58 (+) 61.97±9.90 
(≈) 

86.20 
±3.83 

61.94±8.92  

Time 
(sec) 

219 (− ) – 535 (+) – 346 (+) – 331 –  

Avg SF 100.5 (+) – 498.7 (+) – 374.4 (+) – 96 –  
Accuracy 12 | 0 | 0 10 | 0 | 2 12 | 0 | 0 12 | 0 | 0 8 | 0 | 4 7 | 1 | 4 – –  
Recall 12 | 0 | 0 11 | 0 | 1 12 | 0 | 0 12 | 0 | 6 7 | 1 | 4 5 | 2 | 5 – – 

(+ | ≈ | –) Precision 9 | 1 | 2 10 | 0 | 2 9 | 1 | 2 11 | 1 | 0 6 | 2 | 4 7 | 4 | 1 – –  
F1_score 11 | 0 | 1 10 | 0 | 2 12 | 0 | 0 9 | 1 | 2 8 | 3 | 1 7 | 3 | 2 – –  
Time 
(sec) 

0 | 0 | 12 – 12 | 0 | 0 – 5 | 0 | 7 – – –  

Avg SF 6 | 0 | 6 – 12 | 0 | 0 – 10 | 0 | 2 – – –  
Accuracy 91.18 73.37 92.54 74.90 94.68 80.17 97.31 81.08  
Recall 91.46 73.94 93.06 76.76 95.52 81.06 97.31 81.30 

Avg Precision 92.95 72.39 95.30 73.55 96.85 79.36 97.48 80.94  
F1_score 90.22 71.15 91.98 73.09 94.26 78.45 96.83 79.56  
Time 
(sec) 

187.25 – 307.00 – 239.67 – 239.00 –  

Avg SF 46.79 – 223.57 – 111.36 – 51.67 –  
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found in Appendix 5. Column SF represents the features and factors 
influencing coronary heart disease, determined by the BDE-BSS FS al
gorithm. A comparison between the suggested BDE-BSS and many state- 
of-the-art on the same dataset is presented in Table 11. The proposed 
method for selecting the most significant features in coronary artery 
disease has performed better than the methods presented in recent 
years. Table 11 shows that the proposed method using the 20 features 
has achieved 95.05% classification accuracy and 96.58% F1-score, 
significantly better than other methods presented in recent years. The 
proposed approach’s superiority over other methods is the use of BSS in 
the BDE algorithm search process. In addition, SVM with different ker
nels is examined. Finally, the SVM classifier with a polynomial kernel 
and a scale of 5.12 is chosen for the FS, which effectively classified the Z- 
Alizadeh Sani coronary artery disease (CAD) dataset. 

4.3.4. Application of BDE-BSS and BDE-BSS-D-r in gene selection 
FS algorithms are successfully employed in gene selection from gene 

expression microarray datasets. The process of selecting pertinent genes 
from a large pool of over a thousand genes can significantly contribute to 
identifying the underlying causes of various diseases, including cancer. 
Additionally, this gene selection process can aid in the development of 
disease diagnostic systems with improved accuracy and efficacy. How
ever, Gene expression data generated by DNA microarray technology is 
a high-dimensional, low-sample dataset containing many unimportant 
features. Therefore, FS algorithms in gene selection of this dataset face 

problems such as stopping the algorithms at local optimal and the curse 
of dimensionality. Efficient FS algorithms are necessary to address these 
issues. As the BDE-BSS-DR and BDE-BSS-DR-r have outperformed the 
BDE-BSS approach in prior experiments, only the BDE-BSS-DR and BDE- 
BSS-DR-r outcomes are utilized in this section for gene selection from 11 
cancer datasets and one COVID-19 disease dataset. 

Furthermore, we evaluate the outcomes obtained from the BDE-BSS- 
DR and BDE-BSS-DR-r algorithms in contrast to the approaches intro
duced in recent years. The fitness evaluation function of the proposed 
algorithms uses SVM classifier with a linear kernel and a five-fold cross- 
validation method. Furthermore, the proposed algorithms run for a total 
of 500 iterations while the BSS runs for 50 iterations. The DR mechanism 
from 150 iterations onwards is called if the algorithm fails to improve 
performance in 50 consecutive iterations. The proposed algorithm is run 
on each dataset 15 times, and the results are compared with that of the 
MRMR-DBH [58], Robust Minimum Redundancy Maximum Relevancy- 
Modified Gray Wolf Optimizer (rMRMR-MGWO) [59], Mutual Infor
mation Maximization – modified Moth Flame Algorithm (MIM-mMFA) 
[60] and Quantum Moth Flame Optimization Algorithm (QMFOA) [61] 
algorithms. The results of MRMR-DBH, rMRMR-MGWO, MIM-Mmfa, 
and QMFOA algorithms are taken from the original articles. A com
parison between the proposed BDE-BSS-DR, BDE-BSS-DR-r and many 
recent advanced algorithms is provided in Table 12. 

As both BDE-BSS-DR and BDE-BSS-DR-r algorithms have almost the 
same results (with the superiority of the BDE-BSS-DR-r algorithm in just 
two data sets), the results of the BDE-BSS-DR algorithm have just been 
analyzed in this section. As indicated in Table 12, the proposed algo
rithms have attained 100% classification accuracy in its best run across 
all 12 datasets. Notably, even in datasets such as Breast Cancer and 
COVID-19, which possess a substantial number of genes (24,481 and 
25,534 genes, respectively), the suggested algorithms have achieved a 
remarkably better accuracy of classification compared to the algorithms 
proposed by other researchers. Moreover, the proposed algorithms have 
achieved 100% average classification accuracy in all datasets except for 
Breast Cancer and COVID-19 datasets. This implies that the proposed 

Table 10 
Comparison between BDE-BSS and BDE algorithm.  

Algorithm Accuracy Precision Recall F1-Score ROC 

BDE-BSS Best  95.05  96.33  96.82  96.58  0.9426 
Mean  94.91  96.33  96.53  96.43  0.9412 
Worst  94.72  96.33  96.32  96.32  0.9401 

BDE Best  94.72  96.33  96.32  96.32  0.9401 
Mean  94.34  95.01  95.11  95.06  0.9321 
Worst  93.73  94.31  94.43  94.37  0.9321  

Table 11 
Comparison of the SVM+BDE-BSS method with other methods on the Z-Alizadeh Sani dataset.  

No. Reference Year Method No. of SF Accuracy F1-Score  

1 [49] 2013 SMO - Information Gain+ SVM Weights (FS) 21  94.08 –  
2 [50] 2017 ANN-GA-SVM Weights 22  93.85 –  
3 [51] 2017 SVM+ EA-MFS 34  93.70 95.53  
4 [52] 2017 SVM 27  86.67 –  
5 [48] 2019 2Genetic-nuSVM 29  93.08 91.51  
6 [53] 2019 NE-nu-SVC+ multi-step balancing –  94.66 –  
7 [54] 2020 Two-tier ensemble + PSO 27  91.18 90.91  
8 [55] 2020 CART 5  92.41 –  
9 [56] 2020 Emotional Neural Network+PSO 22  88.34 92.12  
10 [57] 2021 SVM+XG-Boost+ RF –  93.86 –  
11 Proposed approach – SVM+BDE-BSS 20  95.05 96.58  

Table 12 
The results of proposed algorithms and compared algorithms in the application of gene selection.  

Dataset MRMR-DBH [57] rMRMR-MGWO [59] MIM-mMFA [60] QMFOA [61] BDE-BSS-DR BDE-BSS-DR-r 

Best Avg (Std) Best Avg (Std) Best Avg (Std) Best Avg (Std) Best Avg (Std) Best Avg (Std) 

Colon 98 97.02 ± 0. – 95.8 100 100 ± 0.0 100 100 ± 0.0  100 100 ± 0.0  100 100 ± 0.0 
SRBCT – – – 100 100 99.40 ± 0.6 100 99.40 ± 0.9  100 100 ± 0.0  100 100 ± 0.0 
DLBCL 100 100 ± 0.0 – – 100 100 ± 0.0 – –  100 100 ± 0.0  100 100 ± 0.0 
Leukemia – – – – – – 100 100 ± 0.0  100 100 ± 0.0  100 100 ± 0.0 
Bladder Cancer – – – – – – – –  100 100 ± 0.0  100 100 ± 0.0 
CNS 97.19 95.4 ± 1.5 – 99.3 100 99.83 ± 0.5 100 100 ± 0.0  100 100 ± 0.0  100 100 ± 0.0 
ALL-AML 100 100 ± 0.0 – 100 – – – –  100 100 ± 0.0  100 100 ± 0.0 
Brain_Tumor2 – – – – 100 100 ± 0.0 100 100 ± 0.0  100 100 ± 0.0  100 100 ± 0.0 
Prostate Tumor 99.6 98.19 ± 0.3 – – 100 100 ± 0.0 100 99.87 ± 0.5  100 100 ± 0.0  100 100 ± 0.0 
MLL 100 100 ± 0.0 – 100 100 100 ± 0.0 – –  100 100 ± 0.0  100 100 ± 0.0 
Breast Cancer 93.8 90.21 ± 2.2 – – 91.7 86.80 ± 3.1 81.44 77.53 ± 2.0  100 99.18 ± 1.49  100 99.93 ± 0.2 
COVID-19 83.33 – – – – – – –  100 97.72 ± 2.02  100 99.40 ± 0.8  
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algorithms have delivered 100% accuracy in all datasets, except for 
Breast Cancer and COVID-19, in all runs. This outcome is considerably 
superior to the performance of all other divergent methodologies. 

The results presented in Table 13 displays the quantity and mean 
number of chosen genes across various datasets runs by the BDE-BSS-DR 
algorithm. For example, the BDE-BSS-DR algorithm achieved 100% 
classification accuracy with 32 genes selected as effective in Breast 
Cancer from 24,481 genes. However, this algorithm selected 42.8 genes 
from this dataset on average. Comparably, the BDE-BSS-DR algorithms 
have obtained a classification accuracy of 100% for the COVID-19 
dataset by selecting 36 genes (as recorded in Table 13). On the other 
hand, the SRBCT dataset has the smallest number of genes selected, 
which is only 11 genes. The proposed BDE-BSS-DR algorithm with SVM 
classifier and five-fold cross-validation is also examined on the COVID- 
19 dataset. The confusion matrix for the best-selected genes can be 
found in Appendix 6. 

Fig. 5 also displays the convergence diagram of the BDE-BSS-DR. The 
convergence diagram of the BDE-BSS-DR algorithm presents important 
information about the algorithm search process. The figures show that 
despite the number of 500 repetitions for the BDE-BSS-DR in all datasets 
(except the two datasets Breast Cancer and COVID-19), the BDE-BSS-DR 
algorithm has achieved 100% classification accuracy in less than 300 
iterations. In the other two datasets, Breast Cancer and COVID-19, the 
proposed method obtained better solutions in 500 iterations due to a 
large number of features. In certain datasets, such as SRBCT, DLBCL, 
Bladder Cancer, and MLL, the proposed method achieves 100% classi
fication accuracy in less than 100 iterations (less than 3000 evaluations 
of the fitness function). Therefore, the DR mechanism is not used in the 
search process for these datasets. In some other datasets, such as Colon, 
Leukemia, Prostate Tumor, and MLL, the proposed method achieves 
100% classification accuracy in less than 200 iterations (Less than 6000 
evaluations of the fitness function). In two datasets, CNS and Brain_
Tumor2, the algorithm has achieved 100% classification accuracy in less 
than 300 iterations. 

Finally, as shown in Fig. 5, the algorithm needs more iterations in the 
breast and covid datasets to achieve 100% classification accuracy. Of 
course, observing the average classification accuracy of the algorithm in 
these datasets in Table 12 indicates that the BDE-BSS-DR algorithm in 
these datasets has not achieved 100% classification accuracy in all runs. 
Viewing the convergence diagram of the BDE-BSS-DR algorithm shows 
the high efficiency of the suggested BSS method as well as the DR 
mechanism in high-dimensional datasets. 

4.4. Analysis of the DR mechanism and BSS algorithm 

Many features in high-dimensional datasets create a very large 
search space. For example, in the COVID-19 dataset, which contains 
25,534 features or genes, the number of solutions to the problem is 
225,534 − 1. With wrapper-based FS algorithms in which a search algo
rithm (e.g., EC algorithms to search for optimal solutions) and a classi
fication algorithm (e.g., SVM and KNN to evaluate the obtained 
solutions) are used, there are problems such as overfitting, the curse of 
dimensionality, high cost of computations, high memory usage and 
weak performance due to stopping at local optimal points. These prob
lems cause the FS algorithm to not work properly. This was demon
strated in the performance of the BDE algorithm in Fig. 3, in high- 
dimensional datasets. To achieve high efficiency in FS in such datasets 
and reduce the problems expressed, the idea of this paper is to use a BSS 
and DR mechanism. BSS and DR mechanisms presented in this article 
can reduce the following problems:  

• Over-fitting problem: High-dimensional data are often plagued by 
over-fitting due to the presence of numerous unimportant features. 
The DR mechanism is an effective approach to overcome this issue by 
physically eliminating these features. Moreover, the BSS algorithm 
can help to prevent overfitting by limiting the selection of a large 
number of features.  

• The curse of dimensionality: In general, ML methods are designed 
for low-dimensional datasets. These methods do not work well in 
applications such as high-dimensional dataset classification. There
fore, using the BSS and DR mechanism can partially solve the 
problem of the curse of dimension.  

• The computational cost and high memory consumption: Search 
agents represent problem solutions in wrapper-based FS algorithms. 
The large data size requires a lot of storage space to store search 
agents in memory. Moreover, the computational cost to evaluate the 
solutions obtained by the classifier and search algorithm in the 
search process is high. The increasing number of data samples ex
acerbates this problem. Therefore, the physical removal of di
mensions can significantly reduce memory consumption and high 
computational costs. In addition, not selecting many features using 
the BSS algorithm can decrease the cost of computations of evalu
ating responses by the classifier method and performing calculations 
in the search algorithm.  

• Trap in local optima: A vast problem space of high-dimensional 
data contains multiple local optimal points. However, the physical 
reduction of dimensions, resulting in a lower-dimensional space, 
causes a significant loss of such local optima. To mitigate this, 

Table 13 
The results of the selected genes in one of the best runs and the average number of selected genes on 15 runs by the BDE-BSS-DR algorithm.  

Dataset Selected genes index in the best run of the BDE-BSS-DR algorithm Average number of 
selected genes 

Colon 104, 195, 353, 413, 513, 652, 799, 939, 986, 1246, 1348, 1482, 1493, 1644: (14 Genes)  26.9 
SRBCT 445, 779, 971, 976, 1319, 1488, 1575, 1893, 1955, 2186, 2304: (11 Genes)  26.8 
DLBCL 715, 980, 1122, 1258, 1398, 1449, 1587, 2033, 2260, 3868, 3984, 3991, 5086, 5124, 5578, 5670, 6015, 6153, 6191: (19 Genes)  22.6 
Leukemia 87, 351, 557, 817, 925, 929, 1128, 1371, 1629, 2008, 2078, 2193, 2329, 4199, 4460, 4655, 4698, 4944: (18 Genes)  26.3 
Bladder 

Cancer 
700, 830, 1379, 2412, 2694, 2881, 3362, 3795, 3881, 3891, 3989, 4450, 4783, 4840, 5396, 5699: (16 Genes)  36.2 

CNS 117, 293, 1430, 1770, 2051, 2353, 3127, 3696, 3946, 4547, 5254, 5812, 6179, 6789, 6962: (15 Gens)  42.1 
ALL-AML 280, 461, 1177, 2692, 3021, 3137, 3208, 3404, 3426, 3504, 3596, 4951, 4955, 5049, 5468, 5986, 6116, 6472: (18 Genes)  26.3 
Brain_Tumor2 592, 877, 1084, 3076, 3189, 3872, 3965, 3994, 4523, 4943, 5029, 5872, 6358, 6461, 7420, 7622, 7870, 9924, 9930, 10348: (20 

Genes)  
31.3 

Prostate 
Tumor 

1157, 1229, 1267, 1275, 1442, 1644, 1896, 2159, 3663, 4086, 4823, 5343, 5860, 6168, 6284, 6465, 6930, 7050, 8255, 9085, 
9499: (21 Genes)  

33.6 

MLL 978, 2592, 3021, 4275, 5534, 7522, 7814, 8236, 8708, 8798, 9005, 9060, 9145, 10045, 10274, 10558, 10676, 12510: (18 Genes)  23.5 
Breast Cancer 383, 541, 2802, 2881, 3669, 4263, 4279, 4731, 4915, 5182, 5312, 6690, 7369, 7796, 8775, 8785, 10164, 10888, 11903, 13063, 

13556, 13620, 13700, 13799, 16611, 17334, 19416, 22286, 22508, 23776, 24117, 24427: (32 Genes)  
42.8 

COVID-19 1994, 2009, 4584, 4791, 5188, 5222, 6457, 7083, 7380, 8869, 11232, 11534, 12455, 12548, 12894, 13330, 14421, 16198, 17520, 
17550, 17770, 18371, 18637, 18791, 18958, 19152, 19167, 19593, 19697, 20183, 20615, 20676, 21087, 23950, 24568, 24724: 
(36 Genes)  

45.3  
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Fig. 5. The convergence diagram of the BDE-BSS-DR algorithm in gene selection application.  

COVID-19Breast Cancer

Fig. 6. The number of dataset genes and the number of genes selected by the best solution in the search process of the BDE-BSS-DR+SVM algorithm.  
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employing BSS algorithms proves to be an effective approach for 
escaping from local optima. 

Fig. 6 presents the behavior of the DR mechanism and the BSS al
gorithm in both COVID-19 and Breast Cancer datasets. As shown in 
Fig. 6, the DR mechanism in both datasets reduces the search space 
several times after 150 iterations. For example, in the COVID-19 dataset, 
up to 190 iterations, the number of features is 25,343. In this iteration, 
the DR mechanism is called, and it deleted 16,932 of the features. As a 
result, the algorithm continues the search process from iteration 191 to 
iteration 248 with 8411 features. 

As we can see in Fig. 6, the last step of calling the DR mechanism is 
done in iteration number 418. In this way, the high-dimensional search 
space becomes a smaller-dimensional search space, and problems such 
as the curse of dimensionality, high memory consumption computa
tional cost, and stopping at local optimal points are reduced. In addition 
to the behavior of the DR mechanism in Fig. 6, we see the number of 
features chosen by the best solution in different iterations. For example, 
up to 15 iterations, the search process continues with 12,678 features. In 
iteration 15, the BSS algorithm is called, and it achieves a better solution 
with 7426 genes by performing the search. Finally, the algorithm ob
tains the optimal solution with 36 genes in this run. We see the same 
process for the Breast Cancer dataset. 

The mean running time of the suggested algorithms on the COVID-19 
and Breast Cancer datasets was evaluated in 30 independent runs, as 
shown in Fig. 7, The outcomes of this evaluation were presented in 
Section 4.3.1. This comparison highlights the impact of the DR on the 
BDE-BSS-DR’s running time. As depicted in the figures, both algorithms 
exhibit the same running time up to 150 iterations. However, in sub
sequent iterations, invoking the DR mechanism incurs a computational 
cost. Still, it reduces the number of remaining features in the search 
space by removing unimportant ones. This reduction in the number of 
features reduces the cost of computing the evaluation function and the 
algorithm compared to the BDE-BSS algorithm, and results in reducing 
the overall cost of the algorithm. Therefore, the DR mechanism not only 
improves classification accuracy and selects minimum features, but also 
reduces the computational cost in high-dimensional data. 

The remarkable dominance of the BDE-BSS-DR and BDE-BSS over the 

BDE and other algorithms, especially in high-dimensional data, can be 
attributed to two factors. Firstly, the approach of the BSS algorithm is to 
consider the higher probability of not selecting features, which leads to a 
significant number of unimportant features being ignored in high- 
dimensional data. Secondly, the DR mechanism physically removes 
unimportant features from the search space, thereby reducing the 
computational cost of evaluating the fitness function, as explained 
earlier. An illustration in Fig. 6, provides a clear example of the BSS 
algorithm’s efficacy. Within less than 100 iterations, the algorithm 
effectively changes a substantial number of less important features to 
non-selection mode, allowing relevant features to be added to the subset 
of features in subsequent iterations. This approach also reduces both 
computational cost and memory consumption. Furthermore, incorpo
rating the DR mechanism and transforming the vast search space into a 
smaller search space during the search process leads to the elimination 
of numerous local optimal points, facilitating the discovery of better 
solutions. This approach also reduces both computational cost and 
memory consumption. Moreover, utilizing the BDE algorithm, particu
larly in the reduced search spaces, significantly contributes to enhancing 
the performance of the BDE-BSS-DR algorithm. 

5. Conclusion and future recommendations 

Efficient classification algorithms require the careful selection of 
relevant features and the removal of unimportant ones from the feature 
set. The medical field is an area where FS can be particularly impactful, 
as identifying significant features in medical data can help us better 
understand the factors that influence diseases. FS is also a crucial step in 
data preprocessing for designing ML-based medical decision support 
systems. Despite its benefits, FS can be inefficient, especially for high- 
dimensional data, due to problems such as the curse of dimension
ality, local optima, cost of computations, and high memory 
consumption. 

To overcome the issues, this paper suggested a novel FS method that 
uses the DR mechanism and BSS algorithm. The DR mechanism physi
cally eliminated unimportant features identified during the search pro
cess, thereby reducing the search space. Gradual removal of features 
reduces the possibility of mistakenly removing relevant features before 

Fig. 7. The average running time(sec) of the BDE-BSS-DR and BDE-BSS on Breast Cancer and COVID-19.  
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starting the search process. The BSS plays a vital role in improving the 
solutions obtained by the BDE algorithm. This algorithm, with a sto
chastic approach, plays an important role in escaping from the local 
optimal points and increasing the efficiency of the FS algorithms, 
particularly in high-dimensional data. The efficiency and effectiveness 
of each of the proposed algorithms were evaluated using various criteria 
such as classification accuracy, number of selected features and running 
time on 20 medical datasets. In addition, the importance and impact of 
each of the proposed methods, BSS and DR mechanism, as well as the 
initialization of search agents using the ReliefF algorithm, in increasing 
the efficiency of FS, were evaluated and analyzed separately. The results 
showed that each of the proposed methods has an important role in 
increasing the efficiency of FS, and their combination in the BDE-BSS- 
DR-r algorithm creates an efficient FS algorithm. 

In future work, we plan to develop a framework for FS from high- 
dimensional datasets using EC methods, BSS methods, and the DR 
mechanism. In the proposed framework, an approach for self- 
organization of different parameters in the BSS algorithm and DR 
mechanism is provided. Also, to increase the convergence speed of the 
BSS algorithm, the best features determined by filter-based algorithms 
such as ReliefF and Fisher [62] can be used to add important features to 
the subset of selected features. Additionally, we will explore the use of 
enhanced EC methods instead of the BDE algorithm to further improve 
the efficiency and effectiveness of our BDE-BSS-DR and BDE-BSS algo
rithms, building on previous work that has notably increased FS 

efficiency for low-dimensional datasets (e.g., [63,64], and [65]). 
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Appendix 1. Differential evolution (DE) 

1.1. Generating initial population 

The DE method starts by generating an initial population randomly within the problem space, which is characterized by a D-dimensional matrix 
denoted as D. The ith member of the population has the following structure: 

Xi,it =
(
x1,i,it , x2,i,it , ..., xD,i,it

)
, i ϵ [1,…,NP], (1)  

where iϵ[1,…,NP] represents the ith member of the population and it = 1,…,Maxit indicates the number of repetitions. The jth component of the ith 
member of the population is initialized as follows [43]: 

xj,i,0 = xj,min + randi,j[0, 1].
(
xj,max − xj,min

)
, (2)  

where randi,j[0,1] is a random number with a uniform distribution between 0 and 1, and xj,max and xj,min represent the upper and lower bounds of the jth 
dimension of the search space, respectively. After generating the initial population, the search process of the algorithm begins, and at each iteration, 
the mutation, crossover, and selection operators are applied to the search agents. The process continues until the optimal point is found [44]. 

1.2. Mutation operator 

At each iteration, the DE algorithm creates a mutant vector Vi,it for each target vector Xi,it in the population. Different mutation operators are 
proposed for the DE algorithm. One of the well-known mutation methods is presented in (3). 

DE
/

rand
/

1 : Vi,it = Xr1,i,it +F.
(
Xr2,i,it − Xr3,i,it

)
, (3)  

where r1, r2, and r3 are integers in the range of [1,NP] that are selected randomly. Therefore, Xr1,Xr2 and Xr3 are population members selected 
randomly for the mutation procedure. The parameter F is called the scaling factor, which is a positive real number, and it is added to the vector 
difference Xr2 and Xr3 to amplify their difference [43]. Different values for F can affect the algorithm search process. For example, large values for F 
cause the global search algorithm to be performed in the entire problem space. Small values for F increase the algorithm’s convergence speed, but the 
algorithm can be stopped at a local optimal point [42]. 
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1.3. Crossover operator 

The generated mutant vector Vi,it using the mutation operation is combined with the target vector Xi,it and a new solution ui,it called trial vector is 
generated as presented in Eq. (4) [44]: 

ui,j,it =

{
Vi,j,it
Xi,j,it

if rand ≤ CR or j = jrand
otherwise (4) 

At this stage, Eq. (4) reveals that the mutant vector Vi,it components, accompanied by CR probability, are transmitted to the trial vector. 
Conversely, the components from the target vector Xi,it are transmitted to the trial vector. In (4), rand is a random number in the range [0,1], and jrand 
denotes a number in the range of [1, 2,…,D] generated randomly. Also, CR is the crossover control parameter. Different values for CR affect the 
convergence of the algorithm. For instance, selecting a large value for the parameter CR increases the diversity of the population. The reason is that the 
trial vector inherits more information from the mutant vector Vi,it. In addition, using small values for the parameter CR causes a local search around the 
target vector Xi,it , because the trial vector ui,it changes are less than the changes of the target vector Xi,it, and the exploitation abilities of the algorithm 
increase slightly [43]. 

1.4. Selection operator 

At this algorithm stage, some members of the population must be transferred to the next generation, and others must be eliminated. For this 
purpose, competition is made between the target vector Xi,it and trial vector ui,it [42]. The selection operator for this algorithm is performed according 
to Eq. (5): 

Xi,it+1 =

{
ui,it
Xi,it

if fit
(
ui,it

)
≥ fit

(
Xi,it

)

otherwise (5)  

where fit
(
Xi,it

)
is the fitness function to be maximized. If the fit

(
ui,it

)
is greater than or equal to fit

(
Xi,it

)
, then trial vector ui,it is transferred to the next 

generation, and otherwise target vector Xi,it is transferred to the next generation [42]. 
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Fig. 1. Confusion matrix and evaluation metrics.  

Appendix 3  

1. https://data.mendeley.com/datasets/fhx5zgx2zj/1  
2. http://archive.ics.uci.edu/ML/index.php  
3. https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE149273  
4. https://schlieplab.org/Static/Supplements/CompCancer/datasets.htm. 
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Fig. 2. The proposed method confusion matrix, with the 20 features selected by BDE-BSS+SVM in different folds of 10CV. 

B. Ahadzadeh et al.                                                                                                                                                                                                                            



Applied Soft Computing 151 (2024) 111141

24

. 
Appendix 5  

Table 1 
The Z-Alizadeh Sani dataset with all features and the status of features after FS using the BDE-BSS algorithm.  

No. Feature name Value SF No. Feature name Value SF  

1 Age [30–86]  1  28 Nonanginal chest pain yes, no  0  
2 Weight [48–120]  1  29 Exertional chest pain yes, no  1  
3 Sex F, M  0  30 Low Th Ang (low-Threshold angina) yes, no  0  
4 BMI (Body Mass Index Kg/m2) 18–41  1  31 Rhythm Sin, AF  0  
5 DM (Diabetes Mellitus) yes, no  0  32 Q wave yes, no  1  
6 HTN (Hypertension) yes, no  1  33 ST elevation yes, no  0  
7 Current smoker yes, no  1  34 ST depression yes, no  1  
8 Ex-smoker yes, no  0  35 T inversion yes, no  1  
9 FH (Family History) yes, no  0  36 LVH (Left Ventricular Hypertrophy) yes, no  0  
10 Obesity if BMI> 25 yes, else no  0  37 Poor R-wave progression yes, no  1  
11 CRF (Chronic Renal Failure) yes, no  0  38 FBS (Fasting Blood Sugar mg/dL) [62–400]  0  
12 CVA (Cerebrovascular Accident) yes, no  0  39 Cr (Creatine mg/dL) [0.5–2.2]  0  
13 Airway disease yes, no  0  40 TG (Triglyceride mg/dL) [37–1050]  0  
14 Thyroid disease yes, no  0  41 LDL (Low-Density Lipoprotein mg/dL) [18–232]  0  
15 CHF (Congestive Heart Failure) yes, no  1  42 HDL (High-Density Lipoprotein mg/Dl) [15–111]  0  
16 DLP (Dyslipidemia) yes, no  0  43 BUN (Blood Urea Nitrogen mg/dL) [6–52]  0  
17 BP (Blood Pressure mm Hg) 90–190  1  44 ESR (Erythrocyte Sedimentation Rate mm/h) [1–90]  1  
18 PR (Pulse Rate ppm) 50–110  0  45 HB (Hemoglobin g/dL) [8.9–17.6]  1  
19 Edema yes, no  0  46 K (Potassium mEq/lit) [3.0–6.6]  1  
20 Weak peripheral pulse yes, no  0  47 Na (Sodium mEq/lit) [128–156]  0  
21 yes, no yes, no  0  48 WBC (White Blood Cell cells/ML) [3700–18,000  0  
22 Systolic murmur yes, no  0  49 Lymph (Lymphocyte %) [7–60]  0  
23 Diastolic murmur yes, no  1  50 Neut (Neutrophil %) [32–89]  0  
24 Typical chest pain yes, no  1  51 PLT (Platelet 1000/ML) [25–742]  1  
25 Dyspnea yes, no  0  52 EF (Ejection Fraction %) [15–60]  1  
26 Function class 1, 2, 3, 4  0  53 Region with RWMA 0,1,2,3,4  1  
27 Atypical yes, no  0  54 VHD (Valvular Heart Disease) Normal, Mild, Moderate, Severe  0 

Note: SF is the status of features after FS using the BDE-BSS algorithm: 1 means that the feature is selected, and 0 means that the feature is not selected. 
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Appendix 6
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Fig. 3. Confusion matrix by the proposed method using 36 genes selected by BDE-BSS-DR+SVM in different folds of 5CV.  
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[48] M. Abdar, W. Książek, U.R. Acharya, R.S. Tan, V. Makarenkov, P. Pławiak, A new 
machine learning technique for an accurate diagnosis of coronary artery disease, 
Comput. Methods Prog. Biomed. 179 (2019), 104992. 

[49] R. Alizadehsani, J. Habibi, M.J. Hosseini, H. Mashayekhi, R. Boghrati, 
A. Ghandeharioun, Z.A. Sani, A data mining approach for diagnosis of coronary 
artery disease, Comput. Methods Prog. Biomed. 111 (1) (2013) 52–61. 

[50] Z. Arabasadi, R. Alizadehsani, M. Roshanzamir, H. Moosaei, A.A. Yarifard, 
Computer aided decision making for heart disease detection using hybrid neural 
network-Genetic algorithm, Comput. Methods Prog. Biomed. 141 (2017) 19–26. 

[51] C.J. Qin, Q. Guan, X.P. Wang, Application of ensemble algorithm integrating 
multiple criteria feature selection in coronary heart disease detection, Biomed. 
Eng. Appl. Basis Commun. 29 (06) (2017) 1750043. 
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