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Abstract: In this work, three different types of sandwich structures were manufactured, each using a
Formica sheet (a paper-based sheet) as the skin and perlite/sodium silicate foam as the core, with
or without a paper honeycomb. The sandwich structures were fabricated by attaching the Formica
sheets on both sides of a paper honeycomb core panel, a perlite/sodium silicate foam core panel,
and a perlite/sodium silicate foam-filled honeycomb core panel. The flexural characteristics were
studied by a three-point bending test and the thermal conductivity was measured using Lee’s thermal
conductivity apparatus. The results demonstrated a significant improvement in flexural properties,
including core shear stress, facing stress, bending stress, and energy absorption, when incorporating
the paper honeycomb reinforcement. The thermal conductivity and flexural properties of the paper
honeycomb reinforced and unreinforced perlite/sodium silicate foam-based sandwich panels were
found to be very compatible with existing building materials described in the literature that are
used for similar applications. The failure investigation revealed that the sandwiches with paper
honeycomb failed prematurely only due to core buckling, while the foam-filled honeycomb core-
based sandwiches were able to sustain higher loads while exhibiting material failures such as core
shear failure, skin rapture, and delamination. It was found that the foam-filled paper honeycomb
sandwich structures can withstand higher bending loads than the foam core-based sandwich structure
or the paper-honeycomb-based sandwich structure. These developed sandwiches offer potential as
green materials due to the characteristics of their constituent materials and they can provide valuable
applications in the thermal insulation of buildings.

Keywords: perlite composite-filled paper honeycomb sandwich; thermal insulation board; green
sandwich structure; flexural properties; thermal conductivity

1. Introduction

Expanded perlite is a lightweight material that is used extensively because of its
appealing chemical and physical characteristics. The raw perlite particles obtained from the
obsidian typically increase in volume by 5–20 times when rapidly heated to a temperature
of 900 ◦C to 1200 ◦C [1]. They are used in construction industries because of their low bulk
density [2] and their attractive properties. Expanded perlite particles are environmentally
friendly and chemically inert. They possess strong heat and fire resistance, low thermal
conductivity, and good sound insulation characteristics [3–5].

The uses of expanded perlite particles for the development of building materials
were covered extensively in a review by Rashad [6]. Expanded perlite particle-based
building boards were studied by many researchers, including fiber/asphalt coated perlite
building boards studied by Miscall and Rahr [7]; mineral board studied by Sherman
and Cameron [8]; perlite/starch foam studied by Shastri and Kim [9]; gypsum/perlite
composite studied by Vimmrova [10] and Karua and Arifuzzaman [11]; perlite/sodium
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silicate board studied by Arifuzzaman and Kim [12–15], Adhikary et al. [16], Karua and
Arifuzzaman [17], Takey et al. [18], Tian et al. [19], and Abir et al. [20]; and perlite and
vermiculate based lightweight fire-rated board studied by Yew et al. [21].

Perlite/sodium silicate foam boards may be an alternative to gypsum board because of
their light weight, high strength-to-weight ratio, and better thermal and acoustic insulation.
The concentration of sodium silicate in perlite-based foams plays a vital role in the physical
and mechanical properties of perlite/sodium silicate foam boards. It was found from the
literature that the density and the compressive and flexural strength of expanded perlite
boards increase linearly with increasing concentrations of sodium silicate [12,14,19]. The
effect of sodium silicate binder and the compaction ratio on the mechanical properties
of perlite-based building boards was broadly studied by Arifuzzaman and Kim [12,13].
One of the important characteristics of perlite/sodium silicate composite foam is that the
failure of perlite/sodium silicate panels initiates on a specimen’s tensile side [13] during
flexural loading, causing a lower load-bearing capacity and decreased toughness of the
panels. However, Arifuzzaman and Kim [22] found that the failure side was shifted to the
mid-plane of the flexural specimen when brown paper was used as a skin reinforcement
for the sandwich structure. The load-bearing capacity of the structure also increased, by
roughly 3–7 times. Therefore, sandwiching perlite/sodium silicate composite foams with
various skins could influence the flexural properties of a structure, based on the skins’
material properties.

Paper honeycomb sandwich panels have been used to package large-scale goods,
furniture, building materials, and other things due to their light weight, high strength,
and cushioning characteristics [23–25]. The paper honeycomb sandwich structures for
building applications were studied in the past [26–29]. For example, Shahbazi et al. [26]
investigated a sandwich structure made of flax fiber-reinforced Portland cement and kraft
paper honeycomb as the face sheet and the core material, respectively. The flexural and
thermal properties were found to be compatible with those of traditional gypsum boards.
Kadir et al. [28] examined an effective method for finding the ideal arrangement of kraft
paper honeycomb. They studied the effects of paper density, cell-wall thickness, and
honeycomb cell size on specific energy absorption and specific compressive strength. Their
findings showed that all parameters had a discernible impact, but the width of the cell wall
had the greatest impact on the functionality of kraft paper honeycomb.

The effects of foam filling on the behavior and failure of sandwich panels made of
a paper honeycomb core are limited. Fu and Sadeghian [27] found that filling paper
honeycomb core cells with polyurethane foam increased the load-bearing capacity of
the sandwiches [27]. Kadir et al. [28] also used low-density polyurethane to fill kraft
paper honeycomb cells. They showed that adding polyurethane foam to the kraft paper
honeycomb helped to reinforce the cell walls, which in turn increased both the honeycomb’s
capacity to absorb energy and the peak force. Therefore, filling paper honeycomb core
cells with lightweight expanded perlite foams could benefit the load-bearing capacity and
toughness of the sandwiches.

The face sheet material has a significant impact on the flexural properties of a sandwich
structure. For example, Safarabadi et al. [30] studied the buckling behavior of a Nomex
honeycomb core with glass-epoxy face sheet sandwich panels for both bare and foam-filled
cores. They reported that the presence of foam increased the crucial buckling load. The
characteristics of the face sheets had a greater influence on the buckling behavior and the
energy absorption or toughness of the composite panel.

Studies of sandwich structures made of the expanded perlite-based core are limited
in the literature. Arifuzzaman and Kim [22] studied the flexural behavior of expanded
perlite/sodium silicate core-based sandwich structures using brown paper as the skin.
Recently, Sarkar et al. [31] and Hossain et al. [32] investigated sandwich structures using jute
fiber-reinforced epoxy composite as the skin and expanded perlite/epoxy and expanded
perlite/sodium silicate as the cores, respectively. Formica sheets made of high-grade craft
paper may be a good candidate for the skin of the perlite/sodium silicate core-based
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sandwich structure. Notably, Formica sheets are widely used in the furniture industries
and in building interior decoration.

In this work, novel green sandwich structures were formulated using expanded
perlite/sodium silicate foam, paper honeycomb, and perlite/sodium silicate foam-filled
paper honeycomb cores, with Formica sheet as the skin. The flexural and thermal behavior
of the manufactured composites were investigated and compared with similar existing
building materials that are discussed in the literature.

2. Materials and Method
2.1. Materials

For manufacturing perlite foam-filled honeycomb sandwich structures, the honeycomb
structure was made using kraft paper, and the cells of the paper honeycomb structures
were filled with perlite/sodium silicate composite foam. Formica sheets were used as the
skins of the sandwich structures. The skins were bonded to the cores using a synthetic resin
adhesive (Fevicol SH). A schematic of the sandwich structure considered in this study is
shown in Figure 1.
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Figure 1. A schematic view of the honeycomb sandwich structure considered in this study.

Kraft liner paper with an average thickness of 0.49 mm was purchased from the local
market. Glossy-finished Formica sheets, “Formica & Ebonite (HPL) 717” of thickness
0.50 mm (Super Formica & Lamination Limited, Jamaldi, Bangladesh), were purchased
from a local supplier. According to the manufacturer, the raw materials of Formica sheets
are high-grade kraft paper, phenol formaldehyde, and melamine formaldehyde resin. The
sheets are scratch-resistant and have firm, slick surfaces. Multiple layers of impregnated
paper are fused under high temperature and high pressure to manufacture Formica sheets.
They are tough, long-lasting, and non-toxic to humans. The tension test for the Formica
sheets was conducted with a Universal testing machine (Shimadzu AGX 300 kNV, Kyoto,
Japan) at a crosshead speed of 5 mm/min to determine the tensile properties. The coupon
specimen’s dimensions were 250 mm × 25 mm. The stress-strain curves for five specimens
are shown in Figure 2. All specimens showed a similar trend consisting of a linear increase
in stress with strain up, to a peak where a brittle tearing took place. The average values
of tensile strength, modulus, and failure strain with standard deviations are provided
in Table 1.
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Figure 2. Tensile stress-strain curves of Formica sheet.

Table 1. Tensile properties of Formica sheet.

Sample Tensile Strength (MPa) Tensile Modulus (GPa) Failure Strain (%)

Formica sheet 57.89 ± 4.73 8.91 ± 0.23 0.69 ± 0.05

Expanded perlite particles were purchased from Xinyang Caster New Material Co.,
Ltd. (Xinyang, China). The particles were sorted into sizes ranging from 2.36 mm to
4.75 mm, using sieves to maintain uniformity. The powders and particles of sizes other than
2.36 to 4.75 mm were filtered out. According to the manufacturer’s catalog, the expanded
perlite contained 70–75% SiO2, 12–16% Al2O3, 2.5–5% Na2O, 1–4% K2O, 0.1–2% CaO,
0.15–1.5% Fe2O3, and 0.2–0.5% MaO.

Sodium silicate solution (SSS) was supplied by Silica Solution, a concern of Rupam
Soap & Chemical Industries Ltd., (Chattogram, Bangladesh). The manufacturer’s datasheet
stated that the weight ratio of sodium oxide and silicon dioxide was 1:3.2, and that the
solution had a density of 1.381 g/cm3 at 20 ◦C. The solution contained 36.3 ± 1.2% of solid
sodium silicate (by weight). To vary the solid content further, the SSS was diluted with 10%
and 20% drinking water. The sample identifications (IDs) and the SSS dilutions are shown
in Table 2. In the sample IDs in Table 2, “FHCS” and “FCS” refer, respectively, to a per-
lite/sodium silicate foam-filled paper honeycomb sandwich structure and a perlite/sodium
silicate foam core sandwich structure.

Table 2. Dilution of sodium silicate solution for different samples.

Sample ID Sodium Silicate Solution, wt.% Water, wt.%

FHCS-100, FCS-100 100 0
FHCS-90, FCS-90 90 10
FHCS-80, FCS-80 80 20

2.2. Specimen Preparation
2.2.1. Fabrication of Honeycomb Structure

The process of fabricating the sandwich structure consists of several steps, including
paper-honeycomb-structure fabrication, perlite-foam manufacturing, filling honeycomb
cells, curing, and attaching skins. The hexagonal shape was chosen for the paper honey-
comb to obtain better performance [33]. The paper honeycombs were fabricated by the
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traditional expansion process [34]. The fabrication process of a paper honeycomb structure
is shown in Figure 3. Kraft paper was cut into strips of 12 mm wide and 320 mm long,
using a paper cutter. The paper strips were marked as shown in Figure 3c, with intervals
of 20 mm. Glue (Fevicol SH) was applied to the strips at intervals of 60 mm and 20 strips
were stacked together in such a way that the glued portion of one strip did not coincide
with an adjacent strip. After curing for 24 h, the final step was to pull the strips apart to
expand the stacked strips into a hexagonal honeycomb structure, as shown in Figure 3e.
The dimensions of the honeycomb cells are shown in Figure 3f.
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2.2.2. Preparation of Perlite Foam Mixture

Figure 4 schematically shows the process of making the perlite/sodium silicate foam
mixture. The SSS was diluted using drinking water, as presented in Table 2. Dry perlite
particles were placed in a container and the diluted SSS was poured into the container,
followed by hand mixing for 5 min, which was sufficient to obtain a uniform mixture. The
mixing proportion of the perlite, water, and sodium silicate solution for different samples is
provided in Table 3. A slightly higher amount of perlite particles (5 g, as shown in Table 3)
was used to manufacture sandwich cores without paper honeycomb to compensate for
the density change. However, the total ratio of SSS to perlite particle was kept constant at
4.29. The prepared foam mixture was later used to manufacture perlite/sodium silicate
foam-filled paper honeycomb and perlite/sodium silicate foam panels, as described in the
following section.
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Table 3. Amount of the constituents used to prepare perlite/sodium silicate foam mixture.

Sample ID Mass of Perlite (g) Mass of SSS as
Received (g) Mass of Water (g) Mass of Diluted

SSS (g)

FHCS-100 85 365.00 0 365.00
FCS-100 90 386.47 0 386.47
FHCS-90 85 328.50 36.50 365.00
FCS-90 90 347.82 38.65 386.47

FHCS-80 85 292.00 73.00 365.00
FCS-80 90 309.18 77.29 386.47

2.2.3. Core Manufacturing

The expanded honeycomb structure was placed into a mold with dimensions of
250 mm × 250 mm; then, the perlite/sodium silicate foam mixture was manually poured
into the cells of the honeycomb structure. The top surface of the filled mold was made plain,
using a metal bar and applying light compaction. The wet foam-filled mold was then placed
inside an electric oven at 80 ◦C for 24 h to cure. A load of approximately 4 kg was kept on the
top of the wet foam-filled honeycomb to resist the bending of the core during curing. After
curing, the bottom surface of the core was found to be smooth and the paper honeycomb
edges were visible. However, the top surface was rough and the paper honeycomb edges
were not visible, because some of the particles were broken and remained on top of the
paper honeycomb when the compaction was applied using the metal bar. To ensure proper
adhesion of the paper honeycomb edges to the sandwich skin, it was necessary to polish the
top surface, using emery paper, to make the paper honeycomb edges visible. A photograph
of the manufactured foam-filled paper honeycomb core is provided in Figure 5a. For
manufacturing perlite/sodium silicate foam panels without paper honeycomb, the wet
mixture of the perlite and sodium silicate was poured into the mold and the top surface
was leveled, using the metal bar. After that, the curing process was the same as that used
for the foam-filled paper honeycomb cores. The manufactured perlite/sodium silicate
foam-filled honeycomb panels and the perlite/sodium-silicate-foam-only panels were used
to fabricate the sandwich structures, as described in the following section.

2.2.4. Fabrication of Sandwich

The Formica sheets were cut into rectangular shapes of 250 mm × 250 mm, which
was the internal size of the mold. The Formica sheets were attached to both surfaces of the
core, with 20 g of adhesives on the rough surface of each sheet. The adhesive was evenly
distributed, using a brush. The Formica skins were attached by keeping the longitudinal
direction of the honeycomb cells aligned with the longitudinal direction of the Formica
sheets. To minimize distortion, the sandwich specimens were further sandwiched between
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two flat glass plates of 6 mm thickness, and a load of approximately 4 kg was placed above
the top glass plate. The sandwich was left for 24 h so that the adhesive could cure. A
representative photograph of a foam core sandwich without a paper honeycomb is shown
in Figure 5b. The sandwich structures were cut into 250 mm × 80 mm shapes along the
longitudinal direction, using a circular saw for testing.
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sandwich structure made of perlite/sodium silicate foam core with Formica sheet as skin.

2.3. Density Measurement

The lengths, widths, and thicknesses of the samples were measured using digital
slide calipers (Mitutoyo 0–300 mm, Kawasaki, Japan) with an accuracy of 0.01 mm. The
mass of the samples was measured using a 0.01–300 g weighing machine (AND Company
Ltd., Seoul, Republic of Korea) with an accuracy of 0.01 g. The density of the samples was
determined using the following equation:

ρ =
M
V

, (1)

where ρ, M, and V are the density, mass, and volume of the specimens, respectively.

2.4. Flexural Testing

Three-point bending tests were conducted with a universal testing machine (Shimadzu
AGX-300kNV, Japan) at a crosshead speed of 6 mm/min and a support-span length of
150 mm, according to standard ASTM C393/C393M-11 [35]. Figure 6 shows a schematic
diagram of the three-point bending test arrangement. The diameters of the loading roller
and the support rollers were 10 mm and 30 mm, respectively. At least three specimens were
tested for sandwiches with only a foam core; six specimens were tested for sandwiches with
a foam-filled paper honeycomb core. The data (load and deflection) were recorded using the
data acquisition software TrapeziumX-V, Version 1.0.6 by Shimadzu, Japan, at an interval
of 0.05 s. The ultimate core shear strength (Fs) and the average facing strength (σskin) were
calculated using Equations (2) and (3), respectively, according to ASTM C393/C393M-11.

Fs =
P

(d + c)b
(2)

σskin =
PS

2t(d + c)b
(3)

where P, S, b, d, t, and c are the applied load, support span length, specimen width,
specimen depth, skin thickness, and core thickness, respectively.
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2.5. Thermal Conductivity Testing

Lee’s disc method [36] is well-known for measuring the thermal conductivity of the
insulation material that was used to determine the thermal conductivity of the sandwiches.
For the thermal conductivity test, the samples were cut into circular shapes with diameters
of 100 mm. Figure 7 shows the experimental setup for the thermal conductivity test. The
following equation was used to determine thermal conductivity:

k =
mS

(
dT
dt

)
x

A(T2 − T1)
(4)

where m, S, x, and A are the mass of the lower disc, the specific heat capacity of brass,
the slope of the cooling curve, the specimen thickness, and the area of the specimen,
respectively. The detailed procedure for measuring thermal conductivity, using Lee’s disc
method, can be found in [36].
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3. Results and Discussion
3.1. Flexural Properties

The density, core shear stress, facing stress, flexural modulus, equivalent flexural
strength, and thermal conductivity of different samples are provided in Table 4. The sample
ID “HCS” in Table 4 indicates the sandwich structure with only a paper honeycomb core.
The densities of the prepared sandwiches are shown as a bar chart in Figure 8, with standard
deviation indicated by the error bars. The range of density of the sandwiches with and
without paper honeycomb was found to be from 0.40 g/cm3 to 0.47 g/cm3. The density of
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the sandwiches appeared to be slightly decreasing with the decreasing solid content in the
SSS via dilution. Comparing the density of the FHCSs and the FCSs, the density of the FCSs
was slightly lower than that of the FHCSs, although extra perlite was used in the FCSs. The
insignificant deviation in density was favorable for comparing the mechanical properties
of the sandwiches. For the sandwich with only a paper honeycomb core, the density was
found to be 0.15 g/cm3, which was 62.5% lower than the lowest-density sandwich (e.g.,
FCS-80) in this study.

Table 4. Flexural characteristics of sandwich structures.

Sample ID Density, g/cm3 Core Shear
Stress, MPa

Facing Stress,
MPa

Flexural
Modulus, GPa

Flexural
Strength,

MPa

Thermal
Conductivity,

W/mK

FHCS-100 0.47 ± 0.010 0.35 ± 0.10 51.26 ± 13.81 1.76 ± 0.09 11.03 ± 2.95 0.10 ± 0.010
FHCS-90 0.44 ± 0.003 0.27 ± 0.02 39.72 ± 3.00 1.61 ± 0.07 8.55 ± 0.64 0.11 ± 0.003
FHCS-80 0.42 ± 0.007 0.20 ± 0.06 28.64 ± 7.65 1.30 ± 0.09 6.26 ± 1.70 0.10 ± 0.010
FCS-100 0.46 ± 0.009 0.23 ± 0.05 33.69 ± 6.86 1.44 ± 0.09 7.79 ± 1.62 0.11 ± 0.010
FCS-90 0.43 ± 0.006 0.22 ± 0.03 31.53 ± 4.36 1.19 ± 0.14 7.45 ± 1.08 0.11 ± 0.010
FCS-80 0.40 ± 0.011 0.13 ± 0.03 18.95 ± 3.85 1.07 ± 0.21 4.06 ± 0.82 0.09 ± 0.004

HCS 0.15 ± 0.008 0.04 ± 0.02 4.59 ± 1.81 0.22 ± 0.12 1.01 ± 0.40 -
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The flexural strength and the modulus of the sandwich structures are shown in
Figure 9. As expected, the flexural strength and modulus decreased with the decrease
in the concentration of the solid content in the SSS, due to the dilution for both types of
sandwiches (i.e., sandwiches with and without paper honeycomb). The flexural strength
and modulus of the FHCSs were found to be higher than those of the FCSs for each SSS
concentration. The flexural strength of the FHCSs increased by 41.65%, 14.68%, and 54.12%
for SSS concentrations of 100%, 90%, and 80%, respectively, compared to the respective
FCSs. The improvement in the flexural modulus of FHCSs was 22.05%, 35.01%, and 21.00%
for SSS concentrations of 100%, 90%, and 80%, respectively. The flexural strength of the
HCS was found to be 1.01 MPa, which was significantly lower than that of other sandwiches
in this study. The flexural strength and modulus of the HCS increased considerably, due
to foam filling. The flexural strength of the FHCSs made by filling perlite/sodium silicate
composite foams of 100%, 90%, and 80% SSS concentrations increased by 998.85%, 751.75%,
and 523.74%, respectively, compared to that of the HCS. The flexural modulus of the HCS
increased by 734.66%, 665.35%, and 516.24%, respectively, due to filling with perlite/sodium
silicate foams manufactured with 100%, 90%, and 80% SSS concentrations.
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Figure 9. Flexural strength and modulus of various sandwich structures.

The facing stress developed in the sandwich structures during the flexural test is shown
in Figure 10. Regardless of the honeycomb incorporation of the sandwich structures, the
sandwiches made of high SSS concentration showed higher facing stress. The reinforcement
of paper honeycomb increased the facing stress of the sandwich structures by 52.19%,
25.99%, and 51.18%, respectively, for SSS concentrations of 100%, 90%, and 80%. According
to the results, the FCS-80 sandwich showed the lowest facing stress of 18.94 MPa, and
the FHCS-100 sandwich showed the highest facing stress of 51.26 MPa. The facing stress
increased from 4.59 MPa to a maximum of 51.26 MPa (increased by 1016.78%) due to filling
the paper honeycomb core-based sandwich (HCS) with perlite/sodium silicate foam made
of 100% SSS. The improvements were 765.14% and 523.75% for the perlite/sodium silicate
foams made of 90% and 80% SSS, respectively. The maximum facing stress developed in
the FHCS-100 sandwich was 51.26 MPa, which was 12.93% less than the tensile strength
of the Formica sheet (which was 57.89 MPa, as shown in Table 1). Therefore, it can be
hypothesized that any of this investigation’s sandwiches, under flexural loading, must
not fail by face-sheet tearing at the tension side of the specimen. The failure modes of the
sandwiches are discussed later in this paper.
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The core shear stresses at peak load for different samples are shown in Figure 10 in
the secondary axis, with standard deviations as error bars. Similar to the facing stress, the
core shear stress decreased with the dilution of the SSS. The core shear stress developed
in the FHCSs was also found to be higher than that of the corresponding FCSs. On
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the other hand, the HCS showed a core shear stress of 0.03 MPa, and the core shear
stress also increased significantly, similar to the facing stress due to filling the HCS with
perlite/sodium silicate foams.

Specific properties are very important for describing lightweight materials. They are
provided in Table 5. It can be seen from Table 5 that the characteristic features of specific
flexural properties are similar to those of general flexural properties (as discussed above)
because of the insignificant change in densities of the sandwich structures with or without
a paper honeycomb. However, the specific flexural properties of both the FHCSs and the
FCSs appeared to be significantly higher than that of the HCS, although the density of the
HCS was considerably lower. For instance, the FHCS structure with 100% SSS concentration
exhibited a 251.11% higher specific flexural strength, compared to that of the HCS structure.

Table 5. Specific flexural properties of the sandwich structures in this study and from the literature.

Sample ID Density
(g/cm3)

Sp. Flexural Strength,
[MPa/(g/cm3)]

Sp. Flexural Modulus,
[GPa/(g/cm3)]

FHCS-100 0.47 23.77 3.78
FHCS-90 0.44 19.62 3.69
FHCS-80 0.42 15.25 3.16
FCS-100 0.46 17.18 3.17
FCS-90 0.43 17.44 2.79
FCS-80 0.40 10.15 2.68

HCS 0.15 6.77 1.42
Portland cement skin with kraft paper

honeycomb core [26] 0.99 0.88 -

Flax-reinforced Portland cement skin with
kraft paper honeycomb core [26] 0.89 1.74 -

Oriented strand boards or plywood [37] 0.55 29.82 8.97
Gypsum-fiber boards [37] 1.15 3.48 3.30

Chips board urea-formaldehyde bonded [38] 0.72 15.97 2.68
MDF [38] 0.68 27.50 -

Coconut coir cement board [39] 1.13 17.64 4.70
Commercial flake board [39] 1.40 8.43 4.29

Commercial cellulose board [39] 1.56 12.24 4.22
Gypsum panel [11] 1.00 2.26 2.12

Jute-fiber-reinforced gypsum panel [11] 0.97 2.03 2.24
Perlite/sodium silicate foam panel [22] 0.41 2.37 0.87

Syntactic foam panel [40] 0.37 21.32 2.86
Syntactic foam panel [40] 0.44 17.20 2.57

Nylon-fiber-reinforced perlite/sodium
silicate panel [18] 0.41 2.68 0.61

Perlite/sodium silicate foam with
jute-fiber-reinforced epoxy composite skin [31] 0.59 6.50 0.61

Table 5 also shows the specific flexural properties of some similar building materials
reported in the literature. The specific flexural strength and modulus of the sandwiches
developed in this work are significantly higher than those of similar building materials,
including gypsum panels [11], gypsum fiber boards [37], and plywood [37]. The densities
of building materials such as perlite/sodium silicate foam [22], syntactic foam [40], nylon-
fiber-reinforced perlite sodium silicate foam [18], and sandwich structures made with a
perlite/sodium silicate foam core with jute-fiber-reinforced epoxy composite skin [31]
reported in the literature fall within the density range of the sandwiches in this work, but
their specific flexural properties are comparatively lower than the sandwiches in this study.
Therefore, the developed sandwich structures may be potential candidates for applications
in the building industry, as non-load-bearing structures.
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3.2. Flexural Load-Deflection Curves and Failure Mechanism

Typical load-deflection curves and photographs of the specimens, showing the failure
mode during the flexural test, are provided in Figure 11 (for FCSs) and Figure 12 (for
FHCSs). All curves showed a linear increase in load, with deflections up to a peak at
which the failure was initiated. The failure was not visible in the naked eye as shown
in Figure 11b(i) and Figure 12b(i). The failure modes for various sandwich structures
under flexural loading are summarized in Table 6. The failures were initiated by core
shear cracking for all the FCSs and FHCSs, irrespective of the SSS concentrations, because
of the low shear strength of the perlite/sodium silicate core. For FCSs with 100% SSS
concentration, the failure sequence was found to be core shear cracking (Figure 11b(ii))
followed by a small delamination and top-skin fracture (Figure 11b(iii)). For other FCSs, the
failure sequence was core shear cracking followed by the delamination of either the top or
the bottom skin, or both skins, from the core. On the other hand, for all the FHCSs, the core
shear cracking (Figure 12b(ii)) was followed by the top-skin fracture (Figure 12b(iii)). After
careful observation of the recorded video of the flexural testing and the corresponding
load–deflection curves, the portion of the curves during shear cracking, skin delamination,
and skin fracture were identified. They are shown in Figure 11a for the FCSs and in
Figure 12a for the FHCSs. It was observed from the load–deflection curves that the core
shear and delamination caused a gradual drop in load with deflection, while the skin
fracture triggered a rapid drop in the load-bearing capacity of the sandwiches. In the case
of the HCS, the load increased with increasing deflection, up to a peak, followed by a
gradual drop in load with increasing deflection, as shown in Figures 11a and 12b. The
local deformation of the top skin initiated at the peak load, due to buckling of the paper
honeycomb core, as shown in Figure 11b(iv).
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Figure 12. (a) Typical load vs. displacement curves of foam-filled honeycomb core-based sandwiches
and (b) representative photographs showing failure modes of the sandwich during the flexural test:
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Table 6. Summary of the failure mechanisms of various sandwich structures.

Sample ID Failure Sequence

FHCS-100 Core shear–top skin fracture
FHCS-90 Core shear–top skin fracture
FHCS-80 Core shear–top skin fracture
FCS-100 Core shear–delamination-top skin fracture
FCS-90 Core shear–delamination
FCS-80 Core shear–delamination

HCS Local buckling of honeycomb core

A comparison of load–deflection curves for the FHCS-100, the FCS-100, the HCS, and
the combined HCS and FCS-100 are provided in Figure 13. The load-bearing ability of the
FHCS was significantly higher than those of the HCS, the FCS-100, and the combined HCS
and FCS-100, indicating a remarkably higher load-bearing capability of the FHCSs due to
the interaction effect.
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3.3. Thermal Behavior

The thermal conductivity of the different samples is shown in Figure 14, with the
standard deviation indicated by the error bars. The range of thermal conductivity of the
sandwiches, with and without paper honeycomb, was found to be from 0.095 W/mK to
0.113 W/mK. It is clear from the figure that the effects of solid content in SSS and paper
honeycomb reinforcement on thermal conductivity are insignificant.
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The thermal conductivities of various non-load-bearing building materials reported
in the literature, together with the results of the current study, are provided in Table 7.
The thermal conductivities of MDF [38], plywood-Scots pine and black pine [41], parti-
cleboard [38], and flax-reinforced Portland cement skin with a kraft paper honeycomb
core sandwich [26] fell within the range of thermal conductivity of the sandwiches re-
ported in this work. However, the densities of those materials were significantly higher
than those of the sandwiches in this work. The densities of a date palm waste-MDF
sandwich panel [42], polystyrene foamed concrete [43], and cork-gypsum compos-
ite [44] were within the range of the densities of the sandwich panels in this study, but
their thermal conductivities were higher than those of the sandwiches developed in
this work. The gypsum board [26], gypsum fiberboard [37], oriented strand board or
plywood [37], plywood (Beech) [38], coconut coir cement board [39], commercial flake
and cellulose board [39], gypsum composite [45], and newspaper sandwiched ALC
panel [46] possessed both higher densities and higher thermal conductivities than those
of the sandwiches in the current study. Another lightweight board was manufactured
by Lesiecki et al., using triticale straw for building insulation [47]. The thermal conduc-
tivity of the boards was found to be in the range from 0.033 W/mK to 0.046 W/mK,
for a density range of 0.15 g/cm3 to 0.20 g/cm3. However, the bending properties of
the boards were not provided. Therefore, the sandwiches reported in this work have
a high potential for use as non-load-bearing building insulation materials because of
their lower thermal conductivity and their lightweight properties.
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Table 7. Thermal conductivity of various building materials found in the literature, together with the
results of the current study.

Reference Materials Density
(g/cm3)

Thermal Conductivity
(W/m.K)

[26] Gypsum board 0.65 0.159

[37] Gypsum fiberboard 1.15 0.32

[38] MDF 0.696 0.0974

[38] Thin MDF 0.802 0.1104

[42] Date Palm Waste-MDF sandwich panel 0.456 0.1357

[37] Oriented strand boards (OSB) or plywood
(PWD) 0.65 0.13

[38] Plywood (Beech) 0.679 0.1304

[41] Plywood (Scots pine) 0.58 0.10

[41] Plywood (Black pine) 0.60 0.11

[38] Particleboard 0.597 0.0965

[26] Flax-reinforced Portland cement skin with
kraft paper honeycomb core 0.89 0.097

[39] Coconut coir cement board 1.04 0.40

[39] Commercial flakeboard 1.04 0.36

[39] Commercial cellulose board 1.56 0.68

[43] Polystyrene foamed concrete 0.4 0.157

[44] Cork–gypsum composite 0.472 0.124

[45] Gypsum composite 0.88 0.13

[46] Newspaper sandwiched ALC panel 1.1 0.30

[47] Triticale straw board 0.15–0.20 0.033–0.046

Current study Perlite/sodium silicate foam-based sandwich
with Formica sheet skin 0.40–0.47 0.095–0.113

4. Conclusions

Novel sandwich structures were manufactured with paper honeycomb, perlite/sodium
silicate foam, and perlite/sodium silicate foam-filled paper honeycomb as the cores, with
Formica sheets as the skins. The flexural behavior and the thermal conductivity of the
sandwich structures were investigated. The findings of this work can be summarized
as follows:

• The flexural properties of the foam-only sandwich structures improved significantly
with paper honeycomb reinforcement. Paper honeycomb reinforcement can be an
effective method for enhancing foam-core-based sandwich structures. Furthermore,
the perlite/sodium silicate composite foam filling in the cells of the paper honeycomb
core increased the flexural properties of the sandwich structures remarkably.

• The paper honeycomb core-based sandwich structure exhibited a reasonable flexural
strength of 1.01 MPa, making it suitable for non-load-bearing structures.

• The density of the sandwich structures increased with the foam filling, but the specific
flexural properties were substantially greater than those of the paper honeycomb
core-based sandwiches.

• The failure initiation due to flexural loading in foam-only and foam-filled paper hon-
eycomb sandwich structures occurred by core shear cracking. In contrast, the failure
in the paper honeycomb core-based sandwich was found to be local deformation, due
to core buckling.
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• The highest facing stress developed in the sandwich structures was lower than the
tensile strength of the Formica sheets. Therefore, the performance of the sandwich
structures could be further improved by enhancing the shear strength of the cores.

• Core shear failure did not significantly impact the load-bearing capacity of the sand-
wiches. Instead, the second stages of failure, such as delamination or skin fracture, led
to a rapid drop in load-bearing capacity.

• The concentration of sodium silicate and the presence of paper honeycomb rein-
forcement in the perlite/sodium silicate foam core-based sandwich structures had an
insignificant effect on thermal conductivity.

• The thermal conductivity of the foam core-based sandwiches, with or without paper
honeycomb, ranged from 0.095 to 0.113 W/mK, which was significantly lower than
that of many existing building materials found in the literature.

• Additionally, the specific flexural properties of the sandwiches studied in this work
were comparable to those of common building materials used in non-load-bearing
applications.
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