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Abstract

There have been many queuing analyses for a single server queue fed by an M/G/eo traf-
fic process, in which G is a Pareto Distribution, that focus on certain limiting conditions.
In this paper we enhance the so-called Quasi-Stationary (QS) approximation — a queuing
analysis introduced previously that provides an algorithm for computation of an accurate
approximation for the stationary queue distribution, applicable to the entire range of system
parameters. By numerical evaluation of the QS approximation and the asymptotic approx-
imations (large buffer, many sources, and heavy traffic) over an extremely wide range of
parameter values we are able to graphically display consistency of the QS approximation
with all the asymptotic results. We demonstrate that the accuracy of the asymptotic approx-
imations is satisfactory only in limited regions of the system parameter space.
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1 Introduction

The discovery that Internet traffic has Long Range Dependent (LRD) characteristics [1] has resulted
in much attention given to analyses of queues with LRD input [2-28]. A popular family of traffic
models that exhibits the LRD phenomenon and also captures the behaviour of Internet traffic is the
one based on a Poisson arrival stream of random, heavy-tailed, or more specifically Pareto distributed
bursts [2, 3, 10, 14-16, 18, 19, 22, 25, 26, 28]. This model is widely referred to as the M/G/ traffic
process. Roberts et al. [29] use the name Poisson burst process for it. The traffic model we consider
is a special case of the M/G/e traffic process in which G is a Pareto distribution. Accordingly, and
following [2,30], we call it the Poisson Pareto Burst Process (PPBP).

The PPBP takes the form of overlapping bursts. The arrival times of the bursts form a Poisson

process, each burst generates bits at a constant rate r, and the length of each burst is Pareto distributed
with scale parameter & and shape parameter y. We consider a single server queue fed by a PPBP
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Table 1
Classification of results on queues with M /G /oo traffic

Method Scaling Publications

Large buffer large deviations limit | buffer size — oo [5,6,15,21-23,25,26,31]

Many sources large deviations limit | n — oo; buffer size & C linear in n [10,17-19,32-34]

Heavy Traffic & CLT limit n — oo; buffer size & net mean input | [7,8,39,40]
linear in v/n

Heavy Traffic non CLT limit p — 1 and buffer size ~ (1 —p) = [27]

Quasi-stationary approximation NA [2,41]

process. Let p be the ratio of the total arrival rate [bits/sec] of all active bursts to the service rate
[bits/sec] of the server.

The papers [5,6,15,21-23,25,26,31] consider asymptotic regimes where the buffer size, or buffer
threshold (in an infinite buffer case), tends to infinity while the number of sources and the server rate
C (and consequently the offered load) are fixed. This asymptotic regime is widely referred to as the
Large Buffer Limit. The papers [10,17-19,32-34] consider the case where the buffer size and server
speed are linear in the number of sources, which tends to infinity. This is generally known as the Many
Sources Limit. In both these asymptotic regimes the probability of overflow tends to zero, as either the
buffer level increases or the number of sources increases, and therefore these situations are referred
to as Large Deviations limits.

Another important case which has received attention is where the buffer size grows in proportion
to /n, where n is the number of sources. This has been proposed as a practical way to provision
buffers to cope with growth in traffic [35] and similar or related comments are made in [36-38]. In
this literature it is assumed that the server rate also increases with the number of sources, 7, in such a
way that queueing performance tends to a limit not depending on . In order that the limit of the buffer
distribution exists, in these models, the server rate increases in such a way that the net mean input rate
(i.e. the difference between rate of arrival of work and the server speed) also increases linearly with
\/ﬁ. As n increases, the utilization tends to 1, and consequently these results are also termed, here
and elsewhere, heavy traffic approximations. This literature often relies explicitly on convergence of
the input traffic process to a Gaussian process, and hence we associate these results with the Central
Limit Theorem (CLT). In these cases the server rate increases along with the burst arrival intensity in
such a way that the CLT applies.

A different heavy traffic limit is provided in [27] where the server speed remains constant as the
intensity of burst arrivals increases and the buffer level is scaled to ensure that a limit occurs. As
a consequence asymptotically power-law behaviour is exhibited, much as in the large buffer large
deviations results. Because in this asymptotical regime system utilization is increased towards 1,
with server speed held constant, the limit is consistent with the large buffer limit in the special case
where one more than the average number of flows is sufficient to overload the server. This paper also
makes use of a light traffic approximation, which provides an estimate of the probability of queue
non-emptiness which is asymptotically accurate as traffic becomes lighter.

Over a decade ago Choudhury et al. [42,43] demonstrated that in many cases the tail may not be
characteristic of the entire distribution. For the case of LRD queues, results obtained for LRD Gaus-
sian queueing models in [30,44] based on the CLT indicate a different shape of the queue distribution



than that of the tail obtained by Large Deviations Theory, suggesting that LRD queues might also have
the feature that the tail behaviour of their queue distributions is not characteristic of the distribution
as a whole.

In addition to these asymptotic approximations, the Quasi-Stationary (QS) approximation for the
buffer level stationary distribution was presented in [2], which we here show to be a lower bound.
This approximation was validated against a specially tailored type of simulation in [2]. Simulation
has only rarely been used in studies of PPBP queueing systems, possibly because conventional simu-
lations cannot successfully include details at the wide range of time scales needed to provide accuracy.
In this paper we explore the boundaries between the regions where one or the other asymptotic ap-
proximation is more accurate. The QS approximation is consistent with all the asymptotic results,
although the buffer level at which the large buffer approximation becomes approximately the same
as the QS approximation may be, depending on the parameters of the system, rather large. All the
approaches considered in this paper are summarized in Table 1.

The remainder of the paper is organised as follows. In the next section, we describe the model of
a single server queue fed by PPBP input. In Section 3, we review the asymptotic results available in
the literature for this system: the large buffer asymptote (where buffers increase but traffic levels stay
constant), the many sources asymptote (in which buffer sizes increase in proportion to traffic), the
heavy traffic approximation in which buffers increase with the square root of traffic, and the heavy
traffic approximation ([27]), in which the server speed remains fixed as utilization approaches 1 and
convergence to a limit occurs by scaling buffer levels. In Section 4 the QS approximation of [2],
which relies on separation of traffic into long and short bursts, is further developed. A more rigorous
derivation, including a demonstration that it provides a lower bound, is provided and some numerical
refinements are introduced which enable the method to be used to evaluate very small probabilities,
in order to be able compare the QS approximation to the large buffer asymptote in the remote regions
where the two approach each other.

In Section 5, two arguments are used to show that the power-law behaviour ( ~ ¢)x*, where x is
buffer level) of the stationary queue distribution in a PPBP single server queue is only exhibited for
a very remote region in the parameter space. First, it is shown that any power-law upper or lower
bounds on the tail of the stationary complementary distribution function (CDF), or an exact asymp-
totic power-law approximation for the queue stationary CDF, necessarily diverges unboundedly from
the stationary queue CDF as the rate of the PPBP increases. Secondly, it is shown that the level, x;,
where power-law behaviour begins, is unbounded as a function of A, the arrival rate of bursts, as it
varies even over a finite range, let alone as A — oo,

In Section 6, the large buffer asymptote, the CLT (heavy traffic) limit, and the QS estimates are
all shown on the same graph, in Figure 8, which illustrates how these estimates relate to each other.
This graph shows clearly that although the heavy traffic limit and the large buffer asymptote appear
to have very different (apparently contradictory) characteristics, the QS estimate is consistent with
both, illustrating thereby that these two limits are not in contradiction. The QS approximation is also
compared to the many sources asymptote. Plots of c¢;, the weight of the power-law tail of the CDF, as
a function of A are also presented here which demonstrate that c; is highly sensitive to the parameters
of the system. Concluding remarks are presented in Section 7.



2 The queueing model

We consider a single server queue with constant service rate, C [bits/sec], and PPBP input. As
discussed, the PPBP traffic model is made up of bursts. The arrival times of each burst form a Poisson
process with rate A [bursts/sec]. Let d [seconds] be a random variable representing the burst duration.
We assume that the rate at which data is generated during each burst is constant for the duration of
each burst and the same for all bursts, hereafter denoted by r [bits/sec]. This assumption is common
in the literature, with the exception of [15,25].

Throughout this paper, we focus on the PPBP case where d follows a Pareto distribution. The CDF
of the Pareto distribution used in this paper takes the form:

-y
(5) ' x=39,
1, otherwise,

Pr(d >x) = { (1)

in which & > 0 [seconds] and ¥ > 0. As mentioned in the Introduction, J is the scale parameter and
v is the shape parameter of the Pareto distribution. We have E(d) = o for 0 <y < 1, and for y > 1,
E(d) = % For 0 < y < 2, the variance of d is infinite. The lower the value of vy, the heavier
the tail of the Pareto distribution becomes. In the sequel we shall generally assume that 1 <7y < 2
unless otherwise indicated. Thus, the PPBP queueing systems considered here are characterized by
five parameters: A, r, 9, ¥, and C. In several places in the sequel we will consider a scaling in which the
mean and second order statistics of the the input process minus the service process, which is termed
the net input process, will be held constant. The mean of this process shall be termed the net mean
input.

An alternative definition of the Pareto distribution, in which the density is non-zero for all x €
(0,00), could be used without significantly affecting the conclusions of this paper. The definition (1)
has the practical feature that there is a non-zero shortest burst length.

Let Y; be the amount of work [bits] that arrives between time O and time ¢, multiplied by (-1) if
t < 0. Then for any real numbers s, ¢, with ¢ > s, positive or negative, ¥; — Y5 is the amount of work
arriving between time s and time . Let Q; be the queue size process, which is also the virtual waiting
time in our case where work arrives and is served continuously. By Reich’s formula Q; is given by

0: = sup{¥; — Y, —C(t — 5)}.

s<t
If at time ¢, we have that Q; > 0, the busy period that includes time ¢, is said to start at the time s such
that the above supremum occurs for this particular value of s. By the above definitions, ¥; is stationary,
therefore Q; is stationary, so henceforth we omit the index ¢, and use the random variable Q to denote
the stationary queue size.

The terms queue and buffer are treated as synonymous, and we shall refer to the queue distribution,
and sometimes Complementary Distribution Function (CDF) of a queue, to mean the same thing as
the distribution, or CDF, of buffer level. In an equation such as P(Q > x) =y, we shall refer to Q as
the stationary buffer level or queue size and x as the threshold that Q exceeds.

Because of the relationship between losses in finite buffers and overflows (exceeding a certain level)
in infinite buffers (see Appendix A), we deliberately blur the distinction between the two in general
discussions. This conveys the motivation for the analysis much more effectively. However, all details



of our analysis are accompanied by technically precise description and no blurring of the distinction
between loss and overflow is employed in any derivations. With the exception of the discussion in
subsection 3.1, we concentrate on Overflow Probability P(Q > x) rather than loss probability, Py, (x),
as our key performance indicator.

3 Review of asymptotic results

Here we review existing performance analyses of Poisson-Pareto queues in four asymptotic regimes:
(i) as buffer thresholds become larger and larger, with traffic and server rate fixed; (ii) as the number
of sources becomes larger and larger, with the buffer thresholds and server speed increasing in pro-
portion; (iii) as the number of sources becomes larger and larger, with buffer thresholds increasing in
size in proportion to the square root of the number of sources; and (iv) as the number of sources be-
comes larger and larger, approaching the level where the server is fully occupied, while server speed
remains fixed but buffer thresholds are scaled. The first two of these asymptotic regimes apply with
the considered probabilities approaching zero, and Large Deviations theory therefore supplies an ef-
fective analysis method. The third of the asymptotic approximations applies to systems with overflow
probabilities tending to a finite positive limit other than zero and so Large Deviations theory is not
applicable. The CLT applies in this case. This case has also been described as a heavy traffic approxi-
mation in [7,8], which name is justified by the fact that as A increases, and the other system parameters
are adjusted so that the probability of buffer overflow converges to a constant, system utilization tends
to 1. The last case is a more traditional heavy traffic approximation in which the overflow probability
for a fixed buffer threshold approaches 1, but by introducing a scaling of buffer thresholds the shape
of the probability distribution of the overflow probability is determined for heavy traffic.

3.1 The large buffer estimate

Upper and lower power-law bounds for the loss probability, Py,(x), in a single server queue with
PPBP input process were obtained in [26]. The decay coefficient of the tail is shown to be identical
for both upper and lower bounds. Large Deviations Theory was used in [22] to obtain a consistent
result for overflow probabilities. Related results have been obtained in [15, 18].

The upper bound for the loss probability from [26] is

_ k
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where E(d) is the mean burst duration. The parameter k is given by k =1+ Lg —AE(d)|. Finally, the
value of p* depends upon AE(d). If AE(d) < 1 then p* = AE(d), otherwise, p* may be any value in
the range

1 —A, ifA>
0§p*<{ +op—a, ifAZ3, 5)

3, — A, if A <39,,.
The terms 8, and A introduced in this definition for p* are given by 8, = AE(d) — |AE(d)], and
a=S-[¢f
Combining (32) (from Appendix A) with (4) gives a lower bound for the queue level distribution
in the infinite queue which is of the form

P(Q > x) > Wxlm1H1k, (6)

where W is a value constant with respect to the buffer size, x. We cannot make the same assertion
with regard to an upper bound for P(Q > x).

The fact that the upper and lower bounds, (2) and (4), decay at the same power-law rate gives us
some confidence that the true “asymptotic shape” of the CDF has been identified. This form is also
supported by a result which includes both shape and weight for the asymptotic form of the PPBP
overflow probability, as given in [15] and also, more recently, in [6]. That is to say, in these papers
a function is given explicitly which is neither an upper nor a lower bound, but whose ratio to the
overflow probability tends to one as the buffer threshold tends to infinity. Another somewhat simpler
expression for the weight of the tail is independently derived in Subsection 6.1.

In Subsection 5.1, it is shown that bounds of the form of (2) and (4) must inevitably diverge from
each other as A — oo, A plot of the ratio of these bounds which confirms this result in a specific
example is provided in Figure 3 in that Subsection.

3.2 Many sources large deviations estimate

Large Deviations Theory has been applied to the problem under study with the asymptotic regime
considered having buffer threshold growing linearly with the number of sources, n, by a number of
authors [5, 6, 10, 17, 19, 32]. The ground for this approach was laid in [33] and the mathematical
framework by which these results can be obtained is also presented in [45].

The results obtained in this work take the form [10, Eq (4)], [19]

—nlX)  p large

p(ot > ~{° 7
<Q nx) {e"gv(’“) n and x large @

in which Q{"} denotes the buffer level in a system with n times the intensity of arrivals, € is a constant
(denoted by 0 in [10]), I(x) is the shape function which depends upon the burst length distribution,
v(x) is InG,(x) where G,(x) = (1 — G(x))/M, and M is the mean of G, which is the distribution
of burst lengths. In the present instance, v(x) = kIn(x), for some constant k and the shape function,
I(x) = €v(x) for large x, and so we obtain again a result in which

P <Q{"} > nx) ~xh (8)



for a certain constant k.

The many sources asymptote is numerically evaluated in Subsection 6.3, where we shall see that
although it is able to provide much better accuracy for buffer thresholds near zero, this accuracy very
quickly evaporates as larger thresholds are considered.

3.3 The Heavy Traffic Limits

The performance of a PPBP single server queue can be modelled by a Gaussian process with the
same mean and autocovariance [30]. As shown in [8,39], for any PPBP, if the intensity of the process
is increased while maintaining the net mean (the mean arriving work per second minus the server rate)
and autocovariance unchanged, the stationary buffer distribution will tend to the Gaussian result. A
consistent result was obtained in [7] without explicitly showing that the traffic process converges to a
Guassian process. This result will be demonstrated in a numerical experiment in Subsection 6.2.

This approach to modelling a PPBP queue can be described as a heavy traffic approximation be-
cause if we take any PPBP and increase A (the intensity of burst arrivals), the PPBP will tend to a
Gaussian process and if we rescale the server and buffer thresholds in such a way that first and second
order statistics of the net input process are preserved, utilization will tend towards 1 as A — . But
this is not the only way in which we can rescale a PPBP queue so that as utilization tends to 1, the
distribution of buffer levels tends to a limit. Another approach, used in [27], is to keep the server speed
constant and rescale buffer thresholds.

In [27], the distribution of rescaled buffer thresholds approaches a limit which can be expressed in
terms of the Mittag-Leffler special function. Because the Mittag-Leffler special function is asymptot-
ically similar to x~! as x — oo, the distribution is shown to take the form ~ const x x' =Y in this case,
which is consistent with the large buffer asymptote discussed earlier and developed independently in
§6.1.

The paper [27] also uses a light traffic asymptote, which provides an estimate of the probability
of buffer emptiness which is accurate for light traffic, to complement the heavy traffic approximation
and thereby obtain a result which is potentially accurate for a full, or at least a much wider, range of
system parameters. However, the results rely on the assumption either that burst lengths have finite
variance, or that one additional burst, above the mean load, is sufficient to overload the server.

4 The Quasi-Stationary (QS) approximation

In this section we first describe (in Subsection 4.1) the approach of [2] for performance evaluation
of queues with PPBP input. In order to compare the QS approximation to the large buffer asymptote
in a region where the two become similar it has been necessary to find algorithms for both methods
which are accurate for the logarithm of extremely low probabilities (as low as 1072% — see Figure 8).
This has placed quite severe demands upon the design of the QS algorithm which has therefore been
developed in the following ways: (i) the optimization task on which the algorithm is based has been
explored in detail in order to improve understanding of how the algorithm converges, and thereby
improving its accuracy and robustness (in Subsection 4.2); (ii) a more rigorous derivation has now



been developed, which shows that the QS algorithm provides a lower bound (in Subsection 4.3); and
(ii1) the accuracy with which logarithms of very small probabilities can be computed by the algorithm
has been enhanced considerably by using large deviations based approximations for logarithms of
some of the component probability formulae (in Subsection 4.4).

4.1 The Quasi Stationary algorithm

The Quasi-stationary algorithm makes use of an idea which was used in [19] to find the rate function
for a large deviations characterization of multi-source heavy-tailed on-off traffic as the number of
sources increases. This idea is to separate the bursts of the PPBP into long and short bursts. If we
consider the PPBP over a finite interval of length W, i.e., the period [¢, + W], for arbitrary 7, then any
burst which last for the entire time period, we label as a long burst. All other bursts are called short
bursts.

This separation into short and long bursts leads to the formula:

SUPp>1 150 {INP (¢bN,T]) +1In P (S¢(-7,0) > Ct+x—mM1)},

9
supz>In P (Sw(—7,0) > CT+x), ®

InP{Q > x} > max {

where ¢b[n,t| denotes the event that 1 or more bursts which began before —t have continued to
the present time, and S¢(—7,0) denotes the traffic contributed by bursts of length less than T during
the interval (—t,0). This formula will be derived in Subsection 4.3, but before we undertake that
derivation, let us illustrate the concept by plotting the most likely configuration of long bursts which
give rise to specified overflow states, together with the evaluation of the approximation (9).

4.2  Demonstration of the quasi-stationary approximation

Examples of the application of this algorithm are shown in Figures 1 and 2. The parameters which
remain fixed in all of the systems under study in these diagram are: d = 1, y= 1.3, r = 0.2. The
parameters which vary from one diagram to the next are arrival rate of bursts (A) and the net mean
input, measured in units of the standard deviation of the traffic.

The net mean input is —0.967 in the first example and —3067 in the second example, where G;
denotes the standard deviation of the quantity of work (traffic) delivered in an interval of time ¢. In
the first example the net mean input of the system is —2.54558r, and in the second this number is
—12r. The number of long bursts which are sufficient to cause overload also depends upon the length
of these long bursts. When the length, W, of a long burst is lower, the mean traffic contributed by the
short burst process is reduced (because we have redefined what it means to be a short burst), and so a
larger number of long bursts are required to cause overload. This explains why, in the example shown
in Figure 2, the most likely number of long bursts associated with an overflow exhibits a peak before
it falls to its asymptotic limit.

The number of long bursts most likely to cause overload is critical to the observed behaviour of
each system. The algorithm estimates this quantity by finding the most likely compound event, made
up of a certain number of long bursts, of a certain length, in combination with a certain quantity of
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Fig. 1. P (buffer level > x), the most likely number of long bursts when buffer level > x, and the most likely long
burst length [in seconds] when this occurs, when A = 2, net mean input= —0.96; = —0.509117 = —2.54558r,
in which ¢ denotes the standard deviation of the number of bytes arriving in an interval of length 1.

traffic from the short bursts, to cause an overflow. In each case, for low values of x the most likely
number of long bursts to cause overload is low, at or near zero. As x grows, the most likely number of
long bursts that will cause overflow climbs, and its maximum may significantly exceed the smallest
number of long bursts which drives the system into overload, but then drops back to the smallest
integer value larger than —1 x the net mean input divided by r, i.e. the smallest number sufficient to
drive the system into overload.

In these figures, the stationary queue distribution clearly exhibits the power-law tail (which is char-
acterized, on a log-log graph, by appearing as a straight line). In the case presented in Figure 1, 3
sufficiently long bursts will overload the system. In this case, the power-law tail appears to emerge
from the point x = 1,000,000, by which time the overflow probability has dropped to below 0.01.
In the second example, shown in Figure 2, 13 sufficiently long bursts will overload the system. In
this case, the power-law tail appears to emerge from the point x = 1,000, by which time the overflow
probability has dropped to below 1010,

In both these examples, the most likely length of the long bursts involved in a congestion event
increases approximately linearly with x (buffer threshold) once the point has been reached where the
tail behaviour of the system has set in, which occurs when the number of bursts most likely to cause
the congestion event has achieved its limiting value.
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Fig. 2. P (buffer level > x), the most likely number of long bursts when buffer level > x, and the most likely
long burst length [in seconds] when this occurs, when A = 4, net mean input= —365 = —2.4 = —12r, in which
o1 denotes the standard deviation of the number of bytes arriving in an interval of length 1.

4.3 Justification of the quasi-stationary approximation

Whenever a buffer overflow occurs, the long bursts associated with this event can be uniquely
identified as follows:

(1) trace back the evolution of the traffic and buffer process from now, T¢ say, to the last time when
the buffer was empty, T; < T¢ say;
(i1) identify any bursts which were continuously active during this entire period of time, from 7; to
To; let us say that the number of these bursts is 1;
(i11) trace back the evolution of the traffic and buffer process, observing the long bursts, till the start
of one of these bursts is observed, call this t, < 1;.

In this way we can find a more complex event, in which (a) at least 1 — 1 bursts are simultaneously
active; (b) a new burst arrives, at To; (c) while all n of these bursts continue, a busy period starts, at

time T1; (d) while all | of these bursts continue, an overflow occurs (the buffer exceeds level x), at
time To.

Let us denote this compound event by ¢b[x, M, Ty, T, T2)-

As we have already observed, all exceedance events ({Q > x}) correspond to one of these events,
and conversely, so if we can determine the probability of this type of event we can also determine the

10



overflow probability P(Q > x). The stationary overflow probability is therefore

P{Q>x} = Z P{for some 11, T2,¢b[x,m,0,71,T2] } (10)
n=0

During an overflow event, the long bursts provide a constant load on the server, so the buffer and
the remaining traffic (the short burst traffic) is identical to a different model in which the server has
reduced capacity, and the traffic has only short bursts.

If the largest term in the sum at (10) is much larger than the remaining terms, and numerical
experiments confirm this appears to be frequently the case, the bound:

P{O>x}> sup P{¢b[x,n,0,—1,—7']}. (11)

N>0,NEZ,T>1>0

will be close to the true value of P{Q > x}.

Moreover, so long as 1 > 0, the probability of a long burst event decreases with increasing v —
there is no point in the long bursts being longer than necessary, so except when 1 = 0, the supremum
in (11) will always occur when T = 7. On the other hand, when 1 = 0 the optimal value for T’ is
because the only effect of T’ in this case is to define which component of the traffic is regarded as the
short bursts. This produces the somewhat simpler lower bound:

SuPn217n€Z7TZO P{gb[x7 n? 0’ _T’ _T] }7

(12)
supyq P{¢b[x,0,0, —T, —oo] }.

P{Q>x}> max{

For simplicity of calculation it will be useful to separate the long burst aspect of a long burst
overflow event from the exceedance aspect.

When we take this step of seeking the largest term of the sum at (10), and therefore replacing (10)
by (12), we might as well also slightly alter the definition of the long-burst overflow event that we
seek to include any cases where 1| or more bursts occur during the interval of time . This will still
be a lower bound because the event where 1 or more long bursts occur and the short burst process
is sufficient to cause an overflow to occur even if only 1 long bursts occur is still a sub-event of the
event where an overflow occurs. Let us now define ¢b[n, 1| to be the event in which 1 or more bursts
have been consistently active for at least time T and let us denote the short burst traffic by Sz(t1,12),
i.e. this is the quantity of traffic made up of bursts starting after —7 or finishing before 0 in the interval
(t1,12). This leads to

SUPp>1 >0 P{€PM, T&St(—7T,0) > CT+x—mM1},

(13)
SUPz>( P{Se(—7,0) > CT+x}.

P{Q > x} > max {

Since the short and long burst events are conditionally independent, given a specific choice of 1 and
T, taking logs gives (9).

The overflow probability for the short-burst process could be calculated from the exact probability
distribution, which is compound Poisson, however because the distribution of each burst is not heavy-
tailed (except in the case where 1 = 0) this compound Poisson distribution can be expected to be well

11



approximated by a Gaussian distribution. Even in the case 1 = 0, it is appropriate to use a Gaussian
estimate because we need an approximation which is accurate for moderate deviations from the mean;
large deviations will necessarily involve 1 > 0.

In order to calculate probabilities associated with the short bursts we will need to make use of their
variance, which can be found easily once we have an expression for the variance of the arriving bytes
in a PPBP. This was derived in [2], but because of its importance we reproduce it here:

1y 2 & ot
6 =215 =q (s 1) O=r=> (14)
t r (MY 0, ) 2}\’{ 63Y B 52tY B 38y } r>9
TA GGy T 22— 0TG- [’

The number of long bursts is Poisson distributed with mean, 3, equal to A (the burst intensity) times
the probability that the backward recurrence time of the Pareto distribution of burst lengths is longer
than 7, the nominated length of a long burst, i.e.

Aty
d(y—1)

4.4 Accurate calculation of logarithms of small probabilities

Since (9) provides an estimate for In P(Q > x) in terms of logarithms of probabilities we can reduce
numerical error in the evaluation of this formula, when the probabilities are small, by working exclu-
sively in logarithms of probabilities. If the number of long bursts which are to have occurred is very
large (6 standard deviations more than the mean), in order to obtain satisfactory accuracy, we should
use a large deviations estimate for the logarithm of its probability [46, p10]:

In P{long bursts >N} ~ —m(Inn—1nP) — (B —n). (15)

Similarly, when computing logarithms of the Normal distribution, when the standard score is larger
than 5, the formula from [47], 1.e.

2
In P{bursts =InP Z n—_B} ~ —l (TI_—B> —In (T];B> —1In2, 16
{bursts >} { > 2\ B B (16)

has been used.

More details of the QS approximation are provided in [48]. The Mathematica code which has been
used to compute the QS approximation is included in [49].

5 Inherent limitation of power-law approximations

In the limits as A — o considered in this section, we consistently refer to a sequence of PPBP
queueing systems, {Sj }a>o say, which represents the natural outcome of growth in the traffic, to-
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gether with an increase in the server speed and buffer capacity chosen so that queue level distribution,
appropriately scaled, converges to a certain limit.

The sequence {5y },~o maintains the burst length distribution parameters, ¥ and 9, as fixed values
but the parameters ry, (the rate of each burst) and Cj, (the server rate) change with A as follows:

r?»:rl/\/xy

C}L=C1 I (rx}u—rl)SY —C+ l’1<\/)_\‘— 1)8’Y

(y=1) (y=1)

This rescaling of PPBP systems undergoing linear growth of burst arrival rate, with constant burst

characteristics, has been chosen so that the net mean and autocovariance of the input process are the

same for all A. The stationary cumulative distribution function of the buffer level in this system, when
the traffic intensity is A, is denoted by ¢,.

(17)

In Subsection 5.1 we show that for any rule which provides a pair of upper and lower power-law
bounds on the stationary PPBP CDF over a fixed region of the form [x(,), the ratio of the bounds
grows without bound as A increases. In addition to the unboundedness of the ratio of the upper and
lower bounds, we show that the worst value of the ratio of the upper bound to ¢ (x) is unbounded over
(x0,00) as A — oo and the same applies to the ratio of ¢y (x) to a power-law lower bound. Finally, we

use these results to show that an exact power-law asymptote, Ay x~/ M), for ¢y (x) cannot be uniform in
Agx I
o (x)

A, ie. if 0y (x)/Axx /) — 1 as x — oo, then for any xo > 0, either SUP,~. 1, — 00 a8 A — o0
A

W->O&S7\.->°°.

or infy~ y,

It is well understood in the literature, and we saw in Subsection 4.2, that power-law behaviour of
the tail of the PPBP CDF comes into play when the overflow events under consideration are caused by
a group of long bursts in association with short burst traffic arriving at its expected rate. In Subsection
5.2 we estimate how large buffers need to be in order that the overflow is most likely to occur in this
way, rather than by the long bursts and short bursts acting in concert. It is shown in Subsection 5.2
that this threshold of power-law tail behaviour is unbounded, as a function of the burst arrival rate (),
even for modest values of A.

5.1 Unbounded separation of bounds for large A

In the scaling (17), the stationary waiting time CDF for a single server queue fed by a PPBP
converges weakly, as the intensity of the Poisson process, A, increases, to the waiting time CDF of
the Gaussian queueing system with the same net mean input and autocovariance [8,39]. The fact that
the Gaussian system has a Weibull tail [20] appears to contradict the power-law tails of individual
functions making up the limit, however this is not necessarily a contradiction because as A — oo, the
remoteness of the power-law tails may increase. Proposition 1 confirms that this must occur.

Proposition 1 For any functions, Ay, By, of A, and any increasing function, f(\), defined on [0,o0),
such that
Apx T < g (x) < By T, (18)

.. B
for all x > xq, necessarily, A—; — 00 a8 A — oo,
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Note that the proposition applies for any increasing function, f(A), however the case of most inter-
est is where the LHS and RHS of (18) tend, in the sense of a ratio for fixed A, as x — oo, to ¢ (x). In
this case, we shall see below, in Equation (30) of Section 6.1, that f(A) =n;(A)(1 —7) where (L) is
the smallest number of bursts which exceeds the net capacity of the server, after the mean load from
the arriving traffic is subtracted, i.e.

c
m(k):1+{—— i J (19)

The proofs of this proposition and the following two propositions are given in Appendix B.

The ratio between the upper and lower power-law bounds from [26] presented earlier, in Equations
(2) and (4), is plotted as a function of A in Figure 3. The parameters in this example are y=1.5,0 =1,
r =1, net mean input = —2 x & and the buffer level where the bounds are evaluated is 100. The ratio
increases extremely quickly as a function of A, as predicted by Proposition 1. Proposition 1 shows
that the behaviour shown is not dependent on the specific bounds used, and that any pair of upper and
lower bounds proposed for this system will grow further apart as A increases. The ratio between the
bounds appears to be discontinuous, an explanation for which is provided in Subsection 6.1.
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ratio of bounds

A (intensity of flow arrival rate)

Fig. 3. The ratio between upper and lower bounds obtained by Tsybakov and Georganas.

Proposition 1 leaves open the possibility, for a rule for assigning upper and lower bounds, that
although the bounds become increasingly far apart, one of the bounds, for example the upper bound,
is nevertheless a good approximation uniformly in A. The next proposition shows that this cannot
occur.

Proposition 2 In the same context as Proposition 1
For any mapping, A — By, (or M — Ay ) and function, f(L), defined on [0,0), such that

0 (x) < Byx /™ (20)
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( AT < (I)x(x)) , 21)

. - By /W . 9. (%)
Jor all x > xo, necessarily, for any Xo > 0, sup,~x, RO (inf %, A T 0) as A — oo,

Proposition 3 In the same context as Proposition 1, if Ayx—f M is a power-law asymptote for a

. —f(\) )
PPBP queue, in the sense that for any PPBP system, A}ﬂ;;T — 1 as x — oo, the convergence is not
, , _ Ay 0 _ Ay 0
uniform in A. For any xo > 0, either sup, o) e orinfiy Ses — Oas A — oo,

5.2  The boundary where the tail becomes power-law

For a given buffer threshold, x, let k(x) denote the number of simultaneous long bursts which is
most likely to be present during the busy period leading up to the event that level x is exceeded.
The figures in Subsection 4.2 show how K(x) varies with x, and as we would expect, this number
approaches n; (see (19)), the number of extra bursts required to cause system overload, as x — oo.
But how large does x have to be in order that k(y) =m; for all y > x?

In a system with a very low arrival rate of bursts, but high utilization, so that for example one burst
is sufficient to fully load the server, power law behaviour may apply for all x > 0. However, such
systems are not relevant to the question we wish to pursue here, so we assume henceforth in this
subsection that the utilization level of our system is sufficiently moderate and the burst arrival rate is
sufficiently high that power-law queueing behaviour is not exhibited for all x.

We now use the QS approximation, but with a further simplification which is justified when x is
large. In the QS approximation, the variance of the short-burst traffic was reduced to take into account
the absence of the long bursts. In this simplified model, with the sole purpose of finding the buffer
threshold beyond which the power-law asymptote applies, we ignore this effect, and assume that the
short burst traffic variance has the same variance-time curve as the complete traffic, no matter what
value we consider separates the short from the long bursts.

The variance due to these longer bursts is quite small anyway. In addition, we shall soon see that
with this simplification, there is a unique first location where the likelihood of an overflow event is a
maximum when the number of long bursts equals 1.

Let x;, denote the threshold level where the overflow probability begins to follow a power law as
a function of x. We seek to estimate x;, by the characteristic feature that k(x) = 1; for x > x; but

K(xp—) <Mi.

Define event Ay = {the number of long bursts is kK < 1;}, and event B = {there are precisely 1
long bursts }. Let us now develop formulae for P(Q > xNAy) and P(Q > xN B), respectively. The long
burst boundary is denoted by #; (x) in both cases, with k < 1 in the first case and 1 in the second.

Evaluation of P(Q > xNAy)

In this case, the mean input to the system will be m| = m + kr, below the server rate, C, and in
order for the level x to be exceeded, the short bursts must contribute work to the system by an amount

15



in excess of their normal rate. From [30, (1.1)], in accordance with a principle established earlier in
[20], the most likely way in which this exceedance event Q > x will occur is that the short bursts in
aggregate contribute at above their usual rate over a period of duration 7*(x) which can be estimated
by approximating the PBPP variance-time curve by that of FBM to be

“roN Hx B Hx
tk(x)N(1—H)(C—m1)_(1—H)(C—m—kr)’ x20. 22)

Because it will almost certainly take this long for the short bursts to make their contribution to the
overflow event, the long burst boundary must be at least as large as ; (x).

Since the threshold x could be exceeded, also, by a combination of short bursts and k long bursts in
which the boundary between long and short bursts was less than ¢/ (x), this formula provides a lower
bound for P(Q > xNAg). In the case where k =1 — 1, and especially when 1;r — C < 1, a choice of
a much shorter long burst boundary might produce a much more likely event. Also, any inaccuracy in
estimation of 7*(x) due to our adopting the FBM variance-time curve instead of the correct PPBP time
curve, when obtaining the formula for #(x), will merely produce a lower estimate of the probability
of an overflow event due to k long bursts, and therefore a lower estimate of the power-law threshold.

In this situation, the probability of there being k long bursts will be

* 1—
CELCL R :
Y

(23)

k!

and we can estimate the probability that the short bursts contribute sufficient to combine with the long

bursts to exceed the level x as the probability of exceeding x + (C — rk)z; (x) from a Gaussian distribu-

%}?1{5 and variance Gtz,f ) (A,7v,0,r) as defined at (14). This Gaussian probability is

X+ (C—r(k—&—%))tﬁ (%)
\/EGIZ (x) (}\‘7’szar)
k long bursts is therefore

* Loy K —E@r( (x)/8)1Y
e e Y (34 (o (%)) LG

tion with mean

therefore %erfc

) . The resulting estimate of the probability of exceeding x with

1
P(Q>xNA) == ! erfc

2 k! \/icl; (x) (7\’7 Y, 67 I")

(24)

Evaluation of P(Q > xNB)

In this case, the mean input of the system is more than the capacity of the server and therefore the
most likely way for the buffer to exceed x is that the short bursts contribute at their usual mean and
the overflow will most probably occur by the buffer simply filling at the rate by which the server fails
to meet the demand of the arriving traffic. This will lead to an event of duration

. N x
t '(x)_—(m—H]]r—C)’ x> 0. (25)

The probability that threshold x is exceeded when there are precisely 1 simultaneous long bursts
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1s approximately

* 1—
E(d)x(rﬁl<x)/8)l—v>m B (/9!
e
Y

P(Q>xNB) = ( (26)

!
A choice of boundary between long and short bursts larger than 7, (x) will produce a lower probability,
and a shorter boundary would not lead to level x being exceeded without a contribution from short

bursts.

Plots of the overflow probability due to a variety of scenarios, calculated using (24) and (26) are
shown in Figure 4. The true overflow probability is given by the maximum of all the curves displayed

1.0

2.1x107
42x10718 1
8.8x107%7
1.8x10733
3.7x107#
7.7%10733

UVertiow Probability , P(Q>X)

1.6 x10-6!

v
[} L

1.6 x10° 3.3x106 6.6x107

3.3 10—70 | | |
0 20, 40x10° 8.1x103

Threshold (x)

Fig. 4. Plot of the overflow probability under six scenarios: 16 long bursts, 15 long bursts with help from short
bursts, 14, 13, 11 and 8 long bursts with help from short bursts, with A = 10.65, § = 1, r = 1. In all cases
C= % + 301, where G% is the variance of the number of bytes arriving in one second in the PPBP input
process.

in Figure 4 and therefore the location where power-law behaviour starts, i.e. a straight line in this
plot, will usually be where the two curves with the highest and the second highest number (k) of long
bursts intersect.

It follows that usually a lower bound on the buffer threshold at which the power-law behaviour
of the tail first sets in, xj, is provided by the solution (for x) of the equation (24) = (26), in which
k =m1 — 1. In cases where the server is just a tiny bit too slow to fully deal with n; — 1 extra flows
the most likely length of an overflow event, estimated just by considering the short flows, ie tﬁ] (),
is unrealistically long. In this situation it is preferable to solve (24) = (26) with k =1 — 2 to provide
a lower bound on the power-law tail threshold.

Mathematica’s secant method for solving equations was used to solve (24) = (26), with k <n; — 1.
The maximum of the cases k =11 — 1 and kK =1 — 2 has been used as an estimate of the threshold
of power-law behaviour. The resulting estimate is shown in Figure 5.

The unusual saw-tooth shape of the curve in Figure 5, showing the dependence of the lower bound
for x; on A, can be explained as follows. When the capacity of the server is only a small amount
above an integral multiple of r (the rate of one burst) it is much more likely that an overflow event
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Fig. 5. Lower bound for the threshold for power-law behaviour of the tail, in Mbytes (8 = 1 second, r = 1
Mbyte/s, y=1.5,C = MTS{ + 301, where G% is the variance of the number of bytes arriving in one second in the
PPBP input process), computed by solving (26)=(24) by the Secant method.

will occur by a joint contribution of long and short bursts — hence the threshold, x;, where power-
law behaviour begins, becomes very large. In addition, even if we only consider systems where the
capacity of the server, C, exceeds the arriving traffic by nearly r, x;, increases steadily as A — oo,
Because the estimate of x;, shown here is a lower bound on power-law behaviour, no significance
should be given to the teeth projecting downward in Figure 5.

6 Comparison of approximations

In this section the four approximations for the stationary CDF of a queue with PPBP input are
numerically evaluated over a very wide range of parameters and compared, showing explicitly how
the asymptotic regimes relate to each other and to the QS approximation. In preparation for this, in
Section 6.1, we derive formulae for weight and decay of the power-law asymptote. We see there that
the weight, c;, of the power-law asymptote is highly sensitive to other system parameters. The QS
approximation is compared to the Large buffer and Gaussian approximations in Subsection 6.2. The
QS approximation and the Many sources Large Deviations result are compared in Subsection 6.3.
The CLT asymptote appears to have better accuracy than either of the Large Deviations results in the
central region of parameter space, however its accuracy is still unsatisfactory except for quite large
numbers of sources (See Figure 8).

18



6.1 The weight of the power-law tail

Expressions for the weight of the power-law tail provided in [6, 15, 28] (the result in [28] is appli-
cable for a slightly different context), are difficult to evaluate numerically, except in the case where
one burst is sufficient to overload the server.

Using the analysis of Subsection 4.3, and in particular equation (15), we obtain the approximation,
which applies for large x:

InP(Q; > x) ~—my (Inn; —InB)+(n; —B) 27)
wheren; =1+ L (3(” i I)J is the least number of long bursts which cause an overflow of the buffer
at threshold x when combined with the mean short burst load (we assume that the x is so large that

virtually all bytes are in short bursts) and [ is the mean number of long bursts (which will be defined
more precisely in a moment).

The duration, T, of this event leading to the overflow must stand in a simple relationship to the
buffer threshold reached in the overflow, x, namely:

X
T=—" (28)
mi C+ MS

because, when x is large, the short burst component of the probablhty to be maximised rapidly moves
from zero to one as T increases in the near vicinity of x/(rn; —C +3=T ry r)- Putting this more d1rect1y

the large bursts in combination with the short bursts are supplying work at a rate rm; —C +3=T MYS
excess of the servers capacity, during this overflow event. Therefore, the simplest, and most l1kely,
way for the overflow to occur is for the buffer to start empty, and fill at this rate, until it reaches x.
This will therefore happen over a period of time 7, as defined at (28).

From this we conclude that the “long bursts” are all the bursts longer than T and therefore the mean

number of long bursts is f = 7(‘ Y) From (27), therefore

Atl—Y Aty
InP(Q; >x)~ - (h”“ ~In (5(7— 1))) M-

Aty
~ i (lnm—ln<5(y_ 1)>>+m, (29)

because for large x, 7 is also large and so In(t!~Y) is large in magnitude, whereas T! =¥ — 0.

Exponentiating both sides of (29) gives:

P(Q; >x) =~ c;bxm(l_w, (30)
where " 1y
-1 —Mi(l-y
(M er B Aryd
" (6<v—1>> (-2 Gy

is the weight of the large buffer asymptote and the exponent of x, 11 (1 — ), is the decay.
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This asymptotic formula is consistent with known results as regards the decay; a formula for the
weight of the tail has been provided in [6], however equivalence of these two formulae is not clear and
numerical evaluation of the formula in [6] has not been demonstrated in [6] or attempted here. The
context in [6] is significantly different from here, so deducing a specific form, from this result, for the
weight of the tail which applies in the present case would be difficult. This formula is also consistent
with [27] in regard to the decay but because the latter formula is a heavy-traffic approximation the
weight of the tail is not comparable to the weight given here. The derivation of c) relies on an assump-
tion that events in which a coincidence of long bursts overload the link overlap is sufficiently rare that
its probability can be neglected. For sufficiently heavy traffic this is not the case, so the formula given
here for ¢) cannot be expected to be consistent with the heavy traffic result in [27].

Plots of ¢) vs A are shown in Figures 6 and 7. From these graphs it seems that the weight of the large
buffer asymptote can vary between 0 and 10?® over a very small range of A values. As A increases
from r x k below server capacity to r x (k— 1) below server capacity, the weight of the tail associated
with events where there are precisely k long bursts, gradually reduces to zero. The behaviour of ¢
shown in Figures 6 and 7 is an essential feature of this system, not a numerical aberration.
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Fig. 6. Weight of Large Buffer Asymptote as a function of A (broad view)

6.2 Comparison of the heavy traffic limit, large buffer limit and QS approximation

A series of similar PPBP queueing systems, with increasing burst rates, have been analysed by
three methods (large buffer asymptote, heavy traffic Gaussian approximation, and QS approximation)
and the results are shown in Figure 8. The parameters of the models under consideration in this figure
are Y= 1.5, 8 = 0.2 [seconds], r = 1 [Mbit/sec] and Ay, = 1, 64, and 32000 [bursts/sec]. The server
capacity, Cy, for each model has been adjusted so that the net mean, Cy — |
of the traffic process is exactly the same, when expressed as a multiple of the standard deviation of the
quantity of traffic arriving in an interval of length 1, for all the traffic models. In order to demonstrate
convergence to the Gaussian case, the x-axis in Figure 8 adopts units of buffer level divided by VA,
rather than buffer level itself.
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The capacities of the three systems compared in Figure 8 have been set to
server rates which emerge from this calculation are: 2.79089, 55.9271, and 19591.9 Mbit/s.

Mrdy | 305(M,Y,0,r)
- + S . The

Because Gaussian systems include, in general, significant amounts of “negative” traffic, the concept
of system utilization is not meaningful for them. Instead, it is preferable to use the net mean input.
For this reason, even for PPBP systems, the net mean input, expressed in standard deviations over a
certain time period, is a more meaningful parameter than system utilization for characterizing system
behaviour. However, the system utilization is nevertheless of interest, particularly so that we can
observe the gain in system efficiency as traffic load increases. The utilizations of the three systems

shown in Figure 8 are <);‘1617> / <7¥‘I?Y + 365(7“’3’%6’” > , k=1, 2,3, which turns out to be 21.5%, 69%,
and 99%, respectively.

Figure 8 shows clearly that the quasi-stationary solution method is consistent with the Gaussian
limit and with the large buffer limit. Although the large buffer asymptote appears to be an upper
bound for the three choices of A displayed in Figure 8, cases where the large buffer asymptote are
not an upper bound have also been observed in other experiments. This graph is plotted using log-of-
log scale for the Y axis and a log scale for the X axis. These scales enable us to see results over a
very wide range. The horizontal axis extends to buffer sizes up to 1010 x v/A. The Y axis extends to
probabilities as low as 107190 This range has been used so that the relationship between the different
asymptotic regimes can be seen clearly. Calculating estimates by the different methods over such a
wide range of parameter values is quite challenging and cannot be achieved without special effort.

The figure shows clearly the convergence of the queueing model to a limiting behaviour of a queue
fed by Gaussian noise, which is also shown in the figure. The Gaussian model, with exactly the same
autocorrelation as this PPBP, has been analysed in [30]. The method derived in that paper has been
used here to compute the stationary distribution.

Because these plots use a log-log y-scale and a log x-scale, a Weibull distribution would appear
in this figure as a straight line and conversely any plots in this figure which are asymptotically linear
correspond to distributions which have a Weibull tail. It is clear, therefore, as expected, that the sta-
tionary distribution of the Gaussian model has a Weibull tail, and that none of the other curves have
Weibull tails. If a pure Weibull distribution was fitted to the model under consideration, for example
by fitting fractional Brownian motion to the traffic and using the Weibull distribution which has been
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obtained as the large-deviations limit for the buffer distribution of a system handling this traffic, the
resulting straight line curve would appear in almost the same position as the curve labelled CLT.

Plots of this type for a wider range of A values have shown that for Poisson arrival rates greater
than about 4000 per second, a Gaussian model should be satisfactory. This figure for when a Gaus-
sian model becomes satisfactory will depend critically upon assumptions concerning expected perfor-
mance, the rate of each burst, and so on.

0.37
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Fig. 8. The stationary CDF as a function of buffer threshold for varying burst arrival rates (L), estimated by QS
algorithm, large buffer asymptote, and the CLT limit; C = mean traffic +365/9; buffer thresholds are measured
in units of v/A.

Figure 8 clearly demonstrates how the heavy traffic and large buffer limits can apply despite appear-
ing to lead to contradictory conclusions since, although the CDF’s clearly converge to the Gaussian
result as A grows, each one individually exhibits a completely different tail behaviour (which we know
to be power-law).

6.3 Comparison with the many sources limit

Large Deviations Theory has been applied in two different ways to the system under study in this
paper. One of these approaches was discussed in the previous subsection. The other approach has been
used in [10, 15,17-19,32-34]. In this approach the limit is taken as n — oo where n is the number of
sources, and the buffer threshold is assumed to grow in linear proportion to n also.

Figure 9 shows some results reported in [10] compared with results derived from the method rec-
ommended in the present paper. The case considered is the one in which there are 100 sources — see
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Figure 1 of [10]. The many sources result diverges from the results of the present paper very sig-
nificantly for any non-zero buffer threshold. Since the many sources approximation lies below the
quasi-stationary approximation, which is itself a lower bound, it is clear that the discrepancy reveals
a problem with the many sources large deviations result. To further emphasize the fact that the many
sources approximation is clearly an underestimate, for x > 0, we have included the stationary distri-
bution for an FBN queueing system in this figure as well. The FBN input was chosen so that the input
process had the same Hurst parameter as the PPBP process and the same variance at the time interval
d, which is equal to 0.2 in this instance. We expect, from experience with simulations for example
[2], that the FBN system will exhibit better performance than the PPBP system. However, the many
sources approximation exhibits better performance than the FBN system, which, in turn, is better than
the quasi-stationary approximation.

It might be hoped that the difficulties of finding a satisfactory solution for the PPBP queue by the
large buffer large deviations asymptotic approximation could be addressed by using the many sources
asymptote instead. However, the many sources and the large buffer large deviations results must be
consistent to a fairly high degree. As a consequence, the fact that the tail behaviour of the stationary
queue distribution is not typical of practical buffer thresholds is forced to be a feature of the many
sources approximation as well, for any buffer threshold greater than zero.
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Fig. 9. Comparison with the many sources large deviations results.

7 Concluding remarks

We have shown that the widely known power-law form queueing formulae for PPBP queueing sys-
tems, in many cases, will not give us acceptable answers for practical problems. These asymptotic
approximations are only accurate for very remote regions of the space of system parameters, except
in special cases. In addition, over a substantial region of the space of system parameters the coef-
ficients of these asymptotic approximations are highly sensitive to the system parameters. We have
demonstrated that the QS approximation, on the other hand, can be used for the entire range of system
parameters and gives results that are consistent with all the existing asymptotic results.
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The M/G/eo traffic model can be further improved, by allowing more complex behaviour for the
individual bursts. Such an extension is natural to consider and the methods of this paper appear to be
readily applicable to such models.

Appendix A: Overflow Probability P(Q > x) and Loss Probability P, (x)

As observed in [50], for the N*D/D/1 queue and its finite buffer N*D/D/1/x equivalence, that P(Q >
x) provides an upper bound on Pj,(x) as follows:

P(Q > x)

32
0 (32)

Ploss(x> <

where p is the ratio of the mean arrival rate, denoted E(A), to the service rate C. In [29], it is shown
that (32) applies also to the G/D/1 queue and its finite buffer equivalence. This observation was based
on the definition of the overflow period which is a maximal continuous period of time that the event
Q > x occurs. Following [50], it can be shown that (32) applies also to the PPBP queue and its finite
buffer equivalence. Since the PPBP queue size Q in the infinite queue system is the same at the
beginning as at the end of the overflow period, the amount of work that joined the queue during an
overflow period must be equal to the the amount of work served during the overflow period. Suppose
€ > ( is arbitrary. Then, for sufficiently large L, > 0, the mean amount of work lost in the finite buffer
PPBP queue (with buffer size x) during L, is in the interval (E(A)L/Pjyss — €,E(A)L;Pjoss + €). This
must be lower or equal to the amount of work that arrived during the overflow period of the infinite
buffer PPBP queue which is equal, as discussed above, to the amount of work served during that
overflow period. Therefore, since the process Q; is stationary,

E(A)L[Ploss —€ S CL[P(Q > X).

Since € > 0 was arbitrary, (32) follows.

Appendix B: Proof of Propositions 1-3

As A — oo, in propositions considered in this appendix, the parameters r, the rate associated with
each burst, and C, the capacity of the server, are scaled with A according to the formulae (17), as
explained at the start of Section 5. The remaining parameters, d and 7y of the system of PPBP traffic
processes under consideration remain fixed.

Proposition 1 For any functions, Ay, By, of A, and any increasing function, f(\), defined on [0,o0),
such that
A TN <oy (x) < B, (18)

for all x > xq, necessarily, % — 00 a8 A — oo,
The proof relies on four lemmas which we state and prove prior to presenting the proof.
Lemma 1 Suppose that a Gaussian process having the same autocovariance as the PPBP and net

mean —u supplies input to a stationary queue. Then, if Q is the buffer level in this system, for any
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€ > 0 there exists xo > 0 such that for x > x,

e PN < p(Q > x) <o PN (33)
where
_ 4Ar28Y(3 — Y)H/JH
(2—v)3(y—-1)7
Proof

Since the PPBP variance-time curve, 6,2, takes the form shown in (14), ast — oo

29 ,3—
Gtz DY 2rehe 1Y
(y=1D2-v)(3-7)
where D = w_l)z(r;%, and in fact, for typical parameter values, this term is dominant even for

relatively small z. In particular, for any € > 0 there exist #y > 0 such that for all # > 1,
(D—e)rP V<o’ < (D+e)* . (34)

2
Observe therefore that the limit g(¢) = lim;_c % exists and g(c) = ¢! =Y, ¢ > 0. Now
t/c

. 2=V 5
infg(c)(c+p)*/2= (G—y)3(y— 1)7“3 "

so, by [9, Theorems 2.1 & 2.2],

.o} __2=DB =" 5y
A O

That is to say, for any € > 0 we can find by > 0 such that for b > by,

2y-1)B=7Y 5., ,\? 2y-1)B =9 5., , ,\
<_<3—v)3(v—1>Y“3 Y"“)c_z““P(Q”’K <_(3—v)3(v—1>Y“3 ”"‘)‘2'

Using (34), therefore, for any €” > 0, there is an xo > 0 such that for x > xj,

2(7_1)<3_Y)Y — " — 2(7_1)<3_Y)Y — " —
(ot 2= )i <> < (-G o)

from which the assertion of the lemma follows by exponentiation. O

Lemma 2 Given arbitrary B, D1 > D, >0, B > 0, for any K > 0, xo > O, there exists x;, > 0 such

that ;
—A —D\x
olx Be 1
inf  sup max( ¢ > > K.

)
2,00 xy<x<xg, B«eiszl3 OUC_A'
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Proof

Essentially, this lemma says that a graph of the mapping x — o is fundamentally different in
shape to a graph of x — Be*D"B, no matter how the parameters o, A, B, D, and [3 are chosen. The
detailed proof has been omitted in the interests of brevity, but can be found in the long version of this
paper [48].

O

Lemma 3 The CDF of a Gaussian queueing system with non-zero idle probability is continuous on
(0, 00).

Proof

This result follows from Theorem 11 in [51, Section 11]. In [51] the main conclusion of Theorem
11 is that the CDF, F(r) say, is absolutely continuous on (rg,e) where ro = inf{r : F(r) > 0}. In
[51], F(r) is the CDF of convex functional defined on an Gaussian process on an arbitrary index set
whereas in the present case we shall apply this with F(r) as the CDF of

supX; — Xy = X; — X,

s<t

where S; denotes the time, s, previous to ¢ where X; — X, achieves its maximum value. As noted in the
Corollary to Theorem 11 in [51], this sup is a convex linear functional, so Theorem 11 applies to it.
In the present case, ryp = 0, since the system has a non-zero probability of being idle. O

Lemma 4 The sequence O (x) converges to the CDF of the Gaussian queueing system whose input
process has the same first and second order statistics as the PPBP uniformly in x on any finite interval
in [0,00), as AL — oo,

Proof

Point-wise convergence follows from the CLT [8,39] and Lemma 3. Choose a finite interval [a,b] C
[0,00). Let ¢(x) = limy_,., 03 (x), x > 0. This is a uniformly continuous function on [a, b] (because |a, b]
is compact). The rest follows from the fact that both ¢(x) and all the ¢, (x), are increasing functions
of x. O

Proof of Proposition 1
Choose K > 1. By Lemma 3, 0 (x) converges to the complementary waiting time distribution of a

Gaussian queueing system (y(x) say) in which the traffic has the same first and second order statistics,
and this distribution is continuous.
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By Lemma 1, for any € > 0, for some x; > xp, (33) holds for all x > x;. We could choose € = D /4
for example. Let D1 = D+ ¢€ and Dy = D — ¢, so, by (33), for all x > xi,

Ce P < y(x) < Ce P2 (35)

Now, by Lemma 2, we can find x; > x; such that for any a, k, for some x € (x,xz), either
a‘xiK > K2 or M > K2
Cefz)zﬂ*l oK :

Applying this with By, for o, and f(A) for k, we see that over the range x; to xz, the upper bound

Byx, f®) must, for some value of x, fail to approximate the functions Ce™? 71 and Ce D" by a
ratio of at least K2, i.e. for any A > 0, we can find x; € (x1,xz) such that either
—f(A)
Byx
L_l > K2 (36)
Ce*sz;{
or -
—Dpc;;
Ce ™ g2 (37)
Box S
A

By Lemma 4, ¢, (-) converges to its limit y(-) as A — oo uniformly on any finite interval of x
values. So we can choose Ag sufficiently large that for all A > Ak the ratio ¢y (x)/y(x) > 1/K and
y(x)/dy(x) > 1/K over (x1,x). Using (35), we now see that for all A > Ag

Ce™ 22" /oy, (x) > 1/K (38)

and
0, (x)/Ce P S 1 /K (39)

over (x1,xz).

If (37) were to hold, multiplying it by (39) gives

for A > Ak, which contradicts the assumption that Bjx, ™

hold.

is an upper bound. Hence (37) does not

So (36) holds. Multiply it by (38) to give

—F—>K
03.(x2)
. . . B)inf(x) .
for A > Ag. Since K > 0 was arbitrary, this proves that W — o0 a8 A — oo and hence, since
Ayx, M < dy.(x3), also that ﬁ—; — o0 as A — oo, This completes the proof. O
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Proposition 2 In the same context as Proposition 1
For any mapping, A — By, (or M — A, ) and function, f(L), defined on [0,0), such that

op(x) < By ™ (40)

(4™ < 02)), (41

}L .
for all x > xq, necessarily, for any xo > 0, SUP %) ~0r ) (infy %, % —0)as A — o,

Proof

Select Xy > 0. Except that when we pick x|, we need to select it to be larger than max (xg,Xo), instead
of just larger than xg, the proof is the same as for Proposition 1 up to the penultimate conclusion. The
—f(A)
Byx
penultimate conclusion was that L — o0 as A — oo, Since x;, > x1, it is also larger than Xy. The
primary statement of the proposmon %ollows The secondary statement follows by an entirely parallel

argument. O

Proposition 3 In the same context as Proposition 1, if Ayx~/ M s a power-law asymptote for a
—f)
PPBP queue, in the sense that for any PPBP system, % — 1 as x — oo, the convergence is not

L . AP : Ay D)
uniform in A. For any xy > 0, either SUPysxy () 0T infy> oo 0as A — oo.

Proof
. ) Ay T®
If it is not the case that infy~ W —— 0 as A — oo, then for some K > 0, for all x > xo,

Aﬁ)x (f) > K. Then (K~ 'A;x~/ (7”)) will be an upper bound satisfying the conditions of Proposition 2,

K ' Aux T
02.(x)

and therefore sup,.. v, — o0 ag A — oo, from which the conclusion follows. O
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