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ABSTRACT
The proposal introduced an urban electric vehicle (EV) charging station location and capacity optimization model that considers the 
comprehensive interests of the "vehicle-station-network" system. This method employs ArcScene for the coupling of road-electric 
models and aims to minimize the total societal cost, composed of the charging station operator's cost, the user's charging cost, and 
the electric grid's loss cost, as the objective function. It solves the problem using an immune particle swarm optimization (PSO) 
algorithm that combines PSO with the immune algorithm. The model is then applied to simulate the charging station location and 
sizing issues within the study area. The simulation results demonstrate that the proposed immune particle swarm optimization 
algorithm (IPSOA) has good convergence and is more advantageous in solving multimodal functions. Meanwhile, the method takes 
into account the interests of charging station users, operators, and the electric grid, resulting in a decrease of electrical grid loss cost 
by 11.1% and 17.8%, and a reduction of the total societal cost by 9.96% and 3.22%, respectively, compared to two other location 
schemes.
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1 Introduction

urrently, the international energy crisis is intensifying, and environmental pollution issues have become more 
pronounced. Traditional fuel-powered vehicles with high energy consumption and pollution levels are no 
longer suited to the future development direction. Efficient and low-carbon EVs have received significant 
attention from governments worldwide and have become key to breaking the energy crisis and solving 

environmental issues. Advancing the EV industry relies on the construction of supporting facilities such as charging 
stations. However, the current planning and design of EV charging stations have not been scientifically rationalized, 
leading to low utilization rates of charging facilities, poor economic benefits for operators, and difficulties for users in 
charging their vehicles. Therefore, research into the location and capacity determination of EV charging stations is 
necessary. Location and sizing are influenced by numerous factors. First, there is strong randomness in the spatial and 
temporal distribution of EV charging loads, making accurate prediction of charging demand challenging. Secondly, 
location and sizing of charging stations belong to a multi-objective planning issue that needs to address the fair 
distribution of interests among operators, users, and the electric grid to ensure safety, economy, and convenience of the 
solution. As a result, different scholars have variable planning objectives when conducting related research, which has 
led to a diversity of models for the location and sizing of EV charging stations. Currently, the more commonly used 
models can be divided into three categories: P-Median models, P-Center models, and Flow Covering Location Models 
(FCLM).

The P-Median model is often used in situations where the maximum budget for building stations is given and the 
number of stations to be built within a region is fixed. This model begins by selecting charging demand points within 
the study area, and then establishes weighted distance connections between the charging demand points and the 
potential charging station locations, searching for the solution where the sum of weighted distances from all charging 
demand points to the charging station is minimized. Y. Feng et al. [1] used an improved K-means clustering algorithm 
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to analyze the distribution characteristics of urban EV charging demand points. After a given number of stations is 
determined, it solves for the optimal siting and capacity plan under different numbers of charging stations with the 
objective of minimizing the distance from each charging demand point to the planned charging stations.

P-Center is similar to P-Median, but its planning objective is to minimize the maximum distance from any 
charging demand point to the nearest charging station. L. Jia et al. [2] improved upon the P-Center model by 
considering the charging patterns of EVs under different charging demands and modeling the road network structure to 
analyze the impact of traffic flow on the site and capacity planning of charging stations. The optimization objective is to 
minimize the comprehensive cost while ensuring the safe operation of the electric grid, ultimately determining the 
optimal location for charging stations. S. Ge et al. [3] took into account the interests of both EV users and charging 
station operators, using the total societal cost as the objective function. It weights the factors affecting siting of EV 
charging stations and uses a Voronoi diagram to divide the service range of the charging stations, enhancing the 
convenience of charging for EV users. W. Huang et al. [4-5] focused on the difference in charging needs of EV users, 
quantifying users’ travel and charging patterns, using the Monte Carlo method to simulate the spatio-temporal 
distribution of charging demand within the study area, and likewise using a Voronoi diagram to divide the service range 
of the charging stations.

The central idea of FCLM is that charging stations, while meeting all the EV charging needs in the study area, 
should reduce the comprehensive cost of construction, i.e., meet as many charging demands as possible with fewer 
stations and lower budget costs. Q. Xu et al. [6] aimed to improve the service quality and rate of EV charging stations, 
characterizing user behavior habits based on the travel chain model, and expanding the coverage of charging stations 
based on the Voronoi diagram concept as much as possible while meeting user charging needs [7]. F. Wu et al. [8] 
proposed a stochastic truncated coverage model to optimize the siting and capacity of a limited number of fast charging 
stations for EVs within a given study area. The method analyzes through a two-stage stochastic integer program, the 
first stage determines the locations to build stations, and the second stage determines the flow of EVs. The method is 
applied to a case study in Ohio, showing that the same number of EVs charging stations can meet more charging 
demands, i.e., capture more EV flow within the area. M. Kchaou-Boujelben et al. [9] based on the randomness of 
vehicle driving range and mileage, consider the variability of traffic conditions in different areas and the correlation 
with corresponding random power consumption, proposing an opportunity-constrained truncation model. In this model, 
if the coverage rate of traffic flow remains above a pre-set minimum value, then the flow is considered to be covered. O. 
Arslan et al. [10] took into account not only pure EVs when siting charging stations but also plug-in hybrid EVs and 
multiple EV models with different ranges, which more closely corresponds to the actual situation where pure EVs and 
hybrid vehicles coexist, having greater practical significance. C. Lee et al. [11] believed that a vehicle’s maximum 
driving distance may vary based on environmental factors, such as traffic conditions, weather, temperature, etc. 
Therefore, it proposes to integrate a probability reachability function into the existing probabilistic expansion network 
method to analyze, abstracting the siting problem as a mixed-integer nonlinear programming problem and using this 
method to conduct a verification simulation for a segment of highway in Texas. The method not only has advantages in 
computation time but also produces better solutions under the assumption of uncertain travel ranges. J. Hondgsonm et al. 
[12] proposed an FCLM based on road network flow demand for charging facilities, i.e., to build a given number of 
charging facilities under the condition of a given traffic road network and flow to maximize the captured traffic flow. H. 
Wang et al. [13] considered the dual attributes of public service and common power usage of EV charging stations, 
constructing an optimization model for siting charging stations that can capture the maximum traffic flow and meet the 
minimum power grid loss. The model uses a gravity spatial interaction calculation for traffic flow and a super-
efficiency data envelopment analysis method to decompose the multi-objective decision problem into single-objective 
optimization for solution. Building on H. Wang et al. [13], W. Yao et al. [14] also considered the investment costs of 
charging station operators, sets maximum thresholds for the waiting time of EV users during peak travel periods, and 
introduces a traffic assignment model based on user equilibrium to calculate the traffic flow captured by the charging 
stations. X. Huang et al. [15] focused on the operational costs of the charging station investors, proposing a quantum 
genetic algorithm for charging station siting. This algorithm uses FCLM to constrain the location of charging stations 
and traffic flow, with the goal of maximizing economic benefits for investors, providing theoretical guidance for the 
current work of EV charging station siting.

From the above, it is clear that current mainstream models for optimizing the location of charging stations, such as 
the P-Median, P-Center, and FCLM, still cannot adequately accommodate all the factors influencing the decision-
making process for the location and capacity optimization. Research by scholars both domestically and internationally 
has mostly focused on the investment returns for charging station investors, capturing traffic flow in road networks, and 
the cost of electrical grid losses. They have not comprehensively considered the multi-objective layout optimization 
problems under the multi-source information fusion mode of “vehicle-road-electricity” Therefore, this paper proposes a 
multi-source information fusion model for the location and capacity determination of EV charging stations, which 
achieves a rational layout design for EV charging stations and has significant theoretical value and practical 
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significance for multi-objective planning of EV charging stations.
The main contributions of this paper are as follows:
(1) Considering the optimal benefit distribution under the vehicle-station-network model, objective functions and 

constraint equations for the vehicle, the charging station, and the grid are established respectively.
(2) A network-grid coupling method based on ArcScene is proposed, which enhances the applicability of the 

model.
(3) An IPSOA, which combines the PSO algorithm with the immune algorithm (IA), is used for solving, improving 

the precision of the solutions.
The main body of the paper is organized as follows: Section one briefly introduces the three main entities of the 

multi-source information fusion framework and their interactions. Section two constructs the road network-electric grid 
coupling model based on ArcScene. Section three constructs the objective functions and constraint functions for the 
location and sizing of charging stations. Section six proposes the IPSOA and conducts algorithm testing, building upon 
the PSO and Immune algorithms introduced in sections four and five. Section seven verifies the effectiveness of the 
proposed method through simulation examples. Finally, section five concludes the paper.

2 Multi-source information fusion framework

Previous planning models for charging stations often assumed that information such as the electric grid and road 
network is static, without considering the dynamic changes and interactions of information. This paper proposes an EV 
charging station planning model based on the multi-source information fusion of vehicles, roads, and electricity. As 
illustrated in Figure 1, the multi-source information fusion framework includes three main entities: vehicles, road 
networks, and electric grids.

Algorith
m layer

Model 
layer

Road network vector 
information

Node coordinates, 
road level

NHTS travel data
Travel and arrival time, departure and 

destination, etc

Traffic information
Time flow and 

congestion situation

Grid topology
Load 

information

Battery capacity and 
range

Charging power and 
efficiency

Road network 
model

Travel 
model

User charging 
model

Monte Carlo 
sampling

Travel chain 
analysis Floyd

Data 
layer

IPSOKDEKDE

Power grid 
model

Fig. 1. Relationship framework of multi-source information fusion data layer, model layer, and 

algorithm layer

(1) Vehicle: This encompasses various aspects such as vehicle driving characteristics, EV charging behavior, and 
battery performance parameters. EV driving characteristics include departure times, points of origin and destination, 
and choices of driving routes. During a trip, the driver determines the shortest route using the Floyd algorithm.

(2) Road Network: This involves the location of traffic nodes, spatial distribution of different urban functional 
areas, road network structure, traffic congestion, and real-time driving speeds of vehicles. Using ArcGIS to build the 
road network model, land attributes of different functional areas are classified, generally divided into office areas, 
residential areas, commercial areas, and public service areas. Additionally, the level of traffic congestion not only 
reflects the information on road traffic flow and speed but also can influence drivers’ route selection preferences to 
some extent.

(3) Electric Grid: This includes the distribution network structure, power supply node loads, and EV charging 
pricing. In the distribution network, charging pricing is one of the key factors that users consider when choosing the 
location of charging facilities. A large non-uniform integration of the EV charging load could lead to voltage collapse 
issues. Therefore, developing a reasonable electric grid model is especially important.
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3 A road network and power grid coupling model based on ArcScene

3.1 Distribution network model

To study the impact of EVs on the grid, a model must be developed that matches the road network in the study area. 
The basic load and charging load in the area are allocated to the corresponding nodes, neglecting the presence of 
switches in the grid and simplifying the grid into a combination of nodes and lines. The distribution system is modeled 
using a four-tuple:

 , , ,
G G G G

P N L B S= (1)

 G 1 2 g(1, ), (2, ), ( , )N n n g n= L (2)
where NG is the set of nodes, indicating the node number and node type. When ni=1, it is a PQ node, which corresponds 
to a load connected to the distribution network. When ni=2, it is a voltage magnitude and phase angle specified node, 
equivalent to a transformer in the distribution network that is directly connected to a higher voltage level.

 G ( , ) |1 ,i jL n n i j= £ £ g (3)
where LG is the set of branches, representing each line’s starting and ending nodes.

 G ( ) |1 1k kB R jX k= + £ £ (4)
where BG stands for the set of branch impedances, representing the resistance and reactance of each branch in the 
distribution network.

 ( ) |1
G k kS P jQ k= + £ £ g (5)

where SG is the set of nodal power, indicating the load size carried by each node in the power grid.
3.2 Coupling of road network and power grid

Combining the road network model and the power grid model, ArcScene is used to couple the two networks. 
ArcScene is a three-dimensional geographic information system software primarily used to create, edit, analyze, and 
visualize three-dimensional geographic information data. It can perform functions such as data visualization, editing, 
spatial analysis, data import and export, and geospatial simulation [16] The steps for the road network-electric grid 
coupling are as follows: First, a point feature layer is established by converting road and electric grid model node 
information into suitable quantitative matrices and importing them into ArcScene to create a node layer. Second, a face 
feature layer is established by importing the road and electric grid model node adjacency matrices, creating the road and 
electric grid face structure layers. Finally, the road network node matrix corresponding to the electric grid nodes is set, 
and the height of the electric grid layer is adjusted to generate a three-dimensional coupled road network-electric grid 
map. As shown in Figure 2, this presents a coupling effect diagram within the study area’s road network model and the 
IEEE 33-node system.

Grid nodes
Power grid branch

Road network nodes
Road network branch
Secondary main road

Main road
Expressway 0 0.8 1.6 2.4 3.20.4 km

Fig. 2. Three dimensional results of road network power grid coupling based on ArcScene

4 Coupled road-network grid model based on ArcScene

4.1 Objective function
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The location and sizing model for EV charging stations takes into account the costs of EV charging station 
operators, the charging costs for EV users, and the cost of losses in the electric grid. The overall goal is to minimize the 
total cost to society, with the total target function as shown in Eq. (6).

min op u p+ +C C C C= (6)
where Cop is the cost for EV charging station operators, Cu is the charging cost for EV users, and Cp is the cost of losses 
in the electric grid.

(1) EV Charging Station Operator Costs
The cost for EV charging station operators consists of two parts: the construction and the operation & maintenance 

costs. This can be represented as:
op opc opr+C C C= (7)

where Copc is the construction cost for charging station operators, and Copr is the operation & maintenance cost for 
charging station operators.

1) Construction Cost for Charging Station Operators
The construction cost for charging station operators considers the building expenses incurred over the operational 

lifespan of the charging piles. This includes hardware costs such as the purchase and installation of charging piles and 
transformers, as well as costs for preliminary investigations, scheme development, environmental protection, and site 
construction. It is represented by:

 
 

opcb opcp 0 0
opc

opce r 0

(

) 1

mN
i

m
i=1 i i

C + n C + r 1+ r
C =

b C + man C 1+ r -
å (8)

where N is the total number of charging stations, i is the identifier for the charging station, ni is the total number of 
charging piles in the i-th charging station, α is the construction floor area related to each charging pile, bi is the number 
of transformers in the i-th charging station, m is the service life of the charging station, Cr is the annual rent per unit area 
of the charging station, r0 is the rate of return on investment, Copcb is the fixed construction cost for the charging station, 
Copcp is the cost of purchase and installation for each charging pile, Copce is the cost of purchase and installation for each 
transformer.

2) Operation & Maintenance Cost for Charging Station Operators
Charging station operators need to pay annual operation and maintenance costs, which include the cost of 

electricity during regular operation and the cost of repairs during abnormal operations. This is represented by:

opr oprp ch r ep( )
N

i i
i=1

C = mn C + n P t Cå (9)

where Coprp is the average maintenance cost per charging pile per year, pch is the average charging power per charging 
pile per year, tr is the average charging time per charging pile per year, Cep is the cost per unit of electricity purchased.

(2) Charging Costs for EV Users
The charging costs for EV users include not only the fees paid for using the charging piles but also the loss of cost 

for traveling to the charging station (the cost of electricity during this period and the equivalent economic value of time) 
as well as the lost time cost while queuing inside the charging station. This can be represented as:

u u1 u2 u3( )
N

i=1
C = m C +C +Cå (10)

where Cu1 is the loss cost of traveling to the charging station for users, Cu2 is the lost cost of queuing inside the charging 
station for users, Cu3 is the charging cost for users.

1) Loss cost of traveling to the charging station for users
is

u1 0 is chp t
is

( )
S

s=1

l
C = l l C + C

vå (11)

where s is the identifier for users waiting to charge, S is the total number of users waiting to charge, λ0 is the unit 
mileage electricity consumption for EVs, lis is the shortest distance traveled by users to the charging station, Cchp is the 
charging price for users, vis is the average speed of users traveling to the charging station, Ct is the economic cost per 
unit of time.

2) Lost time cost while queuing inside the charging station for users
The user queuing situation inside the charging station is shown in Figure 3 as a single queue model. The EV 

queuing state transition diagram is illustrated in Figure 4, described by the M/M/n model.
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Electric vehicle 
users waiting to 

be charged

Charging teams 
within electric 

vehicle 
charging 
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S
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…

Entering the station Leaving the station

Fig. 3. Charging station user queuing mode

The steady-state equilibrium equation for the M/M/n queuing system is shown in formulas below, which is solved 
in conjunction with Eq. (12), (13), (14), and (15).

0 1

1 1

1 1
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f f f

f f f

P P
P f P f P

n P P n P
- +
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/ ( )n n=r l m (15)
where λ is the arrival rate of vehicles, ρ denotes the service intensity, μ is the average service rate, f is the number of 
EVs waiting to be charged within the charging station, n is the total number of charging piles in the charging station. If f 
is less than or equal to n, then the average service rate of the entire charging station is fμ, if f is greater than n, the 
average service rate is nμ.

Therefore, the lost time cost while queuing inside the charging station for users can be represented as:

u2
1 1

rtN

i

i i
t t

t
qC W C

= =

= åå l (16)

  0

(1 )
0

n

d( e )
! 1

n n
n

i t
qW p t

n
- -= ò -

-
r m¥r

r
(17)

where Wi q is the expected waiting time for EV charging within the charging station identified by i, λi t is the number of 
EVs heading towards the i-th charging station at time t.

Fig. 4. Charging station user queuing mode

3) Charging Cost for Users
u3 ch ch chpC = P t C (18)

where Pch is the average annual charging power, tch is the average annual charging time.
(3) Cost of Losses in the Electric Grid

loss lossp r losspiC = mP t n C (19)
where Clossp is the unit loss cost for the distribution network line, Plossp is the loss value for the distribution network line.
4.2 Constraint conditions
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The constraints of the EV charging station location and capacity model involve three main entities. Firstly, for the 
charging station operator: constraints such as the number of charging stations, service range of the charging station, 
distance between adjacent charging stations, and the capacity of the charging stations are considered. Secondly, for the 
charging customers: the main concern is constraints on the waiting time for customers queuing up to charge. Finally, for 
the distribution network: constraints include the upper and lower limits of node voltage magnitudes, the maximum 
charging power that can be integrated into the power grid, and the maximum current in feeders.

1) Constraints on the number of charging stations
min maxN N N„ „ (20)

where Nmin is the minimum number of planned charging stations, Nmax is the maximum number of planned charging 
stations

2) Service range constraints for charging stations
The service range of charging stations should meet the charging needs of users within the area, which can be 

expressed as:

ch r max ( )
N

i
i=1

n P t M 1+³å j (21)

where Mmax is the total demand for EV charging in the service area, φ is the charging loss rate within the charging 
station.

3) Distance constraints between adjacent charging stations
The distance between two adjacent charging stations should be appropriate, not too far or too close, which can be 

expressed as:
S S( , ) 2i jl l N N l„ „ (22)

where lS is the service radius of the charging station, l(Ni,Nj) is the distance between two adjacent charging stations.
4) Power constraints for charging stations
The charging power of the charging station should be less than or equal to the maximum power allowed by the 

distribution network node to which it is connected.
,max max

i i
ch jP P£ (23)

where Pi ch,max is the maximum charging power for charging station number i, Pi j,max is the maximum charging 
power allowed by the distribution network node to which charging station number i is connected.

(2) Constraints on User Queuing Waiting Time
max

iW W£q q (24)
where Wqmax is the maximum waiting time of EV users waiting to be charged in the charging station.

(3) Distribution Network
1) Node voltage amplitude bound constraints

min max , 1, 2, ,i i iV V V i j Q= L„ „ (25)
where Vmin i is the lower limit of node voltage amplitude, Vmax i is the upper limit of node voltage amplitude, Q is the 
number of nodes in the distribution network.

2) Maximum charging power constraint of the distribution network

ch,max total,max max
1

N

i
P P P

=
å + £ (26)

where Ptotal,max is the maximum base power allowed to connect to the distribution network excluding the charging 
station power, Pmax is the maximum power that can be admitted to the distribution network.

3) Maximum current constraint for feeders
max , , 1, 2, ,ij ijI I i j Q£ = L (27)

where Iij represents the current passing through feeder ij in the distribution network.

5 Principle of IPSOA algorithm

The PSO is an evolutionary computational technique developed by Kennedy and Eberhart in 1995 [17] In PSO, 
each search individual is abstracted as a particle without mass and volume, flying at a particular rate in the solution 
space. Through learning and iteration, particles adjust their flight speed based on individual and group experience. In 
the process of seeking the optimal solution, each particle determines its fitness according to the function value to be 
optimized. This information includes the current position of the particle, the best position found (i.e., individual 
experience), and the optimal position found in the group (i.e., group experience). Therefore, the movement of the 
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particles is influenced by both individual historical states and group historical states. By adjusting the current direction 
and speed of the particles, the particle swarm algorithm effectively coordinates the dynamic relationship between 
individuals and groups.

When a particle swarm is in D-dimensional space, and N particles are generated, the expression is:
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where Xt i is the position of the i-th particle at the t-th iteration, Vt i represents the velocity of the i-th particle at the t-th 
iteration.
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where Pt i,best is the best value found by the i-th particle after the t-th iteration, which is the individual best solution, Pt 
g,best is the best value found by the group after the t-th iteration, which is the global best solution.

The formulas for iterative calculation of each particle’s velocity and position are:
 

 

1
1 1 ,best

2 2 ,best

1 1

t t t t
i i i i

t t
g i

t t t
i i i

v v c r p x

c r p x

x x v

+

+ +

ì = + -
ïï
í+ -
ï

= +ïî

w

(30)

where ω is the inertia weight, c1 and c2 are learning factors, and r1 and r2 are random numbers that follow a uniform 
distribution in the [0,1] interval, serving to increase the randomness of particle search.

5.1 Basics of PSO

The IA is an algorithm inspired by biological immune systems. As shown in Table 1, it is similar to the human 
body’s defense mechanism, possessing abilities similar to immune memory and self-regulation, and demonstrating 
advantages in diversity and global optimization [18-20].

Table 1 Analogy of immune system and immune algorithm

Immune system Immune algorithm
Antigen Problem to be optimized

Antibody Feasible solution to the problem
Affinity Quality of feasible solutions

Cellular activation Immune selection
Cell differentiation Individual cloning
Affinity maturation Variation

Clone inhibition Clone inhibition
Dynamically maintaining balance Population refresh

In IAs, affinity is used for the selection and assessment of antibodies, which include the affinity (matching degree) 
between antigens and antibodies, as well as the affinity (similarity degree) between antibodies. The main parameters of 
the Immune Algorithm are explained as follows:

(1) Affinity essentially reflects how tightly immune cells bind to specific antigens; a concept similar to the fitness 
concept in genetic algorithms. The function that assesses affinity, commonly referred to as aff(x), takes an instance of an 
antibody in the S∈R interval as input (where S represents the set of feasible solutions and R represents the range of real 
numbers), and outputs the corresponding affinity value. For standard function optimization problems, function values or 
their transformations (such as reciprocals) can be directly used as affinity. For more complex composite or application-
level problems, the evaluation methods should be refined according to specific circumstances.

(2) Antibody Concentration Antibody concentration is an indicator of population diversity. If it is too high, it 
indicates a large number of highly similar individuals are concentrated in a specific area of the solution space, which is 
not conducive to maintaining the global search capability of the algorithm. To avoid this concentration phenomenon, 
the algorithm should suppress individuals with high concentration to ensure population diversity.

1

1den( ) ( , )
N

i i j
j

ab S ab ab
N =

= å (31)
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where N is the population size, den(abi) denotes the concentration of the antibody, S(abi,abj) represents the similarity 
between antibody i and antibody j, δs is the similarity threshold.

Generally speaking, antibody concentration is inversely defined, which means a lower concentration implies a 
higher value. Accordingly, a clear definition of the affinity between antibodies is a critical prerequisite for concentration 
evaluation. The commonly mentioned affinity of antigens to antibodies also applies to the concept of affinity used for 
measuring the similarity between two antibodies. Common methods for calculating the affinity between antibodies 
include, but are not limited to, affinity-based methods, Euclidean distance, Hamming distance, and informational 
entropy. The appropriate method should be chosen based on the actual problem at hand.

(3) Stimulatory Degree. The stimulatory degree plays a decisive role in assessing the quality of an antibody, 
making a comprehensive judgment based on the antibody’s affinity as well as its concentration. In most cases, 
antibodies that combine high affinity (reflected in superior objective function values) with low concentration tend to 
have relatively high stimulatory degrees (i.e., superior performance). The stimulatory degree is typically calculated by 
processing the results of antibody affinity and concentration assessments in a straightforward manner.
sim( ) ( ) den( )i i iab a aff ab b ab= × - × (33)
where sim(abi) is the stimulation intensity of the antibody i, with a and b being the computation parameters.

5.2 Principle of IPSOA

The PSO and IA are both heuristic algorithms used for problem-solving that draw inspiration from the dynamic 
changes in biological characteristics found in nature. Despite their similarities, they also exhibit distinct differences. 
PSO improves the search for solutions through the coordinated cooperation among particles within the swarm, 
constantly adjusting their paths to seek local and global optima within the solution space. In contrast, IAs mimic the 
mechanisms that generate antibodies within the biological immune system—continuously producing and selecting new 
antibodies to find the optimal solution.

PSO focuses on the synergistic effect of information exchange between individuals and the group, adjusting 
particles' positions and velocities within the solution space to enhance diversity. On the other hand, IAs maintain 
diversity within the antibody population through mechanisms such as immune memory, concentration regulation, and 
vaccination [21]. The PSO emphasizes mutual assistance among particles, with iterations depending on the 
incorporation of personal and group cognition into each particle’s position and velocity changes. IAs rely on selection, 
crossover, and mutation for antibody iteration updates, introducing more random elements.

However, a single strategy often fails to yield the best results due to inherent limitations. The PSO allows particles 
to evolve through cooperation, but if particles become too concentrated in a specific area, diversity decreases, making it 
easy to fall into local optima and converge prematurely. IAs use memory and concentration regulation mechanisms to 
maintain diversity and introduce vaccination to prevent premature elimination of high-quality particles, but they tend to 
have weaker inter-antibody cooperation and underutilize feedback information, possibly leading to redundant iterations 
and decreased efficiency and accuracy.

Given the strengths and weaknesses of both methods, an integrated strategy, the IPSO, has been developed [22] In 
this strategy, the special mechanisms of IAs are integrated into the PSO framework. The optimization process involves 
selection and the generation of new particles—now considered antibodies [23]. Using an immune memory bank to store 
excellent particles and adopting an elitism strategy to select and preserve them, this prevents high-fitness particles from 
being eliminated due to decreased concentration. An immune concentration selection ratio formula is used to determine 
each particle’s probability of being chosen, based on which dominant particles are added to the immune memory while 
suboptimal particles are eliminated. Vaccination ensures the continued diversity of the population in the later stages of 
the algorithm, further improving the efficiency and precision of the PSO’s problem-solving capabilities [24].

During the application process of the IPSOA, the first step is to estimate the concentration of antibodies and 
antigens of the particles within the system, then, based on the mathematical expressions of the particle concentrations 
within the system, probabilities for the existence of each particle are defined, and particles with overly high 
concentrations are eliminated according to these probabilities, with the aim of maintaining diversity among the particles 
[25]. Through algorithmic processing, mutant particles are created and replace those with initially high concentrations. 
The concentration of the i-th particle in the system is obtained through the following calculation formula:

1

( )
| ( ) ( ) |

1
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(34)

The probability formula for the proportion of the quantity of the i-th individual to the total quantity of individuals 
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is as follows:
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(35)

As can be inferred from the abovementioned formula, the greater the concentration of particles, the lesser the 
chance they have of being selected, the converse is also true. Therefore, the distribution of particles in the solution 
space becomes more uniform, which reduces the problem of excessive particle concentration in certain areas and avoids 
limited searching, which is a predicament that PSO algorithms often face-premature convergence has been mitigated to 
some degree.

In summary, the IPSOA combines the advantages of PSO, such as group cooperation, information feedback, and 
rapid convergence, with the features of immune algorithms like memory functions, concentration adjustment, and a rich 
variety of antibodies. This strategy effectively prevents the potential issue of premature convergence during the later 
stages of iterative processes, significantly enhancing the algorithm’s efficiency and accuracy of solutions in its latter 
phases.

5.3 IPSOA for location and capacity determination of EV charging stations

(1) Input the original parameters, which include data related to “Vehicle-Road-Power”: road network matrix model 
G, power grid matrix model P, the number of EVs N, the spatiotemporal distribution matrix of EV charging load M, EV 
user charging cost. Data relevant to the IPSOA: maximum number of iterations Kmax, particle population size N, particle 
population dimension n, maximum weight, minimum weight, learning factors c1, c2. Set the population size, solving 
precision, mutation probability, etc.

(2) Set the number of candidates charging stations Ns and the set of candidate locations Ds. The candidate locations 
for charging stations are based on the division of urban functional zones, that is, the geometric center coordinates of 
each functional zone within the research area are used as the candidate locations. The candidate location set Ds 
determines the matrix dimension based on the particle population size parameter from the IPSOA in (1).

(3) Based on Eq. (6)-(19), the total societal cost C of the planned charging station is calculated by integrating the 
operational cost Cop of the EV charging station, the EV user’s charging cost Cu, and the power grid loss cost Cp. The 
charging station location coordinates are preliminarily selected with the objective function being the minimization of 
the total social cost C. Based on Eq. (20)-(27), which integrate constraints from the charging station operators, users, 
and power distribution network, particle positions that do not meet the constraints are eliminated, and the retained 
charging station locations enter the candidate location set Ds.

(4) Calculate the total social cost C as the particle fitness, update and iterate particle velocities and positions based 
on the movement speed and position of immune particles, and record individual and global extremes.

(5) Update the global extremum. Compare individual extremes within the current particle swarm Ak with the global 
extreme Pk g, and update the extremum.

(6) Determine if the iteration should terminate. If the current number of iterations k has exceeded the maximum 
allowed value Kmax, stop iteration, and consider the fitness value of the obtained global extremum as the best solution of, 
if not yet at the termination point, proceed to (7).

(7) Generate new particles. Applying the principle of vaccine inoculation from the immune particle swarm, 
generate M new particles to update individual extremes (i=N+1, N+2, …, N+M) and the global extremum Pg of the 
particle swarm. Calculate the selection probability P(xi) simultaneously.

(8) Construction and update of the memory bank. According to the selection strategy, prioritize the top S particles 
with the highest fitness in the particle swarm to store in the memory bank. Thereafter, select K-S high-quality particles 
from the remaining N+M-S particles based on the selection probability for storage. Consequently, form the parental 
generation by choosing N high-quality particles to form the particle swarm Bk. Update particle information afterwards, 
according to Eq. (30), update the new particle swarm Bk’s velocity, position, fitness, and individual extremums.

(9) Fusion of particle swarms. Combine K excellent particles from the memory bank with the existing particle 
swarm, and remove the K particles with relatively lower fitness to form a new round of particle swarm Ak with a scale 
of N. Continue to return to (5) until the fitness stabilizes and ultimately output the charging station siting scheme with 
the minimum social cost.
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Set parameter values
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Initialize N particles and calculate fitness 
values, individual extremum

Calculate global extremum

Generate M new particles

Calculate the concentration selection 
probability of N+M new particles

Select K particles to the immune memory library

Select the N particles with the highest probability

Update particle velocity and position

Calculate fitness value

Replacing particles with poor fitness in 
immune memory banks

Output results

End

Fig. 5. Flow chart of immune particle swarm optimization 

5.4 IPSOA test

To verify the efficient convergence characteristics of the new algorithm that embody both immune and particle 
swarm strategies, as well as the ability of particles to accelerate breakthroughs when trapped near local optima, this 
paper selects two common test functions: the Sphere function and the Rastrigin function. These two functions represent 
typical unimodal and multimodal problems, respectively, and the minimization objective value for both functions is 0. 
The basic formulas and parameters of the two functions are shown in Table 2.

Table 2 Basic test function parameters table

Function Test type Value Search space dimension
ftest1 Sphere function Unimodal testing [-10,10] 10
ftest2 Generalized-Rastrigin Multimodal testing [-5,5] 5

2
test1

1
( )

n

i
i

f x x
=

= å (36)

2
test2 i i

1
( ) 10cos(2 ) 10

n

i
f x x x

=

é ù= - +ë ûå p (37)

The parameter settings for each algorithm are as follows: in the PSO algorithm, ω is set to 0.9, c1 is set to 0.5, and 
c2 is set to 0.7, in the IPSOA, ωmax is set to 0.9, ωmin is set to 0.5, with a cloning mutation probability, additional 
particles M=10, and a memory bank capacity K=4. The particle population size for both algorithms is 20, and the 
maximum number of iterations is set to 100. MATLAB was used to encode and simulate the algorithms, resulting in the 
outcomes as illustrated in the figures.

The two algorithms were implemented to find the optimal solutions for two distinct functions, using MATLAB 
software for ten runs each, yielding the comparative experimental data results displayed in Table 3.

An analysis of the fitness function iteration curves displayed from Figures 6 to 7, along with the experimental data 
in Table 3, reveals the following findings: The Immune Particle Swarm Optimization (IMPSO) algorithm is capable of 
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maintaining a high diversity of particles in the latter stages of iteration, which in turn enhances the efficiency and 
accuracy of the global optimal solution search. For unimodal function problems, both PSO and IMPSO are able to 
rapidly converge to the global best solution, however, when dealing with more complex multimodal problems, 
traditional PSO (PSO) may lead to excessive particle convergence, limiting population diversity. The immune particle 
swarm algorithm enables particles to converge more quickly to the vicinity of the global best solution and performs 
effective searches within this area, thus significantly outperforming the standard PSO in terms of speed and accuracy. 
The Immune Particle Swarm method calculates the selection probability based on particle similarity assessment and 
selects high-quality particles from the population for memory bank storage according to this probability. It also adopts 
an elite reservation mechanism to prevent the abandonment of high-fitness particles, ensuring that population diversity 
is maintained in the late stages of iteration and avoiding the risk of losing dominant particles due to premature 
convergence.

Table 3 Basic Test Function Solution Results

ftest1 ftest2Frequency
PSO IA-PSO PSO IA-PSO

1 0.172 0.000665 PSO IA-PSO
2 0.0768 0.00518 0.00466 5.19E-6
3 0.124 0.000199 0.0232 7.92E-5
4 0.0345 0.000298 0.00497 4.78E-5
5 0.0618 0.00581 0.00191 2.83E-5
6 0.0866 0.00673 0.0245 9.76E-6
7 0.492 0.000845 0.00593 8.34E-5
8 0.0422 0.000683 0.0686 7.45E-7
9 0.00352 0.00793 0.0427 8.74E-5
10 0.829 0.000945 0.00746 9.47E-7
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Fig. 6. Test function ftest1 fitness iteration curve
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Fig. 7. Test function ftest2 fitness iteration curve
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6 Case study and results analysis

6.1 Example parameters

Employing the road network structure with a 33-node distribution grid as the subject of study, the distribution 
capacity is to be adjusted reasonably. The correspondence between the road network nodes and the electrical grid nodes 
is shown in Table 4. It is important to note that the road network nodes do not have a one-to-one correspondence with 
the electrical grid nodes, rather, a single node in the distribution system can supply power to an entire area, and road 
network nodes are situated within these regions, thus establishing their correlation. The planning of charging stations 
within the study area is conducted using the forecasted results of the spatiotemporal distribution of charging demand as 
input for the charging station planning model, which serves to validate the feasibility of the model established in this 
paper. The settings for the model’s related parameters are presented in Table 5. The functional area division and 
charging load in the calculation example are based on the data from [26].

Table 4 Corresponding relationship between road network and grid nodes

RNNs GNs RNNs GNs RNNs GNs
22 1 238 12 13 23
62 2 222 13 6 24
48 3 190 14 17 25
94 4 136 15 145 26
147 5 120 16 69 27
178 6 32 17 35 28
170 7 14 18 31 29
192 8 133 19 85 30
196 9 183 20 79 31
224 10 200 21 124 32
246 11 241 22 75 33

Table 5 Simulation parameter settings

Parameter Numerical value
Copcp 5000 CNY
Copce 10000 CNY
Coprp 10000 CNY
Cep 0.8 CNY/kWh
Ct 20 CNY/h

Cchp 1 CNY/kWh
Clossp 0.5 CNY/kWh

m (service life of charging station) 20 years
Wqmax 0.5h

EV range 300km
EV battery capacity 20kWh

Maximum investment amount 20 million CNY
α 20m2

lS 5km
Copcb 250000 CNY

tr 7300h
Crs 2000 CNY/m2

Crh 1500 CNY/m2

Crw 800 CNY/m2

Cr0 50000 CNY/m2

r0 2%
P 5kW
N 100

Kmax 200
n 4

Maximum weight 1.5
Minimum weight 1.9
Learning factor c1 0.5
Learning factor c2 0.5
Solution accuracy 0.001

Mutation probability 3%
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Table 6 Number of charging stations and corresponding social costs (in 10000 CNY)

Charging 
stations No. Cop Cu Cp Cmin

7 874.7 736.7 90.5 1701.9
8 885.3 694.3 115.9 1695.5
9 911.4 582.1 167.6 1661.1
10 928.4 544.3 230.4 1703.1
11 963.5 510.4 269.3 1743.2
12 986.3 448.2 322.4 1756.9
13 1017.5 437.9 352.9 1808.3

6.2 Analysis of siting and sizing results

(1) Impact of charging station number on total social cost
By analyzing the impact of the number of charging stations on total societal cost, one can determine the minimal 

number of charging stations resulting in the lowest societal cost. The relationship between the number of charging 
stations and total societal cost is depicted in Figure 8, and the correlation between the number of charging stations and 
respective societal costs is demonstrated in Table 6.

When planning the number of charging stations, it is found that having fewer than 7 or more than 15 stations 
cannot meet the constraint conditions. As shown in the figure, when the number of planned, charging stations is set to 9, 
the minimum total social cost is achieved. It can be seen from the table that, with the increase in the number of charging 
stations, the cost to operators for charging facilities and maintenance increases, and the cost of power grid losses also 
goes up. However, at the same time, user costs decrease significantly due to reduced travel time to the stations and 
shorter queuing times. Therefore, the optimal number of charging stations that balances the costs for operators, the EV 
users’ charging costs, and the power grid loss is 9.
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Fig. 9. Comparison of PSO algorithm and IPSOA iterations

(2) Iteration comparison between PSO and IPSO
Figure 9 illustrates the iterative comparison between PSO and IPSOAs. Analysis of Figure 9 shows that the 

convergence speed of the immune particle swarm algorithm is significantly higher than that of the standard PSO. The 
PSO converges around the 149th generation with an optimal result of approximately 17.3 million Yuan, while the 
immune particle swarm algorithm converges around the 94th generation with an even lower social total cost of about 
16.7 million Yuan.

(3) The siting and sizing results under different schemes.
To verify the effectiveness of the simulation method, three schemes are proposed for comparison: Scheme 1: 

prioritizes the lowest operational costs for EV charging station operators, Scheme 2: prioritizes the lowest charging 
costs for EV users, and Scheme 3: comprehensively considers and minimizes the costs for EV charging stations 
operators, users’ charging costs, and power grid loss costs. The simulation results for these three schemes are shown in 
Table 7, while the costs are illustrated in Figure 10.
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Fig. 10. Cost comparison of three charging station site selection and capacity determination schemes

Table 7 Results of IPSOA for site selection and capacity determination of charging stations

Option No. Coordinates Functional zone Allocation
1 (11542360.781,4317111.715) PSA 21
2 (11540574.840,4316463.484) PSA 24
3 (11544596.514,4316714.839) PSA 26
4 (11542188.801,4315312.544) PSA 20
5 (11544173.180,4313328.165) WA 18
6 (11545932.663,4313883.791) WA 21
7 (11547162.978,4313711.812) PSA 23
8 (11542162.343,4318090.675) WA 17

O_1

9 (11548380.063,4314095.459) PSA 23
1 (11541950.676,4317892.237) R1A 27
2 (11541381.820,4316675.151) R1A 24
3 (11541831.613,4315722.649) R1A 24
4 (11542982.553,4314293.896) CD 26
5 (11544966.932,4316516.401) R1A 17
6 (11545416.724,4314704.001) PSA 25
7 (11547731.833,4315286.086) PSA 25
8 (11548049.334,4313897.021) R1A 23

O_2

9 (11546157.559,4314492.334) CD 14
1 (11541791.925,4316886.818) WA 18
2 (11541196.612,4315854.941) R1A 21
3 (11543207.449,4313844.104) R1A 20
4 (11544530.368,4313685.354) CD 25
5 (11543591.096,4315312.544) R1A 23
6 (11543352.970,4317072.027) CD 15
7 (11547586.312,4314042.542) PSA 28
8 (11546355.997,4314915.669) PSA 27

O_3

9 (11544781.723,4316053.379) WA 22

According to Table 7, Scheme 1 has charging stations primarily situated in public service areas and work areas, 
Scheme 2 locates more stations in residential areas, while the placement of charging stations in Scheme 3 does not show 
clear similarity in the functions of their respective areas. The primary reason for these differences lies in the distinct 
optimization objectives of each scheme. Scheme 1 prioritizes the lowest operational costs for EV charging station 
operators, which are mainly influenced by the acquisition cost of charging facilities, maintenance costs, and site leasing 
fees. Therefore, this scheme tends to choose locations in areas where rents are relatively low and has the fewest number 
of charging piles.

Furthermore, as known from Table 8, although Scheme 1 has the lowest operational costs for operators, it results in 
increased travel and queuing costs for users, making the user cost the highest among the three schemes. Scheme 2 gives 
priority to minimizing the charging costs for EV users, thereby tending to concentrate charging stations in densely 
populated residential areas to facilitate user convenience. However, this also leads to increased operational costs for 
operators. Scheme 3 comprehensively considers the lowest costs for EV charging station operators, users’ charging 
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costs, and power grid loss costs. Under this scheme, both the power grid loss and the total societal costs are the lowest. 
The locations for Scheme 3 are illustrated in Figure 11.

Boundary

Residential areas

Work area

Commercial area

Public service area

EV charging station
Service scope

0 0.8 1.6 2.4 3.20.4 km

Station1

Station2

Station3
Station4

Station5

Station6

Station7

Station8

Station9

Fig. 11. IPSOA for charging station site selection and capacity determination results

Table 8 Cost Comparison of Three Charging Station Site Selection and Capacity Determination Results (in 
10000 CNY)

Option Cop Cu Cp Cmin
1 837.9 821.6 186.3 1845.8
2 975.7 542.9 197.8 1716.4
3 911.4 582.1 167.6 1661.1

An analysis of Figure 11 indicates that Station 7 has the largest service area, encompassing many residential zones 
with concentrated charging demands, which explains why it has the highest number of charging piles. Stations 8, 4, and 
5 have a service range that includes a moderate amount of residential areas. Station 6’s service range encompasses 
numerous work, commercial, and public service areas, where the charging demand is more dispersed, which is why it 
has the fewest number of charging piles.

7 Conclusions

This paper proposes an urban EV charging station location and capacity optimization model that takes into account 
the comprehensive interests of “vehicle-station-network” Based on the simulation experiment of the algorithm example, 
the following conclusions can be drawn:

(1) The proposed IPSOA has good convergence properties and is particularly advantageous when solving multi-
objective functions.

(2) There is a nonlinear relationship between the number of charging stations and the total social cost. The lowest 
total social cost is achieved when the number of charging stations is set to 9.

(3) The proposed method takes into account the interests of charging station users, operators, and electric power 
networks. Compared with the other two siting schemes, it has reduced the operator cost and user cost, as well as the 
power grid loss cost. The power grid loss cost is reduced by 11.1% and 17.8%, respectively, and the total societal cost is 
reduced by 9.96% and 3.22%, respectively.

In this paper, an urban EV charging station location and capacity optimization model considering the 
comprehensive interests of “vehicle-station-network” is used to simulate the siting and sizing of charging stations 
within the study area. The proposed algorithm conforms to the actual situation and has certain reference value. However, 
with the rapid development of 5G communication, the coalescence of multi-source information within the urban smart 
transportation system will become more intricate. This will also provide a more diverse data source for the siting and 
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sizing of EV charging stations. Exploring the interactive relationships among these factors and proposing more efficient 
siting methods will be a hot topic for future research.
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