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Abstract

Compressors of modern turbofan engines are often sensitive to ice crystal accretion
which can occur if aircraft fly through cloud regions associated with storm complexes.
Such flight paths are occasionally necessary, and if ice accretion within the compressor
does occur, the ensuing engine performance degradation can range from a mild reduc-
tion of efficiency through to a complete loss of power. Many parameters influence the
initiation and rate of ice accretion but the physical processes and parameters governing
the sensitivity of compressor surfaces to ice accretion are not fully understood. To
develop reliable engineering models that can be used to aid the design and operation
of compressors under icing conditions, further experimental data is needed. Existing
icing wind tunnels around the world are very capable, but the operating costs for these
wind tunnels are typically very high. The objective of this work is to establish a new
icing wind tunnel that has modest operating costs and yet can also facilitate hardware
testing, instrumentation development, and fundamental studies of ice crystal icing at

compressor-relevant flow conditions.

A wind tunnel arrangement was proposed involving water droplet freeze-out using liquid
nitrogen evaporation followed by natural particle melting through dilution with warm
air. The viability of the arrangement was demonstrated theoretically using a conserva-
tion of energy analysis. Thermodynamic performance of the facility is dictated largely
by the availability of the liquid nitrogen and the proposed operating concept specified
using a maximum of 20 litre of liquid nitrogen per run in the facility within 2 minutes
to achieve the target operating conditions for the facility: flow speed around 50 m/s,
temperatures around 0°C, and total water content up to 10g/m?® with melting ratio

up to 0.2.

The hardware developed for the facility includes an icing jet generator with nozzle



ii

exit diameter of 170 mm, and an open circuit wind tunnel. Ice particles are generated
by injecting water from atomiser nozzles into a mixture of recently-evaporated liquid
nitrogen and air which provides a low-temperature medium for the freezing process. A
liquid nitrogen receiver and valve system was designed to supply the liquid nitrogen
into the evaporator at a metered and controllable rate. The suspended ice particle
mixture is then delivered to a diffuser with perforated walls through which further air
is injected for the purpose of raising the temperature of the mixture, and generating
some natural melting of the ice particles. The icing jet nozzle contraction, which is
attached to the downstream end of the diffuser chamber increased the flow velocity and

decreased the non-uniformity of the flow velocity at the exit of the jet.

The performance targets for the facility have mostly been achieved, and this has been
confirmed through experimentation with individual components and with the facil-
ity working as a combined unit. Experimental results have demonstrated a generally
favourable agreement with the energy equation analysis, and with results from Compu-
tational Fluid Dynamics (CFD) simulations. The probe traversing system developed
for the icing jet nozzle exit flow enabled quantification of the velocity uniformity at the
exit of the icing jet generator. Within a core flow diameter of 140 mm, the flow speed
was 28.1 £ 1.1 m/s. This speed is somewhat lower than the target figure of 50 m/s, but
it is expected that this can be readily rectified through installation of a higher power
blower. The jet exit temperature uniformity was also reasonable: over the same jet core
flow region at one particular operating condition, the temperature was —9.1 £1.9°C.
However, results from the isokinetic total water content probe developed for this work

indicate that improvements in the uniformity of the water distribution are needed.

Initial experiments with a 12.7 mm diameter cylindrical test article have demonstrated
some ice accretion at glaciated conditions, and more significant accretion was registered
with a non-zero melting ratio operating condition. However, additional improvements
are needed in the facility and in the instrumentation used to quantify the facility per-
formance. The introduction of humidity control, melting ratio control, temperature
control, and more extensive instrumentation having a faster-response time is achiev-
able in the near term and is expected to have significant impact on the quality of data

derived from the new icing wind tunnel in the near future.
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Chapter 1

Introduction

1.1 Motivation

Pilots of commercial airliners and transport aircraft are normally directed not to fly
through the most intense region of thunderstorms. But occasionally flights through
cloud regions associated with storm complexes are necessary, and can result in solid

phase ice accretion in the compressors of the jet engines.

Clouds associated with storm complexes can contain sufficient concentrations of ice
particles to cause a blockage effect in the turbofan compressor in a very short period
of time. Such blockages can cause a gradual loss of engine power, engine surge, stall,
roll back (loss of engine control), a sudden flameout, or severe damage to the engine if
the accumulated ice is shed as a mass and ingested by the combustion chamber (Mason
et al., 2006). Therefore, ice accretion on aircraft engine components is a significant
hazard for modern aviation because of the increasing demand for flights in the vicinity

of storm complexes and because of the potential for loss of life.

In the more general case of ice accretion on aircraft components, temperatures at /or
below freezing are generally required and the severity of the accretion depends on several
specific factors such as: air speed, droplet size, Liquid Water Content (LWC), ambient

temperature, the geometry of the surface, droplet collection efficiency and cloud extent
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(Gent et al., 2000; Paraschivoiu and Saeed, 2004; Politovich, 2000).

For aircraft flying in very cold weather (—40 to —10°C) at high altitude and moderate
speed, and in air with low liquid water content (0.05 g/m?), supercooled droplets rapidly
freeze when they impinge on the surface of aircraft components and the accreted ice can
form rapidly in an almost dry growth process because the latent heat of fusion released
from droplets is not sufficient to generate large volumes of liquid water on the surface
(Politovich, 2000). This form of accretion is the ‘rime’ type of ice accretion (Gent
et al., 2000; Mingione et al., 1997), and as shown in Figure 1.1, rime ice has a milky
white, opaque appearance because the rapid freezing leads to trapped air between the
droplets. The profile of rime accretion can sometimes take on a pointed or spearhead

shape (Gent et al., 2000).

If the aircraft is flying in warmer temperatures (—18 to 0°C), with high speed in a
cloud with high liquid water content (1g/m3) and large droplet sizes, a wet growth
process occurs because there is insufficient frozen phase and temperature margin below
0°C to fully absorb the heat of fusion. Thus the freezing process does not happen
immediately when the droplets impinge the aircraft surfaces, but water droplets run
back (flowing on the aircraft surface) until freezing at the surface occurs and forms the
‘glaze’ ice accretion. Glaze icing tends to be hard and translucent in appearance (Gent
et al., 2000), and the glaze accretion can form the profile of two ice horns in the case
of accretion on an aircraft wing (Gent et al., 2000), as illustrated in Figure 1.1. Rime
ice typically has a freezing fraction (the fraction of impinging water that freezes on
impact) higher than that of glaze ice, it may approach to 1.0. Also, rime ice tends to

adhere to surfaces more strongly glaze ice even though the rime ice density is lower.

In the case of engine icing which occurs within clouds primarily containing only solid
phase particles (ice crystal icing), another important factor is the melting ratio (Struk
et al., 2012) which is the ratio of LWC to Total Water Content (TWC). Partial melting
of the particles occurs when the particles enter the compressor. Struk et al. (2012)
demonstrated that for aircraft engine icing, the amount of ice accretion will vary with
the melting ratio as illustrated in Figure 1.2. The optimum regime for ice crystal ice
accretion will occur between two limits: the upper limit occurs for conditions where

there is insufficient Ice Water Content (IWC) to cool the surface to the freezing point
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(a)

Figure 1.1: Types of aircraft ice accretion: (a) Rime ice accretion (Shields, 2011); and (b)

Glaze ice accretion (Aircraft Icing. Safety Advisor 2002).
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Figure 1.2: Conceptual curve showing optimal ice-crystal icing conditions (Struk et al.,

2012).

because there is too much liquid, and the lower limit where there is insufficient LWC to
adhere the impacting ice to the surface and to allow the heat transfer from the warm

surface to happen because there is too little liquid.

Ice accretion on both the external surfaces of an aircraft (Figure 1.1) and within the
engine flow path (Figure 1.3) represents a significant hazard for flight. For the case
of the icing on external surfaces, the hazard arises from aerodynamic performance
degradation: the icing leads to changes in roughness and shape of the aircraft surfaces
resulting in reduced lift force, increased drag force, and decreased stall angle of attack
(Balakrishna and Ketha, 2014). For the case of aircraft engine icing, similar degradation
of aerodynamic performance of the engine can occur resulting in blockage of the flow
path and significant or total loss of engine power. From a certain perspective, turbofan
engines can be viewed being more sensitive to ice accretion than the external aircraft
surfaces such as wings (Dong et al., 2015) because of the axial temperature gradient:
at some point along the engine flow path, the optimum melting ratio will be achieved

if fully glaciated conditions are initially present in the cloud.

Many flow variables can potentially play an important role in the ice crystal icing
process including: flow speed, pressure, temperature, humidity, melting ratio, total
water content, particle size distribution, and ice particle morphology. Surface variables
such as surface shape, roughness, wetting, temperature and other thermal properties
can also impact the sensitivity of a particular configuration to ice crystal icing. While
significant progress towards understanding the ice crystal icing process has been made

over the last decade, reliable and broadly-applicable engineering models that can be
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Figure 1.3: Ice accretion on compressor surfaces tested in the NASA PSL facility (Tsao,

2019).

used to accurately simulate ice crystal icing sensitivity of turbofan compressors are yet

to be established. Additional experimental data is needed.

There already exist several icing wind tunnels around the world which can physically
simulate elements of the relevant flow and surface conditions needed to investigate
the ice crystal icing problem. However, the charge-out rates for experiments in these
facilities are typically very high, making the development of a broad database for engi-
neering model development unlikely. Furthermore, new instrumentation to probe the
complex interacting physical processes could provide valuable insight for the analysis of
the problem, but such instruments could only make contributions once their reliability
has been firmly established. Applying the highly sophisticated well-established icing

wind tunnels to the task of instrument development is difficult to justify.

1.2 Aim

If an ice crystal icing wind tunnel facility were available with moderate operating costs,
it could be used for: (1) investigation of fundamental problems in ice cryctal icing;
(2) instrumentation development activities; and (3) the testing of new physical models
prior to deployment in other icing wind tunnel facilities. The aim of this research
has been to investigate the feasibility of developing such a facility at the University of
Southern Queensland, and if possible, to develop a suitable wind tunnel concept into a

viable, operating facility.
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1.3 Objectives

The objectives of the present work have been:

1. Assess the viability of potential icing wind tunnel concepts within the University
of Southern Queensland context through application of conservation of energy

analyses.

2. Design and develop new and/or modified hardware and instrumentation suitable
for the new icing wind tunnel facility through application of engineering analysis

and computational simulation where appropriate.

3. Demonstrate the success or otherwise of the new hardware through facility per-
formance measurements with data assessed against required performance spec-
ifications. Iterate through the design and assessment process until success is

demonstrated.

4. Perform experiments on a test article to further assess the facility performance.

1.4 Thesis outline

Chapter 2 Literature Review

This chapter provides the reader an overview of the cloud conditions associated
with the ice crystal icing problem, aircraft engine icing conditions, relevant icing
experimental work and a general description of the capabilities and features of

several significant icing wind tunnels around the globe.
Chapter 3 Concept Development
This chapter explores the viability of a new wind tunnel concept for the University
of Southern Queensland using a steady flow conservation of energy analysis.
Chapter 4 Facility Design and Arrangement

Hardware designed and developed for the new facility is described and operational

characteristics of the individual components are presented.
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Chapter 5 Performance of Facility.

The performance of the facility as an integrated unit is presented and discussed
for different operating conditions with reference to the energy equation analysis

presented in Chapter 3.

Chapter 6 Computational Fluid Dynamics Simulations.

Computational fluid dynamics simulations of the wind tunnel, icing generator and
combination of new icing bell mouth with wind tunnel are discussed and assessed

within the context of the measured performance of the facility.
Chapter 7 Preliminary Testing.
Initial experiments have been performed on a cylindrical test article with an inter-
nal heating element. Results from these experiments are presented and discussed.
Chapter 8 Conclusion.

The work is drawn to a conclusion through the presentation of summaries of
motivations and outcomes from the work, plus suggestions for future development

activities.



Chapter 2

Literature Review

2.1 Introduction

An overview of the ice crystal icing which can compromise the performance of the
turbofan compressors has been introduced in Chapter 1. The present chapter presents
the conditions associated with ice crystal icing, a description of the ice crystal icing
process identified through experimental work, and several major icing wind tunnel

facilities from around the world.

Figure 2.1 illustrates the components in a turbofan engine which are exposed to ice
accretion problems. An extensive range of previous studies have indicated that the
engine inlet, spinner, fan and first stages of the core are sensitive to supercooled liquid
accretion; the stators within the low pressure compressor and the inter-compressor duct

are more likely to be expose to ice crystal accretion problems (Mason et al., 2006).

2.2 Engine icing conditions

Since the 1990s, according to a Boeing database (Bravin et al., 2015), a large number of
jet engines have experienced engine power losses during aircraft flight in certain types

of clouds, especially the anvil region of thunderstorms which exist at high altitudes.
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Figure 2.1: Schematic diagram of a typical turbofan engine illustrating the sites of potential

ice accretion (Mason et al., 2006).

Most commercial and commuter aircraft travel at altitudes higher than 7km above sea
level. The ambient temperature at such altitudes can reach values less than —40°C,
making the existence of supercooled water droplets unlikely. In the anvil region of
thunderstorms, concentration of ice particles may reach up to 3g/m? in the more
intense anvil region (Lawson et al., 1998). The ingestion of the high concentration
of those ice particles into a turbofan engine may cause a thrust loss incident (Lawson

et al., 1998).

At temperatures less than —40 °C, water particles in the atmosphere are in a solid phase
and exist as ice particles, graupel, and hail. It was thought that flying within clouds
containing small ice particles was safe because the ice particles seem to ‘bounced off’
wings and other structures of the aircraft without observed accretion. Nevertheless,
accretion can occur inside the jet engine compressor stages because the elevated air
and surface temperatures causes partial melting of the particles so the potential for
particle adhesion to surfaces is greatly increased. Such accretion can cause engine
power loss and in certain cases, when a high mass of ice is ingested and the accreted
mass is suddenly released from the compressor and enters to the combustion chamber,

an engine flame out and permanent damage can occur (Mason et al., 2006).
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A catalogue of 100 engine icing events at different sites across the globe was analysed
by Grzych and Mason (2010) to understand the conditions which are leading to en-
gine power loss. Within this catalogue of incidents, 12 different types of engine were
involved. The majority of the events have been recorded in northern Australia, Indone-
sia and South-east Asia. The analysis of meteorological data indicated these events have
occurred at altitudes from 2.7km up to 12.5km, and all occurred in the anvil region
clouds. It was found that 50% of the events occurred at an ambient temperature
around —29°C, and 26 % of them happened at less than —40°C. It was concluded
that the Ice Water Content (IWC), the ice crystal size and morphology are important
parameters in engine icing, and additional effort should be put towards characterization

of the atmospheric conditions relevant to these events (Grzych and Mason, 2010).

A consortium consisting of 37 partners representing 14 European countries and their
aeronautical industries collaborated to study High Altitude Ice Crystals (HAIC). The
main goal of the HAIC project is to characterise the atmospheric icing conditions which
may help in developing and designing icing detection technologies (Dezitter et al., 2013).
The statistical properties of 14 years of Tropical Rainfall Measuring Mission data have
been documented, and three bands of conditions have been defined. In the first, at
altitudes about 10km, which is the usual flight altitude for commercial jet aircraft,
the representative temperature is —50 £ 3°C and all water particle content will be
fully frozen because of homogeneous nucleation and the smallest ice particles can exist
(20 to 40 um). The second band is at the mid-altitude around 10km in which the
representative temperature is —30 £ 3 °C, and here intermediate sized particles may be
present (50 to 200 um). The low flight level is the last one at around 7 km, where the
ambient temperature is around —10 + 3°C and supercooled mixed-phase droplets can

be found (Protat et al., 2014; Lawson et al., 1998).
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2.3 Ice crystal icing experimental work

2.3.1 Humidity

Experiments have been performed by Struk et al. (2012) to investigate the physical
mechanism of ice accretion on representative engine surfaces that are susceptible to
glaciated and mixed phase conditions. A single wedge aerofoil was mounted inside a
cascade rig facility (Section 2.4.5) that has the ability to create suitable ice-crystal and
mixed-phase conditions with a variety of simulated altitudes. The experiments have
been performed at Mach numbers ranging from 0.2 to 0.3, total temperatures from 5
to 15°C, total pressure of 45 and 93 kPa, and LWC and IWC up to 3 and 20g/m?,
respectively. It was observed that there was a strong adhesion between the ice and
the surface for the 45 kPa case, and the thickness of ice formation on the leading edge
reached 15 mm in only three minutes. However, there were minimal deposits observed
in the highest pressure case (93 kPa): the ice accretion was usually limited over a small
area in the vicinity of the stagnation line on the leading edge. The results indicated that
the ice accretion behaviour was linked to the wet bulb temperature in both pressure
cases, which was below the freezing temperature in all tests at the low pressure and

above freezing temperature in all tests at the high pressure case.

To investigate the sensitivity of the ice accretion to wet bulb temperature (dependent
on humidity, total temperature, and total pressure), Currie et al. (2012) extended the
earlier work of Struk et al. (2012). The experiments were conducted on the same aerofoil
used by Struk et al. (2012) and the wet bulb temperature was controlled between —2°C
and +2 °C by controlling the total pressure, temperature, and Relative Humidity (RH).
The results of this study have confirmed the effect of wet bulb temperature on the
accretion. To obtain strongly adhered ice accretion, T, < 0°C is required at least
on the un-cooled surface. It was also noticed that the ice accumulation on the aerofoil
surface appeared weakly adhered, slushy, and regularly shed at T,,;, > 0°C. However,
for Ty < 0°C, the ice formation looked like strongly adhered glaze ice, and clear or
semitransparent. A large amount of ice accumulation was detected at high IWC in the

case of T, > 0°C.
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2.3.2 Melting ratio (LWC/TWC)

Currie et al. (2013) conducted an experimental study to investigate the significance of
the LWC/TWC ratio on ice accretion. A small wind tunnel, the RATFac wind tunnel
(Section 2.4.5) was used to perform the experiments on a test article comprised of a
nose attached to a conical body. The melting ratio (LWC/TWC) was controlled (up to
25%) at constant TWC and at two different absolute pressures of 34.5 kPa and 69 kPa.
It was concluded that the ice accretion size and ice growth rate were very sensitive to
the melting ratio and both the size and growth rate increase when the melting ratio
increased from 6 to 12 %. However, the ice accretion size and ice growth rate decreased
with increasing melting ratio for the higher melting ratios, between 20 and 25 %. The
results have also indicated that the TWC plays an important role in accretion growth.
For any melting ratio, the largest accretions were observed when the authors used small

particles (up to 45 um).

Currie et al. (2014) developed a particle sticking efficiency correlation and Currie and
Fuleki (2016) subsequently published and a new sticking efficiency correlation based
on additional experiments with much smaller particles (28 um MVD), similar in size
to those expected in compressors. These particles were produced with a grinder and
natural melting of the particles in warm air was used to generate a range of liquid
water fractions. The results of this study showed that large ice accretion was obtained
at Mach numbers up to 0.65 and the largest accretion was generated for melting ratios
between 10 and 17%. The sticking efficiency correlation published by Bucknell et
al. (2018a) was similar to those previously published, but was not limited to a single

particle size distribution.

An experimental study by Struk et al. (2015) has been conducted on two different
models — a NACA0012 aerofoil, and a wedge model — at flow speeds of 85 and 135m/s
in the RATAFac wind tunnel (described in Section 2.4.5). Measurements focused on
ice accretion shape and the influence of the surface temperature. A thin heater was
attached to edges of the NACAO0012 airfoil to improve the view of the central portion
of the model while a cooling mixture blowing across the wedge was used to reduce the

surface temperature below the freezing point in some experiments. In other experiments
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the cooling was not used, resulting in nominally adiabatic icing surface. Thermocouples
were embedded on both models. The wet bulb temperature was adjusted by varying
the total air temperature, total pressure and humidity in the test flow. The NACA0012
experiments were performed using only injected ice particles which naturally melted
in the warm airflow with no additional liquid water injected. It was found that at the
higher flow speed of 135m/s, for the icing to start, a melting ratio larger than 7% was
required. The rate of ice accretion initially increased with melting ratio (at 85 m/s), but
then decreased with a peak growth rate (~ 0.018 mm/s) somewhere between melting
ratios of 6 % and 12 %. At the higher flow speed, no ice accretion was observed at 7 %,
but at a melting ratio of 14 %, an ice growth rate of ~ 0.0069 mm/s was measured.
This study concluded that with active surface cooling, ice accretion without shedding

occurred and the growth rate increased with melting ratio (Struk et al., 2015).

To estimate the sticking efficiency of the ice and water to the surface, Bucknell et al.
(2018a) conducted an experimental study on an axisymmetric conical test article in the
RATFac tunnel (Section 2.4.5). Three interchangeable cone faces with half angles of
20°, 35°, and 45° were used. The study was performed with Mach numbers between
0.25 and 0.5, wet bulb temperature from —6.5 to 4+5.5°C, and TWC up to 12 g/m?>. The
results showed the particle melting ratio played an important role in the net sticking
efficiency for fixed Mach number and particle size distribution. The maximum sticking
efficiency occurred for melting ratios between 9 and 13 %. The results also indicated
that increasing Mach number increased the erosion effect at a fixed melting ratio. With
increasing angle cone, the net sticking efficiency increased and the maximum sticking

efficiency values are expected at the cone tip.

2.3.3 Particle sizes and distribution

An experimental study by Knezevici et al. (2012) was conducted to investigate the
effects of ice particle size on the ice accretion on an inter-compressor duct bleed slot.
The results showed that under mixed phase conditions, the amount of ice accretion is
affected significantly by the ice crystal particle size. It was also shown that smaller ice
particles are more affected by the natural melting than the larger particles, whereas

the larger ice particles have more ability to remove ice accretion and cause erosion
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effects (Knezevici et al., 2012). In Knezevici et al. (2013), the ice particle melting and
particle size distribution were also shown to affect the accretion. The amount of ice
accretion is highly sensitive to particle size distribution for wet bulb temperatures above
and below freezing for the same LWC, and the same melting ratio. The ice formation
rate on the leading edge was found to be lower than theoretical ice formation rate by
factors between 0.11 and 0.25. In this case the theoretical growth rate was computed by
assuming all of the ice and water flux at the stagnation point adheres. The difference
between the observed and the theoretical results was attributed to mechanisms such as

particle bounce, erosion, and splashing.

Struk et al. (2018) showed that for the case of small particle size clouds (28 ym) and
a Mach number of 0.4, the ice accumulation rate increased and then decreased with
increasing melting ratio. In contrast, for the case of large particle size clouds (50 pm)
and at the same Mach number of 0.4, no ice accretion was observed due to the smaller
melting ratios achieved compared with the lower Mach case 0.25. The Particle Size
Distribution (PSD) also impacts the net sticking efficiency and the highest efficiency
value was observed when D,50 = 34 um, while sticking efficiency was less than 2%
when D,50 = 50 um. The net sticking efficiency decreases by at least 60% in case of

40 pm compared with 34 pm particles (Bucknell et al., 2018a).

Bucknell et al. (2018b) analysed the thermodynamic and mechanical process of ice
crystals impacting a warm surface for the purpose of defining heat transfer enhance-
ment under different convective and icing conditions (Mach number, angle of attack,
dynamic pressure, TWC, and particle diameter). The results showed that increasing
both TWC and particle diameter cause an increase of heat transfer enhancement. Also,
having a Stokes number larger than unity was identified as important for a high rate
of impingement and heat transfer enhancement. Adding an empirical fragmentation
factor () to the analysis showed that increasing impact time might be another factor
affecting the heat transfer. The results also showed that the heat transfer enhancement
was independent of Reynolds and Mach number for particles were ballistic fragmenta-

tion was expected.

Hauk et al. (2015) performed an experimental and theoretical study of ice crystal impact

onto a dry solid wall. The diameter of the spherical particles ranged from approximately
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260 to 3500 um. The ambient temperature, ice particle temperature and target temper-
ature were between —10°C and —20°C. The experiment classified four main sorts of
fragmentation: no fragmentation, minor, major and catastrophic fragmentation. The
study showed that the transition from minor to major/catastrophic fragmentation typ-
ically occurred around 4.6 m/s. The study also indicated that particle splitting is

possibly the main mechanism producing major and catastrophic fragmentation.

2.3.4 Flow speed effect

The flow speed plays an important role in two respects. (1) The rate of ice particle
interception by the body depends on the speed of the body within the cloud, the col-
lection efficiency of the body, and the concentration of ice particles in the cloud. At
higher flow speeds, particle momentum will increase making impact with the surface
near the stagnation point more likely, leading to more particles impacting on the body.
As a result, the ice accretion growth has potential to be greater than at lower speed.
However at higher speeds, particle bounce and/or fracture may also become more sig-
nificant and can increase the erosion effect (Bucknell et al., 2018a). (2) Convection and
evaporation are stronger at high flow speeds so the re-freezing of any liquid present on
the surface is likely to be enhanced by flow speed. The heat and mass transfer is essen-
tially governed by speed, geometry, roughness of the surface, and the temperature and
humidity difference between the surface and local air (Gent et al., 2000; Paraschivoiu

and Saeed, 2004).

The experiments of Saleh (2013) at the low speed of approximately 10m/s revealed
that there is ice accretion at sub-zero temperatures for glaciated ice conditions in the
vicinity of the stagnation point on the surface of the test article. This result is very
different to other observations such as those by Mason, Chow and Fuleki (2011), and
Al-Khalil (2003). Mason et al. (2011) used an ice jet with an exit velocity of 90m/s
to produce glaciated conditions at temperatures from —15 to —10°C. No ice accretion
was observed on an aerofoil at sub-zero temperatures, but accretion did occur at warm
surface temperatures. Al-Khalil (2003) also conducted experiments with a flow speed
of 120 mph (53.6 m/s) within glaciated and mixed phase conditions. In the case of an

unheated surface in glaciated conditions, just a thin layer of frost was observed on the
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surface with no additional ice deposition (Al-Khalil, 2003). The flow speed used in the
work of Saleh (2013) differs from that of Al-Khalil (2003) and Mason et al. (2011) by

more than a factor of 5.

2.3.5 Summary of ice crystal accretion

Ice accretion inside the compressors of aircraft engines flying at conditions where the
external air temperature is low (around —40°C or less) is attributed to ice particles

because at these conditions, supercooled droplets will be absent.

When ice particles impinge on the external surface of the aircraft at freezing tem-
peratures, the particles are likely to bounce off and leave the aircraft body without
ice accretion. However, when the ice particles are ingested into the turbofan engine
compressor, the temperature of the air flow within the compressor increases above the
freezing point and at these conditions, a fraction of the ice crystals particles will melt
due to elevated air and surface temperatures within the compressor stages. The liquid
component of the ingested cloud of particles which has been created through melting
can entrap crystals on the compressor surfaces. Under certain conditions, the partially
melted particles on the surface can re-freeze and the ice accretion process can continue

with additional layers building up.

Accretion can cause engine surges and roll back and if shedding of the bodies of ice
also occurs, flame-outs are possible and permanent engine damage may also be sus-
tained. The literature review identified that many parameters and effects may play an
important role in ice accretion. These include the shape of the surface, its roughness,
wetting, temperature and other thermal characteristics, and flow parameters such as
speed, pressure, temperature, relative humidity, wet bulb temperature, melting ratio,
total water content, particle size distribution, ice particle morphology, sticking effi-

ciency, and erosion.
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2.4 Icing wind tunnels

2.4.1 Overview

Icing wind tunnels have been used extensively, and they have similar shapes and char-
acteristics to traditional wind tunnels except the icing wind tunnels necessarily contain
refrigeration and spray and ice generation systems. First, the refrigeration system is
required to reduce the temperature of air flow below the freezing temperature of water.
Second, the spray and ice generation system is responsible for producing and injecting
the small water droplets and ice particles into the airflow stream to simulate the cloud

conditions.

Major icing wind tunnels can be found over the world and they are typically owned by
research centres and companies such as NASA (Ide and Sheldon, 2008), the Canadian
National Research Council (Currie et al., 2013), the Boeing Company (Chintamani,
Delcarpio and Langmeyer, 1997), Cox and Co. (AI-Khalil and Salamon, 1998), and
Centro Italiano Ricerche Aerospaziali (Bellucci, 2007). In these existing icing wind
tunnels, a wide range for different parameters such as liquid water content, water
droplet diameters and flow temperatures can be generated. However, the operating
cost of these major facilities is very high. For example, the operating cost of the
NASA-IRT wind tunnel is around 34,000 USD/day and the scheduling is required at

least nine months in advance (Rios Pabon, 2012).

2.4.2 The Icing Research Tunnel (IRT)

The IRT tunnel is located at Cleveland, Ohio and is reported as the longest test du-
ration, and the second largest icing tunnel in the world according to the NASA-IRT
website. The facility first started operating in 1944, and research and development
work relating to different icing problems has been conducted from that time until now.
This tunnel has a good ability to replicate in-flight icing conditions representative of the
actual conditions experienced by aircraft engines and external aircraft surfaces. Exper-

iments conducted in IRT target various aspects including icing simulation validation,
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Table 2.1: NASA-IRT wind tunnel specification (https://wwwl.grc.nasa.gov).

Type Closed-loop wind tunnel

Test section specification | 1.83 m heigh x 2.74m wide x 6.1m long
Air speed 25.7-167.2m/s

LWC 0.15 - 4g/m?

Temperature -30°C

Icing cloud 1.37m x 1.83m

Water droplet diameter | 15 - 275 pum

Refrigeration capacity 7385 kW

Test cost

34,000 USD/ day (Rios Pabon, 2012)

the mitigation of icing, and the research and development of aircraft ice protection

systems. IRT is a closed loop, atmospheric icing wind tunnel with a refrigeration ca-

pacity of 7385 kW. This facility also has the capability to produce both supercooled

droplet and icing cloud condition by using water spray bars. Because this facility has a

long test section (6.1 m), it can accommodate a variety of full-scale components. The

test section also contains a 2.62m diameter turntable to rotate the test component

through angles of + 20°.

Table 2.1 presents more details and operation conditions for

this facility, and Figure 2.2 provides a schematic diagram of NASA-IRT wind tunnel.
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Figure 2.2: Plan view of the NASA-Glenn Icing Research Tunnel (Steen et al., 2015).
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2.4.3 The Cox LIRL tunnel

The Cox LeClerc Icing Research Laboratory (LIRL) tunnel is also a closed loop icing
tunnel, but it is smaller than the NASA-IRT. Figure 2.3 illustrates this facility which
is located in New York. It was designed to support the development and certification
process of Cox and Company’s components and products. The facility has two test
sections: the smaller size (0.71 x 1.17x 2m) for higher air speeds of 89.4m/s and
the larger size (1.22 x 1.22x 1.52m) for lower air speeds of 53.64m/s. The facility
is provided with an air scavenging system to simulate engine inlets. This facility has
the ability to generate both supercooled water cloud, and ice particle (glaciated) cloud
conditions. Liquid clouds are produced by 6 horizontal spray bars while the glaciated
cloud conditions are created by either a snow gun or an ice shaver system. The facility’s
refrigeration system has a cooling capacity of 281 kW at —30°C. Table 2.2 presents
details and conditions of LIRL tunnel (Al-Khalil and Salamon, 1998).
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Figure 2.3: Cox Icing Research Laboratory Wind Tunnel (Al-Khalil, Salamon and Tenison
1998).
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Table 2.2: LIRL wind tunnel specifications (Al-Khalil and Salamon, 1998).

Type Closed-loop wind tunnel
Test section 1 1.17m heigh x 0.71m wide X 2m long
Turntable for dynamic angle of attack variations
Test section 2 1.22m heigh x 1.22m wide x 1.52m long
Air speed Test section 1 ~ 89.4m/s
Test section 2 ~ 53.64m/s
LWC 0.25 - 3.0g/m?
Temperature —-30°C
Water droplet diameter | 13 - 50 um
Ice particle size (MVD) | 150 - 200 pm
Refrigeration capacity | 281 kW at —30°C
Test cost 9,000 USD/ day (Rios Pabon, 2012)

2.4.4 Altitude Icing Wind Tunnel (AITWT)

This facility has been operated since 1930 by the National Research Council, Canada
(NRC). It is also a closed loop wind tunnel. It has a square test section of 570 mm
and 610 mm long. The air speed in the test section can be increased by inserting a
throat to change the test section of cross sectional dimensions. The air flow is cooled
by a refrigeration system with a total cooling capacity of 420kW at —13°C. The
supercooled water droplets are generated by spray bars and recently, liquid nitrogen

has been used in this facility to freeze water droplets which are generated by atomizer
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ﬁ
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Figure 2.4: Schematic of the Altitude Icing Wind Tunnel (AIWT-NRC) (Clark et al., 2018).
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Table 2.3: AIWT-NRC tunnel specifications (www.nrc-cnrc.ge.ca).

Type Closed-loop wind tunnel
Test section and Insert | Test 0.57m heigh x 0.57m wide x 1.83m long
Insert 0.33 m heigh x 0.52m wide x 0.60 m long

Air speed Test section 5 - 100m/s (Mach 0.015- 0.29)
With insert 8 - 180m/s (Mach 0.025- 0.53)
Altitude Up to 12.2km
LWC 0.1-2.5g/m?
With reducer 0.1 to 3.5g/m3
Temperature +35 to —40°C

Water droplet diameter | 8 - 200 pm
Refrigeration capacity | 420kW at —13°C

nozzles (Bucknell et al., 2017). Figure 2.4 illustrates the schematic of AIWT facility
and Table 2.3 present the condition and details according to National Research Council

Canada website (www.nrc-cnre.ge.ca).

2.4.5 Research Altitude Test Facility (RATFac)

This facility consists of a cold side and a hot side separated by a partition. The icing
wind tunnel is placed in the hot side and an ice grinder and injection duct are located
in cold side as shown in Figure 2.5. The grinder can be arranged to generate a variety
of particle sizes. The temperature of the cold flow of air delivered from the injection
duct can be around —15°C with a —50°C dew point. Warm air is also drawn into the
test section from the chamber through a bell mouth. The air introduced into the test
section of the chamber is drawn from ambient conditions on the roof of the building
when warm test temperatures are required, and the working air can also be supplied
from the refrigeration system which can provide a cold flow with dew point of —50°C.
The air entering the test section passes a humidity regulation system so the moisture
content can be controlled. This means the wet bulb temperature can be adjusted at a
given pressure by varying both the temperature and relative humidity. Arrays of spray
nozzles can be used to increase the LWC when required. Table 2.4 introduces more

details about this facility.
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Figure 2.5: RATFac altitude chamber with icing tunnel (ca