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Abstract 

 

Orthophotos (or orthoimages if in digital form) have long been recognised as a 

supplement or alternative to standard maps. The increasing applications of 

orthoimages require efforts to ensure the accuracy of produced orthoimages. As 

digital photogrammetry technology has reached a stage of relative maturity and 

stability, the availability of high quality ground control points (GCPs) and digital 

elevation models (DEMs) becomes the central issue for successfully implementing an 

image orthorectification project. Concerns with the impacts of the quality of GCPs 

and DEMs on the quality of orthoimages inspire researchers to look for more reliable 

approaches to acquire high quality GCPs and DEMs for orthorectification. Light 

Detection and Ranging (LiDAR), an emerging technology, offers capability of 

capturing high density three dimensional points and generating high accuracy DEMs 

in a fast and cost-effective way. Nowadays, highly developed computer technologies 

enable rapid processing of huge volumes of LiDAR data. This leads to a great 

potential to use LiDAR data to get high quality GCPs and DEMs to improve the 

accuracy of orthoimages. This paper presents methods for utilizing LiDAR intensity 

images to collect high accuracy ground coordinates of GCPs and for utilizing LiDAR 

data to generate a high quality DEM for digital photogrammetry and orthorectification 

processes. A comparative analysis is also presented to assess the performance of 

proposed methods. The results demonstrated the feasibility of using LiDAR intensity 

image-based GCPs and the LiDAR-derived DEM to produce high quality orthoimages. 
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1. Introduction 

 

Advances in computer hardware and software as well as newly emerging technologies, 

such as sophisticated remote sensing technology and Light Detection and Ranging 

(LiDAR) systems, have promoted the significant development of traditional spatial 

mapping procedures. One of the examples is the application of high quality digital 

orthophotography as a major data source to maintain and update standard maps. 

Orthophotos, also known as orthoimages if in digital form, are computer-generated 

images of aerial photographs in which displacements caused by camera or sensor tilts 

and terrain relief have been removed. As digital orthoimages contains more semantic 

and visible information than traditional maps, they have great potential of extracting 

more accurate spatial information for fast updating maps or Geographical Information 

System (GIS) database. 

 

Quality is essential when using orthoimages in various applications. Errors that affect 

the quality of orthoimages come from each step of the orthorectification processing. 

Li et al analysed the main factors that affect digital orthoimage accuracy, including 

aerial photograph scanning, interior orientation, exterior orientation, and differential 

rectification [32]. As digital photogrammetry technology has reached a stage of 

relative maturity and stability, the availability of high quality ground control points 

(GCPs) and digital elevation models (DEMs) becomes the central issue for 

successfully implementing an image orthorectification project [4], [49]. Concerns 

with the impacts of the quality of GCPs and DEMs on the quality of orthoimages 

inspire researchers to look for more reliable approaches to acquire high quality GCPs 

and DEMs for orthorectification. 
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Traditionally, the ground control points are obtained either from field survey 

(including GPS (Global Positioning System) surveying) or by interpretation of 

existing orthoimages or topographic maps. Although the former method may achieve 

a higher accuracy for GCPs, it is really time consuming and labour intensive; the 

drawback of the latter one is the accuracy limitation. Similarly, generating DEMs by 

field survey or by interpretation of existing topographical maps is neither cost-

effective nor reliable. Therefore, specialists in photogrammetry are continuing to look 

for appropriate approaches to obtaining high quality GCPs and DEMs for image 

orthorectification processing.  

 

LiDAR, an emerging technology, offers capability of capturing high density and high 

accuracy three dimensional points in a fast and cost-effective way. One of the 

appealing features in the LiDAR output is the direct availability of three dimensional 

coordinates of points in the object space [25]. In addition, most LiDAR systems also 

have the capability to capture the intensity of the backscattered laser pulse. Although 

the backscattered LiDAR intensity values are a function of many variables, to some 

extent, LiDAR intensity data represent the material characteristics of the targets hit by 

the laser beam. Moreover, LiDAR intensity images have orthogonal geometry 

characteristics and have high spatial resolution. Ground objects, especially those 

commonly used for ground controls, such as the intersection of roads and intersection 

of agricultural plots of land, can be identified from the LiDAR intensity image that 

corresponds to an aerial image. Therefore, the LiDAR intensity images offer a good 

alternative of GCPs collection for aerial triangulation calculation in digital 

photogrammetry. In addition, LiDAR data facilitate the derivation of high accuracy 

and high resolution DEMs. Our previous research work demonstrated that LiDAR 
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offers advantages over traditional methods for representing a terrain surface [33], [34]. 

The advantages refer to accuracy, resolution, and cost. Nowadays, highly developed 

computer technologies enable rapid processing of huge volumes of LiDAR data, 

which leads to a great potential to use LiDAR data to get high quality GCPs and 

DEMs to improve the accuracy of orthoimages. 

 

Rapid maturation of LiDAR technology, continuous falling of prices and increasing 

accuracy of LiDAR data are causing an exponential availability of LiDAR datasets 

[25]. However, it is impossible for LiDAR data to replace the traditional remotely 

sensed imagery because LiDAR data cannot provide as much semantic information as 

remotely sensed images can. A growing body of research has demonstrated the 

complementary nature of LiDAR data and traditional remotely sensed data such as 

aerial photography and mutilspectral or hyperspectral imagery in terms of their 

geometrical and semantic information [12], [25], [26]. Habib et al presented an 

approach for using linear features derived from LiDAR data into photogrammetric 

model to align the photogrammetric model relative to the LiDAR reference frame [26]. 

Their research provided a good alternative for photogrammetric modelling, except for 

point-based models. Nevertheless, little research has been done for directly using 

LiDAR’s high quality geometric data (particularly, the valuable LiDAR intensity 

images) for GCPs which are required for aerial triangulation calculation, and for using 

LiDAR-derived high quality DEMs for orthorectification processing, especially with 

the utilization of commonly-used point-based commercial digital photogrammetric 

systems and with no need to develop additional algorithm .    
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In this article, a concept of four levels of image rectification is proposed, based on 

current advances in research about image orthorectification. Factors that affect the 

quality of orthorectified images are analysed, with focus on the GCPs and DEMs. The 

advantages of using LiDAR data to obtain high quality GCPs and DEMs for 

orthorectification are addressed. The main part of this paper presents ways for 

utilizing the LiDAR intensity image for collecting high accuracy GCPs for accurate 

images orientation to the ground space, and utilizing LiDAR data to derive a high 

quality DEM for improving planimetric accuracy of digital orthoimages. In addition, a 

comparative analysis is also presented to assess the performance of proposed methods. 

 

2. Rectification Levels and Quality Issues 

 

2.1. Levels of Image Rectification 

 

Orthorectification is the process of geometrically adjusting a perspective image to an 

orthogonal image by transforming coordinates from the image space to the ground 

space and removing tilt and relief displacement. A digital photogrammetric system is 

usually employed to perform the orthorectification process. A perspective image, 

camera or sensor calibration information, ground control points and a DEM are the 

main inputs for orthorectification processing. The final product of orthorectification is 

a digital orthoimage which combines the image characteristics of a photograph with 

the geometric quality of a standard map.  

 

The procedure for producing digital orthoimages is well established by using a range 

of digital photogrammetry systems. It usually includes steps of digital image 

acquisition, camera or sensor modelling, GCPs collection, aerial triangulation, and 

image orthorectification. Digital images can be acquired by scanning aerial 

photography or obtained by using a digital aerial sensor. High spatial resolution 
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satellite imagery is also an increasingly popular data source for producing 

orthoimages. Camera/sensor modelling is referred to as interior orientation which 

defines a camera/sensor’s interior geometry as it existed at the time of image capture. 

Camera calibration information and the measurement of fiducial marks are the 

primary input for the interior orientation which transforms the image from pixel 

coordinate system to the image space coordinate system. 

 

In order to define the position and direction orientation of the camera that captured an 

image, GCPs are required to establish a mathematical relationship between images, 

camera/sensor, and the ground by using the following collinearity condition equations:  
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where ,0X 0Y  and 0Z  define the position of the camera station with respect to the 

ground space coordinate system (X, Y and Z); 0x  and 0y are the position of the 

principal point in the image coordinate system (x, y); f is the focal length of the 

camera; and ,11m  ,12m  …, and 33m  are the elements of the rotation matrix. The 

rotation matrix is derived by applying a sequential rotation of ω about the x-axis, φ 

about the y-axis, and κ about the z-axis [24]. Once collinearity equations are 

formulated by using enough ground control and tie points, the least squares 

adjustment method is used to implement the block triangulation calculation, the 

results from which are then used as the primary input for the image orthorectification 

process. 
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Depending on the input data for the process and the degree of removal of 

displacement, image rectification usually can be classified as three levels [30], 

orthorectification being the highest level of the rectification. If nominating raw digital 

images as the products of level 1, the level 2 rectification processes raw central 

perspective images with the inputs of orientation parameters and GCPs, but without 

the information of relief. The resulting product of level 2 processes can be called a 

‘vertical-image’, with tilt displacements being eliminated in the rectified image. The 

level 3 process adds a further rectification for terrain relief by use of a DEM. On 

completion of level 3 rectification, the effects of central perspective and 

displacements due to tilt and terrain relief have been removed so that the resulting 

image is an orthographic product with a consistent scale. The level 3 rectification is 

usually referred to as the orthorectification. Recently, the awareness of the concept of 

‘true orthoimage’ in which the displacements due to terrain and buildings or trees are 

removed is increasingly acknowledged. In the collinearity equations, for a given set of 

(X, Y, Z), a set of (x, y) should be uniquely resolved, which means that any pixel in 

the orthoimage has one and only one corresponding pixel in the perspective image. 

However, in urban or forested area, tall buildings and trees appear oblique and may 

occlude other objects in the images. As a result, more than one set of (X, Y, Z) points 

may be projected to the same point (x, y) in the image space. The geometric 

implication of this many-to-one relationship is referred to as occlusion [45]. In the 

process of true-orthorectification, a digital surface model (DSM) or a canopy surface 

model (CSM) or a digital building model (DBM) is employed [8], [45], [56], [57], and 

the algorithm of removal of occlusion is the core of this process. Here, we nominate 

this kind of true orthoimage as the product of level 4. The workflow of four levels of 

rectification with required input data is illustrated in Figure 1. 
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Figure 1. Orthorectification workflow for different levels of products.  

 

The utility of the raw image in practice is limited due to its orthogonal geometric 

nature and displacements. Objects extracted from level 2 images are more reliable 

than those from raw images because of their perspective geometric characteristics. In 

flatter area they have limited relief displacement effects. The most commonly used 

orthoimages are those from level 3. These perspective images are theoretically free of 

displacements caused by terrain relief, and have consistent scales. Therefore, features 

from these images are represented at their correct locations. Distances and angles can 

be directly measured on level 3 images. For the product of level 4, it has a particular 

use with large scale of orthoimage in urban or forested areas where displacements 

caused by buildings or trees could be significant. As the study area of this project is in 

rural area, the emphasis at this stage is on the process for generating level 3 

orthoimags.         
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2.2. Quality Issues of Image Rectification 

 

Throughout the orthorectification process, a wide range of factors can affect the 

quality of an orthorectified image [31]. The main scope for error generation exists in 

the processes of image scanning, interior orientation, exterior orientation, and 

differential rectification. Image scanning is the process of converting an analogue 

aerial image to a digital image by using a photogrammetric-quality scanner. The 

analogue aerial image can be in paper print or film transparency format. Image data 

can be captured either in reflection modes from paper prints or in transmission mode 

from film transparencies. Compared to paper prints, film transparencies are the 

preferred source materials when converting aerial photographs to digital images. Not 

only are they more dimensionally stable, but also they tend to have higher spatial 

resolutions and a greater range of grey values [54]. However, paper prints are still the 

major source materials used for converting to digital images. The accuracy of a 

converted digital image is mainly dependent on the accuracy of the scanner and the 

available resolution. For photogrammetric applications, a scanner should be able to 

scan aerial images (23 x 23 cm) with a minimum optical resolution of 600 dpi, thus 

providing sufficient radiometric resolution (8 bits with value from 0 - 255 for black 

and white image or 24 bits - 8 bits for each channel of a colour image) and high 

geometric accuracy (4 - 12.5 µm minimum pixel size) [10], [11]. The pixel size of 

scanned aerial images is a function of image scale and scanning resolution selected, 

and can be calculated by the formula: 

 

pixel_size = 
resolutionscanning

scaleimage

_

_
 

 

For example, if scanning an aerial image with a scale of 1:25,.000 by using a scanning 

resolution of 800 dpi (dots per inch), each pixel in the scanned image will represent 
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31.25 by 31.25 inches (0.794 by 0.794 m) on the ground. Since every subsequent 

photogrammetric processing step is based on the scanned imagery, it is important to 

use a high resolution scanner and select a suitable scanning resolution so that the 

original image quality can be preserved [32].  

 

The quality of the interior orientation parameters is contingent on the measurement of 

the photo fiducial marks and the camera calibration information. Therefore, accurate 

fiducial mark measurement and access to an accurate camera calibration report are 

crucial if a high quality calculation of interior orientation parameters is to be attained. 

As far as the quality of exterior orientation parameters and differential rectification is 

concerned, the quality of GCPs and DEMs is extremely important for the calculation 

of these two processes. The GCPs and DEMs are the focus of this paper in terms of 

the analysis of orthoimage quality.   

 

The role of GCPs is to establish an accurate mathematical relationship between the 

images, the camera/sensor, and the ground so that the exterior orientation parameters 

of each aerial photograph can be determined. Any inaccuracy of ground control 

information affects the accuracy of exterior orientation parameters calculated by aerial 

triangulation, and finally are propagated into the orthorectified images. The absolute 

accuracy of orthoimages is largely dependent on the quality and the distribution of the 

GCPs used to orient the image to the ground space [45]. 

 

For generation of digital orthoimages from perspective images, a DEM must be used 

in performing the differential rectification. The role of the DEM is to eliminate the 

effects of terrain relief displacement. DEM quality is very important to the 
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orthorectification process because both vertical and horizontal errors in the DEM will 

be propagated to resulting digital orthoimages, appearing as planimetric (horizontal) 

errors in the orthoimages. DEM quality becomes more significant to orthorectification 

process as local relief increases. 

 

3. LiDAR and Potential Advantages of Using LiDAR-Derived GCPs and DEMs 

 

3.1. LiDAR Systems 

 

LiDAR is an active remote sensing technology. It actively transmits pulses of light 

toward an object of interest, and receives the light that is scattered and reflected by the 

objects. The distance (range) between the LiDAR sensor and the object can be 

calculated by multiplying the speed of light by the time it takes for the light to 

transmit from and return to the sensor [50], [53]. The light used by LiDAR systems 

varies with applications, depending on the targets to be detected (e.g., their light 

scattering properties), and the range between the LiDAR sensor and the targets. It 

could be in the ultraviolet, visible, and near infrared portions of the electromagnetic 

spectrum [17]. For example, ultraviolet light can be used to detect water vapour in the 

atmosphere, and near infrared light to detect topographic objects, or ozone, aerosol, 

and pollutants in the atmosphere [2], [17], [37], [39].  

 

For terrain mapping purpose, an airborne LiDAR system is typically composed of a 

laser scanner unit, a differential Global Positioning System (dGPS) receiver, and an  

Inertial Measurement Unit (IMU) [15], [27], [44], [51]. The GPS receiver is used to 

record the aircraft trajectory at centimetre level and the IMU measures the attitude of 

the aircraft (roll, pitch, and yaw or heading) [51]. The laser scanner unit consists of a 

pulse generator of Nd:YAN laser with a wavelength in the range of 0.8 µm to 1.6 µm 

(typically, with 1.064 µm) and a receiver to get the signal of scattered and reflected 
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pulses from targets [41], [52]. The laser pulses are typically 10 to 15 ns in duration 

and have peak energy of several millijoules [2], [52]. Laser pulses are emitted at a rate 

of 2 kHz to 25 kHz to the Earth surface [3]. The range or distance between the 

scanner and the target (calculated as stated above) and the position and orientation 

information obtained from the GPS and IMU to determine target location with high 

accuracy in three dimensional spaces. The three dimensional points are captured as 

latitude, longitude, and ellipsoidal height based on the WGS84 reference ellipsoid. 

They can be transformed to a national or regional coordinate system. At the same time, 

elevations are converted from ellipsoidal heights to ortho-metric heights based on a 

national or regional height datum by using a local geoid model [51]. Currently, 

LiDAR data are typically delivered as tiles in ASCII files containing x, y, z 

coordinates, and (as clients demand) with LiDAR intensity values.   

 

LiDAR systems are also capable of detecting multiple return signals for a single 

transmitted pulse [19], [44], [52]. Most LiDAR systems typically record first and last 

pulse, but some are able to record up to five returns for a single pulse [48]. Multiple 

returns occur when a laser pulse strike a target that does not completely block the path 

of the pulse and the remaining portion of the pulse continues on to a lower object. 

This situation frequently occurs in forested areas where there are some gaps between 

branches and foliage [44]. Recording multiple returns is quite useful in the description 

of forest stand and structure. Furthermore, a canopy surface model (CSM) generated 

by using first returns from the canopy top can be used to generate true orthoimages in 

forested areas [45].  
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The raw LiDAR data are three dimensional point clouds. Laser returns are actually 

recorded from no matter what target the laser beam happens to strike [15], including 

everything on the ground such as buildings, telephone poles, and power lines. The 

post-processing of LiDAR data involves the removal of undesirable points and the 

separation of the bare-earth data from the whole dataset by using filter algorithms [55]. 

The desired target for DEM generation is the bare-earth. Once the bare-earth points 

are determined, a high accuracy and high resolution DEM can be generated. The high 

accuracy and high resolution DEM provides terrain data of high enough quality to 

refine greatly the elimination of relief displacement during orthorectification. 

   

In addition to the three dimensional coordinates, most LiDAR systems also have the 

capability to capture the intensity of the backscattered laser pulse. The backscattered 

laser signal is a function of many variables such as the transmitted laser power, laser 

beamwidth, range, atmospheric transmission, and effective target cross section (the 

effective area for collision of the laser beam and the target). The target cross section is 

strongly dependent on the target reflectance at the laser wavelength, the target area, 

and the target orientation with respect to the incoming laser beam [20], [28], [43], [48]. 

The optical signal received by the sensor is converted to an electrical signal by a 

photodetector (typically an avalanche photodiode). The generated photocurrent or 

voltage is then quantized to a digital number (usually expressed in percent value, 

representing the ratio of strength of reflected light to that of emitted light [47]) which 

is referred to as the LiDAR intensity value for the particular return [14], [20], [28]. 

The LiDAR intensity data then can be interpolated to a geo-referenced intensity image 

with orthogonal geometry.  
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Recently, there have been a few attempts to use LiDAR intensities in glacier 

monitoring, land cover classification, and forest type identification [9], [13], [36], [40], 

[47]. However, it should be noted that the backscattered LiDAR intensity values are a 

function of many other variables in additional to the material characteristics of the 

targets hit by the laser beam. Furthermore, unlike aerial photography or multispectral 

satellite imagery, LiDAR intensity data contain information about objects’ reflectance 

at only a specific wavelength (e.g., 1.064 µm). All of these factors will adversely 

influence the application of LiDAR intensity data (especially for the application of 

intensity data for land cover classification) unless the LiDAR intensity data have been 

radiometrically calibrated [20], [27], [29], [42], [43].  

 

In this project, however, since the LiDAR data have high spatial resolution, many 

ground objects, especially those commonly used for ground controls such as the 

intersection of roads and intersection of agricultural plots of land can be easily 

recognized from LiDAR intensity images. In addition, LiDAR intensity images have 

orthogonal characteristics. Therefore, it should be possible to directly collect higher 

accuracy ground coordinates of GCPs from intensity images for digital 

photogrammetric process.  

 

Airborne LiDAR is still a rapidly growing technology. An important development is 

the integration of a high resolution digital camera or a digital video camera with a 

LiDAR system [3], [5]. For each collected digital image, the position and orientation 

of the camera can be obtained by using the GPS and IMU data. Exterior orientation 

parameters for each frame of imagery are directly provided by these position and 

orientation data. Therefore, no stereo overlapping images and/or ground control points 

are needed. Orthorectification can be completely automatic by using the digital 



 15 

images and a LiDAR-derived DEM [5]. It is expected that the LiDAR system can be 

combined with multispectral or hyperspectral imaging systems, which will result in 

highly versatile systems and extended LiDAR application potential [3].    

 

3.2. Potential Advantages of Using LiDAR-Derived GCPs and DEMs 

 

The availability of increasingly sophisticated and automated digital image processing 

systems has facilitated the use of photogrammetric techniques in a wide range of 

applications [13]. However, the quality of GCPs and DEMs has been a big concern in 

the production of digital orthoimages. The availability of high accuracy GCPs and 

DEMs becomes the key issue for successful implementation of an image 

orthorectification project.   

 

As stated in section 1, traditionally, GCPs can be collected from field survey (using 

total station or GPS), topographic maps, and national or state spatial infrastructure 

data. All these methods are either time consuming and labour intensive or lack of 

enough accuracy. In practice, in order to increase the redundancy that is beneficial for 

gross error detection, and to prepare independent GCPs check points, it is quite 

common to use more GCPs than minium number of GCPs required for the block 

triangulation. Moreover, to ensure the calculation quality, GCPs should be evenly 

distributed over the image covered area. It is a very difficult task for collecting a large 

number of high quality GCPs by using traditional methods to meet all the 

aforementioned requirements for digital photogrammetric and orthorectification 

process.     

 

DEMs are commonly generated from such datasets as topographic maps, stereo aerial 

photography, satellite imagery or field survey. The drawbacks of using these kinds of 
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ways for DEM generation are either their limitations of accuracy or their labour 

intensity. Fortunately, LiDAR offers the capability of capturing high density points 

and high accuracy digital elevation data in a fast and cost-effective way. It has great 

potential to provide high quality of GCPs and DEMs for orthorectification process 

requirements. 

 

There are significant advantages of using LiDAR data to provide GCPs and DEMs for 

orthorectification process. First, the increasing availability of LiDAR data makes it 

possible to provide high accuracy three dimensional points with high density and even 

distribution over large areas. Second, due to its high accuracy and high visual 

interpretable nature of intensity image, high quality GCPs can be directly picked up 

from this image. Third, with high resolution and high accuracy LiDAR-derived DEMs, 

it is possible to remove relief displacement at complicated terrain conditions. Finally, 

LiDAR enables rapid acquisition of three dimensional points and intensity over large 

areas so that the labour expenditure and other costs can be reduced since time is 

money. However, it should be noted that the LiDAR market is not stable because the 

LiDAR technology is in a development stage [12]. The cost of LiDAR data 

acquisition can vary, depending on size of project, point density, and project location. 

It is evident that, using LiDAR to collect data and generate DEM is a cost effective 

way, comparing with field survey (using total station or GPS), especially over a large 

area. Therefore, it is no doubt an economical way for GCPs collection by using 

LiDAR intensity data which is a by-product of a LiDAR terrain mapping project.  

 

4. Study Area, Data and Method  

 

4.1. Study Area 
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The study area is in the region of Corangamite Catchment Management Authority 

(CCMA), which is located in the south western Victoria, Australia. The landscape in 

the region can be depicted to north and south highlands and a large Victoria Volcanic 

Plain (VVP) in the middle. LiDAR data for the total area of 6900 km², covering most 

part of VVP in the CCMA, were collected over the period of 19 July 2003 to 10 

August 2003. These areas have high priority for a range of research projects 

pertaining to environment management issues addressed in the catchment 

management strategy plan. The primary purpose of these LiDAR data is to accurately 

represent terrain pattern in this area, and combining with aerial photography, satellite 

imagery, and other spatial data, to implement a serious of environment related 

projects.  

 

4.2. Data 

 

The estimate of accuracy of LiDAR data used for this project is documented as 0.5 

metres for vertical accuracy and 1.5 metres for horizontal accuracy [1]. LiDAR data 

were first classified into bare-earth and non-ground points using different algorithms 

across the project area [1]. Manual checking and editing of the data were also 

conducted to further improve the quality of the classification [1]. The bare-earth 

LiDAR points were used to generate a grid DEM.  

 

Interpolation methods available for constructing a DEM from sample elevation points 

can be classified: deterministic methods such as inverse distance weighted (IDW) 

(assumes that each input point has a local influence that diminishes with distance) and 

spline-based methods that fit a minimum-curvature surface through the sample points; 

and geostatistical methods such as Kriging that takes into account both the distance 

and the degree of autocorrelation (the statistical relationship among the sample points). 
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New or modified interpolation methods are still being developed [7], [46]. To 

evaluate the performance of some commonly-used interpolation methods, several 

comparisons of these interpolators have been conducted for different practical 

purposes [6], [16], [18], [35], [38], [58]. None of the interpolation methods is 

universal for all kinds of data sources, terrain patterns, or purposes. However, if 

sampling data density is high, the IDW method performs well, even for complex 

terrain [6], [16], [18]. LiDAR data have high sampling density, and so the IDW 

approach was selected as the interpolator for our LiDAR data processing. Using 

ArcGIS software, a regular 5 by 5 meters grid DEM and a DSM were created by using 

the elevation values of the bare-earth points and all the points separately. Meanwhile, 

LiDAR intensity data were also interpolated into a raster image with the spatial 

resolution of one metre by using all the LiDAR points. 

 

Natural colour aerial photography was collected in April 2000 at a nominal height of 

3825 m above ground level and a scale of 1:25,000. A high resolution scanner was 

used to convert these film-based aerial photos to digital images. The resulting images 

have a 0.8 m spatial resolution. 

 

GPS surveys were conducted in the study area in November 2005 and May 2006. A 

total of 50 GPS points were used in this study to assess the planimetric accuracy of 

the LiDAR intensity image. By comparing the coordinates of GPS points with those 

of the corresponding locations from LiDAR intensity image, the results show that the 

maximum position difference is 1.10 m, minimum 0.36 m, average 0.69m, and the 

RMSE is 0.56 m. Therefore, the LiDAR intensity images proved to be of high 

accuracy.       
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In order to assess the performance of proposed methodologies, especially to compare 

with commonly used ground control data and DEMs for orthorectification, some of 

the Vicmap datasets including Vicmap Elevation, Vicmap Transport, and Vicmap 

Features datasets are also gathered.  Vicmap is a set of spatially related data products 

made up from individual datasets. They provide foundation to Victorian primary 

mapping and geographic information systems. All these datasets are produced and 

maintained by the Victorian Department of Sustainability and Environment, Australia. 

 

Vicmap Elevation, a statewide 20 m resolution DEM which is structured in a regular 

array of pixels representing Victoria’s terrain surface, is a commonly used elevation 

data source in Victoria for various terrain-related applications and processes including 

orthorectification. Vicmap DEM was produced by using elevation data mainly derived 

from existing 1:25,000 contour maps and digital stereo capture. Estimated standard 

deviations are 5m and 10m for vertical and horizontal accuracy respectively [21].  

 

Vicmap Transport models transport infrastructure networks for Victoria. Primary 

feature types in Vicmap Transport are road centrelines and railways. Vicmap Features 

contains infrastructure features such as fence lines, utility lines and landmarks. From 

the perspective of digital photogrammetric processing, road centrelines and fence 

lines are the most interesting features for collecting GCPs. However, the accuracy of 

these datasets should be noted when using them for the purpose of GCP collection. 

The estimated standard deviation for these features is 8.2 m [22], [23]. It may be not 

suitable for GCP collection for large scale aerial image orthorectification.        

 

4.3. Method 
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Erdas Imagine 8.7 (a digital photogrammetric software package) is used to process 

digital images from scanned aerial photographs. An example of these images used for 

this study is shown in Figure 2. Features depicted include agricultural lands, 

residential areas, roads, trees, and salt lakes. These raw digital perspective images are 

the original input images to undergo block triangulation and orthorectification. The 

subsequent steps are to enter the camera calibration data, measure the fiducial marks 

on the images, and perform interior orientation parameters calculation for each image. 

 

 

 
 
Figure 2.  An example of scanned natural colour aerial photographs with highlighted 

positions of GCPs measurements.  

 

Following the interior orientation, it is ready to measure the positions of GCPs in the 

images and provide their correspondent ground (or object space) coordinates for aerial 

triangulation. The LiDAR intensity image has an orthogonal nature and is 

georeferenced to the Geocentric Datum of Australia 94 (GDA94) and projected to the 
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MGA Zone 54 coordinate system so that it is much like a high accuracy large scale 

topographic map. The LiDAR intensity image makes it much easier to identify 

features such as road intersections and agricultural land plot boundaries, which are 

commonly used as GCPs. Due to the high accuracy characteristics of LiDAR data, the 

intensity image is well suited for providing ground control truth information for aerial 

triangulation calculation. Therefore, the X and Y coordinates of GCPs in object space 

can be directly collected from LiDAR intensity images; Z coordinates being obtained 

from the LiDAR-derived DEM. An example of LiDAR intensity images used for this 

study is shown in Figure 3, which covers the same area as the aerial image in Figure 2. 

Highlighted marks represent the locations where the ground coordinates of GCPs 

were picked up. 

 

 
 
Figure 3. A LiDAR intensity image, which covers the same area as the scanned aerial 

photograph in Figure 2.  
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Once the aerial triangulation process is complete, digital orthorectification can be 

conducted. During this process, the raw digital imagery is resampled to the correct 

ground position. The effects of terrain relief displacement are removed by utilizing a 

LiDAR-derived high quality DEM.   

 

With the aim of assessing the suitability of using GCPs derived from the LiDAR 

intensity image for aerial triangulation and of using the LiDAR-derived DEM for 

image orthorectification, the scanned aerial images same as above but using Vicmap 

data for providing GCPs and DEM were input to the same digital photogrammetric 

software for aerial triangulation and orthorectification. Here, the object space 

coordinates of GCPs were obtained from Vicmap Transport and Vicmap Features. 

The DEM was based on 20 m resolution Vicmap Elevation data. For the purpose of 

comparison, the same object features were used for GCPs and the same number of 

GCPs was picked up. 

 

5. Results and discussion 

 

Using the method described above, scanned natural colour aerial photographs were 

orthorectified to the final orthoimages. GCPs and the DEM used for the 

photogrammetric and orthorectification process were obtained from LiDAR data and 

Vicmap data separately. An example of the orthorectified image by using LiDAR-

generated GCPs and DEM, draped on a LiDAR-derived digital surface model (DSM) 

is shown in Figure. 4. The features on this orthoimage should be in their correct 

positions. The reference LiDAR intensity image draped on terrain surface, covering 

same area as in Figure 4 is shown in Figure 5.   
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Figure 4.  3D visualization of an orthorectified aerial photograph depicting part of the study 

area. 

 

 

 
 
Figure 5. 3D visualization of the LiDAR intensity image covering same area as depicted in 

Figure. 4.  

 

The purpose of this project is to investigate the feasibility of using LiDAR data to 

implement image orthorectification for improving the accuracy of orthorectified 

images. It is necessary to use some quality indicators to assess the accuracy of the 
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resulting orthoimages. For orthoimages, it is important to evaluate the planimetric 

accuracy. The X and Y coordinates of check points in the orthoimage were measured, 

and then compared with the corresponding coordinates from differential GPS surveys. 

The planimetric position differences between orthoimages (orthorectified based on 

LiDAR data on the one hand and Vicmap data on the other) and the GPS check points 

are listed in Table 1. Based on these data, a statistic diagram was drawn in Figure. 6, 

showing position differences of each check points for the image orthorectified using 

LiDAR data, and for the image orthorectified using Vicmap data.  

 
Table 1. Planimetric position accuracy. 

 

Coordinates from      

GPS Survey (I0)          

(m) 

  

Coordinates from 

LiDAR-orthorectified 

Image (I1)  (m) 

  

Coordinates from  

Vicmap-orthorectified 

Image (I2) (m) 

  

Position 

Difference       

(m) 

X  Y  X Y  X Y  |I1 - I0| |I2 - I0| 

31761.84 67258.49   31762.11 67258.18   31759.93 67262.49   0.41 4.43 

28414.79 69458.39  28415.61 69459.89  28408.02 69451.09  1.70 9.96 

31037.51 68701.59  31037.87 68702.45  31036.01 68697.75  0.93 4.12 

30929.38 68945.13  30929.68 68945.75  30929.75 68941.39  0.69 3.76 

30811.17 69179.83  30811.37 69179.08  30809.47 69173.26  0.78 6.78 

30946.31 69179.32  30946.86 69180.80  30944.89 69174.17  1.58 5.34 

31079.91 69164.53  31079.79 69165.92  31078.41 69160.95  1.40 3.88 

31058.73 68933.38  31058.82 68934.54  31057.69 68929.27  1.16 4.24 

26961.03 67486.52  26961.47 67486.66  26957.27 67482.76  0.46 5.32 

28207.44 68641.17  28207.27 68641.34  28200.98 68639.31  0.24 6.71 

29092.21 71499.51  29091.44 71500.97  29080.72 71498.04  1.65 11.58 

30845.77 69443.33  30846.16 69445.14  30852.78 69437.85  1.85 8.90 

31114.13 70633.01  31114.04 70631.52  31110.87 70629.64  1.49 4.69 

31029.86 70956.87  31030.13 70955.69  31027.14 70954.58  1.21 3.56 

31152.02 68461.31  31152.28 68462.69  31151.08 68457.58  1.40 3.85 

30147.19 72033.51  30147.43 72031.94  30136.48 72035.53  1.59 10.90 

31026.37 68469.42  31026.81 68469.96  31025.49 68465.69  0.70 3.83 

31211.47 69158.06  31212.29 69156.86  31209.59 69148.07  1.45 10.17 

28396.05 70296.71  28396.59 70295.53  28389.80 70287.15  1.30 11.42 

25757.33 67071.38   25756.67 67072.75   25756.05 67063.85   1.52 7.64 

 

Table 1 and Figure 6 clearly indicate that the orthorectified image by using LiDAR-

derived GCPs and the LiDAR DEM has much higher planimetric position accuracy 

than that by using Vicmap based data. The maximum position difference in the 

LiDAR-orthorectified image is 1.85 m, while the difference is up to 11.58 m in 
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Vicmap-orthorectified image. By using the following formula, the root mean square 

errors (RMSE) were calculated as 1.30 m for LiDAR-orthorectified orthoimage and 

7.26 m for Vicmap-orthorectified orthoimage  

 

                                                                  Pσ     = 

1

2

−

∑∆

n

P
    

     

where, P∆ is the calculated position difference between the orthoimage and GPS 

survey, and n is the total number of points.    
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Figure 6.  Planimetric position accuracy  
 

The planimetric position accuracy of an orthoimage is a function of the quality of the 

input GCPs, DEM, and also some other factors. The accuracy of GCPs and the DEM 

is reflected in the accuracy of the orthoimage. The experiment results demonstrated 

that the competent use of LiDAR-based GCPs and LiDAR-derived DEM can ensure 

high quality for orthorectification. Given the accuracy of LiDAR data used for this 
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project, a high accuracy of horizontal position for orthorectified images can certainly 

be achieved. GCP coordinates acquired from LiDAR intensity image and the DEM 

generated from LiDAR data are well suited for the orthorectification process of aerial 

photography of medium and large scales.          

 

LiDAR data do not only provide high accuracy GCPs and DEM for improving the 

accuracy of an orthorectified image, they but also have great potential to reduce the 

costs of orthorectification of aerial photography, especially for remote areas. With the 

increasing availability and steadily decreasing cost of LiDAR data, it is becoming 

common for remotely sensed overlaying datasets to include not only aerial 

photography but LiDAR data also. It has attracted an increasing amount of interest to 

explore these data’s complementary characteristics. The results lead to the potential 

decrease of the costs of a specific traditional process, such as using LiDAR data to 

support the orthorectification of aerial photography. 

 

6. Conclusion 

 

Different levels of image rectification and factors contributing to orthorectified 

images were first addressed in this paper. Then it presented a way of using LiDAR-

derived GCPs and DEMs for image orthorectification. High accuracy LiDAR data 

offer the capability of obtaining GCPs and DEMs at a higher level of accuracy 

required for photogrammetric and orthorectification processes. The ground 

coordinates of GCPs were obtained from LiDAR intensity map, while DEMs were 

generated from high accuracy 3D LiDAR point clouds. The experiment results in this 

paper demonstrated the practical feasibility of taking advantage of LiDAR based 

GCPs and LiDAR-derived DEM in digital photogrammetry to produce high quality 

orthorectified images. The orthoimage accuracy by using LiDAR data is superior to 
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that achieved by using lower accuracy data sources such as Vicmap. In addition to the 

accuracy aspect, it is expected that using LiDAR data for orthorectification process 

would be a cost effective way. This is especially true with the increasing availability 

of LiDAR data and the expected drop in costs.  
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