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Abstract: 

Cold-formed steel trapezoidal profiles provide efficient solutions for roofing and often use the 

Gerber joint to effectively utilize capacities. The previous design of Gerber joint was sensitive to 

uneven distribution of loads and accidental loads, which imposed bending moments in the joint 

and lead to its failure. In this experimental program, the design of Gerber joint has been modified 

to work as a hinge under service loads and carry moments in accidental conditions. Also, the design 

of CFS is based on elastic methods that underestimate their capacity, especially for multi-span 

systems. Full-scale tests were conducted on highly stiffened double-span trapezoidal sheeting 
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profiles with modified Gerber joint to investigate elastic capacity, inelastic behaviour, moment 

redistribution in the post-elastic phase, ultimate load capacity and feasibility of modified Gerber 

joint. Comparison of elastic load capacity with EWM and DSM predictions revealed that EWM 

design predictions were conservative by 30% while DSM predictions were accurate. For multi-

span application, residual moment capacity ratios of 0.76 and 0.81 in the post-elastic phase allowed 

for moment redistribution and increased ultimate load capacity by 7.14% and 8.80% for 0.85 mm 

and 1 mm thick profiles respectively. Performance of modified Gerber joint to behave as a hinge 

under service loads and as continuous in the post-elastic phase was also found to be satisfactory. 

The study concluded that the economy in design and capacity utilization of multi-span CFS 

profiles can be improved by allowing for moment redistribution and using the modified Gerber 

joint. 

Keywords: Cold-formed steel, trapezoidal sheeting, inelastic behaviour, post-elastic, multi-span 

sheeting, Gerber joint, direct strength method, moment redistribution.  

Nomenclature  

CFS Cold-formed steel 

EWM Effective width method 

DSM Direct strength method 

AISI American Iron and Steel Institute 

M- Support moment capacity 

M+ Span moment capacity 

Ieff Effective moment of inertia 

LVDT Linear variable differential transformers 



σcr,l Critical local buckling stress 

σcr,d Critical distortional buckling stress 

kσ Plate local buckling factor 

ν Poisson’s ratio 

tn Nominal thickness of the plate 

bn Nominal width of the plate 

σcr,s The elastic critical stress for an intermediate flange stiffener 

kw Rotational restraint coefficient 

As Effective cross-section area of an intermediate flange stiffener 

Is Moment of inertia of stiffener 

bp Notional flat width of the plane element 

bs Stiffener width 

σcr,sa The elastic critical stress for a single web stiffener 

kf Partial rotation restraint of the stiffened web by flanges 

Asa Effective cross-section area of an intermediate web stiffener 

σcr,d, web Critical distortional buckling stress for web 

σcr,d, flange Critical distortional buckling stress for flange 

σcr,d, mod The modified elastic critical stress for stiffeners 

GJ Gerber joint 

GM Midspan with Gerber joint 

MS Midspan 

Weff Effective section modulus 

Md
- Designed support moment capacity 



Mcrℓ Critical elastic local buckling moment 

Mcrd Distortional buckling moment 

Mcre Global (lateral-torsional) buckling moment 

Mnℓ Nominal flexural strength for local buckling 

Mnd Nominal flexural strength for distortional buckling 

Mne Nominal flexural strength for yielding and global (lateral-torsional) buckling 

Փ LRFD Resistance factor 

Mn Nominal flexural strength 

 

1. Introduction 

Use of lightweight cold-formed steel (CFS) as structural members is gaining popularity over other 

construction materials i.e. concrete, timber and masonry due to low weight to strength ratio, 

economy in production, ease of transportation and fabrication. Among these CFS members, 

corrugated trapezoidal sheeting is used as roofing and can either be used as a composite slab or as 

a single insulated or non-insulated profile.  

High width to thickness ratio of CFS sections increases their sensitivity to instabilities i.e. local, 

distortional, global or interactive buckling modes and reduces their capacity. A significant amount 

of research has been carried out on complex buckling modes of CFS members [1,2] and interaction 

between these buckling modes [3–5].To reduce their susceptibility to buckling, edge and 

intermediate stiffeners are provided to decrease buckling length of individual plate elements and 

provide a continuous restraint to these elements. A detailed Finite Element study on the flexural 

behaviour of CFS Z-sections by Haidarali and Nethercot [6] demonstrated the significant effect of 



size and position of edge and intermediate stiffeners on buckling modes and bending capacity.  A 

similar result was concluded by Franco and Batista [7] for stiffened trapezoidal sheeting profiles 

and they proposed trapezoidal-shaped intermediate stiffeners in both webs and flanges for 

improved buckling behaviour. The strength prediction of CFS members is based on elastic 

methods i.e. Effective Width Method (EWM) and Direct Strength Method (DSM). EWM is a basic 

design method of European [8,9] and American AISI specifications [10] for the design of CFS 

members and follows a traditional philosophy of reduced effective cross-section. For complex 

cross-sectional shapes with lips and stiffeners, computation of effective cross-section and capacity 

becomes complex and inaccurate. This computational effort and inaccuracy for complex sections 

can be significantly reduced by DSM. DSM was initially introduced in 2004 as commentary [11] 

to AISI 2002 specifications [10] and has been recently codified as a part of AISI 2016 

specifications[12]. Unlike EWM, DSM is a semi-analytical approach and considers gross section 

properties. EWM is appropriate for many CFS profiles, but observed failure modes and failure 

loads for complex profiles with edge and intermediate stiffeners did not agree well with EWM 

predictions as reported by Schafer [13]. Therefore, a semi-analytical finite strip solution was 

developed which provides better predictions for CFS sections as compared to EWM [14]. 

While the design is based on elastic methods, Yener and Pekoz [15] demonstrated that CFS 

sections possess significant inelastic reserve capacity and can carry higher loads due to re-

distribution of yielding in the cross-section. Tests carried out by Reck et al. [16] on hat sections 

exhibited that ultimate strain can be three times higher than yield strain. Maduliat et al. [17] 

compared the experimental capacities of channel sections with design specifications [8-10] and 

proved the conservative nature of these specifications. Tests conducted by Laím et al. [18] showed 

that experimental moment capacity was 27% higher than European recommendations [8,9].  



Also, elastic design methods predict capacity based on the elastic capacity of single-span CFS 

sections, which yields uneconomical results for multi-span applications. Studies [19-21] have 

shown that the CFS section over internal support can rotate significantly in the post-elastic phase 

under the reduced level of moment resistance (Figure 1a) as compared to hot-rolled sections which 

can sustain their yield moment resistance over considerable rotations(Figure 1b). This reduced 

level of moment resistance in CFS sections redistributes moments and ideal re-distribution is 

achieved when the section in mid-span utilizes its elastic capacity. This concept of post-elastic 

strength utilization due to moment redistribution in multi-span CFS profiles was first introduced 

in 1973 by Unger [22]. Based on experimental tests on shallow decking profiles, he proposed that 

the section over internal support can be replaced by a plastic hinge with reduced elastic moment 

resistance. This increase in capacity due to redistribution of moments in shallow decking profiles 

was also demonstrated through experimental tests on continuous deck profiles by Leach [23] and 

Luure & Crisinel [24]. Test results of Leach [23] showed that two-span systems can sustain loads 

up-to 56% higher than elastic design predictions. This procedure of replacing the section over 

internal support by a plastic hinge with reduced resistance is widely used by deck manufacturers 

and is also a part of CIRIA technical note [25]. Davies [26] developed a finite element model to 

analyze previous experimental results and proposed a quasi-elastic design procedure that utilizes 

reduced elastic moment resistance. Based on tests on moment redistribution in deck profiles, 

Lawson and Popo-Ola [19] proposed an approximate relation to derive the load-carrying capacity 

of two-span decking. Studies of Liu et al. [20] derived a method for sigma sections and concluded 

that load carrying capacity for multi-span profiles can be 26% higher than predictions by elastic 

methods. A similar method was derived by Hui et al. [21] for Z and channel sections.   



 

(a) 

 

(b) 

Figure 1: Moment rotation relationship and moment redistribution in post-elastic phase (a) Cold-

formed profiles (b) Hot-rolled profiles 

While most of the reported studies on failure modes, inelastic behaviour and load-carrying capacity 

of multi-span CFS profiles are focused on purlins and un-stiffened shallow deck profiles, there is 



little information available on third generation stiffened trapezoidal sheeting profiles. These 

sheeting profiles are used as non-composite roofs and employ a special cantilever drop-in system 

known as Gerber joint. The design of this Gerber joint has been modified in this study so that it 

could carry bending moments in the post-elastic phase, explained in section 2. Little to no 

information is available on Gerber joint and this investigation is the first study on behaviour of the 

modified Gerber joint. Full-scale experiments were conducted at the Luleå University of 

Technology to study elastic moment capacity, inelastic behaviour, failure modes of trapezoidal 

sheeting profile, moment redistribution in the post-elastic phase, ultimate load capacity and to 

investigate the feasibility of modified Gerber Joint. In this research program, moment capacities 

and failure modes have been compared with the Eurocode [8,9] and DSM [12] predictions and 

conclusions have been drawn regarding their accuracy. For the investigation of Gerber Joint, two 

different test configurations were used and recommendations for modified Gerber joint and 

moment redistribution have been made by comparing the results of these two configurations. It 

has been concluded that consideration of inelastic capacity, moment redistribution and utilization 

of modified Gerber joint in multi-span systems can yield economical design solutions for roofs 

and purlins.  

2. Cantilever Drop-in System (Gerber Joint): 

Gerber joint also known as suspended cantilever drop-in system was introduced in 1866 for bridge 

engineering and was gradually adopted in architectural engineering [27]. This joint has recently 

found its application in multi-span CFS roofing systems where a profile in the exterior span is 

made continuous over the internal support up-to a specific distance in the internal span. At this 

cantilever point in the internal span, the second profile is connected through a shear connection so 

that the joint resist shear only.  



Due to this internal pin, bending moments are optimally distributed allowing for effective 

utilization of span and support moment capacities [27]. Consider a double span beam with length 

L, if the profiles in both spans are connected separately at the internal support (Figure 2a), each 

span will act as a simply supported beam with the maximum bending moment in mid-span i.e. 

wl2/8. If the beam is continuous (Figure 2b), bending moments are maximum at internal support 

i.e. wl2/8. However, when one profile from external span is continued over the internal support 

and connected to the second profile at a pre-defined distance of 0.17xL from internal support 

(Figure 2c), applied moments in span and support are lowest compared to previous two cases i.e. 

wl2/12, leading to efficient utilization of span and support moment capacities. 

 

(a) 



 

(b) 

 

(c) 

Figure 2 Distribution of bending moments (a) hinges at support (b) continuous beam (c) Gerber 

hinge 



2.1. Gerber Joint for trapezoidal sheeting profile: 

Gerber joint for steel trapezoidal sheeting profile was previously made by overlapping two profiles 

with an overlap length of 200 mm and screws in the center of overlap (Figure 3a). Previous 

investigations [28–31] on the behaviour of this joint revealed its inadequacy under the uneven 

distribution of loads or accidental conditions that engender bending moments in the joint. They 

demonstrated that the joint does have some rotational stiffness which is insufficient to carry 

accidental moments. Therefore, the design of the Gerber joint has been modified in this research 

study by increasing the overlap length from 200 mm to 500 mm and moving the screws towards 

the right end of overlap (Figure 3b). A single cross-section in this modified design now has a total 

of 6 screws, 2 in the top flange and 4 in the web. Ls indicates the distance of the center of the 

Gerber joint from internal support.  

 

(a) 



 

(b) 

Figure 3: Design of Gerber joint (a) previous (b) modified 

The basic intention behind the modification of Gerber joint is that it should behave as a hinge 

under service conditions and as a continuous joint under accidental loads i.e. post-elastic phase. 

This ensures optimal utilization of capacity in service conditions and the safety of joints in the 

post-elastic phase. To understand the mechanism of modified joint design, consider a uniformly 

loaded double-span beam with a modified Gerber joint (Figure 4a). During the elastic phase, 

section over internal support is fully stiff and both the profiles rotate in opposite directions around 

the screws and gap at the free end opens up (Figure 4b), making the joint a hinge. As buckling of 

section over internal support initiates, it loses stiffness and the gap between profiles closes and the 

modified joint starts acting as continuous due to a combination of overlap and screws (Figure 4c). 

This design assumption has been verified by measuring the gap between profiles during the elastic 

and post-elastic phase.  Two different test setups were used in this study with different overlap 

lengths replicating the modified Gerber joint and previous Gerber joint. The collapse mechanism 



of both test setups was also compared to verify the design assumption. In the first test setup 

replicating modified Gerber joint, longer overlap length provides continuity in the post-elastic 

phase allowing for moment redistribution and collapse mechanism is formed when elastic bending 

capacity of the section in mid-span is reached. Conversely, joint in a second test setup with shorter 

overlap was insufficient to transfer any moments in the post-elastic phase, therefore, the collapse 

mechanism is supposed to be either by failure of the region between internal support and Gerber 

joint or by failure of Gerber joint itself.  

 

 

(a) 

 

(b) 

 

(c) 



Figure 4: Behaviour of modified Gerber joint (a) uniformly loaded span (b) elastic phase (c) 

post-elastic phase 

3. Experimental Tests: 

3.1. Test specimens: 

Full-scale experiments were conducted at the Luleå University of Technology on third-generation 

steel trapezoidal sheeting profiles with both longitudinal and transverse stiffeners manufactured 

by Lindab International. The profile is made of S420 grade steel with zinc coating. Two class 4 

sections with profile thicknesses of 0.85 mm and 1 mm were tested and cross-sectional dimensions 

of the centerline of profiles are shown in Figure 5. The test specimen was made of two steel profiles 

overlapped at the bottom flange making a total width of 1600 mm (Figure 6a (Section A-A)). The 

bottom flange of each profile is 75 mm wide with one intermediate stiffener and the top flange is 

540 mm wide with two intermediate stiffeners. Manufacturer provided steel core thicknesses, 

effective moment of inertias and single-span negative (M-) and positive (M+) moment capacities 

of single section profiles (800 mm) are given in Table 1. Manufacturer recommended yield 

strength and modulus of elasticity i.e. 420 MPa and 210 GPa have been used for calculations. Self-

drilling stainless steel screws of 6.3 mm diameter and 8.5 kN shear resistance were used for each 

connection. Since the profile is un-symmetric about the bending axis, therefore, negative and 

positive moment capacities are different depending on flange in compression.  

 



 

Figure 5: Centerline dimensions of trapezoidal sheeting profile 



 

(a) 



 

(b) 



 

(c) 

 

(d) 

Figure 6: Experimental setup (a) Test setup-1 schematic (b) Test setup-2 schematic  (c) and (d) 

setup views 



 

Table 1: Manufacturer recommended section properties and tested single-span capacities of 

trapezoidal sheeting 

Profile 

thickness 

(mm) 

Core Thickness 

(mm) 

Ieff 

(x106 mm4) 

Single span moment capacity 

(kN-m) 

Support (M-) Span (M+) 

0.85 0.782 3.568 10.608 7.736 

1 0.940 4.328 14.664 10.888 

3.2. Test Setup: 

Full-scale experiments were conducted on a double-span profile with the length of each span (L) 

6 m subjected to four-point loading (Figure 6). Supports were made by mounting 150mm long 

support cleats on timber boards using self-drilling screws. To prevent distortion of the web under 

concentrated loads, support cleats were connected to the top flange only, providing a gap between 

the bottom of profile and support cleat. Side overlap at bottom flange was made by joining both 

flanges using self-drilling screws with c/c longitudinal spacing of 500mm in span and 250mm near 

the internal support to account for negative bending. In order to prevent the section from distortion, 

EN 1993-1-3 [8] Annex A.2.1 recommends the use of transverse ties. A combination of 

longitudinal and transverse ties was used with angle sections L60x40x5.  

For each profile thickness, two different test configurations with varying overlap length for Gerber 

joint were used, named as (1) Test Setup-1 and (2) Test Setup-2. Test setups are designated as test 

setup–profile thickness–overlap length (Table 2). In each test setup, profile from one span was 

made continuous over the internal support like a cantilever up-to an effective distance of 

0.22xL+50 mm (optimum location of modified Gerber hinge) making a total length of 7.37 m. The 



location of Gerber joint was changed from 0.17xL to 0.22xL due to different spans and support 

moment capacities. The second profile was placed over this cantilever with an overlap length of 

500mm in test setup-1 and 100mm in test setup-2. The placement of screws was the same as in 

Figure 3b. 

Table 2: Test setup summary  

Test Setup Gerber Joint Overlap Length 

(mm) 

Profile Thickness 

(mm) 

Test Setup Designation 

1 Modified 500 0.85 T1-0.85-500 

500 1 T1-1-500 

2 Previous 100 0.85 T2-0.85-100 

100 1 T2-1-100 

 

Test setup-1 is intended to be used in the future in the field and the reason for testing was to ensure 

if it can carry accidental moments in the post-elastic range. The assumption that the joint behaves 

as a hinge under service loads (elastic phase) and as continuous (post-elastic phase) was verified 

by measuring the gap at end of overlap. Since in the elastic range, the section at internal support 

is stiff, therefore, this gap between profiles opens up. Due to the loss of stiffness in the post-elastic 

phase, the gap closes and profiles overlap to resist moments.  

The load was applied through a hydraulic jack on the I-section beam (Figure 6) with a stroke of 

2mm/min. Each end of the I-beam was supported on hollow steel sections which then transferred 

the load onto timber blocks. Two 75 mm long blocks then transferred the load onto the bottom 

flange of the sheeting profile. Deflections of the top flange were measured using LVDTs (Figure 

6a and 6b). LVDTs are designated as test setup–profile thickness–overlap length-LVDT location 

(Table 3). MS indicates LVDT in midspan, Gap is for measurement of the gap, GJ is the location 



of screws of Gerber joint and GJ is the LVDT placed in mid of span with Gerber joints. Locations 

of LVDTs are the same for both test setups i.e. midspans and Gerber joint location. These LVDTs 

measure global deflection, but for test setup-1 additional LVDTs were used at overlap end to 

measure gap opening and closing between profiles. This gap measurement is necessary to know if 

modified Gerber joint behaves as desired i.e. hinge in elastic phase and continuous in the post-

elastic phase.   

Table 3: Description of LVDTs 

Gauge No. Gauge Location Designation for Test Setup-1 Designation for Test Setup-2 

1 Midspan T1-0.85/1-500-MS T2-0.85/1-100-MS 

2 Gap b/w profiles T1-0.85/1-500-Gap - 

3 Gerber Joint T1-0.85/1-500-GJ T2-0.85/1-100-GJ 

4 Gerber Mid span T1-0.85/1-500-GM T2-0.85/1-100-GM 

 

4. Results and Discussions: 

4.1 Elastic moment capacity comparison of test and design rules: 

A total of four experiments were conducted; two tests on each profile thickness with two different 

overlap lengths. Experimental moments were calculated using elastic bending moment equations 

by considering beam as continuous for test setup-1 and assuming an internal hinge at Gerber joint 

location for test setup-2. Weights of the I-section beam, hollow steel sections and timber blocks 

were included in the calculation of applied loads. Elastic moment resistances as well as the failure 



modes of the section over internal support have been compared with predicted capacities and 

modes obtained from EWM in Euro codes [8,9] and DSM [12]. Since the sheeting profiles were 

prevented against lateral-torsional buckling, local and distortional modes were controlling factors 

for member capacity.  

4.1.1 Effective Width Method: 

EWM is used by Eurocodes [8,9] for the design of CFS sections with the basic idea of reducing 

the cross-sectional area. To account for local buckling, the width of plate elements adjacent to 

stiffeners is reduced. For distortional buckling (flexural buckling of the stiffener itself), an iterative 

procedure is adopted to calculate the reduction factor which considers elastic buckling stress of 

stiffeners, flexural stiffness of adjacent plate elements and material yield strength. Once the 

reduced cross-sectional area is obtained, critical elastic local buckling stress (σcr, l) and critical 

elastic distortional buckling stress (σcr, d) are calculated. For a plate under uniform compression, 

critical elastic local buckling (σcr, l) stress, critical distortional buckling stress for flanges with one 

intermediate stiffener (σcr,s) and critical distortional buckling stress for webs with up-to two 

intermediate stiffeners (σcr,sa) are calculated by Eqs. 1, 2 and 3 respectively.  
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Interaction between flexural buckling of both the flange and web stiffeners are included by 

modified elastic critical stress (σcr, d, mod) calculated by Eq. 4. 
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Calculated critical buckling stresses and moment capacities for trapezoidal sheeting profile using 

EWM are presented in Table 4. The resistance of the web to resist shear was neglected as the 

support cleat is arranged to prevent the distortion of the web. As per calculations, critical 

distortional buckling stress is lowest for web stiffener closer to compression flange (σcr,sa) and 

highest for the compression flange stiffener (σcr,s). A comparison of predicted negative capacities 

(M-) with experimental capacities showed that EWM predictions were conservative by 29% and 

27% for 0.85 mm and 1 mm profiles respectively.  

Table 4: Elastic load capacity comparison with EWM 

Profile 

Thickness 

σcr,s 

(MPa) 

σcr,sa 

(MPa) 

σcr,d,mod 

(MPa) 

Weff 

(mm3) 

M- 

(EWM) 

(kNm) 

Test Failure 

Moment 

(kNm) 

% 

Difference 

0.85 1018 194.40 280 20553 8.63 12.24 29% 

1 1193.78 219.31 312.24 26666 11.20 15.38 27% 

 

4.1.2 Direct Strength Method (DSM): 

The direct strength method (DSM) is a semi-analytical approach using a combination of numerical 

analysis and design formulas. Initially, linear elastic stability analysis is carried out by using 

specially developed computational finite strip analysis program CUFSM [32]. A single trapezoidal 

sheeting profile with simply supported boundary conditions and bottom flange in compression was 



modelled in CUFSM. For profile modelling, coordinates of each node related to the mid-line of 

cross-section were introduced in CUFSM which creates plate elements between these nodes. 

Division of elements was refined near the corners and a minimum of four elements per plate in 

compression was used to obtain accurate results. The manufacturer recommended modulus of 

elasticity E=210GPa and, Poisson's ratio 0.3 and shear modulus of elasticity 81 GPa were used. 

Stress profiles related to yield stress of 420 MPa were generated in the same program and 

wavelengths were selected so as to include local as well as distortional buckling modes of profile. 

Buckling modes and corresponding load reduction factors for trapezoidal sheeting profiles with 

the bottom flange in compression (internal support condition) are shown in Figure 7.  Elastic 

buckling modes for both the profile thicknesses were the same and global buckling was ignored in 

calculations as it is not encountered in actual scenarios.  

Figure 7: Finite strip analysis results from CUFSM 

Based on elastic instability modes i.e. local, distortional, global buckling modes and corresponding 

strength reduction factors, the strength of CFS sections can be calculated by using direct formulas 

given in chapter F of AISI S100-16 specifications [12]. The nominal strength of members 



including the potential of the inelastic reserve is minimum of global, local and distortional buckling 

strength calculated by Eqs. 5 through 10. 
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d
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M

M
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Yield moment (My), reduction factors for local (Mcrl/My) and distortional (Mcrd/My) buckling, 

factored moment capacity (ՓMn) and experimental moment capacities are presented in Table 5. 



DSM predictions were found to be in good agreement with experimental moment capacities as the 

difference between two values is insignificant.  

Table 5: Elastic load capacity comparison with DSM predictions 

Profile 

Thickness 

My 

(kN-m) 

Mcrℓ/My 

(MPa) 

Mcrd/My 

(MPa) 

ՓMn  

(kNm) 

Test Failure 

Moment 

(kNm) 

% 

Difference 

0.85 19.74 0.6 1.3 11.91 12.24 2.6% 

1 23.22 0.83 1.54 15.38 15.38 0% 

 

The conservative nature of EWM predictions for this profile conforms with previous studies on 

the limitations of EWM for complex cross-sectional shapes. EWM is a semi-empirical approach 

that breaks down the CFS section into plate elements and stiffeners at fold point locations. It then 

follows a cumbersome process of calculating critical buckling stresses and effective sections of 

each plate element and stiffener with a reduction factor calculated separately for these elements. 

In this whole process, the interaction between plate elements, interelement equilibrium and 

compatibility is ignored which leads to inaccurate prediction of strength and failure modes, 

especially the dominant distortional buckling mode for complex sections with intermediate 

stiffeners. In opposition to that, DSM is a combination of computational tools and design equations 

and considers gross section properties to conduct linear elastic buckling analysis of any cross-

sectional shape and critical buckling load calculation. In DSM, the reduction factor is applied to 

complete cross-section and compatibility between plate elements is maintained. The constrained 

finite strip method in DSM facilitates the easier, understandable and economical calculation of 

relevant buckling modes and strength reduction factors that are used in simplified design equations 

for accurate calculation of member’s capacity.  



4.2 Moment redistribution and load capacity comparison of single span and double span: 

Due to the post-elastic strength of CFS profiles and resulting moment redistribution, the ultimate 

load capacity of such profiles for multi-span applications can be higher than predicted capacities 

which are based on elastic resistance of single-span profiles. Due to relatively high slenderness of 

CFS profiles, redistribution of moments in the post-elastic phase occurs with reduced bending 

resistance of section over internal support (Figure 1a). Ideal redistribution of moments is achieved 

when the section in mid-span reaches its elastic moment capacity. This post-elastic redistribution 

of moments depends on the shape and thickness of CFS profiles.   

Previous tests on shallow decking profiles summarized by Lawson and Popo-Ola [19] showed that 

load-capacity of multi-span CFS profiles can be derived by replacing the section over internal 

support with a plastic hinge with reduced elastic negative bending resistance. Ultimate load 

capacity for a two-span test with four load points on span can be determined by Eq. 11. 

( )
2

0.38
8

test

L
q M kM+ −= +                                (11) 

Where qtest is equivalent uniform loading at failure, L is the length of each span, M+ is elastic 

bending resistance in mid-span, M- is elastic bending resistance of section over internal support 

and k is residual moment strength factor which is the ratio of reduced elastic bending resistance to 

full elastic bending resistance of section over internal support.  

The value of k can be determined by the method described in CIRIA technical note [25] which 

was also used by previous studies on multi-span purlins [20] and continuous decking  [19, 26]. 

This is a graphical method where k is obtained by overlapping experimentally obtained moment-

rotation curve with conventional beam-line. The moment-rotation curve under negative bending is 



obtained by conducting a three-point bending test on an inverted decking profile with a span length 

of 0.4xL replicating support reaction and moment at internal support. For continuous decking 

understudy, the moment-rotation relationship was obtained from test setup-2. Since the Gerber 

joint in this test setup does not transfer moments in the post-elastic phase, the location of this 

Gerber joint acts as a point of contra-flexure even in the post-elastic phase. The deflection was 

measured at Gerber joint location (GJ) and moments calculated as per moment equations. The post 

elastic component of deflection was calculated by subtracting elastic deflection from total 

deflection at each load level. For CFS profiles, it is considered that deformation is concentrated at 

load point only, therefore, post-elastic rotation is obtained by dividing deflection by distance 

between internal support and LVDT location. For beam line, section over internal support in multi-

span system is replaced by an equivalent spring with stiffness ranging from zero for simply 

supported condition to full stiffness. The y-axis of beam line is equal to moment at internal support 

when a multi-span beam is subject to uniform loading. The x-axis is the rotation of this spring with 

zero spring stiffness making the beam as simply supported. The position of beam line varies 

according to applied load and the actual value of load is the failure load of multi-span profile 

obtained by iteration.  

Values of reduced bending resistance (k) obtained by CIRIA method, ultimate load capacity and 

experimental load capacity of multi-span profile for test setup-1 are summarized in Table 6: Single 

and double span load capacities for trapezoidal sheeting. The manufacturer recommended a single-

span failure load is used and the double span failure load (Table 1) was calculated by using Eq. 11 

and experimental value was obtained from test setup-1.  



Table 6: Single and double span load capacities for trapezoidal sheeting 

Profile 

Thickness 

(mm) 

k Single Span 

failure load -

Elastic (kN) 

Double Span 

failure load – Eq. 

11 (kN) 

Double span failure 

load - experimental 

(kN) 

% Load 

increase over 

elastic design 

0.85 0.76 28.29 28.82 30.31 7.14 

1 0.81 39.07 41.06 42.5 8.80 

 

From the results in Table 6, the percentage load increase for double span profile as compared to 

single-span elastic capacity is 7.14% and 8.80% for 0.85 mm and 1 mm profile respectively. The 

percentage load increase for multi-span profile increases with profile thickness, which is due to 

higher post-elastic strength for lower slenderness.  

It is worth mentioning that this percentage load increase for highly stiffened trapezoidal sheeting 

is lower than previous studies, whereas, the negative residual moment strength factor (k) is higher. 

This ultimate load capacity for the double span system is low due to the lower moment capacity 

of the section in mid-span (M+) which doesn’t allow for high redistribution of moments. This 

ultimate load can be higher for other CFS profiles with comparatively higher mid-span section 

capacities. However, it can be concluded from this study and previous studies on decking profiles 

that redistribution of moments in the post-elastic phase improves load capacity and economy in 

design for such profiles.  

4.3 Load-Displacement Relationship: 

The typical load-displacement curve of a single span CFS section in bending is shown in Figure 

1a. As these types of cross-sections are classified as class 4 or slender sections, their typical load-

displacement curve looks like a backbone curve with reduced load capacity in the post-elastic 

phase. The load-displacement curves from this experimental program as a function of vertical 



displacement at mid-span for test setup-1 and test setup-2 are shown in Figure 8a&b. The structural 

behaviour of tested beams in the elastic phase (loading stage and elastic load capacity) is identical 

for all thicknesses and overlap lengths. Since the section over internal support is subjected to higher 

moments, therefore, failure is initiated at this section through local buckling of web plate adjacent 

to compression flange for both profile thicknesses and test setups. Loss of cross-sectional stiffness 

after this initiation of bucking was gradual as exhibited in the load-displacement curve which 

shows a linear response till the elastic limit. At this stage, the neutral axis starts shifting towards 

top flange and this shift depends on profile thickness. For 0.85mm thick profile, this shift was quite 

low (Figure 9a&c) as compared to the 1mm profile where buckling was observed in top stiffener 

also (Figure 9b&d). This indicates a greater shift of neutral axis in the post-elastic phase and 

consequently greater inelastic strength reserve for the thicker (less slender) profile.  

Another important observation in load-deflection behaviour is the effect of the overlap length of 

the modified Gerber joint on the post-elastic behaviour of the multi-span system. Profiles with 

500mm overlap length can sustain their elastic load capacity under post-elastic deflections (Figure 

8a) compared to profiles with 100mm overlap length (Figure 8b). This indicates continuity 

provided by the modified Gerber joint in the post-elastic range. This continuity allows 

redistribution of moments in the post-elastic phase which was the basic design intention for the 

modified Gerber joint. Since the moments were redistributed in test setup-1, the ultimate collapse 

occurred when the section in the mid-span reached its elastic moment capacity (Figure 10a). On 

the other hand, the Gerber joint in test setup-2 was unable to transfer moments in the post-elastic 

range, thus the system collapsed due to the failure of this Gerber joint (Figure 10b). 



 

(a) 

 

(b) 

Figure 8: Load-Displacement relationship of both profiles (a) Test setup 1 (b) Test Setup 2 
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(d) 

Figure 9: Failure modes at internal support (a) 0.85 mm –Setup 1 (b) 1 mm –Setup 1 (c) 0.85 mm 

–Setup 2 (d) 1 mm –Setup 2 
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(b) 

Figure 10: Comparison of collapse mechanisms for 1 mm profile (a) test setup 1 (b) test setup 2 

4.4 Behaviour of Modified Gerber Joint: 

Gerber joint has been modified by increasing the overlap length to 500mm and transferring the 

position of screws to far end from internal support. The modified behaviour was studied by 



comparing the results of test setup 1 (500 mm overlap) and test setup 2 (100 mm overlap).  The 

intention behind the design of the modified Gerber joint that it behaves as a hinge in the elastic 

phase and as continuous in the post-elastic phase (Figure 4) was confirmed by measuring the gap 

between two profiles (Figure 11). 
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(b) 

Figure 11: Load versus opening and closing of the gap in  test setup 1 for (a) 0.85 mm (b) 1 mm 

thick profile. 

As the section over internal support is fully stiff before initiation of buckling, rotation of profiles 

around screws in the overlap is such that the gap between profiles opens. As the gap opens, the 

only shear force is transferred through the screws and the joint behaves as a hinge. As the section 

over internal support loses stiffness after initiation of buckling, the gap between profiles closes 

and continuity is attained due to which joint starts transferring moments. In normal loading 

conditions, this profile is used with or without insulation and opening of the gap is not affected. 

Also, the gap opening is very small i.e. 2.70 mm to cause any serviceability problem.  

The difference in the behaviour between two setups with different overlap lengths is significant in 

the post-elastic phase of section over internal support. As this section fails, it loses stiffness and 

cannot retain its full moment capacity (M-) due to which the system tends to re-distribute moments 

until the section in the mid-span reaches its moment capacity (M+). However, the rotation capacity 

of section over internal support and continuity of Gerber hinge is pre-requisite for this moment re-

distribution, which has been investigated in this experimental part through (i) comparison of the 

mid-span deflections of both test setups and (ii) comparison of the failure mode between two test 

setups. 

A comparison of load-deflection curves as a function of mid-span deflection is presented in Figure 

12. In this graph, deflections of mid-span having Gerber joint are compared between two profiles 

with the same thickness but different overlap lengths. It can be seen that the setup with longer 

overlap length can sustain more loads for the same magnitude of deflection in the post-elastic 

phase, indicating the continuity attained by this longer overlap. In this scenario, the capacity of the 



section in the mid-span can be fully utilized which was also observed in the ultimate collapse of 

the system. The comparison of failure modes of both test setups is shown in Figure 10. It can be 

observed that shorter overlap is unable to transfer moments and multi-span profile cannot sustain 

higher loads in the post-elastic phase and the ultimate state is reached by the collapse of the section 

over internal support or failure of Gerber joint.  
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Figure 12: Mid-span deflection comparison between test setup 1 and 2 for (a) 0.85 mm (b) 1 mm 

thick profile 

5. Conclusions: 

Full-scale experiments were conducted on double-span CFS third-generation trapezoidal sheeting 

profiles. For effective utilization of profile capacity, a special type of cantilever drop-in system 

known as Gerber joint was used for this profile which proved to be inadequate for accidental and 

uneven distribution of loads. Design of this Gerber joint has been modified in this research program 

and experiments were conducted on two types of test setups with 0.85 mm and 1 mm thick sheeting 

profile i.e. test setup-1 with modified Gerber joint and test setup-2 replicating previous Gerber 

joint. Results of full-scale experiments have been used to compare experimental elastic capacities 

and failure modes of section over internal support with Eurocode and DSM predictions, detailed 

study on inelastic behaviour of multi-span profile, evaluation of moment redistribution and 

ultimate load capacity and feasibility of modified Gerber joint has also been investigated by 

comparing results with previous Gerber joint. Following conclusions were drawn: 

• Eurocode design predictions based on effective width method (EWM) were found to be 

conservative and inadequate to predict failure modes for highly stiffened trapezoidal sheeting 

profile with intermediate stiffeners. Design predictions of Euro codes were conservative by 29% 

and 27% for 0.85 mm and 1 mm thick profile respectively. In opposition to that, AISI 

predictions based on direct strength method (DSM) using a combination of easy to use 

computational tools and design equations predicted the capacities and failure modes accurately. 

Since DSM maintains equilibrium between elements, uses gross section properties and efficient 

tools in terms of time and accuracy, therefore, it is recommended to use DSM for strength 

calculation of complex CFS sections.   



• For a multi-span profile, it was found that moment redistribution can further increase the load 

capacity of CFS members as compared to predicted capacities based on the elastic design of 

single-span profiles. For multi-span CFS trapezoidal sheeting profile understudy, residual 

moment capacity ratios of 0.76 and 0.81 in the post-elastic range allowed for 7.14% and 8.80% 

increase in ultimate load capacity for 0.85 mm and 1 mm thick profiles respectively. 

Consideration of moment redistribution for multi-span CFS profiles in the design phase can 

yield enhanced load capacity and economical results.  

• The main conclusions of these experimental tests are for multi-span CFS profiles with Gerber 

joints. The design of Gerber joint was modified in this study by increasing overlap length to 

500 mm from 200 mm and connecting the profiles at one end compared to connection in the 

center. This behaviour of the joint was verified by observing the opening and closing of the gap 

and comparing the failure modes of two different test setups with different overlap lengths. 

Since the service load of this profile is a self-weight or additional load of insulation in some 

cases, gap opening and closing are not affected by these loads. Also, the opening of the gap is 

so small to cause any serviceability issues. Thus, the Gerber joint is feasible in practice and can 

yield economical solutions under service loads and safer solutions in accidental loads as 

compared to the previous design which was unable to carry moments under accidental loads.  
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