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Abstract 

For a drought-prone agricultural nation such as Australia, hydro-meteorological 

imbalances and increasing demand for water resources are immensely constraining 

terrestrial water reservoirs and regional-scale agricultural productivity. Two 

important components of the terrestrial water reservoir i.e., streamflow water level 

(SWL) and soil moisture (SM), are imperative both for agricultural and hydrological 

applications. Forecasted SWL and SM can enable prudent and sustainable decision-

making for agriculture and water resources management. To feasibly emulate SWL 

and SM, machine learning data-intelligent models are a promising tool in today’s 

rapidly advancing data science era. Yet, the naturally chaotic characteristics of 

hydro-meteorological variables that can exhibit non-linearity and non-stationarity 

behaviors within the model dataset, is a key challenge for non-tuned machine 

learning models. Another important issue that could confound model accuracy or 

applicability is the selection of relevant features to emulate SWL and SM since the 

use of too fewer inputs can lead to insufficient information to construct an accurate 

model while the use of an excessive number and redundant model inputs could 

obscure the performance of the simulation algorithm. 

This research thesis focusses on the development of hybridized data-

intelligent models in forecasting SWL and SM in the upper layer (surface to 0.2 m) 

and the lower layer (0.2–1.5 m depth) within the agricultural region of the Murray-

Darling Basin, Australia. The SWL quantifies the availability of surface water 

resources, while, the upper layer SM (or the surface SM) is important for surface run-

off, evaporation, and energy exchange at the Earth-Atmospheric interface. The lower 

layer (or the root zone) SM is essential for groundwater recharge purposes, plant 

uptake and transpiration. This research study is constructed upon four primary 

objectives designed for the forecasting of SWL and SM with subsequent robust 

evaluations by means of statistical metrics, in tandem with the diagnostic plots of 

observed and modeled datasets. 

The first objective establishes the importance of feature selection (or 

optimization) in the forecasting of monthly SWL at three study sites within the 

Murray-Darling Basin. Artificial neural network (ANN) model optimized with 

iterative input selection (IIS) algorithm named IIS-ANN is developed whereby the 
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IIS algorithm achieves feature optimization. The IIS-ANN model outperforms the 

standalone models and a further hybridization is performed by integrating a non-

decimated and advanced maximum overlap discrete wavelet transformation 

(MODWT) technique. The IIS selected inputs are transformed into wavelet sub-

series via MODWT to unveil the embedded features leading to IIS-W-ANN model. 

The IIS-W-ANN outperforms the comparative IIS-W-M5 Model Tree, IIS-based and 

standalone models.  

In the second objective, improved self-adaptive multi-resolution analysis 

(MRA) techniques, ensemble empirical mode decomposition (EEMD) and complete 

ensemble empirical mode decomposition with adaptive noise (CEEMDAN) are 

utilized to address the non-stationarity issues in forecasting monthly upper and lower 

layer soil moisture at seven sites. The SM time-series are decomposed using 

EEMD/CEEMDAN into respective intrinsic mode functions (IMFs) and residual 

components. Then the partial-auto correlation function based significant lags are 

utilized as inputs to the extreme learning machine (ELM) and random forest (RF) 

models. The hybrid EEMD-ELM yielded better results in comparison to the 

CEEMDAN-ELM, EEMD-RF, CEEMDAN-RF and the classical ELM and RF 

models.  

Since SM is contingent upon many influential meteorological, hydrological 

and atmospheric parameters, for the third objective sixty predictor inputs are collated 

in forecasting upper and lower layer soil moisture at four sites. An ANN-based 

ensemble committee of models (ANN-CoM) is developed integrating a two-phase 

feature optimization via Neighborhood Component Analysis based feature selection 

algorithm for regression (fsrnca) and a basic ELM. The ANN-CoM shows better 

predictive performance in comparison to the standalone second order Volterra, M5 

Model Tree, RF, and ELM models. 

In the fourth objective, a new multivariate sequential EEMD based modelling 

is developed. The establishment of multivariate sequential EEMD is an advancement 

of the classical single input EEMD approach, achieving a further methodological 

improvement. This multivariate approach is developed to allow for the utilization of 

multiple inputs in forecasting SM. The multivariate sequential EEMD optimized with 

cross-correlation function and Boruta feature selection algorithm is integrated with 
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the ELM model in emulating weekly SM at four sites. The resulting hybrid 

multivariate sequential EEMD-Boruta-ELM attained a better performance in 

comparison with the multivariate adaptive regression splines (MARS) counterpart 

(EEMD-Boruta-MARS) and standalone ELM and MARS models.  

The research study ascertains the applicability of feature selection algorithms 

integrated with appropriate MRA for improved hydrological forecasting. Forecasting 

at shorter and near-real-time horizons (i.e., weekly) would help reinforce scientific 

tenets in designing knowledge-based systems for precision agriculture and climate 

change adaptation policy formulations. 
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Figure 1.1 Schematic of the research thesis. 

 

Chapter 2 

Figure 2.1  Map of the study region (a) the location of MDB and the state of 

NSW, with close-ups (b - e) illustrating the selected sites for 

objectives 1 to 4 respectively. 

Figure 2.2 Categories of data intelligent models used in this research thesis. 

 

Chapter 3 (Article 1 – Published, Atmospheric Research, vol. 197 (2017), pp. 42–63) 

Figure 1  Illustration of forecasting modelling frameworks. (a) Multilayer 

Feedforward Neural Network Architecture (Details of input 

variables are provided in Table 1 with hidden neurons were 

successively increased from 1 to 40). b) The architecture of M5 

Tree Model. (Hierarchical display and the corresponding input 

space splits with linear regression models for each sub-space). 

Figure 2  Map of the study region showing the tested stations and their 

geographical location. 

Figure 3  Monthly climatological patterns (January 1977–May 2016) of the 

objective variable, stream water level (SWL) and the respective 

predictor variables (maximum temperatures, Tmax; minimum 

temperatures, Tmin; precipitation, PCN; evaporation, Evap; solar 

radiation, Rn; and vapor pressure,   VP). 

Figure 4 A schematic view of the model development process. 

Figure 5 Variable selection performed by Iterative Input selection (IIS) 

algorithm. Bars show the contribution to the coe�cient of 

determination (�R
2
) of each selected variable and the continuous 

(red) line denotes the cumulative performance coe�cient of 

determination (R
2
) of the underlying algorithm in IIS scheme. 
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Figure 6 Plot of maximum overlap discrete wavelet coe�cients (MODWC) 

in the training period for monthly precipitation (PCN) at Site 1: 

Richmond River. 

Figure 7 Scatter plots of observed (SWLOBS) and forecasted (SWLFOR) 

stream water level for all the stations from: a) IIS-W-ANN and 

IIS-W-M5 Tree models, b) IIS-ANN and IIS-M5 Tree models (No 

wavelet applied). (Note: The dashed line in blue and green is the 

least-squares fit line to the respective scatter plots). 

Figure 8 Observed and forecasted streamflow water level (SWL) in the 

testing period, from: a) the optimal objective model, IIS-W-ANN, 

and tree based comparative counterpart, IIS-W-M5 Tree model, b) 

IIS-ANN and IIS-M5 Tree models (without wavelets). 

Figure 9 E�ect of (a) input selection procedure (IIS algorithm) and (b) 

multi-resolution analysis (MODWT) on the performance of ANN 

and M5 Tree models. Note: The IIS algorithm was applied to ALL 

variables while MODWT was applied to IIS-selected variables. 

(NB: r and WI are unitless, while RRMSE values are in percentage   

(%)). 

Figure 10 Box-plots of observed compared with forecasted streamflow 

water level, SWL: (a) models integrated with IIS and MODWT, 

(b) models with IIS (without wavelet). 

Supplementary analysis and discussions 

Figure S1 Scatter plots of observed (SWLOBS) and forecasted (SWLFOR) 

streamflow water level for all the stations from: a) IIS-W-ANN and 

IIS-W-M5 Tree models, b) IIS-ANN and IIS-M5 Tree models (No 

wavelet applied). (Note: The dashed line in blue and green is the 

least-squares fitting line to the respective scatter plots and the solid 

red line is the 45° or the X = Y line for comparison). 
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Chapter 4 (Article 2 – Published, Geoderma, vol. 330 (2018), pp. 136–161) 

Figure 1 The architecture of extreme learning machine (ELM) network. Details 

of input variables are provided in Tables 4a-b, while the modelling 

framework is given in Table 6a. The hidden neurons from 50 to 200 

were used. 

Figure 2  Map of study region showing the selected stations and its 

geographical locations. The colored contour gradients show the 

elevation (in meters) above sea level. (Refer to the key for the names 

of sites with respective marker labels.) 

Figure 3  Monthly variations of a) upper layer (SMUL) and b) lower layer 

(SMLL) soil moisture. (NB: SMUL and SMLL are relative values and are 

dimensionless.) 

Figure 4 A schematic view of the model development process. (The definitions 

of acronyms used here are as follows: SMUL –  upper layer soil 

moisture, SMLL –  lower layer soil moisture, IMF –  intrinsic mode 

functions, subscript N represents the IMF number(s), PACF– partial 

auto-correlation function, Sig.– significant, Res.– residual, ELM –

extreme learning machine, RF – random forest.) 

Figure 5  Temporal waveforms of IMFs and the residual from a) EEMD and b) 

CEEMDAN transformation of intact (i.e., unresolved) time series 

(TS) (lag 0) of upper layer soil moisture (SMUL) at Site 2 during the 

training period. The intact upper layer soil moisture TS has also been 

plotted for comparison. (The definitions of acronyms used here are as 

follows: SMUL – upper soil moisture, IMF – intrinsic mode functions.) 

Figure 6 Histogram illustrating the frequency (in percentages) of absolute 

forecasting errors (|FE|) of the best performing ELM and random 

forest (RF) models in forecasting upper layer soil moisture (SMUL). 

[Best ELM: Site 5; Best EEMD-ELM: Site 6; Best CEEMDAN-

ELM: Site 5 and the corresponding RF models]. 

Figure 7  Observed and forecasted upper layer soil moisture (SMUL) during the 

test period, from the ELM, EEMD-ELM and CEEMDAN-ELM and 
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its RF counterparts. [Best ELM: Site 5; Best EEMD-ELM: Site 6; 

Best CEEMDAN-ELM: Site 5 with their corresponding RF models] 

Figure 8  Scatter plots of the best ELM and random forest (RF) models in 

forecasting a) upper layer soil moisture (SMUL) [Best ELM: Site 5; 

Best EEMD-ELM: Site 6; Best CEEMDAN-ELM: Site 5 with their 

corresponding RF models] and b) lower layer soil moisture (SMLL) 

[Best standalone-ELM: Site 1; Best EEMD-ELM: Site 1; Best 

CEEMDAN-ELM: Site 3 with their corresponding RF models]. 

Figure 9  Bar graphs of average seasonal forecasting errors (Summer-DJF; 

Autumn-MAM; Winter-JJA; Spring-SON) in forecasting: a) upper 

layer (SMUL) and b) lower layer (SMLL) soil moisture using the best: 

ELM, EEMD-ELM and CEEMDAN-ELM models and the 

corresponding RF models [NB: Best models for SMUL forecasting 

were ELM: Site 5; EEMD-ELM: Site 6; CEEMDAN-ELM: Site 5 

while for  forecasting SMLL the best models were as follows ELM: 

Site 1; EEMD-ELM: Site 1; CEEMDAN-ELM: Site 3]. 

Figure 10 Polar plots showing monthly average of forecasting errors in 

forecasting: a) upper layer (SMUL) and b) lower layer (SMLL) soil 

moisture using the best ELM, EEMD-ELM, and CEEMDAN-ELM 

models and their RF counterparts. [The best models were as follow: 

for SMUL ELM: Site 5; EEMD-ELM: Site 6; CEEMDAN-ELM: Site 

5 while for SMLL ELM: Site 1; EEMD-ELM: Site 1; CEEMDAN-

ELM: Site 3].  

Figure 11  Box plots of optimal ELM and RF models in forecasting a) upper 

layer soil moisture (SMLL) [Best ELM: Site 5; EEMD-ELM: Site 6; 

CEEMDAN-ELM: Site 5] and b) lower layer soil moisture (SMLL). 

[Best standalone-ELM: Site 1; EEMD-ELM: Site 1; CEEMDAN-

ELM: Site 3]. (NB: SM are relative values and is dimensionless) 

Supplementary analysis and discussions 

Figure S2  Scatter plots of the best ELM and random forest (RF) models in 

forecasting: a) upper layer soil moisture (SMUL) [Best ELM: Site 5; 
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Best EEMD-ELM: Site 6; Best CEEMDAN-ELM: Site 5 with their 

corresponding RF models] and b) lower layer soil moisture (SMLL) 

[Best standalone-ELM: Site 1; Best EEMD-ELM: Site 1; Best 

CEEMDAN-ELM: Site 3 with their corresponding RF models]. 

(Note: The dashed line in blue and green is the least-squares fitting 

line to the respective scatter plots and the solid red line is 45°, X = Y 

line for comparison). 

 

Chapter 5 (Article 3 – Published, Soil & Tillage Research, vol. 181 (2018), pp. 63–

81) 

Figure 1 The architecture of the newly proposed two-stage data-driven model 

used in relative soil moisture (SM) forecasting: (a) M5 model tree; (b) 

ELM; (c) Schematic view of the model development steps; (d) 

Multilayer Feed-forward Neural Network based Committee of Model 

(ANN-CoM). 

Figure 2 The feature weights determined by the Neighbourhood Component 

Analysis for regression feature selection algorithm (fsrnca) from a 

pool  of  60  input  variables (Panel 1), and the corresponding changes 

in relative root mean square errors (RRMSE) with subsequent addition 

of each input (in the ascending order determined by the fsrnca feature 

weights) using a basic ELM model (Panel 2). (a) Site 1 upper layer 

soil moisture and (b) Site 1 lower layer soil moisture. Note the      

bars in Panel 2 show the decrement contribution in the RRMSE value 

of each variable, while the line graph shows the cumulative 

decrement in RRMSE values. (NB: Refer to Table 3 for full names of 

selected variables from abovementioned acronyms). 

Figure 3 Map of the study region showing the selected hydrological study 

sites and their geographical locations within Australian Murray-

Darling basin region. 

Figure 4 The monthly variations in (a) upper layer (SMUL) and (b) lower layer 

soil moisture (SMLL) at the four study sites. (SMUL and SMLL are the 

relative fractional values and the unit is dimensionless). 
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Figure 5 Scatterplots of the observed (����
��	) and the forecasted (����


��) soil 

moisture generated from ANN-CoM vs. the comparative standalone 

models applied at the candidate sites in the testing period (a) upper 

layer soil moisture (SMUL) (b) lower layer soil moisture (SMLL). 

Each panel shows a linear regression fit y = mx + C, and the 

coe�cient of determination (R
2
) denoting the goodness-of-fit. 

(SMUL and SMLL are the relative fractional values and the unit is 

dimensionless). 

Figure 6 Box plots of the observed (OBS) vs. the forecasted values of (a) the 

upper layer soil moisture (SMUL) and (b) the lower layer soil moisture 

(SMLL) generated from the ANN-CoM vs. the standalone data-driven 

models at the candidate study sites. (SMUL and SMLL are the relative 

fractional values and the unit is dimensionless). 

Figure 7 Histograms illustrating the frequency (i.e., no. of tested points) within 

each of the absolute forecasting errors (|FE|) generated from the ANN-

CoM vs. the standalone models for (a) upper layer soil moisture 

(SMUL), (b) lower layer soil moisture (SMLL). 

Figure 8 Polar plots showing the monthly average values of the absolute 

forecasting error generated from the ANN-CoM vs. the standalone 

models in forecasting lower layer soil moisture with: a) best ANN-

CoM model (Site 1) and b) worst ANN-CoM model (Site 4) based on 

RRMSE values. (SMUL and SMLL are the relative fractional values and 

the unit is dimensionless). 

Figure 9 Taylor plots showing the correlation and standard deviation (SD) of 

the ANN-CoM vs. the standalone models in forecasting SMLL with a) 

best ANN-CoM model (Site 1) and b) worst ANN-CoM model (Site 

4) based on RRMSE values. (SMUL and SMLL are the relative 

fractional values and the unit is dimensionless). 

Figure 10 Bar graphs of the average seasonal relative root mean square errors 

(RRMSE) in forecasting a) upper layer (SMUL) and b) lower layer 

(SMLL) soil moisture from the best ANN-CoM model at the four 
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candidate sites. The seasons are Summer-DJF; Autumn-MAM; 

Winter-JJA; Spring-SON. (SMUL and SMLL are the relative fractional 

values and the unit is dimensionless). 

Supplementary analysis and discussions 

Figure S3 Scatter plots of observed and forecasted values registered by the 

ANN-CoM and the extreme learning machine (ELM), random forest, 

M5 Tree and the Volterra in emulating a) SMUL and b) SMUL at four 

study sites. (Note: The dashed lines are the least-squares regression 

line and the solid red line is the 45° or the X = Y line for comparison).�

 

Chapter 6 (Article 4 – Submitted, under review: Catena) 

Figure 1  The study region showing the candidate test sites and their 

geographical locations within the Australian Murray-Darling Basin 

overlayed with elevation contours (grey lines). 

Figure 2  Time-series of the normalized weekly soil moisture (SM) at the 

respective sites showing the stochastic nature of the hydrological 

variable. 

Figure 3  Schematic of the two-phase hybrid multivariate sequential empirical 

mode decomposition-extreme learning machine model optimized with 

the Boruta wrapper-based feature selection (i.e., hybrid EEMD-

Boruta-ELM) and the comparative EEMD-Boruta-MARS model 

constructed for weekly soil moisture forecasting. [For model input 

names, see Table 2]. 

Figure 4  Box plots of the Z-scores registered by the Boruta input selection 

algorithm (Site 4-Bodangora as an example) used in determining 

significant antecedent original time-series data used for weekly soil 

moisture forecasting. Blue corresponds to the shadow inputs while the 

green represents the Z-score distributions of confirmed inputs with a 

notably large importance. [For the names of input variables, see Table 

2.] 
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Figure 5  Scatterplot of the observed (SM
OBS

) vs. the forecasted (SM
FOR

) weekly 

normalized soil moisture generated from hybrid EEMD-Boruta-ELM, 

compared with three other data-driven models (i.e., EEMD-Boruta-

MARS, MARS, and ELM) in the testing phase. A perfect model 

linear fit y = x (middle dashed) with upper and lower bounds of 95% 

prediction intervals, a linear regression fit y = mx + C, and the 

coefficient of determination (R
2
) are displayed in each panel. 

Figure 6  Box plots of the observed vs. the forecasted weekly normalized soil 

moisture generated by the hybrid EEMD-Boruta-ELM vs., the 

comparative models EEMD-Boruta-MARS, ELM and MARS 

models. [Soil moisture (SM) is quantified as relative fractional value 

and is dimensionless]. 

Figure 7  Histograms illustrating the percentage frequency of the absolute value 

of weekly forecasting error (�
��) generated from the hybrid EEMD-

Boruta-ELM, vs. the EEMD-Boruta-MARS, ELM, and MARS 

model. 

Figure 8  Taylor plots indicating the correlation coefficient and standard 

deviation (SD) in the testing phase based on the hybrid EEMD-

Boruta-ELM, vs. the EEMD-Boruta-MARS, ELM and MARS models 

for forecasting weekly normalized soil moisture at the candidate study 

sites. 
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Chapter 1: Introduction 

 

1.1 Background  

The demand for water resources is ever-increasing with population growth, increased 

agricultural and industrial activities, the expansion of water-related sports and 

recreation. In addition, the changing weather patterns and climate due to 

anthropogenic factors further affect the distribution and accessibility of this valuable 

and limited resource. This growing demand and intermittent supply require 

farsighted and effective water resource management stratagems to avoid any 

probable catastrophes. 

Principally, the terrestrial water reservoirs instead of the direct precipitation 

control the functioning of agricultural, hydrological, ecological and interrelated 

socio-economic systems (Loon and Laaha, 2015). In particular, two integral 

components of the terrestrial water reservoirs i.e., streamflow water level (SWL) and 

soil moisture (SM) are imperative for water resources management and agriculture. 

The SWL is the accumulation of the surface runoff from a catchment or basin that 

serves as a storage and water-source for surface water usages. While the SM controls 

the interactions between the land and the atmosphere (Brocca et al., 2010, Brocca et 

al., 2008) and serves as an important driver of soil water retention, infiltration, 

evapotranspiration, groundwater recharge, and geophysical processes. 

Prolonged precipitation deficits with a series of dry spell epochs cause 

meteorological drought events. This when aggravates into inadequate availability of 

surface and subsurface water resources causes hydrological drought and further leads 

to a decline in soil moisture (SM) causing crop failure (i.e., agricultural drought). An 

escalation of such extreme event leads to a widespread socioeconomic drought 

(White et al., 1999, Mishra and Singh, 2010, Wilhite and Glantz, 1985). Such events 

not only moderates the river and terrestrial ecology (IPCC, 2014) but also severely 

impacts many sectors of the society culminating into human health issues. Yet, prior 

to intensifying into a severe drought event, the terrestrial water storage (including 

SWL and SM) endures the immediate impacts of hydro-meteorological anomalies 

and anthropogenic changes. 
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The streamflow data have been widely used for hydrologic drought studies, 

while agricultural drought is largely contingent upon SM levels. Hence, the 

forecasted SWL and SM information are important aspects in properly managing this 

limited resource. Forecasted SWL and SM levels could assist in drought 

preparedness and design of early warning systems as well as gain an insight into the 

future availability of water resources. Precise and reliable future information on 

SWL levels would assist in constructing of prudent and timely procedures and 

techniques for optimal distribution and utilization of water for purposes like 

domestic, industrial, agricultural, hydro-electricity generation and recreation. In 

addition, the advanced or projected knowledge of the other important variable, i.e., 

SM levels, at micro-scale would allow farmers and farm managers to make proactive 

sustainable decisions for efficient irrigation scheduling, grazing scheduling, water 

quality monitoring, yield predictions (Gill et al., 2006) and be wary of seasonal 

cropping. This information has the potential of being cascaded into the design of 

knowledge-based systems for monitoring soil moisture and empowers precision 

agriculture. 

Recent advances in computational capacity have allowed for application of 

the machine learning based predictive models in many areas. The predictive or data-

driven models extract pertinent predictive features from historical data sets. Since 

forecasting is an important aspect of hydrological and agricultural sustainability, it is 

an open area of research. Largely, a systematic layered improvement has been the 

key element in technological evolutions and is the way to develop newer models for 

hydrological applications as well. Therefore, new and advanced predictive models 

hybridized with feature optimization and multi-resolution analysis approaches are 

being explored in this study for SWL and SM forecasting within Australia’s 

agricultural hub, the Murray-Darling Basin. 

1.2 Statement of the problem 

Australia, the driest inhabited continent on Earth with harsh environmental 

conditions (Ummenhofer et al., 2009), is no exception to the extreme hydrological 

events. An increase in frequency and intensity of events such as longer-lasting and 

hotter drought and catastrophic floods has been noted since the 1950s  (IPCC, 2014; 

Deo et al., 2015). Hydrological anomalies comprising of frequent and long-lasting 

drought events are a common feature of Murray-Darling Basin (MDB) cluster (Deo 
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et al., 2009) where the present study is focussed. Historical droughts in the MDB 

region, Australia recorded were; the Federation (1895-1902), World War II (1937–

1945), and the Millennium drought event (1997–2009) (Timbal et al., 2015; Deo et 

al., 2016; Ummenhofer et al., 2009; CSIRO, 2012). Particularly, the most recent 

event (Millennium drought) resulted in the lowest volume of streamflow since 1783 

(CSIRO, 2012; van Dijk et al., 2013). With that, under the high emission scenario, 

the projected seasonal soil moisture changes for the year 2090 shows a significant 

decrease predominantly in winter and spring seasons while the annual-mean decrease 

of up to 10% for the MDB region has been estimated. (Timbal et al., 2015). The 

scarcity of water resources in MDB, Australia continues to elevate and is 

exacerbated by the changing climate, rainfall variability and land-use changes 

(McAlpine et al., 2009), which makes the management of water resources more 

difficult (Timbal et al., 2015; Humphrey et al., 2016). Thus, for facilitating prudent 

strategies for water resources management and mitigation of drought impacts on 

agriculture and its repercussions, it is imperative for hydrologists, agriculturalists, 

and resource planners to develop effective modelling and prediction techniques for 

hydrological variables such as streamflow water level (SWL) and soil moisture level 

(SM).  

Robust predictive models with better accuracies could serve as suitable 

alternatives for forecasting SWL and SM. However, the foremost and critical issues 

of selecting the non-redundant (and most important) input data remains a problem of 

interest for forecasters. This is because the use of irrelevant inputs can add 

unnecessary challenges in the model execution and consequently increases the model 

complexity whilst reducing the model’s forecasting accuracy (Hejazi and Cai, 2009, 

Maier et al., 2010). 

Additionally, streamflow water level and soil moisture and the interrelated 

climatic/hydrological inputs exhibit a complex temporal behavior with non-

stationarity features (e.g., trends, seasonal variations, periodicity and jumps in time-

series) that can affect the accuracy of data-driven models (Adamowski and Chan, 

2011, Adamowski et al., 2012). Multi-resolution analysis (MRA) which can perform 

a careful assessment of the input data in terms of the predictive features it may 

contain, can be applied to ameliorate this challenge in model development. Most 

generally, discrete wavelet transformation (DWT) has been used for this purpose. 

However, DWT can have two major disadvantages, i) the issue of decimation effect 
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whereby half the wavelet coefficients are only used in subsequent transformation 

causing loss of information and ii) their dependence on the point of the 

commencement of wavelet transformation on input data (Rathinasamy et al., 2014).  

Instead, a more refined and non-decimated version known as the maximum overlap 

discrete wavelet transformation (MODWT) algorithm, can overcome these 

challenges (Renaud et al., 2002). MODWT has not been explored in forecasting of 

SWL, thus has been trialed in this study. In addition, we chose two alternative and 

improved white-noise-assisted data analysis methods called the ensemble empirical 

mode decomposition (EEMD) developed by Wu and Huang (2009) and the complete 

empirical ensemble mode decomposition with adaptive noise (CEEMDAN) (Torres 

et al., 2011). These are the newer and improved versions of the original empirical 

mode decomposition (EMD) developed by Huang et al. (1998). The advantage of 

both EEMD and CEEMDAN methods is that, in overcoming the non-stationarity and 

non-linearity problem via decomposition of the original time series, they do not 

require the prescribing of frequency bands or imposing of any particular basis 

function, making EEMD and CEEMDAN completely self-adaptive. 

Model combinations are also very uncommon in hydrological applications 

and have been overlooked in environmental applications (Baker and Ellison, 2008). 

In this research thesis, a new model combination based on “The wisdom of crowds” 

philosophy is developed. The notion is to extract the pertinent information simulated 

by the standalone expert models and generate a collective forecast. The conventional 

model combinations required simple averaging of forecasts from various models. 

However, the weaknesses of combinations based on simple averaging is that the 

overall model performance is compromised by the worst performing model(s). On 

the other hand, the committee based models approach could overcome the inherent 

drawbacks of individual standalone models, building on the aptness, and 

subsequently surpassing the individual performances (Hatampour, 2013, Barzegar et 

al., 2017). In this study, a novel artificial neural network (ANN) based ensemble 

committee of models is developed and evaluated. After employing the individual 

expert models, ANN is used to further optimize and stabilize the forecasts. 

Despite EEMD being a self-adaptive and advanced MRA utility, studies 

pertaining to forecasting only utilized single input variable. The practice is to use the 

lagged time series of the objective variable to forecast the future data (Beltran-Castro 
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et al., 2013, Jiao et al., 2016, Ouyang et al., 2016, Bai et al., 2015, Basha et al., 

2015, Seo and Kim, 2016). Yet the environmental and hydrological variables are 

driven by many influencing parameters that may have been left out. To include many 

predictor inputs, a multivariate approach to EEMD is developed and evaluated that 

has not been undertaken previously. 

Overall, this thesis intends to address issues of appropriate input selection, 

non-linearity and non-stationarity of the input data in forecasting the streamflow 

water level and soil moisture data within Murray-Darling Basin, Australia. In 

addition, a novel ensemble forecasting using committee based modelling is also 

explored with the multivariate sequential EEMD approach. 

1.3  Objectives 

The key aim of this research was to develop a set of high-precision hybrid data-

intelligent model for hydrological purposes (streamflow water level and soil 

moisture level forecasts) within the Murray-Darling Basin in the state of New South 

Wales (NSW), Australia. Future knowledge of streamflow water level and soil 

moisture is important for water resource managers and farm managers alike, in 

strategic decision-making. The models are developed to forecast across medium 

forecast horizons (monthly) and converging to the short-term horizon (weekly). To 

achieve the key aim, the objectives of the study are: 

1) To develop hybridized ANN and M5 Tree models using non-decimated 

wavelet multi-resolution utility, MODWT and iterative input selection (IIS) 

optimizer algorithms for forecasting streamflow water level at monthly 

forecast horizon. The preciseness of the hybrid models were validated with 

respect to their standalone counterparts. The article has been published in 

Atmospheric Research journal (Vol. 197, Pages 42-63). 

2) Utilize two self-adaptive multi-resolution tools (EEMD and CEEMDAN) 

hybridized extreme learning machine (ELM) and random forest models to 

forecast monthly upper and lower layer soil moisture. The EEMD and 

CEEMDAN addressed the non-linearity within the stochastic hydrological 

inputs without the need for any predefined basis functions. The performance 

of EEMD and CEEMDAN based models were compared against each other 
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and with standalone models. This has been published in the journal 

Geoderma (Vol. 330, Pages 136-161). 

3) Develop and explore a new committee of modelling approach for monthly 

upper and lower layer soil moisture forecasting. Committee of modelling is a 

model combination technique, which is uncommon in hydrological studies. 

In this study, the ANN-based committee was investigated and optimized with 

Neighborhood Component Analysis based feature selection algorithm for 

regression, fsrnca feature selection algorithm. This has been published in Soil 

& Tillage Research journal (Vol. 181, Pages 63-81). 

4) Devise a new multivariate approach to EEMD modelling to allow for 

utilization of multiple predictor inputs. This new multivariate sequential 

EEMD modelling technique has been developed and evaluated to forecast 

near-real-time (weekly) soil moisture values with ELM and multivariate 

adaptive regression splines (MARS) models. Feature optimization was 

carried out with cross-correlation function (CCF) and random forest-based 

Boruta wrapper feature selection algorithm. The manuscript is under review 

in the journal Catena. 

1.4  Thesis layout 

The schematic illustrating an overview of the research is shown in Figure 1.1. It 

clearly outlines the linkages between the factors influencing the terrestrial water 

storage, hence the need for reliable and precise forecasting tool using the available 

resources. The thesis is organized into seven chapters as follows: 

Chapter 1  presents the introductory background and the statement of problem 

pertaining to the research and presents the objectives of this study. 

Chapter 2  describes the study area, data and general methodology used in this 

study and sets the scene for the following chapters. This Chapter 

provides general viewpoints while the specific study area, data, and 

methods are presented in the respective chapters. 

Chapter 3  This chapter is presented as a published journal article in the journal, 

Atmospheric Research (DOI: 10.1016/j.atmosres.2017.06.014). It is 

devoted to the establishment of multi-resolution analysis, MODWT 

based ANN modelling approach for hydrological forecasting i.e., 

SWL. It outlines the issues with traditional approaches, model 
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development and outcomes with respect to comparative tree-based 

model (M5 Tree model). Chapter 3 addresses the first research 

objective of this study. 

Chapter 4  This chapter is presented as a published article in the journal, 

Geoderma (DOI: https://doi.org/10.1016/j.geoderma.2018.05.035). 

This chapter describes the application of advanced MRA utilities, 

EEMD and CEEMDAN in ensemble modelling using fast and 

efficient ELM modelling approach for hydrological forecasting. 

Chapter 4 is in response to the second research objective of this study 

whereby monthly upper and lower layer SM is forecasted using newly 

developed EEMD-ELM and CEEMDAN-ELM models. It outlines the 

model development and the outcomes benchmarked against 

comparative random forest models (EEMD-RF and CEEMDAN-RF). 

Chapter 5  This chapter is presented as a published journal article in the journal, 

Soil & Tillage Research (DOI: 10.1016/j.still.2018.03.021) and 

describes the application of an alternative ensemble committee of 

modelling approach for hydrological forecasting. The monthly upper 

and lower layer SM is forecasted using this innovative committee of 

models based on ANN in combination with four standalone expert 

models; 2
nd

 order Volterra, M5 Model Tree, Random Forest, and 

ELM.  It outlines the model development and performances of the 

ensemble committee with respect to standalone models. Chapter 5 

captures the third research objective of this study. 

Chapter 6  This chapter is presented as a submitted manuscript in the Catena 

journal. It presents the development of a novel multivariate sequential 

EEMD forecasting technique for hydrological forecasting. The upper 

layer SM is forecasted using multivariate sequential EEMD at a 

weekly forecast horizon with Boruta feature selection. It outlines the 

development of the novel multivariate sequential EEMD-Boruta-

ELM model and its performances with respect to a comparative 

MARS model (EEMD-Boruta-MARS) and the standalone ELM and 

MARS models. Chapter 6 addresses the fourth research objective of 

this study. 
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Chapter 7  presents the synthesis of the study with concluding remarks, 

limitations, and recommendations for future works. 

 

 

Figure 1.1 Schematic of the research thesis. 
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Chapter 2: Data and methodology 

 

This chapter provides an overview of the location of the study sites in developing the 

hybrid data-intelligent hydrological forecasting models. Different sites within the 

study region were selected to achieve each objective, which is described in detail in 

each of the chapters. The description of data used, length of data and limitations if 

any, are also presented. This chapter also introduces a brief account of methodology, 

while specific model development techniques have been described in respective 

chapters. The description of the study area is given next. This is followed by the data 

used and the general procedure used in this work for hybrid-data driven model 

development.  

2.1  Study area  

In developing the hybrid hydrological forecasting models, the region of study is the 

Murray-Darling Basin (MDB) with an area of 1,042,730 km² (14% of mainland 

Australia) (The Murray–Darling Basin Authority, 2010; Bureau of Meteorology, 

2018). The MDB is Australia’s most important hydrological basin and is regarded as 

the agricultural hub of Australia. It encompasses 67% as agricultural land (Bureau of 

Meteorology, 2018; Australian Bureau of Statistics, 2010) where diverse agricultural 

activities account for 2% of the total economic output of Australia (Australian 

Bureau of Statistics, 2014) and contribute to 1/3 of Australia’s food supply (Welsh et 

al., 2013). Additionally, agriculture is the most important industry for rural and 

interior dwellers (Campbell and Scarlett, 2014). The study is specifically focussed in 

the state of New South Wales (NSW), located on the east coast of Australia as 

illustrated in Figure 2.1a (Shaded in green). The state of NSW accounted 

for	~23%	of Australia’s agricultural production by value in the financial year 2015-

16 (Australian Bureau of Statistics, 2017). The key agricultural export commodities 

in NSW over the last 5 years were beef, vegetables, and fruit (NSW-Department of 

Industry, 2017). NSW accounted for	~ 1 4� 	of Australia's wine exports by volume 

and 38% of Australian total sheep and lamb flock size in the last financial year 

(2015-2016) (Australian Bureau of Statistics, 2017) asserting that NSW is one of the 

most significant agricultural states in Australia. 
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Figure 2.1  Map of the study region (a) the location of MDB and the state of 

NSW, with close-ups (b - e) illustrating the selected sites for 

objectives 1 to 4 respectively. 
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2.2  Data description 

A variety of data sources was utilized in developing high precision data-intelligent 

hydrological models. In a concise way, Table 2.1 describes the data used with 

respective sources and other relevant details in achieving each objective. 

Table 2.1  Details of all data used in this study.  

Objective Data used Source 
Study 

period 

Forecast 

horizon 

Specific 

study 

area 

1 

(Chapter 3) 

Predictors:  
Meteorological 

variables 

 

Scientific Information for 

Land Owners (SILO) 
(Jeffrey et al., 2001; Tozer 

et al., 2012; Beesley et al., 

2009) 
January 

1977 to 

May 2016 

Monthly 
Figure 

2.1b Target:  

Streamflow 

water level 

 

NSW Department of 

Primary Industries 
(NSW Department of 

Primary Industries-Office 

of Water, 2016) 

2 

(Chapter 4) 

Predictors:  
Antecedent 

upper and 

lower layer soil 

moisture 

 

Australian Water 

Availability Project 

(AWAP)  
(Raupach et al., 2012, 

2009) 

January 

1990–

December 

2016 

Monthly 
Figure 

2.1c 
Target:  

Upper and 

lower layer soil 

moisture 

3 

(Chapter 5) 

Predictors:  
Hydro-

meteorological 

variables 

 

Australian Water 

Availability Project 

(AWAP)  
(Raupach et al., 2012, 

2009) 

January 

1990–

December 

2016 

Monthly 
Figure 

2.1d 

Atmospheric 

Parameters 

Interim ERA European 

center for medium-range 

weather forecasting 

reanalysis (ECMWF 

reanalysis) 
(Dee et al., 2011) 

Synoptic scale 

climate mode 

indices 

Refer to Table 2.3 

Target:  

Upper and 

lower layer soil 

moisture 

 

Australian Water 

Availability Project 

(AWAP)  
(Raupach et al., 2012, 

2009) 



Prasad R.  Streamflow and Soil Moisture Forecasting (Hybrid Machine Learning Approaches) 

12 

 

4 

(Chapter 6) 

Predictors:  
Hydro-

meteorological 

variables 

 

Australian Water 

Availability Project 

(AWAP) 
(Raupach et al., 2012, 

2009) 

 

January 

2007 to 

December 

2016 

Weekly 
Figure 

2.1e 
Target:  
Upper layer 

soil moisture 

 

Particularly, in the construction of the streamflow water level hybrid 

forecasting model (Objective 1), three hydrological sites (Richmond River, Gwydir 

River, and Darling River) located within the state of NSW were selected. Since the 

hydrological stations do not simultaneously observe the meteorological parameters 

or have only recently started the monitoring of rainfall, the most appropriate and 

nearest meteorological stations corresponding to the respective hydrological stations 

were selected from a list of weather stations in NSW from the Bureau of 

Meteorology (BOM), Australia data portal: 

http://www.bom.gov.au/climate/cdo/about/sitedata.shtml. Using GPS coordinates, 

the nearest direct distances between corresponding stations were computed. Figure 

2.1b illustrates the corresponding hydrological and meteorological stations.  

In constructing of monthly soil moisture forecasting models the relative soil 

moisture data for upper (SMUL) and the lower layer (SMLL) were sourced from 

Australian Water Availability Project (AWAP) (Raupach et al., 2012, 2009). The 

upper layer soil moisture is up to a depth of 0.20 m from the surface and the lower 

layer is from 0.20 – 1.50 m depth and are characterized as surface SM and root-zone 

SM, respectively (Seneviratne et al., 2010). The usual convention is to express SM as 

a dimensionless ratio of two masses or two volumes or as a ratio of a mass per unit 

volume (Petropoulos, 2014). However, the relative SM values derived by AWAP are 

in the range of 0 to 1 computed with respect to the base climatological reference 

period that is from the year 1961 to 1990 (Raupach et al., 2009). Accordingly, the 

study period has been after 1990 for soil moisture forecasting studies. 

For Objectives 2 and 3 the study period was January 1990–December 2016 at 

monthly SM forecasting horizon. While for Objective 4, the forecasting horizon was 

weekly and the period of study was January 2007 to December 2016 since AWAP 

commenced the weekly data generation in January 2007 (Raupach et al., 2012, 
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Raupach et al., 2009). The final cut-off date was 01 January 2017 to account for final 

week overlap. The description of data from these sources is outlined as follows: 

2.2.1  Streamflow water level (SWL) - NSW Department of Primary Industries 

The monthly SWL data (in meters) were obtained from the NSW Department of 

Primary Industries (DPI) Office of Water data portal 

(http://realtimedata.water.nsw.gov.au/water.stm). The Department of Primary 

Industry – Office of Water is the organization responsible for monitoring of surface 

and groundwater resources and the development of water policy in NSW. It monitors 

the daily staff gauge readings, gas purge pressure and float well water level 

recording systems, electronic pressure sensors and telemetered digital logging 

systems at specific sites in river basins. The catchment area, mean annual rainfall 

and population statistics of the three selected river basins are shown in Table 2.2. It 

must be noted that Richmond river basin is a smaller one with high mean rainfall, 

while Darling river basin is large with relatively low mean annual rainfall. 

Table 2.2  Catchment details of the river basins.  

 
Catchment area 

(km
2
) 

Mean annual 

rainfall (mm) 
Population 

Richmond river 

basin 
6940 1525 115000 

Gwydir river basin 25930 530 26000 

Darling river basin 115880 300 30000 
 

Source: (NSW Department of Primary Industries (DPI) Office of Water, 2018) 

All data prepared by the DPI-Office of Water are quality coded during processing. 

Generally, the data were from direct gauging while some were adjusted during 

processing due to anomalies.  

 

2.2.2  Meteorological data - Scientific Information for Land Owners 

The meteorological data for neighboring hydrological sites were acquired from 

Scientific Information for Land Owners (SILO) database: 

https://www.longpaddock.qld.gov.au/silo/ppd/index.php developed by Queensland 

Department of Environment and Resource Management (Jeffrey et al., 2001; Tozer 

et al., 2012; Beesley et al., 2009). The predictor inputs comprised of monthly 
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precipitation (PCN; mm), maximum temperature (Tmax; °C), minimum temperature 

(Tmin; °C), evaporation (Evap; mm), solar radiation (Rn; MJ/m
2
) and vapour pressure 

(VP; hPa). These SILO-based meteorological data were derived from Australian 

Bureau of Meteorology’s observations and the missing values had been interpolated 

via statistical techniques (Beesley et al., 2009, Zajaczkowski et al., 2013, Tozer et 

al., 2012). The SILO data generation can briefly be stated in three steps (Beesley et 

al., 2009): 

a) The monthly rainfall climatology parameters are interpolated via a thin plate 

smoothing spline.  

b) Then ordinary kriging, which is a geo-statistical spatial estimation technique 

requiring error variance minimization, is applied to the normalized monthly 

data as above; 

c) Finally, using the relative temporal distribution generated by ordinary 

kriging, the monthly values are disaggregated to the daily values within each 

month. 

 

2.2.3  Soil moisture and hydro-meteorological data - Australian Water 

Availability Project (AWAP) 

The AWAP-based soil moisture and hydro-meteorological data are derived at 0.05° 

× 0.05° spatial resolution from a "WaterDyn" physical model (Raupach et al., 2012, 

Raupach et al., 2009). The WaterDyn physical model was developed by the 

Commonwealth Scientific and Industrial Research Organisation (CSIRO) in 

collaboration with the Australian Bureau of Meteorology (BOM) as part of the 

Australian Water Availability Project (AWAP). This model simulates the soil’s 

hydrological conditions via terrestrial water balance equation across Australian 

continent by incorporating meteorological forcing data (i.e., solar radiation, 

precipitation, and minimum and maximum daily air temperature) coupled with 

continental parameter maps (e.g., albedo, soil characteristics, seasonality of 

vegetation greenness) and generates magnitudes of soil moisture and several other 

hydrological parameters. The water balance equation calculates soil moisture as the 

sum of the water fluxes across the boundaries of the upper and the lower layer. For 

the upper layer soil moisture, the influx is precipitation while the out-fluxes include 

transpiration from this layer, soil evaporation, surface runoff, and leaching from 
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upper to lower layer. While the influx into the lower layer is the leaching from upper 

to the lower layer and the out-fluxes are from deep drainage and transpiration from 

the lower layer. 

Quality controlled daily meteorological fields for WaterDyn model are generated 

by BOM from its network of rain gauges (i.e., up to approximately 7500 gauges, 

both open and closed) and weather stations while solar irradiance data is obtained 

using geostationary satellites (Raupach et al., 2009, AWAP, 2016). The AWAP 

gridded data are created as follows (Beesley et al., 2009, Tozer et al., 2012, Jones et 

al., 2009):  

i. The observed data is decomposed into a monthly averages and the associated 

anomaly. Due to their weak associations with topography anomalies are used. 

ii. Then, using the Barnes successive correction technique the anomalies are 

interpolated. While the three-dimensional smoothing splines are utilized to 

interpolate the monthly climatological averages. 

iii. Finally, the gridded data sets are produced by multiplying the monthly 

climate average grids with the monthly anomaly grids.  

An additional variance term is also added to allow for observational or measurement 

errors. 

Limitation: The main limitation of the WaterDyn physical model is that it is 

accustomed to nowcasting, i.e., it determines the soil moisture values at the instance 

when the meteorological input data are channeled. Essentially the WaterDyn model 

is hindcasting since the meteorological data are recorded beforehand and then the 

soil moisture values are quantified. For example, the soil moisture level for the 

present month can only be determined at the end of the month after the observation 

and the accumulation of all the essential meteorological parameters are complete. 

For key decision making, however, it is imperative to have advanced knowledge or 

forecasted information of soil moisture, particularly at the local scale (e.g., at the 

farm level). The current restrictions of the WaterDyn physical model do not allow for 

forecasting, instead, the data-driven models could offer feasible local alternatives. 
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2.2.4  Atmospheric parameters - Interim ERA European center for medium-

range weather forecasting (ECMWF) reanalysis  

To achieve Objective 3, a total of 60 possible predictor inputs were collated of which 

38 input series were atmospheric parameters acquired from ERA-Interim. A 

complete list of atmospheric parameters used is provided in Chapter 5. The ERA-

Interim is a newer global atmospheric reanalysis model that commenced in 1989 and 

generates a large variety of global gridded data. It was developed by the European 

center for medium-range weather forecasting (ECMWF). The ERA-Interim produces 

3-hourly surface parameters, (describing weather, ocean-wave and land-surface 

conditions), 6-hourly upper-air parameters covering the troposphere and stratosphere 

and vertical integrals of atmospheric fluxes (Dee et al., 2011). The monthly averages 

for many of the parameters are also generated that were used in monthly forecasting 

study. Advancements in ERA-Interim in respect to its predecessor versions include 

assimilation of 12-hourly 4D-Var of the upper-air atmospheric state with a spectral 

resolution of the outer loop as T255 (∼79 km), and two successive inner loops at 

T95 (∼210 km) and T159 (∼125 km) resolutions. In addition, the ERA-interim has 

the inclusion of automated bias correction scheme in satellite radiance observations. 

The introduction of wavelet-like weighting functions for background-error 

covariance and the utilization of rain-affected radiances rather than derived rain rates 

for rainfall assimilation are further enhancements (Dee et al., 2011). Yet, 

uncertainties and biases in ERA-Interim are very difficult to quantify and a more 

robust approach with the inclusion of traditional observations are preferred. Hence, 

in this study, the ERA-interim reanalysis datasets were used in tandem with the 

observed hydro-meteorological data. 

 

2.2.5  Synoptic scale climate indices – various sources 

The monthly synoptic scale climate indices were sourced from various authentic and 

reliable databases as shown in Table 2.3 below. Among these indices, the sea surface 

temperatures (SSTs) are the most important ones as they indicate climate variability, 

while the other indices (i.e., Pacific Decadal Oscillation (PDO), the Indian Ocean 

Dipole (IOD) and El Nino Modoki Index) are contingent upon the SSTs. As a result, 

the most recent version of SST, Extended Reconstructed Sea Surface Temperature 

Version 4 (ERSST.v4) has been adopted in this study. The ERSST.v4 utilizes the up-
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to-date in-situ datasets with the precise ship and buoy bias adjustments throughout 

the entire analysis period that substantially improves its applicability (Huang et al., 

2015). 

 

Table 2.3  Sources of synoptic scale climate indices.  

Synoptic scale climate 

indices 
Acronym Source Website (URL) 

Sea Surface Temperature 

(SST) of NINO 1+2 region 
NINO 1+2 

Sea Surface 

Temperature (SST): 

Extended 

Reconstructed Sea 

Surface 

Temperature 

Version 4 

(ERSST.v4) - 

Climate Prediction 

Centre-NOAA 

(Huang et al., 2015; Liu 

et al., 2015; Henley et 

al., 2015) 

http://www.cpc.

ncep.noaa.gov/d

ata/indices/ersst

4.nino.mth.81-

10.ascii 

SST of NINO3 region NINO3 

SST of NINO4 region NINO4 

SST of NINO3.4 region NINO3.4 

Tripole Index for the 

Interdecadal Pacific 

Oscillation 

TPI (IPO) 

Dipole Mode Index 

(Previously known as IOD) 

(Saji et al., 1999; Abram et al., 

2008) 

DMI Japan Agency for 

Marine-Earth 

Science and 

Technology 

(JAMSTEC) 

http://www.jams

tec.go.jp/frcgc/r

esearch/d1/iod/

DATA/emi.mon

thly.txt 
El Nino Modoki Index 

(Taschetto and England, 2009; 

Ashok et al., 2007) 

EMI 

Pacific Decadal Oscillation 

(Newman et al., 2016) 
PDO 

Joint Institute of the 

Study of 

Atmosphere and 

Ocean (JISAO) 

http://research.ji

sao.washington.

edu/pdo/PDO.lat

est 

Southern Oscillation Index 

(Abawi et al., 2000) 
SOI 

Bureau of 

Meteorology –

Australia 

ftp://ftp.bom.go

v.au/anon/home/

ncc/www/sco/so

i/soiplaintext.ht

ml 

Southern Annular Mode 

Index 

(Visbeck, 2009; Ho et al., 2012) 

SAM 

Natural 

Environment 

Research 

Council (NERC) 

http://www.nerc

-

bas.ac.uk/public/

icd/gjma/newsa

m.1957.2007.txt 
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It must be noted that for Objective 2 (Chapter 4) monthly soil moisture was 

forecasted using only historic upper and lower SM time series, while for Objective 3 

(in Chapter 5) a total of sixty potential predictor inputs were collated and then a 

robust feature selection was employed to determine the determine the best inputs. 

The initial predicament was a collation of the same set of input hydro-meteorological 

variables for all seven sites as in Chapter 4 since the notion was to have the same 

study sites. Yet, these historic data were not consistently available for all seven sites. 

While accounting for the limitations on the consistent availability of data, a total of 

sixty input variables were pooled for four study sites as presented in Chapter 5 

(Figure 2.1 c-d). 

 

2.3 General methodology 

Prior to model development, data quality checking phase is necessary. A calendar 

averaging technique was applied to replace all missing data during this phase. The 

hydro-meteorological data and the interrelated atmospheric parameters, as well as 

the climatic indices, naturally display stochastic behavior. In addition, the inputs are 

in the different set of units or are dimensionless. As a result, appropriate scaling or 

normalization is required to avoid the dominance of inputs with large numeric ranges 

that in turn may undermine the effects of lower range values. Normalization also 

brings the data to a common scale. 

Therefore, all predictor inputs and the target were normalized to the range of 

zero and one using the following relation: 


��
� =
������

���������
                 (1) 

where 
��
� is the normalized value of the data 
 which are either inputs or the 

target values, 
��� is the maximum value of 
, and 
��� is the minimum magnitude 

of 
. 

In order to get a robust modelling and forecasting approaches in emulating 

streamflow water level and soil moisture, a variety of forecasting models are 

considered for an evaluation of their preciseness. The models range from the well-

known artificial neural network (ANN), M5 Model Tree, 2
nd

 order Volterra, random 

forest (RF), and multivariate adaptive regression splines (MARS), to the more 

computationally efficient extreme learning machine (ELM) algorithms are adopted. 



Prasad R.  Streamflow and Soil Moisture Forecasting (Hybrid Machine Learning Approaches) 

19 

 

The broad classification of the modelling technique into different categories is 

illustrated in Figure 2.2. 

The second order Volterra is a mathematical rule-based algorithm developed 

on the basis of Taylor series (Maheswaran and Khosa, 2012, 2015). The M5 Model 

tree and random forest are regression tree based algorithms. However, the main 

difference is that the M5 Tree model is based on a single regression tree while the 

RF model uses an ensemble of regression trees with bootstrap-aggregation technique 

(Breiman, 2001; Liaw and Wiener, 2002). The MARS model is a linear regression 

model with basis functions for each spline (Friedman, 1991). In addition, the ANN 

and ELM models are neuronal algorithms (Deo and Şahin, 2015; Yang et al., 2017; 

Huang, 2015). The main difference is that ANN model is a multiple layer perceptron 

type while the ELM model is a single layer feed-forward network (SLFN) type 

algorithm.  ELM has added advantages including being fast and computationally 

efficient with a better universal approximation or generalization capability in many 

forecasting problems (Huang, 2015; Huang, et al., 2015; Tang et al., 2016; 

Mouatadid and Adamowski, 2016). 

 

Figure 2.2 Categories of data intelligent models used in this research thesis. 
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For monthly SWL forecasting (Chapter 3), the ANN and M5 Model Tree 

models were utilized. In Chapter 4 (monthly SM forecasting with antecedent SM as 

inputs), ELM and random forest models were utilized. In Chapter 5 (monthly SM 

forecasting with multiple inputs), 2
nd

 order Volterra, M5 Model Tree, random forest 

(RF) and ELM models were utilized with ANN based committee of models being 

developed. While in Chapter 6 (weekly SM forecasting with multiple inputs) the 

ELM and MARS models were adopted. 

Data pre-processing via proper multi-resolution analysis tool is necessary for 

models to handle the non-stationarity features within the inputs (Adamowski et al., 

2012, Adamowski and Chan, 2011, Wang et al., 2017, Deo et al., 2017). Hence, 

hybridized models with advanced non-decimated wavelet multi-resolution utility 

(MODWT) (Chapter 3), two self-adaptive multi-resolution tools including ensemble 

empirical mode decomposition (EEMD) (Wu and Huang, 2009) and complete 

empirical ensemble mode decomposition with adaptive noise (CEEMDAN) (Torres 

et al., 2011) are adopted (Chapter 4). In addition, new approaches are developed and 

explored including a committee of models (Chapter 5) and a multivariate sequential 

EEMD modelling approach (Chapter 6). 

Appropriate input selection is imperative not only for input dimension reduction 

but also to improve the model performances. The optimization by means of feature 

selection approaches has its own advantages and disadvantages and therefore a 

number of algorithms were explored including the extra trees based iterative input 

selection (IIS) (Chapter 3), the partial-auto correlation function (PACF) (Chapter 4), 

Neighborhood Component Analysis (NCA) based feature selection algorithm for 

regression (fsrnca) (Chapter 5), and cross-correlation function (CCF) together with 

random forest driven Boruta wrapper-based algorithm (Chapter 6). In addition to the 

standalone approaches, the specific hybrid models developed in this study include: 

1. IIS-W-ANN, IIS-W-M5 Tree, IIS-ANN and IIS-M5 Tree for monthly SWL 

forecasting. IIS was utilized for feature optimization with MODWT for 

addressing non-stationarity. 

2. EEMD-ELM, EEMD-RF, CEEMDAN-ELM, CEEMDAN-RF for monthly 

SMUL and SMLL forecasting. PACF was utilized for determination of 

significant lags while EEMD and CEEMDAN were the MRA utilities 

addressing the non-stationarity in the input data. 
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3. ANN-CoM for monthly SMUL and SMLL forecasting with ELM, M5 Model 

Tree, RF and 2
nd

 order Volterra as the underlying expert models. For feature 

optimization, two-phase feature selection approach via fsrnca followed by 

basic ELM were utilized. 

4. Multivariate sequential EEMD based models to address non-stationarity 

within multiple predictor inputs in EEMD transformation was developed. 

Feature optimization was achieved using the CCF and Boruta input selection 

leading to hybridized multivariate sequential EEMD-Boruta-ELM and 

multivariate sequential EEMD-Boruta-MARS models. 

For model evaluations, a diverse range of statistical metrics were used including 

the Pearson’s correlation coefficient (r), root-mean-square-error (RMSE), mean 

absolute error (MAE), Willmott's Index (WI), Nash–Sutcliffe Efficiency (ENS), and 

the Legates-McCabe’s index (L). In addition to the use of numerical assessment 

metrics, diagnostic plots including box plots, scatter diagram, histogram, time series 

plot, polar plot and Taylor plots are also utilized for a robust evaluation. Relative 

measures (i.e., relative root-mean-square-error (RRMSE), and mean absolute 

percentage error (MAPE)) are also used for model comparisons at geographically 

distinct sites. 

The mathematical realizations of each model, feature optimization techniques, 

multi-resolution analysis tools, and the model evaluation metric, as well as the 

specific model development procedures, are described in the respective chapters.  
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Chapter 3: Input selection and 

performance optimization of ANN-based 

streamflow forecasts in the drought-prone 

Murray-Darling Basin region using IIS 

and MODWT algorithm 

 

Foreword  

This chapter is an exact copy of the published article in Atmospheric Research 

journal (Vol. 197, Pages 42-63).  

It describes the hybridization of the widely used neuronal-based artificial neural 

network and a Cartesian and regression tree based M5 model tree for streamflow 

water level forecasting. Commonly, the discrete wavelet transformation (DWT) is 

applied in hydro-meteorological forecasting, however, the main drawback is the loss 

of information or the decimation effect. Hence, the classical models are hybridized 

with the advanced and non-decimated wavelet transformation, i.e., maximum 

overlap discrete wavelet transformation (MODWT). The MODWT transformation is 

able to extract relevant information in time-frequency domain without any loss of 

information. In addition, an extra trees based iterative input selection (IIS) algorithm 

is utilized to further optimize the model performances.  

The newly developed hybrid models IIS-W-ANN is evaluated against the 

comparative IIS-W-M5 Tree, the IIS-based models (IIS-ANN and IIS-M5 Tree) and 

the standalone ANN and M5 model tree in forecasting of monthly streamflow water 

level at three hydrological sites within drought-prone Murray-Darling Basin (MDB), 

Australia using meteorological data as predictor inputs. 
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A B S T R A C T

Forecasting streamflow is vital for strategically planning, utilizing and redistributing water resources. In this
paper, a wavelet-hybrid artificial neural network (ANN) model integrated with iterative input selection (IIS)
algorithm (IIS-W-ANN) is evaluated for its statistical preciseness in forecasting monthly streamflow, and it is
then benchmarked against M5 Tree model. To develop hybrid IIS-W-ANN model, a global predictor matrix is
constructed for three local hydrological sites (Richmond, Gwydir, and Darling River) in Australia's agricultural
(Murray-Darling) Basin. Model inputs comprised of statistically significant lagged combination of streamflow
water level, are supplemented by meteorological data (i.e., precipitation, maximum and minimum temperature,
mean solar radiation, vapor pressure and evaporation) as the potential model inputs. To establish robust fore-
casting models, iterative input selection (IIS) algorithm is applied to screen the best data from the predictor
matrix and is integrated with the non-decimated maximum overlap discrete wavelet transform (MODWT) ap-
plied on the IIS-selected variables. This resolved the frequencies contained in predictor data while constructing a
wavelet-hybrid (i.e., IIS-W-ANN and IIS-W-M5 Tree) model. Forecasting ability of IIS-W-ANN is evaluated via
correlation coefficient (r), Willmott's Index (WI), Nash–Sutcliffe Efficiency (ENS), root-mean-square-error
(RMSE), and mean absolute error (MAE), including the percentage RMSE and MAE. While ANN models are seen
to outperform M5 Tree executed for all hydrological sites, the IIS variable selector was efficient in determining
the appropriate predictors, as stipulated by the better performance of the IIS coupled (ANN and M5 Tree) models
relative to the models without IIS. When IIS-coupled models are integrated with MODWT, the wavelet-hybrid
IIS-W-ANN and IIS-W-M5 Tree are seen to attain significantly accurate performance relative to their standalone
counterparts. Importantly, IIS-W-ANN model accuracy outweighs IIS-ANN, as evidenced by a larger r and WI (by
7.5% and 3.8%, respectively) and a lower RMSE (by 21.3%). In comparison to the IIS-W-M5 Tree model, IIS-W-
ANN model yielded larger values of WI = 0.936–0.979 and ENS = 0.770–0.920. Correspondingly, the errors
(RMSE and MAE) ranged from 0.162–0.487 m and 0.139–0.390 m, respectively, with relative errors, RRMSE=
(15.65–21.00) % and MAPE = (14.79–20.78) %. Distinct geographic signature is evident where the most and
least accurately forecasted streamflow data is attained for the Gwydir and Darling River, respectively.
Conclusively, this study advocates the efficacy of iterative input selection, allowing the proper screening of
model predictors, and subsequently, its integration with MODWT resulting in enhanced performance of the
models applied in streamflow forecasting.

1. Introduction

Since the 1950s, increased frequency and intensity of extreme hy-
drological events (including longer-lasting and hotter drought and
catastrophic floods) have been experienced in many parts of the World
(Deo et al., 2015b; IPCC, 2014). This calamity has been coupled with
significant hydrological imbalance over local, regional and continental

scales that has impacted severely the agriculture, energy, recreation,
domestic and industrial water supply and health sector. To develop
robust disaster management strategies, including adaptive and mitiga-
tion measures for climate extreme, forecasting models for hydrological
variables (e.g., streamflow water level) are extremely crucial. Fore-
casting models are beneficial for decision-makers and resource man-
agers to construct a broader understanding of the future possibility of
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natural disasters (e.g. drought). Optimized forecasts are thus very im-
portant for facilitating prudent and strategic decisions by stakeholders
in socio-economic sectors (Mehr et al., 2014; Mishra and Singh, 2011;
Ni et al., 2010).

Numerical quantification of future streamflow dynamics can be
undertaken by two categories of forecasting models: physically-based or
dynamical models (e.g., Global Circulation Model) and statistically-
based, or data driven models. Physically-based models are governed by
the laws of physics where mathematical equations are applied to ana-
lyze the associations of conservation of mass, energy and momentum
laws to the atmospheric and oceanic dynamics incorporated with re-
levant forcing (i.e., initial conditions) between several hydro-meteor-
ological properties (CSIRO and Bureau of Meteorology, 2015). For in-
stance, the Australian Bureau of Meteorology (BOM) utilizes Predictive
Ocean Atmosphere Model for Australia (POAMA) based on a coupled
ocean-atmosphere climate model (Cottrill et al., 2012; Zhao and
Hendon, 2009) taking into account large-scale synoptic features like the
progression of high and low pressure systems, large-scale oceanic cur-
rents and overturning in weather. It should be noted that, despite
capturing the dynamics of physical processes at a broad range of spatio-
temporal scales, physically-based models are generally reliant on very
good quality and accurate input data that must be able to provide the
radiative or other atmospheric forcing to execute the forecasting pro-
cess. In forecasting streamflow, physical models would require data and
mathematical relationships of additional determinants such as soil
texture, watershed, and river network. Notwithstanding these, sophis-
ticated programs are needed for implementation of differential equa-
tions, and consequently, they require rigorous optimization schemes
compared to statistical or data-driven models (Abbot and Marohasy,
2012, 2014; Jain and Srinivasulu, 2004; Sehgal et al., 2014). On the
other hand, due to the relative simplicity in their design and overall
usage, data-driven models are able to be run by computational algo-
rithms where the only requirement is historical data. Such models are
gaining a lot of research attention in the hydrological simulation area
(Dayal et al., 2016b; Deo and Şahin, 2015a; Deo et al., 2016a; Deo
et al., 2017b; Deo and Sahin, 2016; Deo and Şahin, 2015b; Deo et al.,
2016c; Humphrey et al., 2016; Rathinasamy et al., 2013; Taormina and
Chau, 2015a; Yaseen et al., 2016a; Yaseen et al., 2016b). This approach
has been popular in streamflow forecasting, particularly tailored to
local hydrological forecasting, and so, it is attractive for decision-
making in agriculture, crop management, irrigation, water pricing, al-
location, and policy formulation.

Since data-driven models are viable tools for streamflow forecasting
(Deo and Şahin, 2015a; Humphrey et al., 2016; Mehr et al., 2014;
Onyari and Ilunga, 2013; Yaseen et al., 2016b), in this paper we apply
an artificial neural network (ANN) and M5 Model Tree algorithm. Mi-
micking the neural structure of the brain, ANNs create a good ap-
proximation of unseen data through functional relationships between
the past and future data. Due to the stochastic nature of the streamflow
data, the use of the ANN model for prediction purposes is ideal as this
model has the ability to capture complex and nonlinear relationship
between predictors and the predictand (ASCE Task Committee on
Application of ANN in Hydrology, 2000a; Xiong and O'Connor, 2002;
Yilmaz et al., 2011). ANN models offer many advantages including: (1)
the modelling is non-parametric so the predictor data used does not
have to follow a Gaussian distribution; (2) the predictor data used may
possess irregular seasonal variations but these can be analysed through
ANN's non-linear modelling ability; (3) the ANN model is a nonlinear
model and so, it performs well even when limited predictor data are
available; (4) the ANN model is very robust and is able to deal with
outliers and noisy input variables (Jain et al., 1999). Consequently,
ANNs have been utilized in diverse hydrological catchments; for ex-
ample, in Bangladesh (Liong et al., 2000; Liong and Sivapragasam,
2002); United Kingdom (Cameron et al., 2002); Vietnam (Phien and
Kha, 2003); Italy (Alvisi et al., 2006; Campolo et al., 2003), Brazil
(Pereira Filho and dos Santos, 2006) and Australia (Dayal et al., 2016a,

b; Deo and Sahin, 2016; Deo et al., 2016c). However, an evaluation of
ANN model against an alternative, M5 Model Tree (Deo et al., 2017a;
Deo et al., 2017b) is also an interesting research endeavor since the
latter (non-neural network) model is a hierarchical modular algorithm
integrating classification and regression approaches. M5 Model Tree is
built on assumptions that the dependency between predictors and
predictand is approximated on smaller sub-domains encompassing a
feature extraction platform (Solomatine and Xue, 2004). In the area of
streamflow forecasting, M5 Model Tree model was used in India
(Bhattacharya and Solomatine, 2003; Bhattacharya and Solomatine,
2005; Londhe and Dixit, 2012); Italy (Solomatine and Dulal, 2003;
Solomatine and Siek, 2004); China (Solomatine and Xue, 2004); Nepal
(Solomatine and Siek, 2004); Turkey (Sattari et al., 2013) and Africa
(Onyari and Ilunga, 2013). However, to the best of the authors'
knowledge, a comparison of ANN with M5 Tree in the present drought-
prone region has not been undertaken.

Despite the ANN model's widespread use, pertinent issues of vari-
able selection have not been addressed adequately with several works
demonstrating the need to tackle this issue in model construction step
(Abbot and Marohasy, 2012, 2014; Galelli and Castelletti, 2013b;
Galelli et al., 2014; Hejazi and Cai, 2009; López et al., 2005; Quilty
et al., 2016; Taormina and Chau, 2015b). To model a predictand from
many exploratory variables, a high degree of uncertainty exists as to the
best choice of the predictor candidates (George, 2000). Undoubtedly,
irrelevant (or reductant) inputs are likely to worsen the model's un-
derlying complexity (Hejazi and Cai, 2009; Maier et al., 2010) and
trigger poor performance including ambiguity in model comparison
(Maier and Dandy, 2000; Maier et al., 2010). By contrast, a set of
carefully selected predictors is likely to ease the model's training pro-
cess, increase the physical interpretability and provide a better under-
standing of the dynamics of the system that is modelled (Bowden et al.,
2005). In spite of this, many studies that utilized ANNs and other data-
driven models (e.g., (Alvisi et al., 2006; Chau, 2006, 2007; Deo and
Şahin, 2016; Liong et al., 2000; Liong and Sivapragasam, 2002; Phien
and Kha, 2003)) did not incorporate input selection algorithms with
their primary model.

In literature, parsimonious and interpretable models have been
constructed via input selection methods, which include, but are not
limited to, cross-correlation and partial autocorrelations, ‘hydrological
expertise’ (Campolo et al., 2003; Deo et al., 2017a; Deo et al., 2017b;
Deo and Sahin, 2017; Deo and Şahin, 2016; Deo et al., 2016c), average
mutual information (Bhattacharya and Solomatine, 2005), bootstrap-
ranked mutual information (Quilty et al., 2016) and minimum Re-
dundancy Maximum Relevancy (Onyari and Ilunga, 2013). A recent
study of Galelli and Castelletti (2013a) proposed an iterative input se-
lection (IIS) as an alternative method, emerging as a novel ancillary
data screening tool. Importantly, the IIS procedure can enable modelers
to determine predictors from a global pool (via a tree-based algorithm),
by acting as a safeguard for model's robustness against data redundancy
and consequently the poor performance. In fact, a study on the eva-
luation of IIS procedure with partial mutual information, partial cor-
relation, and Genetic Algorithm-ANN hailed the IIS as a better tool
(Galelli et al., 2014). The results showed that IIS handled the persis-
tence of collinearity amongst inputs and the potentially non-Gaussian,
non-linear and interdependency factors. The veracity of IIS was de-
monstrated by Galelli and Castelletti (2013a) for a streamflow fore-
casting study in Ticino River (Switzerland). However, application of IIS
in streamflow forecasting in the present study region is yet to be un-
dertaken.

In spite of the skills of data-driven models to forecast a predictand
by an analysis of non-linear patterns, the presence of non-stationarities
in input data are likely to degrade a model's preciseness (Adamowski
and Chan, 2011; Adamowski et al., 2012). This is because streamflow
and the interrelated hydro-meteorological inputs are likely to exhibit
complex temporal behavior with non-stationarity features (i.e., trends,
seasonality, periodicity or jumps). To satisfy a search for a robust
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model, discrete wavelet transformation (DWT) has been adopted as a
multi-resolution data pre-processing tool (Deo et al., 2016c). DWT itself
exhibits challenges by virtue of the decimation effect induced in the
wavelet coefficients. It generates half the wavelet coefficients of the
detailed signal at the current level, while the other half of the smooth
version are recursively processed by high pass and low pass filters,
primarily at coarser resolution (Rathinasamy et al., 2014). The chal-
lenge, of course, is that the number of wavelet coefficients is halved
with each shift of the analyzing mother wavelet. This issue is poten-
tially addressed by à trous wavelet filter (Shensa, 1992). The alternative
tool used in this study, non-decimated DWT (i.e., MODWT) involves
non-decimation, that is able to retain the down sampled values at the
various decomposition level (Cornish et al., 2005; Dghais and Ismail,
2013; Percival et al., 2011; Percival and Walden, 2000) while resolving
the frequencies in the predictor (Steinbuch and Molengraft, 2005).
Subsequently, the issue of decimation is addressed by MODWT where
wavelet components at different timescales are of the same length
(Maheswaran and Khosa, 2013; Rathinasamy et al., 2013; Rathinasamy
et al., 2014). In spite of the use of MODWT in some studies
(Maheswaran and Khosa, 2012; Rathinasamy et al., 2013), this method
is yet to be tested for streamflow forecasting.

In this paper we develop an ANN model coupled with both, the
iterative input selection (as a variable screening tool) integrated with
non-decimated discrete wavelet transform (MODWT) algorithm (as a
model's performance enhancement tool) in the drought-prone,
Australia's agricultural (Murray-Darling) Basin where drought fosters
economic repercussions (Helman, 2009). Previous studies have tested
an ANN model for streamflow forecasting, such as those in Talle-
budgera catchment (Gold Coast) (Fazel et al., 2014) and eastern
Queensland (Deo and Sahin, 2016). Other applications were those in
Ellen Brook River (Western Australia) where an ANN and wavelet-ANN
was implemented (Badrzadeh et al., 2016), and in South Australia
where an integrated hydrological (GR4J conceptual R-R model) and
ANN was trialed (Humphrey et al., 2016).

The goal of our paper is to evaluate the utility of ANN and M5 Model
Tree for streamflow forecasting in Australia's drought-prone (Murray-
Darling) Basin. The novelty is to integrate iterative input selection (IIS)
procedure with the non-decimated maximum overlap discrete wavelet
transform (MODWT) algorithm using ANN as a primary model. Thus
the main objectives of this paper are: (1) to utilize the IIS scheme, and
enable a screening of the best set of predictors in order to attain a
parsimonious, high-performance model, (2) to apply MODWT so as to
construct a hybrid IIS-W-ANN model and compare its performance with
a standalone ANN model, and (3) to evaluate the hybrid IIS-W-ANN
model in respect to the IIS-W-M5 Model Tree.

2. Theory of machine learning algorithm

2.1. Artificial neural network

Since McCulloch and Pitts (1943) pioneered the idea of neural
networks, utilization of ANN models in forecasting stochastic variables
(e.g., streamflow, evaporation, drought, energy) has elevated (Deo and
Sahin, 2016; Deo and Sahin, 2017; Deo and Şahin, 2015a, b; Deo et al.,
2016c; Jain et al., 1999; Moustris et al., 2011). Generally, multilayer
perceptron type ANN model comprises of three or more neuronal layers
(Fig. 1a). Data is introduced through the input layer, while the output
layer generating the forecasts corresponding to the features within the
input(s), and one or more intermediate or hidden layers act as a plat-
form for feature extraction. Nodes in the preceding and following layers
are interconnected by weights such that the receiving node sums the
weights from the preceding layer, add a bias and drives the result
through a transfer function generating an output (Deo and Şahin,
2015a).

A typical ANN algorithm is written as (Deo and Şahin, 2015a, 2016;
Kim and Valdés, 2003):
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with xi(t) = predictor variable(s) in discrete time space t selected using
input selection algorithm, y (x) = forecasted streamflow in test set,
L = hidden neurons determined iteratively, wj (t) = weight that con-
nects the ith neuron in the input layer, b = neuronal bias and F(.) is the
hidden transfer function.

ANN is a black-box and does not identify the training algorithm
explicitly without a model identification process. Hence modelers trial
several algorithms to attain an optimal model (Deo and Şahin, 2015a).
Two MATLAB-based algorithms, used in this paper, are based on the
quasi-Newton method (trainlm and trainbfg) (Huang, 1970). Both Le-
venberg-Marquardt (LM) (trainlm) and Broyden-Fletcher-Goldfarb-
Shanno (BFGS) (trainbfg) (Dennis and Schnabel, 1996; Marquardt,
1963) minimize the mean square error (HariKumar et al., 2009). While
LM is one of the fastest methods, BFGS uses Newton's method based on
a hill-climbing optimization approach, seeking a stationary point (twice
continuously differentiable) function. This algorithm has good perfor-
mance for non-smooth optimizations (Avriel, 2003) where the Hessian
matrix is not evaluated directly but instead it is approximated by rank-
one updates specified by the gradient evaluation.

ANN models must be set appropriate architectures via hidden
transfer and output layer functions. Normally, logarithmic sigmoid,
tangent sigmoid and linear functions are applied (Deo and Sahin, 2016;
Deo and Sahin, 2017; Deo and Şahin, 2015a; Vogl et al., 1988):
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During the learning phase, ANN is able to construct nonlinear re-
lationships between inputs and output where the weights and biases
minimize the objective function to yield the smallest mean squared
error (MSE):
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Note that Tp and Op are, respectively, the targeted and output values
for the pth data point and N = total number of datum points.

As a safety measure, an early stopping criterion of the validation
phase must be applied where MSE is monitored at each training and
validation iteration and the training process is normally stopped with
weights and biases derived before reaching the convergence. That can
help prevent overfitting of the data (Rahimikhoob, 2014). Finally, the
performance evaluation on the new (or unseen) data set is undertaken
in the testing phase.

2.2. M5 model tree

In this paper, we evaluated ANN model's ability to forecast
streamflow in respect to an M5 Model Tree. M5 Model Tree, pioneered
by Quinlan (1992), is a hierarchical model with linear regression
functions at the leaves to deal with continuous-class learning problems.
Training is facilitated in two distinct phases: growing that commences
with one node and recursively splits the input/output data into subsets/
subspaces and a local specialized linear regression model is built within
each subspace.

Fig. 1(b) plots the hierarchical display and also illustrates the cor-
responding splitting of the learning space. Training data (T) are split at
nodes using ‘divide-and-conquer’ lemma where datum points are asso-
ciated with a leaf or a test/split criterion to a split data set with a goal to
minimize the intra-subset variation in the output variable's values down
at each branch. The attribute that maximizes the expected error re-
duction/standard deviation reduction (SDR) is selected for splitting at
the node. SDR is calculated as follows (Bhattacharya and Solomatine,
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2005; Solomatine and Xue, 2004; Witten et al., 2011):

∑= − ×SDR sd T T
T

( ) | |
| |

sd(T)
i

i
i (4)

Here, T1, T2 … are the data sets that result from splitting the node,
and sd (T) is the standard deviation of the class value. In the model
optimization phase, the splitting process will cease when the class value
of the instance reaching the node varies slightly which in this study,
was 5%, or only a few splitting cases remained.

During the pruning phase, as long as the expected estimated error
decreases, M5 Model Tree is pruned to prevent overfitting of data.
Smoothing is then carried out to eliminate the sharp discontinuities
resulting from a combination of multiple piece-wise linear regression
functions, which in turn improves the forecasting accuracy (Wang and
Witten, 1997; Witten et al., 2011).

2.3. Maximum overlap discrete wavelet transform

The premise of integrating an ANN with discrete wavelet transform
is to generate a set of detailed frequencies in the predictor data (i.e.,
localized, transient, abrupt or stochastic phenomena) at various scales.
Although discrete wavelet transform (DWT) is popular in wavelet-
conjunction models, it has drawbacks such as the decimation effect that
potentially forces loss of information in model training process and a
consequent induction of bias in the forecasts (Rathinasamy et al.,
2013). Ambiguity may also arise for the exact point of commencement
of wavelet decomposition where the analyzing wavelet function is to be
applied (Percival and Walden, 2000).

In this paper, MODWT (rather than conventional DWT), as proposed
by Percival and Walden (2000), is adopted to address the decimation
effect, allowing the same number of wavelets and scaling coefficients as

a)

b)

Fig. 1. Illustration of forecasting modelling frameworks. (a) Multilayer feedforward Neural Network Architecture (Details of input variables are provided in Table 1 with hidden neurons
were successively increased from 1 to 40). b) The architecture of M5 Tree Model. (Hierarchical display and the corresponding input space splits with linear regression models for each sub-
space).
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the observations at every level of the transform. In MODWT, the com-
mencement point is not likely to influence the outcome of the decom-
posed data and the MODWT method is non-orthonormal, redundant
and can be applied to all sample sizes (Cornish et al., 2005; Dghais and
Ismail, 2013; Percival et al., 2011; Percival and Walden, 2000).

Basically, MODWT has the ability to yield wavelet coefficients with
high and low pass filters applied to the input data. In matrix notation
form, the transformation of an input time series vector denoted as ∼X
having N number of samples is given by (Percival and Walden, 2000):

= ∼∼M XT (5)

where T represents transformation matrix of dimension (J0 + 1)
N × N, ∼M is a vector containing the MODWT wavelet and scaling
coefficients with (J0 + 1)N dimension, where J0 is the decomposition
level of wavelet coefficients (Percival and Guttorp, 1994). Multi-re-
solution analysis or wavelet-based additive decomposition is obtained
via a synthesis equation written as (Percival et al., 2011):
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1 0
0
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where ∼Dj and S~J0are N-dimensional vectors having jth level detail and
J0th approximation, respectively. For more details on the MODWT al-
gorithm, readers can refer to the early works of Percival and Walden
(2000) and also other recent papers (Maheswaran and Khosa, 2013;
Rathinasamy et al., 2013; Rathinasamy et al., 2014) for usage in hy-
drology.

2.4. Iterative Input Selection (IIS)

IIS algorithm, adopted as input selection tool, executes in three
phases (Galelli and Castelletti, 2013a). During the input ranking (IR)
phase, the most significant inputs are selected in a forward selection
method, however, the contribution of each input in explaining the
output could be concealed due to the presence of several possibly re-
dundant variables. The second phase is then applied to the predictor
data, by adopting a Single Input Single Output (SISO) approach in order

to overcome this potential issue where each of the first p-ranked vari-
ables is assessed independently through the identification of respective
p-SISO models. The best-performing ones are selected (set p′). The third
process in the IIS procedure is a Multiple Input Single Output (MISO)
phase, which is applied to minimize the overfitting of the data where
the prescribed screening model aims to assess the effectiveness of each
input matrix in forecasting the output data. This successively adds the
most significant ones from p′, based on the coefficient of determination
(R2). To improve feature selections, the IIS algorithm executes a k-fold
cross-validation and searches for optimal features when the R2 value of
the MISO model starts to either decrease or exhibit no significant im-
provement, leading to a termination of the algorithm. In this process,
the IR and the model building algorithms are based on extremely ran-
domized trees, as proposed by Geurts et al. (2006). In this paper, the
MATLAB script for the IIS was used to screen the best predictors were
from http://ivs4em.deib.polimi.it/. For more details on the IIS method,
readers can consult the work of Galelli and Castelletti (2013a).

3. Materials and methodology

3.1. Study area and hydrological data

The present study area is located in New South Wales (NSW) within
Australia's primary agricultural hub (i.e., Murray-Darling Basin). To
construct the forecasting models, monthly streamflow water level
(SWL) data were obtained from NSW Department of Primary Industries
Data Portal (http://realtimedata.water.nsw.gov.au/water.stm), for hy-
drological sites located at Richmond, Gwydir and Darling River. To
construct a large set of predictor matrix, supplementary predictor data
for neighboring meteorological sites were also acquired from the
Scientific Information for Land Owners (SILO) Portal developed by
Queensland Department of Environment and Resource Management
(Jeffrey et al., 2001). This data comprised of monthly precipitation,
maximum and minimum temperature, evaporation, mean solar radia-
tion and vapor pressure for the period January 1977 to May 2016.
Table 1 shows a summary of sites and Fig. 2 plots a geographic map.

Table 1
Geographical and climate statistics of hydrological and meteorological stations utilized in this study.

Site Name Type Location Direct distance
between
Hyd. &Met.
station (km)

Primary
variables

Acronym Annual climatic statistics (1977–2016)

Longitude (°E) Latitude (°S) Elevation (m) Min. Max. Mean Skewness Kurtosis

1 Richmond
River
(Casino)

Hyd. 153.06 28.86 30.60 26.44 Streamflow
water level

SWL (m) 0.72 1.18 0.95 0.05 1.43

Coraki (Union
st)

Met. 153.29 28.99 6.00 Precipitation P (mm) 42.56 169.59 106.91 −0.14 1.69
Max. temp Tmax (°C) 20.04 29.13 25.12 −0.35 1.70
Min. temp Tmin°C 8.39 19.73 14.50 −0.16 1.57
Evaporation Evap (mm) 69.38 184.82 129.83 −0.15 1.66
Solar radiation Rn (MJm−2) 11.35 22.44 17.73 −0.34 1.63
Vapour
pressure

VP (hPa) 11.58 23.31 17.49 −0.01 1.55

2 Gwydir River
(Pinegrove)

Hyd. 150.63 29.89 324.02 18.22 SWL 0.81 1.56 1.05 0.86 2.64

Bingara
(Keera)

Met. 150.78 29.99 333.00 P 35.37 93.68 58.84 0.57 1.82
Tmax 16.89 32.23 25.16 −0.21 1.59
Tmin 1.77 17.30 9.68 −0.05 1.50
Evap 59.06 236.11 148.60 −0.07 1.58
Rn 11.01 24.97 18.92 −0.33 1.61
VP 8.62 18.23 13.26 0.10 1.60

3 Darling River
(Menindee)

Hyd. 142.38 32.44 51.14 5.80 SWL 1.77 2.44 2.11 −0.3 1.93

Menindee
Post Office

Met. 142.42 32.39 61.00 P 18.12 36.44 22.47 2.11 6.93
Tmax 17.04 35.02 26.27 −0.08 1.57
Tmin 4.66 19.37 11.94 0.05 1.55
Evap 60.53 349.82 194.30 0.10 1.58
Rn 9.95 27.32 19.39 −0.19 1.55
VP 9.26 16.25 12.40 0.28 1.85
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The shortest distance between meteorological and hydrological stations
was 5.80 km while the furthest distance was 26.44 km. The site selec-
tion criteria was based on the agricultural surface water consumption
and hectares (ha) of land used for agriculture within the vicinity of
these selected sites as per the statistical data from Australian Bureau of
Statistics. In the vicinity of Darling River station (Site 3), on an average,
about 18,700–38,600 ha of land area is used for agricultural purposes
while agricultural surface water consumption is 13–52 Giga Litres (GL).
At Gwydir River station (Site 2), on an average 600–3700 ha of land
area is being used for agricultural holding and consumes on average
13–52 GL of surface water for agricultural purposes. (Australian Bureau
of Statistics, 2008). The Site 1, Richmond River (outside MDB) has been
selected for a comparison of results.

During quality checking procedure, all missing data were replaced
using respective calendar averaged values deduced from the entire
period of study. As per Table 2, the amount of missing streamflow water
level data were small (i.e., 1.27%, 1.90% and 1.27% for Richmond
River, Gwydir River, and Darling River, respectively). SILO-based me-
teorological data were constructed from observational records from
Australian Bureau of Meteorology where missing values had been in-
terpolated via statistical techniques (Beesley et al., 2009; Tozer et al.,
2012; Zajaczkowski et al., 2013).

Fig. 3 plots the mean climatological pattern of the objective variable

(i.e., streamflow water level) and the respective predictor (maximum
and minimum temperature, precipitation, evaporation, mean solar ra-
diation and vapor pressure). Minimum temperature (Tmin), maximum
temperature (Tmax) and mean solar radiation (Rn) plots show vivid
minima during June and July (winter) and are seen to reach a max-
imum in December and January (summer period). Accordingly, the
evaporation (Evap) and vapor pressure (VP) occupied the smallest
magnitude in the winter season. The precipitation (PCN) recorded the
lowest value from July to September, however, streamflow water level
exhibited a very irregular pattern with no clear dependence on any of
these meteorological variables. Out of the three hydrological sites, the
lowest values were recorded as: Gwydir River station-lowest Tmax

(16.89 °C); Tmin (1.77 °C); VP (8.62 h Pa); Evap (59.06 mm), Darling
River station recorded the lowest Rn (9.95 MJ m−2); while Richmond
River station recorded the lowest value of streamflow water level
(0.72 m).

While Darling River station recorded highest Tmax (35.02 °C); Rn
(27.32 MJ m−2); Evap (349.82 mm) and interestingly the highest
streamflow water level (2.44 m), Richmond River station recorded
highest Tmin (19.73 °C); VP (23.31 h Pa); and PCN (169.59 mm).
Analysis showed that except for Darling River [where the skewness of
PCN was 2.11 mm], all other variables had a skewness value much
closer to zero to conform to near-normal distributions. Kurtosis factor (a

Fig. 2. Map of the study region showing the tested stations and their geographical location.

Table 2
Data partitioning for model development.

Period of study Datum points Data features after lags Partitioning Station name Percentage of missing SWL data

Training Validation Testing

Jan 1977–May 2016 473 473–5 = 468 70%, 328 15%, 70 15%, 70 Richmond 1.27
Gwydir River 1.90
Darling River 1.27
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measure of whether the data were heavy or light-tailed) for Darling
River precipitation registered a value of 6.93 mm for PCN, conforming
to the leptokurtic distribution. This meant that the precipitation data
had more outliers (with a heavy tail). By contrast, the other variables
registered a kurtosis factor of< 3 (platykurtic), meaning the distribu-
tion seems to exhibit fewer and less extreme outliers (with light tail)
than the normal (Table 1). It is clear that the three hydrological sites
exhibit distinct climates, and therefore, offer a good comparison of the
IIS-W-ANN and the respective counterpart forecasting models.

3.2. Construction of global predictor matrix and input selection process

Prior to developing the forecasting model, a global set of predictors
related to streamflow, (i.e., hydrological and meteorological data) over
a 40-year period, were constructed. It is imperative to note that any
data-driven model must identify the patterns and trends in the pre-
dictors and predictand, where two primary approaches are capitalized.
First, patterns in streamflow itself, which is partitioned in the training
and testing sets are utilized for predictive modelling, since streamflow
tends to display a high degree of serial correlation in time-space (i.e.,
persistence) arising from the groundwater storage and recharge that
can act to amplify or dampen the effect of rainfall-runoff process; and

hence, help in forecasting the future streamflow. If this is so, it can
provide the streamflow data a memory of several (lagged) months re-
presenting the catchment hydrology and can also act as a driver for
streamflow prediction (Chiew et al., 1998). Second, concurrent or time-
lagged cross correlations between meteorological (i.e., rainfall, tem-
perature, humidity, etc.) (McBride and Nicholls, 1983) and streamflow
water level is used in a purely statistical-correlation sense (Chiew et al.,
1998).

Fig. 4 illustrates a schematic view of different modelling stages.
Following earlier work, both aforementioned approaches were adopted
via a dual stage process: (i) MATLAB-based partial autocorrelation
function (PACF) deduced at monthly lags for historical SWL data (Deo
et al., 2016b; Yaseen et al., 2016b), (ii) MATLAB-based cross-correla-
tion function (CCF) utilized with SWL vs. meteorological predictor
variable (i.e., Tmax; Tmin; PCN; Rn; Evap; VP) (Deo et al., 2017a; Deo and
Sahin, 2017; Deo and Şahin, 2016; Deo et al., 2016c). At the respective
lags, any variable with statistically significant relationship (i.e., at 95%
confidence interval) with the predictand (streamflow) was screened as
an input matrix, generating a global pool of statistically significant
variables for streamflow water level forecasting. This yielded a global
pool of 23, 16 and 20 model predictors for Richmond, Gwydir and
Darling River, respectively (Table 3).

Fig. 3. Monthly climatological patterns (January 1977–May 2016)
of the objective variable, stream water level (SWL) and the re-
spective predictor variables (maximum temperatures, Tmax;
minimum temperatures, Tmin; precipitation, PCN; evaporation,
Evap; solar radiation, Rn; and vapor pressure, VP).
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To determine correct inputs with optimal features, a matrix of
global predictors was screened via a tree-based iterative input selection
(IIS) algorithm (Section 2.4) (Galelli and Castelletti, 2013b; Galelli
et al., 2014) (Fig. 4). IIS utilized an underlying regression as an en-
semble of Extra-Trees for randomizing attributes and cut-point choice
while splitting a tree node (Galelli and Castelletti, 2013b; Geurts et al.,
2006). This method is built on totally randomized trees whose struc-
tures are independent of the output values of the learning sample. Fig. 5
plots the cumulated performance, R2 of Extra-Tree model within the IIS
procedure and the contribution ΔR2 of each screened variable evaluated

as the variation of R2 at each iteration. For Richmond River, cumulated
performance increased monotonically with the number of the selected
variables, up to the second variable. When the selection of an additional
variable had no further significant increase in model performance and
the algorithm tolerance, ‘ε’ was reached, the algorithm was terminated.

In congruence of this, it is construed that a significant proportion of
streamflow processes can be described by means of two variables,
which are the driver of streamflow water level at Richmond River: (i)
the precipitation in the same month (lag = 0) (denoted as PCN0) and
(ii) previous month's streamflow water level (SWL1) (lag = 1). Note that

Original Predictor 
Inputs: 

PCN; Tmax; Tmin; Evap; 
Rn; and VP. 

Determination of 
Significant lags using 
cross-correlation and 

PACF.  

Determination of Significant 
input combination based on 
rankings of cross-correlation 

coefficients
. 

Feature selection using 
IIS algorithm. 

Decompose IIS selected 
inputs by MODWT 

ANN M5 Tree IIS-M5 Tree IIS-W-M5 Tree IIS-ANN IIS-W-ANN ANN M5 Tree 

All Variables 

Fig. 4. A schematic view of the model development process.

Table 3
ANN and M5 Tree model structures with respective predictor variables.

Input combination ANN M5 Tree

Number of neurons Training
algorithm

Hidden transfer
function

Output transfer
function

Number of rules

Input layer Hidden layer Output layer

SITE: 1 Richmond River
PCN 1 3 1 trainbfg logsig purelin 14
PCN+ Rn 2 24 1 trainlm logsig tansig 33
PCN+ Rn + Evap 3 10 1 trainbfg logsig tansig 26
PCN+ Rn + Evap + VP 4 24 1 trainbfg tansig tansig 36
PCN+ Rn + Evap + VP + Tmin 5 16 1 trainbfg tansig purelin 39
PCN+ Rn + Evap + VP + Tmin + Tmax 6 19 1 trainbfg logsig tansig 41
ALL 23 variables (including significant lags) 23 40 1 trainbfg logsig purelin 53
IIS selected variables: PCN (lag 0) + SWL (lag

1).
2 5 1 trainbfg tansig purelin 30

IIS-wavelet (db3-level 4 & db4-level 4) 10 4 1 trainlm logsig purelin 52

SITE: 2 Gwydir River
Evap 1 13 1 trainbfg logsig tansig 15
Evap + Rn 2 33 1 trainbfg logsig purelin 31
Evap + Rn + Tmax 3 4 1 trainlm logsig purelin 37
Evap + Rn + Tmax + Tmin 4 4 1 trainlm tansig tansig 48
Evap + Rn + Tmax + Tmin + VP 5 23 1 trainbfg tansig logsig 39
Evap + Rn + Tmax + Tmin + VP + PCN 6 10 1 trainbfg tansig logsig 47
ALL 16 variables (including significant lags) 16 26 1 trainbfg logsig tansig 57
IIS selected variables - SWL (lag 1) + Evap

(lag 0) + PCN (lag 0)
3 35 1 trainbfg logsig logsig 32

IIS-wavelet (db3-level 4 & db3-level 3) 10 11 1 trainbfg logsig tansig 57

SITE: 3 Darling River
PCN 1 1 1 trainlm tansig tansig 11
PCN+ Rn 2 26 1 trainbfg tansig purelin 21
PCN+ Rn + Tmin 3 4 1 trainbfg tansig tansig 29
PCN+ Rn + Tmin + VP 4 5 1 trainbfg logsig logsig 39
PCN+ Rn + Tmin + VP + Evap 5 16 1 trainbfg tansig purelin 40
PCN+ Rn + Tmin + VP + Evap + Tmax 6 18 1 trainlm logsig logsig 37
ALL 20 variables (including significant lags) 20 40 1 trainbfg logsig purelin 45
IIS selected variables: SWL (lag 1) + SWL (lag

2)
2 31 1 trainbfg logsig logsig 26

IIS-wavelet (db4-level 4 & db4-level 4) 10 2 1 trainlm tansig tansig 45
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the superscripts ‘0’ and ‘1’ denote the respective lag applied to construct the
input data. Subsequently, three inputs were selected for Gwydir River
with (i) SWL1, (ii) evaporation in the same month (EVAP0) and the
PCN0 data, while for Darling River, two significant variables were se-
lected with (i) SWL1 and (ii) SWL2. It is interesting to note that one
month lagged streamflow data was the common input for all hydro-
logical sites while the maximum precipitation and evaporation data
were important for Gwydir River. For Darling River site, the IIS algo-
rithm did not identify precipitation and/or evaporation as a potential
model input whereas 2-monthly lagged data was screened in this in-
stance as an important predictor variable.

3.3. Model development and maximum overlap discrete wavelet transform

MATLAB software running over Intel i7, 3.40 GHz processor was
utilized for the development of the ANN and the comparative M5 Tree
model. Table 3 lists the sequential order of inputs applied in our model.
This order was established via cross-correlation analysis performed
with the predictand (i.e., streamflow water level) where model's im-
provement was monitored by a successive addition of variables. An
input set for ‘all predictors’ consisted of all original time series and
statistically significant lagged variables for each study site, whereas the
final row of inputs (listed in Table 3) for each study site was determined
from the IIS selected variables. A combination of the inputs was used in
standalone non-IIS (i.e., ANN, M5 Model Tree) and the standalone IIS-
integrated models (i.e., IIS-ANN, IIS-M5 Tree). Before the training
process, all inputs were normalized to conform in the range of [0, 1]
(Deo and Sahin, 2016; Deo and Şahin, 2015a; Deo et al., 2016c). Data
partitioning was kept consistent (as indicated in Table 2). As there is no
a set rule for data division, researchers have used different training,
validation and testing set (Deo et al., 2016c). In this work, the subsets
had training (70%), validation (15%) and testing (15%) data, while the
target data were the time-series of the observed streamflow water level.

Table 3 shows the parameters of the ANN architecture with the
corresponding inputs. In the case of ANN, the determination of an ideal
network architecture (i.e., optimal neurons in the hidden layer), is
important. It is noteworthy that a small architecture can lack sufficient

degrees of freedom to correctly learn the predictor data, whereas an
unnecessarily large architecture may not converge in a reasonable
modelling time, and it may also overfit and memorize rather than
generalize the data (Karunanithi et al., 1994). To avoid such issues, in
the hidden layer a series of hidden neurons (hn) starting at hn = 1 to 40
in an incremental step of 1 were trialed and the model architecture that
performed the best in terms of the lowest mean square error (MSE)
criterion (Eq. (3)) was selected. To attain an accurate ANN model,
various combinations of hidden transfer and output functions (via Eq.
(2)) interchanged with the training algorithms were trialed one by one
(Table 3). This resulted in a total of 480 ANN models executable with
unique hidden neuronal architectures and predictor variables. The
testing data (i.e., data unseen in the training phase) were utilized to
assess the generalization capability of the optimal ANN network.

Improvement in ANN (including M5 Tree) model was facilitated by
an integrating multi-resolution analysis that utilized maximum overlap
discrete wavelet transform (MODWT). This generated wavelet hybrid
models (i.e., IIS-W-ANN and IIS-W-M5 Tree) where inputs had already
been selected using the IIS screening process (Table 3; Section 2.4, 3.2).
However, prior to the integration of ANN and M5 Tree models with
MODWT, the input data were partitioned to create independent ma-
trices for training, validation, and testing. This prevented the inclusion
of future data that were not truly available at a particular time step to
be used in the model development, and the consequent unintentional
induction of bias in the forecasted streamflow water level (Deo et al.,
2016b; Kim and Valdes, 2003). MODWT was carried out independent of
testing sets with coefficients combined in matrix used as an input.

In spite of the merits of the MODWT, it acts as a multi-resolution
(frequency) identification tool for predictors, a challenge faced in
model development phase was to deduce the best mother wavelet for
the MODWT, as no explicit rule currently exists (Rathinasamy et al.,
2013). That is, it was unclear from the current literature on the best
wavelet function, as this aspect of model development is likely to de-
pend on a particular problem of interest. To resolve this ambiguity, we
adopted Daubechies mother wavelet which is normally used in hy-
drology, with three different forms: db2 (2-vanishing moment), db3 (3-
vanishing moment) and db4 (4-vanishing moment) (Deo et al., 2016c;

Fig. 5. Variable selection performed by Iterative Input selection (IIS) algorithm. Bars show the contribution to the coefficient of determination (ΔR2) of each selected variable and the
continuous (red) line denotes the cumulative performance coefficient of determination (R2) of the underlying algorithm in IIS scheme.
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Tiwari and Adamowski, 2013; Tiwari and Chatterjee, 2011). It is im-
perative to note that Daubechies wavelet was selected following lit-
erature, that an irregular mother wavelet was suited for hydrological
prediction (Cannas et al., 2006; Mehr et al., 2014; Nourani et al., 2011).

The required minimum wavelet decomposition level was de-
termined according to (Adamowski and Chan, 2011; Nourani et al.,
2011):

=L int[log(N)] (7)

Here, N (=468) is the number of datum points and L =minimum
level of decomposition (integer) (L ≈ 3). As L is not known a priori, in
this paper we tested decomposition levels 3 and 4, resulting in (4 and 5)
wavelet decomposed outputs as per IIS-selected variable (i.e., one level
for approximation, A and the other levels for detailed wavelet coeffi-
cients, d. It is also important to mention that db2 did not yield sa-
tisfactory results and was thus ignored from all final analysis). Fig. 6a–d
illustrate the MODWT coefficients generated at 4 levels of decomposi-
tion (d1, d2, d3, and d4) and one level of approximation (A4) for pre-
cipitation (PCN) input data in the case of Richmond River.

In order to evaluate the preciseness of the ANN model, the wavelet
hybrid and standalone M5 Tree model were built using the same se-
quential addition of inputs as with ANN (with all and IIS-selected
variables). For M5 Tree, software package at http://www.cs.rtu.lv/
jekabsons/, developed by Jekabsons (2010) was utilized. During the
training process, an initial model tree was erected and this was pruned
later and validated using 10-fold cross-validation procedure as with
earlier works (Deo et al., 2017a; Deo et al., 2017b; Kisi, 2015). The
input/output data space was split into subspaces with localized rules
built for each subspace and optimal number of rules for each optimal
model was deduced, as shown in Table 3.

3.4. Model evaluation criteria

In this study, a statistical evaluation of the performance was con-
ducted by means of statistical indicators: correlation coefficient (r),
Willmott's Index (WI), Nash–Sutcliffe Efficiency (ENS), Root-Mean-
Square-Error (RMSE) and Mean Absolute Error (MAE) (Legates and
McCabe, 1999a; Nash and Sutcliffe, 1970; Shamseldin, 1997; Willmott,

Fig. 6. Plot of maximum overlap discrete
wavelet coefficients (MODWC) in the
training period for monthly precipitation
(PCN) lag 0 at Site 1: Richmond River.

R. Prasad et al. Atmospheric Research 197 (2017) 42–63

51

http://www.cs.rtu.lv/jekabsons
http://www.cs.rtu.lv/jekabsons


1981; Willmott, 1984). The percentage error measures, root mean
square error (RRMSE) and mean absolute percentage error (MAPE)
were also utilized to assess errors at different sites. As there is no uni-
versal and no single metric for assessing hydrological models (Chai and
Draxler, 2014a; Krause et al., 2005a; Legates and McCabe, 1999b), this
study is based on several performance metrics with mathematical
equations as follows:

i. Correlation coefficient (r):
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ii. Willmott's Index (WI):
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iii. Nash–Sutcliffe Efficiency (ENS):

= −

⎡

⎣

⎢
⎢
⎢
⎢

∑ −

∑ −

⎤

⎦

⎥
⎥
⎥
⎥

∞ < <=

=

E
SWL SWL

SWL SWL
1

( )

( )
, (‐ E 1)NS

i

N

OBS i FOR i

i

N

OBS i OBS

1
, ,

2

1
,

2
NS

(10)

iv. Root mean square error (RMSE):
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vi. Relative root mean square error (RRMSE, %):
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vii. Mean absolute percentage error (MAPE; %):
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In Eqs. (8–14), SWLOBS is observed streamflow water level and
SWLFOR is the forecasted streamflow water level, i represents the oc-
currence time and N is the number of datum points within the testing
period.

Inherent merits and weaknesses do not permit a single metric to
independently evaluate the models. Therefore, it is prudent to use a
combination of metrics (Chai and Draxler, 2014b). Different combina-
tions of performance indicators, such as the correlation coefficient (r)
and MAE (Legates and McCabe, 1999a); Nash–Sutcliffe Efficiency (ENS)
and RMSE (Humphrey et al., 2016; Mehr et al., 2014; Sajikumara and
Thandaveswarab, 1999) are chosen for model evaluation. With corre-
lation coefficient (r) the advantage is that it provides the information on
the degree as well as the direction of the linear association between the

observed and forecasted streamflow values, without which the in-
formation of this association is unclear. Additionally, r is parametric
and insensitive to additive and proportional differences between si-
mulated and observed homologous elements (Hora and Campos, 2015).
Yet, the drawback is that r is oversensitive to extreme values (outliers)
(Legates and McCabe, 1999a; Willmott, 1981). The Nash–Sutcliffe Ef-
ficiency (ENS) is widely used criteria for evaluating the hydrological
models and is considered to be a skill score computed as the com-
parative ability of a model with regards to a baseline model, which in
this case is the mean of the observed streamflow water level values
(Gupta et al., 2009). However, ENS overestimates the larger values and
the lower values are neglected (Legates and McCabe, 1999a). Willmott's
index (WI) has also been used which is meritorious in comparison to r
and ENS, as in WI computation the differences between the observed
and forecasted values are not squared (Legates and McCabe, 1999a)
which overcomes the insensitivity issues. However, at times high values
(WI ≥ 0.650) are plausible even for poor model fits (Krause et al.,
2005b).

As far as error measurements are concerned, both the error mea-
sures of RMSE and MAE are based on aggregation of residuals of ob-
served and forecasted streamflow water level values (Nourani et al.,
2011). The dissimilarity is that, in RMSE computation, the aggregation
of residuals is squared, while in MAE it is not. Hence, RMSE is able to
measure the goodness of fit relevant to high flows, while the MAE in-
dicates the goodness of fit at moderate flow values (Galelli and
Castelletti, 2013a) as MAE equally evaluates all deviations from the
observed values (Deo et al., 2016b). A weakness, however, is that these
are expressed in their absolute units, and thus should not be solely used
to compare model performance at geographically diverse sites (Hora
and Campos, 2015) (e.g., Fig. 2). Subsequently, we utilized relative
errors; root mean square error (RRMSE) and mean absolute percentage
error (MAPE) to describe the model's behavior over the range of sta-
tistically different hydrological flows, making it possible to compare the
models evaluated for geographically (and climatically) diverse sites
where MAE and RMSE alone do not make sense (Deo et al., 2017a; Deo
et al., 2016d).

4. Results and general discussion

In this section the appraisal of wavelet-hybrid ANN integrated with
iterative input selection algorithm (IIS-W-ANN) is undertaken for hy-
drological sites in drought-prone, Murray-Darling Basin. IIS-W-ANN is
evaluated with respect to a standalone ANN (with &without IIS-
screened predictors) including an equivalent M5 Tree model. To es-
tablish whether the IIS-W-ANN was a parsimonious model accom-
plishing a desired level of accuracy, an iterative modelling process was
applied to optimize the input combinations, training algorithm and
hidden transfer functions where the lowest mean square error for an
optimal model was sought. In the test period, statistical metrics, as
described in Eq. (8–14) are used to justify the results in the following
section.

Table 4 evaluates both ANN and M5 Tree models integrated with
maximum overlap discrete wavelet transform and iterative input se-
lection algorithm. The performances attained by sequential addition of
predictors used in model construction are shown for each study site.
Interestingly, an incremental improvement in model accuracy was at-
tained by the successive addition of variables where all available
variables for each site seemed to demonstrate a better performance
compared to single or incorrectly screened multiple variables. However,
the ANN models executed with IIS-selected variables demonstrated a
dramatic improvement where WI and ENS were higher, and RMSE/MAE
were lower than the models without IIS. In light of this, it is averred
that the improved forecasting of streamflow requires appropriate input
combinations, where IIS scheme was seen to enhance the performance
of models with proper screening of variables.

In terms of numerical quantification of models, for the case of
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Richmond River, the IIS-ANN model registered WI = 0.898,
ENS = 0.687 and RMSE = 0.267 m and MAE = 0.171 m. The IIS-M5
tree, however, also performed likewise, with WI = 0.849, ENS = 0.595
and RMSE = 0.303 m andMAE= 0.186 m. A similar trend was evident
for the model applied at Darling River site. Only for the case of Gwydir
River, the inputs with ‘all variables’ for the ANN model performed
slightly better with WI= 0.904, ENS = 0.697, RMSE = 0.201 m and
MAE = 0.153 m, while IIS selected models performance was second
best and both IIS-ANN and IIS-M5 Tree had a similar performance.
Interestingly, a similar trend was consistently demonstrated by the re-
mainder of the forecasting error indicators, despite their advantages
and drawbacks as discussed in the previous section (Section 3.4). Ide-
ally, RMSE and MAE values must be as small as possible to reflect the
lowest (or ideally 0) deviation of predictions from the observations,
similarly, for perfect model fit, r, WI, and ENS should be equal to unity.

When the performance of standalone ANN and M5 Tree models
were compared for each hydrological site, it was evident that although
the M5 Tree model yielded good performance, the ANN model out-
performed the M5 Tree for all hydrological study sites. Although the
exact cause of this is not yet known, this result could be due to the ANN
model being a purely non-linear model, while the M5 Tree model being
a hierarchical tree-based linear centered model. At all hydrological
sites, the antecedent (one) month's streamflow has been selected as the
preferred predictor variable deduced from the global pool. However, it
was interesting to note that the precipitation data were not the sole
predictor.

At the Gwydir River site, the results showed that precipitation data
were not selected as the desired predictor variable, but rather the
evaporation data seemed a better model predictor. Generally, the
ability of all forecasting models in each input combination instance to
provide an accurate estimation of streamflow was contingent upon

proper input selection, and this was reflected very well with the IIS
algorithm implemented into ANN and its comparative M5 Tree model.
Based on model metrics, it can be confirmed that the IIS algorithm
provided an ideal combination of inputs with the lowest errors (RMSE/
MAE) and high performances (r, WI, ENS) deduced within the testing
period.

In this paper, we examined whether the forecasting models attained
better accuracy when the non-decimated, maximum overlap discrete
wavelet transform (MODWT) algorithm (Section 3.3) was implemented
(i.e., leading to a set of hybrid ANN and M5 Tree models). In ac-
cordance with Table 4, MODWT-based decomposition of IIS selected
variables led to a dramatic improvement of both IIS-W-ANN and IIS-W-
M5 Tree compared to standalone IIS-ANN and IIS-M5 Tree model.
When comparing the IIS-W-ANN against IIS-ANN, results showed that
the value of WI had increased for all hydrological sites. For instance, at
Richmond River site, the magnitude of WI increased from 0.898 to
0.936, at Gwydir River site, it increased from 0.900 to 0.944 and at
Darling River, it increased from 0.958 to 0.979. Likewise, the value of
ENS also increased with MODWT algorithm was integrated with the
model (i.e., Richmond River from 0.687 to 0.770; Gwydir River from
0.679 to 0.803; Darling River from 0.847 to 0.920). In the retrospect,
the correlation coefficient, r, was relatively larger for the wavelet-hy-
brid model.

Other than WI and ENS (normalized metrics) that justified a better
utility of IIS-W-ANN and IIS-W-M5 Tree, there was a significant re-
duction in RMSE and MAE for all hydrological study sites. It is im-
perative to note that for hydrological evaluations, forecast models with
ENS value> 0.900 is considered to be ‘very satisfactory’, those between
0.800 and 0.900 are ‘fairly good’, and those below 0.800 are ‘un-
satisfactory’ (Shamseldin, 1997). Therefore, the present wavelet-cou-
pled model precision appears to be ‘fairly good’ when applied for

Table 4
Evaluation of ANN and M5 Tree models, integrated with maximum overlap discrete wavelet transform and iterative input selection (IIS) algorithm. r = correlation coefficient;
WI = Willmott's Index; ENS = Nash–Sutcliffe Efficiency, RMSE/MAE = root mean square/mean absolute error. The incremental improvement attained by addition of successive vari-
ables, all variables, IIS-selected variables and subsequent wavelet models are shown.

Input combination ANN M5 model tree

r WI ENS RMSE (m) MAE (m) r WI ENS RMSE (m) MAE (m)

SITE: 1 Richmond river & Coraki
PCN 0.652 0.723 0.320 0.393 0.264 0.603 0.693 0.182 0.430 0.327
PCN+ Rn 0.736 0.809 0.478 0.344 0.238 0.643 0.710 0.323 0.392 0.255
PCN+ Rn + Evap 0.698 0.747 0.395 0.370 0.242 0.629 0.675 0.271 0.406 0.262
PCN+ Rn + Evap + VP 0.777 0.785 0.450 0.353 0.238 0.687 0.705 0.339 0.387 0.252
PCN+ Rn + Evap + VP + Tmin 0.804 0.790 0.482 0.343 0.232 0.685 0.703 0.329 0.390 0.256
PCN+ Rn + Evap + VP + Tmin + Tmax 0.803 0.807 0.517 0.331 0.221 0.695 0.711 0.332 0.389 0.258
ALL 23 variables (including significant lags) 0.844 0.867 0.624 0.292 0.192 0.799 0.838 0.557 0.317 0.190
IIS selected: PCN (lag 0) + SWL (lag 1). 0.842 0.898 0.687 0.267 0.171 0.816 0.849 0.595 0.303 0.186
IIS-wavelet (db3-level 4/db4-level 4) 0.910 0.936 0.770 0.229 0.177 0.822 0.892 0.578 0.309 0.225

SITE: 2 Gwydir river & Bingara
Evap 0.766 0.822 0.558 0.243 0.200 0.730 0.779 0.501 0.258 0.209
Evap + Rn 0.788 0.839 0.585 0.236 0.188 0.726 0.777 0.495 0.260 0.204
Evap + Rn + Tmax 0.758 0.839 0.564 0.242 0.179 0.705 0.790 0.481 0.263 0.197
Evap + Rn + Tmax + Tmin 0.793 0.836 0.599 0.231 0.185 0.686 0.789 0.458 0.269 0.200
Evap + Rn + Tmax + Tmin + VP 0.802 0.857 0.616 0.227 0.179 0.678 0.785 0.449 0.272 0.201
Evap + Rn + Tmax + Tmin + VP + PCN 0.830 0.859 0.645 0.218 0.169 0.698 0.799 0.477 0.264 0.196
ALL 16 variables (including significant lags) 0.835 0.904 0.697 0.201 0.153 0.750 0.856 0.560 0.243 0.182
IIS selected - SWL (lag 1) + Evap (lag 0) + PCN (lag 0) 0.824 0.900 0.679 0.207 0.154 0.780 0.870 0.609 0.229 0.175
IIS-wavelet (db3-level 4/db3-level 3) 0.908 0.944 0.803 0.162 0.139 0.882 0.929 0.769 0.176 0.147

SITE: 3 Darling river &Menindee post office
PCN 0.508 0.162 0.056 1.678 1.165 −0.170 0.081 −0.069 1.786 1.274
PCN+ Rn 0.440 0.505 0.189 1.555 1.125 −0.100 0.144 −0.080 1.795 1.264
PCN+ Rn + Tmin 0.298 0.239 0.064 1.672 1.157 −0.070 0.144 −0.067 1.785 1.273
PCN+ Rn + Tmin + VP 0.368 0.302 0.102 1.637 1.135 −0.150 0.148 −0.123 1.830 1.268
PCN+ Rn + Tmin + VP + Evap 0.612 0.685 0.350 1.393 0.971 0.043 0.182 −0.046 1.767 1.207
PCN+ Rn + Tmin + VP + Evap + Tmax 0.686 0.827 0.329 1.415 1.063 0.205 0.262 0.028 1.703 1.149
ALL 20 variables (including significant lags) 0.871 0.926 0.759 0.849 0.573 0.861 0.925 0.738 0.885 0.524
IIS selected: SWL (lag 1) + SWL (lag 2) 0.921 0.958 0.847 0.676 0.373 0.876 0.936 0.765 0.837 0.487
IIS-wavelet (db4-level 4/db4-level 4) 0.960 0.979 0.920 0.487 0.390 0.922 0.952 0.843 0.684 0.501
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streamflow water level forecasting at Gwydir River and while the
models are ‘very satisfactory’ for the case of Darling River.

Considering the aforesaid, it is noteworthy that the results revealed
a geographic signature in model accuracy such that the statistical per-
formances for all hydrological sites were disparate in terms of the range
of metrics attained. That is to say, the IIS-W-ANN model for the case of
Darling River exhibited the largest correlation, while the Gwydir River
recorded the lowest forecasted errors in terms of the metrics for all
hydrological stations. Darling River, however, recorded the largest WI
(≈0.979), ENS (≈0.920) and r (≈0.960) followed by smaller values for
Gwydir River and Richmond River. The lowest RMSE value was
0.162 m and the lowest MAE was 0.139 m was recorded at Gwydir
River with the best performing model (IIS-W-ANN) followed by
Richmond and then Darling Rivers. This result ascertains that the wa-
velet-hybrid ANN (and the comparative M5 Tree) model performance is
not universally similar when the study sites with different hydrological
conditions are considered (Table 1; Fig. 2).

To address the limitations of RMSE/MAE (that it promotes a robust
evaluation of models applied at geographically diverse hydrological
sites), Table 5 lists an alternative metric, the relative error values of
wavelet-hybrid ANN (and M5 Tree) models integrated with iterative
input selection (IIS). Here, we also show the subsequent variable
combinations where the percentage of RMSE/MAE values are listed
(i.e., RRMSE and MAPE). Evidently, the relative performance (Table 5)
revealed that the IIS-W-ANN model exhibited the lowest value of
RRMSE for all three hydrological sites which were apparently lower
than those of the IIS-W-M5 Tree model. More precisely, the RRMSE
values for each hydrological site in the combination [IIS-W-ANN: IIS-W-
M5 Tree] are as follows: Richmond River: [20.97%: 28.37%]; Gwydir
River: [15.65%: 16.92%]; Darling River: [21.00%: 29.46%].

Accordingly, the RRMSE values showed that the IIS-W-ANN performed
the best for the case of Gwydir River, followed by Richmond and Dar-
ling Rivers, respectively, to concur with the architectures with in-
put–hidden–output layer combinations of optimal models as 10-4-1 for
Richmond River, 10-11-1 for Gwydir River, and 10-2-1 for Darling
River (Table 3).

In Fig. 7 (a–b), a visual evaluation of the forecasted streamflow
relative to the observed data has been performed with scatterplots
prepared in the testing period. In each panel, a coefficient of determi-
nation (R2) is used to examine the goodness-of-fit of the forecasting
model developed for all three candidate stations. Note that here, we are
interested in evaluating several models, including IIS-ANN, IIS-M5
Tree, IIS-W-ANN and IIS-W-M5 Tree. Evidently, the optimal model (i.e.,
IIS-W-ANN) is seen to register a large R2 value in comparison with IIS-
W-M5 Tree for all hydrological sites. Specifically, the results reflected
the case of Richmond River (R2 ≈ 0.827), Gwydir River (≈0.825) and
Darling River (≈0.921), which concurred with the results in Table 4.

Notably, the standalone IIS-ANN model (with IIS selected variables)
outperformed the standalone IIS-M5 Tree, with R2 values as follows:
Richmond River (R2 ≈ 0.709), Gwydir River (≈0.679) and Darling
River (≈0.848). The gradient (m) of linear fit, which is an alternative
model performance metric, for the case of IIS-W-ANN model was found
to be close to unity (i.e., 0.827 for Richmond River, 0.825 for Gwydir
River, 0.921 for Darling River). On the other hand, the y-intercept,
which should ideally be zero for the case of IIS-W-ANN, was 0.064
(Richmond River), 0.235 (Gwydir River) and 0.253 (Darling River)
whereas for the case of IIS-W-M5 Tree models, y-intercept was 0.065,
0.293 and 0.535, respectively. In congruence with results presented in
Table 4, for the IIS and non-wavelet models, the y-intercept deviated
significantly from the ideal value of 0; indicating the superiority of the
forecasting models where input selection with the IIS algorithm and
multi-resolution analysis (with MODWT) was implemented.

Further evaluation of IIS-W-ANN relative to IIS-W-M5 Tree model
and the respective standalone (ANN&M5 Tree) model is undertaken
with a time-series plot of data in the test period (Figs. 8 a–b). The time-
series plot (Fig. 8a) for hybrid models provides a definitive evidence
that the IIS-W-ANN attained a better accuracy for all hydrological sta-
tions, such that the standalone model appeared to under-predict the
streamflow water level data, while the inclusion of wavelet decomposed
predictors acted to improve the forecasted result. Closer examination
also showed that the low streamflow values were better forecasted by
the standalone model and the higher streamflow values were better
forecasted with the wavelet hybrid models.

Interestingly, a plateau was also observed for the case of Darling
River for two major high flow events as depicted by the IIS-W-ANN
model, while the IIS-W-M5 Tree model severely under-predicted this
event. However, the standalone IIS-ANN and IIS-M5 Tree model pro-
vided much better forecasts for these anomalous hydrological events
within the test period. Overall, in congruence with key statistical me-
trics (i.e., Table 4), there was a very good visual agreement between the
observed and forecasted streamflow data within the test period, espe-
cially those produced by the IIS-W-ANN model relative to the other
model counterparts for all hydrological sites.

So far, the analysis has provided compelling evidence of the su-
periority of input selection and multi-resolution wavelet decomposition
in terms of the accuracy of the prescribed streamflow models. In Fig. 9
(a–b), the influence of input selection procedure (IIS) and MODWT is
further checked for the ANN and M5 Tree models where the data for all
three sites are pooled together. In this case, the percentage difference in
the key model performance metrics (i.e., r, WI& RRMSE) are shown
where the IIS scheme was applied with different predictor variables,
while the percentage difference is also shown when the MODWT al-
gorithm was integrated with the models having only the IIS-selected
variable.

It is clear that the integration of the ANN model with the IIS scheme
has produced 1.4% and 2.2% increase in r and WI values and about

Table 5
Relative errors of wavelet-hybrid models integrated with iterative input selection (IIS)
and subsequent variable combination using RRMSE and MAPE. Optimal models with
smallest forecasted error (%) are shown in boldface.

Input combination ANN M5 Tree

RRMSE MAPE RRMSE MAPE

SITE: 1 Richmond River
PCN 36.02 21.23 39.50 33.83
PCN+ Rn 31.55 18.92 35.95 20.19
PCN+ Rn + Evap 33.98 18.92 37.29 20.11
PCN+ Rn + Evap + VP 32.40 19.09 35.50 19.26
PCN+ Rn + Evap + VP + Tmin 31.45 18.44 35.78 19.60
PCN+ Rn + Evap + VP + Tmin + Tmax 30.37 17.31 35.71 19.95
ALL 23 variables (including significant lags) 26.77 15.11 29.06 13.60
IIS selected: PCN (lag 0) + SWL (lag 1). 24.46 13.58 27.81 13.51
IIS-wavelet (db3-level 4/db4-level 4) 20.97 17.00 28.37 18.71

SITE: 2 Gwydir River
Evap 23.41 20.62 24.89 20.86
Evap + Rn 22.70 19.46 25.04 20.33
Evap + Rn + Tmax 23.27 18.02 25.37 19.88
Evap + Rn + Tmax + Tmin 22.30 18.29 25.93 20.22
Evap + Rn + Tmax + Tmin + VP 21.83 18.77 26.15 20.17
Evap + Rn + Tmax + Tmin + VP + PCN 20.98 17.16 25.48 19.57
ALL 16 variables (including significant lags) 19.38 14.84 23.38 16.87
IIS selected - SWL (lag 1) + Evap (lag 0)

+ PCN (lag 0)
19.96 14.84 22.02 16.81

IIS-Wavelet (db3-level 4/db3-level 3) 15.65 14.79 16.92 15.40

SITE: 3 Darling River
PCN 72.30 51.94 76.93 57.52
PCN+ Rn 67.01 52.96 77.34 56.18
PCN+ Rn + Tmin 72.01 51.21 76.89 57.19
PCN+ Rn + Tmin + VP 70.52 50.74 78.85 55.32
PCN+ Rn + Tmin + VP + Evap 60.01 42.23 76.11 52.27
PCN+ Rn + Tmin + VP + Evap + Tmax 60.97 56.85 73.38 48.71
ALL 20 variables (including significant lags) 36.56 26.87 38.13 21.22
IIS selected: SWL (lag 1) + SWL (lag 2) 29.13 16.78 36.05 19.63
IIS-wavelet (db4-level 4/db4-level 4) 21.00 20.78 29.46 24.06
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8.7% reduction in RMSE value (Fig. 9a). In terms of the effect of wa-
velet transform on models implemented with IIS-selected variables,
there was a larger increase in r and WI by about 7.5% and 3.8%, re-
spectively, whereas the RMSE has decreased by 21.3% when the IIS-W-
ANN model was tested (Fig. 9b). A similar trend was also found for the
M5 Tree model, albeit with a slightly lesser increase in r and a smaller
reduction in RRMSE.

Additionally, the model preciseness was assessed using box plots
illustrating the spread, with respect to quartiles, of the observed and
forecasted streamflow water level values produced by the IIS and wa-
velet integrated model (Fig. 10a) and later with the IIS coupled model

(without wavelets) (Fig. 10b). Being non-parametric, boxplots do not
make assumptions about the underlying statistical distributions, al-
lowing a better understanding of the degree of spread and skewness of a
data set, while the whiskers indicate the variability outside of the lower
(25th percentile) and upper (75th percentile) quartiles. For Richmond
River, the spread of the IIS-W-ANN and the observed streamflow water
level (SWLOBS) had almost similar spread showing that the IIS-W-ANN
has better forecasting ability for this station (Fig. 10a) while the IIS-W-
M5 Tree displayed an unacceptably smaller spread. Likewise, the dis-
tribution of outlier data points registered by the IIS-W-ANN model
compared well with the observed values.

Fig. 7. Scatter plots of observed (SWLOBS) and fore-
casted (SWLFOR) stream water level for all the sta-
tions from: a) IIS-W-ANN and IIS-W-M5 Tree models,
b) IIS-ANN and IIS-M5 Tree models (No wavelet
applied). (Note: The dashed line in blue and green is
the least-squares fit line to the respective scatter
plots).
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In the case of Gwydir River notably, the IIS-W-ANN registered a
greater spread of the forecasts, as the streamflow water level were more
skewed towards the higher end, which was consistent with the observed
streamflow water level values and the medians of the two data sets
were relatively the same. In the case of Darling River, where high
streamflow levels were the main feature within the tested hydrological
period, the IIS-W-ANN produced a better distribution of forecasts about
median while surprisingly, the IIS-W-M5 Tree showed much-scattered
spread. On the contrary, the IIS optimized ANN and M5 Tree models
produced similar forecasting distributions at all the three sites
(Fig. 10b), however, these distributions were not alike the spread of
observed values. Thus, based on the forecast distributions produced by

these boxplots, IIS-W-ANN had better predictive performance and is
also affirmed by the assessment metrics (Table 4).

In this study, although a superior type of wavelet transform (i.e.,
non-decimated, maximum overlap discrete wavelet transformation,
MODWT) was applied, the use of correct MODWT mother wavelet was
still a challenging task, since different wavelets are expected to have
different impacts on the frequency extraction process (Rathinasamy
et al., 2013; Rathinasamy et al., 2014). Table 6 shows that the different
Daubechies wavelets with different vanishing moments and decom-
position levels that attained optimal results for our three hydrological
sites. It is interesting to note that the IIS-W-ANN model generated an
optimum performance where the Daubechies db3 wavelet (3-vanishing

Fig. 7. (continued)
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moments) and 4 levels of decomposition for the case of Richmond River
and Gwydir River yielded the highest WI values of about 0.936 and
0.944, respectively. The other performance measures followed alike
trends with largest values of r and ENS and minimum values of RMSE
and MAE. However, for Darling River site, IIS-W-ANN was seen to
produce the best results with db4 wavelet, having 4 levels of decom-
position.

In fact, performances with different mother wavelet and decom-
position levels was significantly disparate. Similarly, although having
lower performance level than the IIS-W-ANN model, the IIS-W-M5 Tree
model also registered varying results with different combinations of the
vanishing moment and decomposition levels of db mother wavelets.
These results were in accordance with previous studies (Rathinasamy
et al., 2013; Rathinasamy et al., 2014) that noted no universal mother
wavelet can generate the most accurate forecast. It is construed that the
decomposition level and choice of the analyzing wavelet remains an
open problem of interest and should form the subject of an independent
follow-up study.

5. Further discussion

In this paper, the preciseness of the iterative input selection (IIS)

optimized wavelet coupled ANN model (benchmarked with M5 Tree
model) was investigated for streamflow forecasting in a drought-prone
region. ANN was a multilayer feed-forward perceptron model with one
‘hidden’ layer consisting of between 1 and 40 prescribed hidden nodes
were utilized to examine the input data features in order to optimize the
model architecture. Analysis of results showed that ANN outperformed
the M5 Tree model for all tested hydrological sites, revealing that the
model was efficient in extraction of features within hydro-meteor-
ological inputs in a physically meaningful way to forecast the stream-
flow data.

The ANN model being a pattern recognizing algorithm is able to
extract vital information from hydro-meteorological variables using
non-linearly connected elements (i.e., neurons) and subsequently, the
model simulates the stochastic and complex hydrological system to
generate forecasts. The benefit is that the ANN model is simple to de-
velop and does not require in-depth knowledge of the internal physical
structure of the data. A merit of ANN is its ability to generalize any
linear or nonlinear system without being constrained to a specific form.
ANN has the capability to simultaneously weave through large volumes
of data, providing prospects for parallel implementation. Owing to the
distributed processing within the network, ANN is able to model input
data with embedded noise and measurement errors without severe loss

Fig. 8. Observed and forecasted streamflow water level (SWL) in the testing period, from: a) the optimal objective model, IIS-W-ANN, and tree based comparative counterpart, IIS-W-M5
Tree model, b) IIS-ANN and IIS-M5 Tree models (without wavelets).
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of accuracy (ASCE Task Committee on Application of ANN in
Hydrology, 2000a; Xiong and O'Connor, 2002; Yilmaz et al., 2011).

The robustness is evident as ANN does not assume any probability
distribution like normality or equal dispersion and covariance matrix
requirements (Moghaddamnia et al., 2009). With that during the

generalization, the transfer functions or activation functions may limit
model's sensitivity (Demirel et al., 2015) based on the objective func-
tion, allowing an ANN model to react to a certain range of inputs and
this feature enables it to generate lower error values (Table 4). ANN
provides liberty to select the number of hidden layers and the
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Fig. 9. Effect of (a) input selection procedure
(IIS algorithm) and (b) multi-resolution
analysis (MODWT) on the performance of
ANN and M5 Tree models. Note: The IIS al-
gorithm was applied to ALL variables while
MODWT was applied to IIS-selected vari-
ables. (NB: r and WI are unitless, while
RRMSE values are in percentage (%)).

Fig. 8. (continued)
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associated nodes in each of these layers giving an added versatility
(ASCE Task Committee on Application of ANN in Hydrology, 2000a;
Xiong and O'Connor, 2002; Yilmaz et al., 2011).

In addition to the superiority of the ANN over M5 Tree model, the
present results demonstrated the importance of the IIS algorithm as a
data pre-processing (i.e., a suitable feature screening) tool, where per-
formance metrics for IIS optimized (IIS-ANN and IIS-M5 Tree) model
(Table 4; Table 5) were noticeably better than their standalone coun-
terparts. The results of our study accede the deduction of earlier work
by Galelli and Castelletti (2013a) that found the IIS to be a significantly
useful tool for non-redundant input selection skill in different test
conditions (e.g., the presence of noise or presence of several redundant
variables). The first important understanding obtained from the results
is that a proper feature selection should be carefully carried out prior to
executing data-driven models, as redundant data can have a great in-
fluence on the ‘learning’ process and eventually, can affect the fore-
casting accuracy.

With that, carefully selected and the most relevant input variables
also means fewer input weights within the input layer which can pro-
vide a greater confidence that an overtraining may not happen, leading
to a parsimonious and computationally efficient ANN model. IIS was
able to demonstrate that the different sets of best predictor data for
each site. For example, the one-month antecedent streamflow water
level (SWL1) was useful for all the hydrological sites, but additionally,
the zero-lagged precipitation (PCN0) and surprisingly, the zero-lagged
evaporation (EVAP0) which moderates SWL was useful for forecasting
SWL for Gwydir River. For Darling River site, the IIS algorithm depicted
one and two months lagged streamflow water level (i.e., SWL1, SWL2)
as the optimal predictor variables. In fact, the utilization of globally
pooled predictor data without an application of IIS led to significantly
poor performances, outlaying the importance of input screening for
optimal performance of streamflow forecasting models. The interesting
finding here is also that there were unique combinations of input
variables responsible for prediction of streamflow at the three

(a) 

(b) 

Fig. 10. Box-plots of observed compared with forecasted streamflow water level, SWL: (a) models integrated with IIS and MODWT, (b) models with IIS (without wavelet).

Table 6
SWL forecasting performance of different wavelets and decomposition levels at the selected sites. Mother wavelets and decomposition levels with best performances has been bold faced.

Wavelet type Decomposition level ANN M5 Tree

r WI ENS RMSE (m) MAE (m) r WI ENS RMSE (m) MAE (m)

SITE: 1 Richmond River
db3 3 0.878 0.912 0.702 0.260 0.201 0.805 0.867 0.587 0.406 0.225
db3 4 0.910 0.936 0.770 0.229 0.177 0.789 0.849 0.521 0.329 0.226
db4 3 0.770 0.872 0.509 0.333 0.242 0.800 0.879 0.562 0.315 0.232
db4 4 0.763 0.851 0.528 0.327 0.246 0.822 0.892 0.578 0.309 0.225

SITE: 2 Gwydir River
db3 3 0.898 0.943 0.793 0.166 0.138 0.882 0.929 0.769 0.176 0.147
db3 4 0.908 0.944 0.803 0.162 0.139 0.881 0.922 0.750 0.183 0.155
db4 3 0.809 0.879 0.650 0.216 0.175 0.739 0.824 0.537 0.249 0.195
db4 4 0.823 0.883 0.645 0.218 0.178 0.726 0.820 0.511 0.256 0.191

SITE: 3 Darling River
db3 3 0.958 0.978 0.916 0.502 0.391 0.795 0.766 0.511 1.207 0.738
db3 4 0.957 0.977 0.914 0.508 0.386 0.808 0.816 0.578 1.122 0.684
db4 3 0.932 0.964 0.863 0.639 0.465 0.914 0.950 0.832 0.709 0.485
db4 4 0.960 0.979 0.920 0.487 0.390 0.922 0.952 0.843 0.684 0.501
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hydrological sites.
Other than integrating the ANN and M5 Tree models with IIS al-

gorithm, a further enhancement in model accuracy was attained via
incorporation of wavelet transform of IIS selected predictor signals that
led to the IIS-W-ANN (and IIS-W-M5 Tree) models. The main purpose of
wavelet transformation is to identify and isolate the embedded de-
terministic components of hydro-meteorological time series data and
provide a reliable physical basis to the machine learning model to
overcome deleterious effects of distinctive topographical conditions
within the watershed (even with similar climatic conditions) (Nourani
et al., 2014). Wavelet transformation has been deemed imperative in
hydrological forecasting (Adamowski and Chan, 2011; Badrzadeh et al.,
2016; Cannas et al., 2006; Galelli and Castelletti, 2013a; Maheswaran
and Khosa, 2012; Nourani et al., 2011; Okkan, 2012). In this study,
maximum overlap discrete wavelet transformation (MODWT) has been
implemented for data pre-processing which can effectively diagnose the
signal's main frequency components and the abstract local information
without any loss of information.

MODWT application as a multi-resolution analysis utility was a
major advancement to enhance the forecasting capability of an ANN
model. In accordance with the results of other investigations whereby
applications of wavelet transformation improved hydrological fore-
casting e.g. (Badrzadeh et al., 2016; Cannas et al., 2006; Kim and
Valdes, 2003; Krishna et al., 2011; Santos et al., 2014; Wang and Ding,
2003), these results clearly showed that the wavelet-based ANN model,
the IIS-W-ANN, provided better prediction estimations at all stations in
comparison to the corresponding standalone ANN, M5 Tree, and hybrid
IIS-W-M5 Tree models as the largest values of correlation coefficient (r),
WI, ENS and lower error values, RMSE and MAE were registered
(Table 4). It is clearly evident that the MODWT decomposition of input
data provided greater insights into the physical process (particularly
revealing the frequencies therein) (Daubechies, 1990) enabled the
learning algorithm in the ANN responsible for mapping the predictors
to the predictand (SWL) to effectively capture the deterministic com-
ponents at various resolution levels, consequently resulted in swift
convergence, negligible errors and the apparent improved model per-
formance.

The appropriate number of wavelet decomposition levels, on the
other hand, needs to be selected with caution, as using the conventional
method, the number of decomposition levels were approximated to be 3
which is dependent on the length of the data series. However, the re-
sults obtained in this study are contradictory (Table 6), as db3 with four
levels of decomposition yielded best performances by the IIS-W-ANN at
Richmond and Gwydir rivers. This shows that all the embedded de-
terministic features are not clearly revealed to the models using three
levels of decompositions. Therefore, it is important to carefully de-
termine the apt wavelet decomposition levels based on the character-
istics of the original time series and not solely based on the series
length, since unreasonable decomposition of the original series would
not provide all pertinent information to the model leading to poor
performance of wavelet coupled model.

The success of data-driven models (including ANN and M5 tree)
were largely dependent on the quantity and quality of historically
measured data for training and validation which ultimately is the basis
of their existence. So, to reduce the inadvertent introduction of dis-
astrous biases and common database errors plaguing practical appli-
cations (Witten et al., 2011), authentic and reliable meteorological data
from SILO were used. However, initial instrumental recording errors in
time-series during the time of observation of respective variables (e.g.
PCN, Tmax, Tmin, Evap, and VP) could have introduced uncertainties in
the predictor variable itself. Prior data quality control and the cleansing
process needs to be performed on inputs to eliminate these biases and to
prevent incorrect conclusions and/or recommendations (Deo et al.,
2016e). The data length used for hydrological forecasting could also be
a limitation as a shorter period will provide insufficient information,
while too long a period could feed in unnecessary information, as such,

a rational 40 years of data has been utilized. Since, an ANN is not a
routing model, for real-time applications, testing with smaller time-
steps such as weekly, daily, and hourly can provide greater under-
standing that high, moderate and low flow events could be explored
independently with shorter time intervals and are recommended in
further studies.

6. Conclusion

In this study of monthly streamflow forecasting at three candidate
stations (Richmond, Gwydir, and Darling River) within Australia's
Murray-Darling Basin, the iterative input selection (IIS) algorithm was
first applied to select model's input data, which were later decomposed
using maximum overlap discrete wavelet transformation (MODWT).
Consequently, the MODWT-decomposed sub-series assisted in the ex-
traction of low and high-frequency fluctuations and trends in the his-
torical data before being utilized as model's input variables while
generating a hybrid IIS-W-ANN model. Benchmarking of the model
against M5 Tree revealed that apparently, the non-linear framework of
ANN provided an edge over the piecewise-linear-functions combina-
tions used in M5 Tree since ANN outperformed M5 Tree applied at all
the hydrological sites.

To demonstrate the usefulness of input selection for optimisation of
ANN-based streamflow forecasts, initially, a global set of predictor
variables was constructed based on a statistically significant lagged
combinations of streamflow water level, accompanied by primary me-
teorological variables related to streamflow, including precipitation,
maximum and minimum temperature, solar radiation, vapor pressure
and evaporation. Next, the iterative input selection (IIS) algorithm was
applied to sieve out the best combination of predictor variables to
safeguard the ANN model against input data redundancy. The model's
performance metrics demonstrated that the IIS algorithm was a suitable
tool for feature selection, as the IIS-optimized model had better per-
formance in comparison to the non-IIS standalone models, with higher
values of WI and ENS, and lower errors (RMSE, MAE). The significant
variables selected for Richmond River were: PCN0 and SWL1, while for
Gwydir River, three inputs were selected: SWL1, EVAP0, and PCN0 and
for Darling River, two significant lags of antecedent streamflow water
level, SWL1, and SWL2, were selected in developing the hybrid ANN and
M5 Tree models.

As clearly verified, the application of non-decimated wavelet
transform, MODWT, aimed to enhance the ANN model, by allowing it
to cope with the non-stationarity and seasonality features within the
input datasets. The resulting IIS-W-ANN outperformed the standalone
ANN, IIS-ANN, and tree based M5 Tree, IIS-M5 Tree and hybrid IIS-W-
M5 Tree models. Particularly, in comparison of the IIS-W-ANN with IIS-
ANN, there was an overall increase of 7.5% and 3.8% in r and WI,
respectively and a decreased by 21.3% in RMSE. The best performance
indices recorded by IIS-W-ANN models were in the range:
r = 0.908–0.960, WI= 0.936–0.979 and ENS = 0.770–0.920.
Congruent with these metrics, RMSE and MAE values alternated from
0.162–0.487 m and 0.139–0.390 m, respectively. Coefficient of de-
termination (R2) in scatterplots registered values of 0.825 to 0.921, to
confirm that the IIS-W-ANN recorded better forecasting performance at
all hydrological sites. Comparison of boxplots and whisker diagrams
illustrated that the distribution of the streamflow forecasted by IIS-W-
ANN model and observed streamflow water level were comparable and
the median values were relatively close. Further validation of the IIS-W-
ANN model was provided by the lowest RRMSE values
(15.65%–21.00%) registered for all hydrological sites. Comparison of
relative errors revealed that the IIS-W-ANN model applied at Gwydir
River yielded a value of RRMSE = 15.65%&MAPE = 14.79%, in-
cluding a promising performance for Richmond River and Darling River
sites.

This study advocated that the IIS coupled wavelet-ANN model (IIS-
W-ANN) can be a meritorious scientific tool for forecasting streamflow
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water level, however, the determination of the best mother wavelet that
presents an optimal decomposition level still needed an in-depth in-
vestigation in hydrological problems. This is because mother wavelets
led to different decomposition level and hence, produced disparate
results at the candidate sites. Nevertheless, this study supports ongoing
research on investigations of purely data-driven models with non-
decimated maximum overlap discrete wavelet transform and input se-
lection algorithms to better describe the behavior of stochastic variables
used to predict hydrological variables such as streamflow water level.

While our study has clearly stipulated the superiority of input se-
lection, optimization of ANN-based forecasts with iterative input se-
lection (IIS) and maximum overlap discrete wavelet transform
(MODWT) including a robust model identification process via combi-
nations of training algorithms and hidden transfer functions (Section
3.2–3.3), improvements can be introduced by using add-on optimiser
algorithms (e.g. particle swarm optimisation, PSO or firefly optimiser
algorithm, FFA) (Chau, 2006; Emary et al., 2015; Kumar et al., 2013;
Olatomiwa et al., 2015; Sedki and Ouazar, 2010). If optimisers are
embedded in IIS-W-ANN, they may assist in fine-tuning the hidden
layer weights and biases to attain neuronal architectures and forecasts.
Finally, the evaluation of forecasts at smaller time steps (e.g. daily or
hourly) is also necessary for operational use of ANN model (including
its verification at other sites) which could form the subject of a sub-
sequent independent study.
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Supplementary analysis and discussions 

The scatter plots with regression lines as presented in the published paper is 

one way of evaluating the model. An alternative method is to draw an X = Y line 

[also known as the 1:1 line or the 45° line) and compute the percentage deviations of 

the forecasted values from this line. Figure S1 (a-b) shows the scatterplot with the 

1:1 line plotted in red together with the regression line. Overall, the regression line 

deviates a lot from the X=Y line for the non-wavelet based models (i.e., IIS-ANN 

and IIS-M5 Tree models) in forecasting streamflow water level. In addition, the 

scatterplots of wavelet-based models (i.e., IIS-W-ANN and IIS-W-M5 Tree models) 

showed that the regression lines were closer to the 1:1 line. Particularly, at Site 2: 

Gwydir River and Site 3: Darling River, the IIS-W-ANN model performed very well 

as the 1:1 line and the regression lines were very similar in nature. 

A further insight was provided by the computations of percentage deviations 

from the 1:1 line at all sites from all the models under considerations. Table A1 in 

the appendix shows the full data on percentage deviations, while Table S1, presented 

here, summarizes the outcomes of the percentage deviations. A comparison of the 

total over and under-predictions from IIS-W-ANN and IIS-W-M5 Tree showed that 

at Site 1-Menindee River and Site 3-Darling River the IIS-W-ANN models were 

clearly better with a lower number of data points being out of the 5% tolerance 

range. At Site 2-Gwydir, the IIS-W-ANN model slightly over-predicted (39/70 

points) in comparison to the IIS-W-M5 Tree model (32/70 points). These outcomes 

certainly complement the results presented in the main chapter (published article in 

Atmospheric Research journal (Vol. 197, Pages 42-63)), i.e., the IIS-W-ANN model 

has a better potential of forecasting monthly streamflow water level values at the 

three study sites. 
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a)  
Site 1: Richmond River 

  

Site 2: Gwydir River 

 
 

Site 3: Darling River 
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b)  
Site 1: Richmond River 

  

Site 2: Gwydir River 

     

Site 3: Darling River 

  

 

Figure S1 Scatter plots of observed (SWLOBS) and forecasted (SWLFOR) 

streamflow water level for all the stations from: a) IIS-W-ANN and 

IIS-W-M5 Tree models, b) IIS-ANN and IIS-M5 Tree models (No 

wavelet applied). (Note: The dashed line in blue and green is the 

least-squares fitting line to the respective scatter plots and the solid 

red line is the 45° or the X = Y line for comparison). 
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Table S1  Number of points that were under and overpredicted by the wavelet-

based models (i.e., IIS-W-ANN and IIS-W-M5 Tree models) with 

respect to 5% tolerance limit. 

 

  

  

  

Site 1-Menindee 

River 

Site 2-Gwydir 

River 

Site 3-Darling 

River 

IIS-W-

ANN 

IIS-W-

M5 Tree 

IIS-W-

ANN 

IIS-W-

M5 Tree 

IIS-W-

ANN 

IIS-W-

M5 Tree 

Under-

prediction 39 41 18 24 21 23 

Over- 

prediction 16 20 39 32 38 39 

Total 55 61 57 56 59 62 
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Chapter 4: Soil moisture forecasting by a 

hybrid machine learning technique: ELM 

integrated with ensemble empirical mode 

decomposition 

 

Foreword  

This chapter is an exact copy of the published article in the journal Geoderma (Vol. 

330, Pages 136-161).  

Further to streamflow water level forecasting (Chapter 3), forecasting of another 

important hydrological variable, the soil moisture, is undertaken in this chapter with 

the employment of ensemble modelling technique. Two self-adaptive multi-

resolution analysis utilities, viz., ensemble empirical mode decomposition (EEMD) 

and complete ensemble empirical mode decomposition with adaptive noise 

(CEEMDAN) are applied to appropriately unveil and extract entrenched features 

within the soil moisture time series and address the non-stationarity issues. The 

EEMD and CEEMDAN utilities resolve the soil moisture time series into a number 

of intrinsic mode functions (IMFs) and a residual component. These resolved IMFs 

and residual sub-series are forecasted by respective machine learning models. The 

machine learning models used for this purpose are extreme learning machine (ELM) 

which is a single layer feed-forward neural network algorithm and the bootstrap-

aggregated random forest (RF) models. In this case, only the soil moisture time 

series is used to forecast future soil moisture capitalizing on the memory feature of 

several (lagged) months within the SM time-series. Hence, partial autocorrelation 

function (PACF) has been adopted to determine the salient input lags.  

The proposed hybrid EEMD-ELM model was extensively evaluated against hybrid 

CEEMDAN-ELM, and the equivalent random forest hybrid models (i.e., EEMD-RF 

and CEEMDAN-RF) as well as the standalone ELM and RF models in forecasting 

upper (0-0.2 m) and lower layer (0.2-1.5 m) relative soil moisture at seven 

hydrological sites within MDB, Australia.
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A B S T R A C T

Soil moisture (SM) is an essential component of the environmental and the agricultural system. Continuous
monitoring and forecasting of soil moisture is a desirable strategy to understand the soil dynamics for proactive
planning and decision-making measures for agriculture and related fields. In this study hybrid data-intelligent,
extreme learning machine (ELM) models are designed and explored for monthly SM forecasting. The chaotic,
complex and dynamical behavior of SM can compound the accuracy of data-driven models. Consequently, two
versatile, computationally efficient and self-adaptive multi-resolution utilities namely, complete ensemble em-
pirical mode decomposition with adaptive noise (CEEMDAN) and the ensemble empirical mode decomposition
(EEMD) algorithms are utilized to address these data non-stationarity issues, which if not resolved can lead to
model prediction inaccuracies. The difference in these approaches is that, during the EEMD process, a Gaussian
white noise is added to the intact (i.e., unresolved) time series only, while, the CEEMDAN requires sequential
additions at each decomposition phase. Integration of these multi-resolution tools with the ELM model led to the
hybrid CEEMDAN-ELM and the EEMD-ELM models, that were benchmarked with random forest (RF) equivalent
models. Using WaterDyn model's hind-simulated SM data, these models were applied (without any climate in-
puts) to forecast the upper (0.2 m) and the lower layer (0.2–1.5 m depth) soil moisture in Australia's agricultural-
hub, the Murray-Darling Basin. The standalone ELM and RF model has similar computation efficiency and model
performances. However, despite the implementation of computationally expensive ensemble techniques (i.e.,
EEMD and CEEMDAN, the hybrid ensembles EEMD-ELM and CEEMDAN-ELM were highly efficient with im-
proved performances. The research outcomes showed that the CEEMDAN-ELM model outperformed the alter-
native models at three (out of the seven) sites applied for upper layer SM forecasts, while the EEMD-ELM hybrid
model was superior at all seven sites for the lower layer soil moisture forecasts. The study signifies the important
role of the self-adaptive multi-resolution utility (CEEMDAN) hybridized with the ELM algorithm to potentially
develop automated prediction systems for forecasting soil moisture, with potential applications in agriculture.

1. Introduction

The structure and functioning of the natural hydrological system is
contingent upon soil moisture (SM) which is the principal regulating
element of groundwater hydrology, biogeochemical balance, parti-
tioning of the mass and energy fluxes in between land-atmosphere
system (Brocca et al., 2017; Brocca et al., 2010; Petropoulos, 2014), and
nutrient and greenhouse gas fluxes. On the other hand, the agricultural
yield is also explicitly dependent on SM content and any unprecedented
fluctuations could be deleterious for this volatile industry. To devise
sustainable planning, and scheduling of specialized agricultural tasks,
efficient and effective temporal predictive systems are essential tools.
Advanced or forecasted knowledge of this important variable, SM, is
pivotal for proactive sustainable decisions in efficient irrigation

scheduling, grazing scheduling, water quality monitoring, yield pre-
dictions (Gill et al., 2006), water resource management (Zhang et al.,
2017a) and soil carbon loss prediction (Rey et al., 2017). Intelligent
agricultural decision support systems based on artificial intelligence
used in monitoring and forecasting SM can provide useful and tangible
solutions in enhancing sustainability and productivity of farming sys-
tems.

Envisioning this, SM forecast models have been established that
includes empirical formulations, the water balance approach, the dy-
namic soil-water models, time series models, remote sensing models
and neural network models (Huang et al., 2011). However, these
models have limitations in practical applications. For instance, water
balance, soil-water dynamic, and time series model require an intensive
volume of spatial and temporal (measured) data as initialization
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conditions. In addition, the remote sensing model has a poor stability
(i.e., plagued by dew) while the empirical model parameters lack
practical scope (Huang et al., 2011; Mahmood and Hubbard, 2004;
Weimann et al., 1998). The problem is further exacerbated by the
perplexing association between SM and its derivative factors, such as
climate dynamics and geomorphologic properties (e.g., topography, soil
properties, vegetation type and density, depth to water table and land
use) (Famiglietti et al., 1998; Zhang et al., 2017a). Moreover, sophis-
ticated programs and rigorous optimization techniques are required for
model calibration (Jain and Srinivasulu, 2004).

To surmount the difficulties, the preciseness of extreme learning
machine (ELM) pioneered by Huang et al. (2004) is evaluated in fore-
casting SM-derived from the physical WaterDyn model (AWAP, 2016;
Raupach et al., 2009). ELM is a recent state-of-the-art data intelligent
model. It is convenient to use single layer feed-forward neural network
(SLFN) with better generalization capability (Shamshirband et al.,
2015; Sun et al., 2008). ELM has demonstrated high accuracy at a lower
computational expense for forecasting water demand (Mouatadid and
Adamowski, 2016; Tiwari et al., 2016), stream-flow (Deo and Sahin,
2016; Yaseen et al., 2016), wind speed (Shamshirband et al., 2015),
dew-point temperature (Mohammadi et al., 2015) and evapo-
transpiration (Patil and Deka, 2016). The SLFN modeling framework of
ELM is similar to that of the feed-forward neural network with random
weights (Schmidt et al., 1992) and random vector functional-links
(RVFL) (Pao et al., 1994) where the input weights and biases are also
randomly assigned. ELM is occasionally referred to as a variant of RVFL
(Cecotti, 2016; Scardapane et al., 2015). Yet, ELM has subtle but im-
portant variations. In comparison to feed-forward neural network with
random weights, the ELM has added output biases which were lacking
in the former model (Huang, 2014; Schmidt et al., 1992). In addition,
there is no direct connection in between inputs and outputs in ELM,
which is the case with RVFL (Huang, 2014; Pao et al., 1994; Wang and
Wan, 2008). ELM also provides added versatility for implementations of
various nonlinear activation and kernel functions (Huang, 2014;
Shamshirband et al., 2015; Sun et al., 2008). However, the literature
shows that ELM has not been fully explored in SM forecasting, and
hybrid models of ELM integrating multi-resolution analysis are rela-
tively scarce. One study by Liu et al. (2014) forecasted SM in Dookie
apple orchard, Victoria, Australia using ELM and support vector ma-
chines (SVM), revealing the superiority of ELM in SM forecasting at a
soil depth of 20, 40 and 60 cm. Yet, that study period spanned across a
very short period (14months) and apparently lacked the inclusion of
significant seasonal and long-term climate dynamics derived from
realistic, physically-based inputs.

To benchmark ELM, a bootstrapped-aggregated tree approach,
random forest (RF) has been designed. RF has proven to yield good
performance with reasonable prediction accuracy in forecasting hydro-
meteorological variables, such as temperature variation (Naing and
Htike, 2015), wind power (Lahouar and Ben Hadj Slama, 2017) and
standardized precipitation index (Chen et al., 2012a). Similar to ELM,
RF is uncommon in SM forecasting. The study by Matei et al. (2017)
used RF to forecast SM at soil depths of 10 cm, 30 cm and 50 cm in
Transylvania plain, Romania, while no such study has been carried out
in Australia so far.

Despite the ability to handle dynamicity and nonlinearity, so far no
single data-intelligent approach has been able to provide aptest fore-
casts under erratic hydrological conditions (Yaseen et al., 2016). The
chaotic, complex and dynamical behavior of pedologic and hydro-
logical processes leads to non-stationarities (varying mean) and sea-
sonality (changes in variance) within the model input series (Hu and Si,
2013; Kim and Valdes, 2003; Nourani et al., 2014). This behavior can
compound the ability of conventional data-intelligent models in accu-
rately simulating the soil moisture. With the insight to address this
issue, two relatively new and advanced versions of empirical mode
decomposition (EMD) has been utilized to resolve the embedded fre-
quency information (i.e., related to the physical structure of data) in the

model inputs. Multi-resolution analyses (MRA) tool, ensemble-EMD
(EEMD), was proposed by Wu and Huang (2009) and the complete
ensemble empirical mode decomposition with adaptive noise
(CEEMDAN) was proposed by Torres et al. (2011). Both aim to segre-
gate higher frequency input series into lower frequency resolved parts
to extract and isolate salient features representing the physical structure
of the data. Both of these techniques have merits over conventional
approaches (e.g., wavelet transform (WT) (Mallat, 1989; Mallat, 1998;
Nourani et al., 2014a; Nourani et al., 2009)), singular value decom-
position (SVD), singular spectrum analysis (SSA) (Chau and Wu, 2010;
Chitsaz et al., 2016) and principal component analysis (PCA) (Hu et al.,
2007)). Among these, WT has been widely used (e.g., (Anctil and Tape,
2004; Deo et al., 2017a; Deo et al., 2016; Labat et al., 2000; Nourani
et al., 2009; Wen et al., 2016)). In particular, the non-decimated wa-
velet function (i.e., maximum overlap discrete wavelet transform,
MODWT) is able to retain the downsampled values but the choice of the
mother wavelet with MODWT is a major concern. There is no explicit
rule to select an optimal wavelet other than by an iterative trial and
error process (Prasad et al., 2017). The EEMD and CEEMDAN decom-
positions does not require prescribed frequency bands or imposed basis
functions, thus making the decomposition completely self-adaptive.
This offers a significant advantage over wavelets. Both EEMD and
CEEMDAN solve the ‘mode mixing’ issue of EMD, achieved by the ad-
dition of a Gaussian white noise to the intact (i.e., undecomposed)
series. EEMD has been found to reduce the difficulties in the forecasting
process, by reducing the complexity of a time series (Di et al., 2014).
During CEEMDAN-based decomposition, a Gaussian white noise with
unit variance and noise coefficient is added sequentially at each de-
composition stage. Although this does have limitations on parallel
computing, the reconstruction of CEEMDAN decomposed data is com-
plete and noise-free (Ren et al., 2015; Zhang et al., 2017b). In spite of
the advantages and self-adaptability making it suited for practical ap-
plications, neither EEMD nor CEEMDAN has been broadly applied in
soil moisture forecasting applications.

EEMD-based data-driven models have been explored in forecasting
precipitation (Beltran-Castro et al., 2013; Jiao et al., 2016; Ouyang
et al., 2016), reservoir inflows (Bai et al., 2015) and daily river data
(Seo and Kim, 2016). Although these studies found that the models
generated improved forecasts, very limited application of EEMD in SM
forecasting has been carried out. Basha et al. (2015) carried out fore-
casting of temperature, precipitation and SM patterns for the United
Arab Emirates using EEMD coupled Non-Stationary Oscillation Re-
sampling (NSOR) model and compared it with Coupled Model Inter-
comparison Project phase 5 (CMIP5) projections. They found that the
EEMD-NSOR model had a better forecasting capability. Likewise,
CEEMDAN has been found to be more effective than EMD to forecast
wind speed (Ren et al., 2015; Zhang et al., 2017b), power load
(Palaninathan et al., 2016) and electricity markets (Afanasyev and
Fedorova, 2016). In terms of estimation error, CEEMDAN was com-
parable with wavelet-decomposition (Afanasyev and Fedorova, 2016)
but to the best of the authors' knowledge, the application of the tech-
nique is yet to be explored in forecasting SM at large.

The purpose of this research study is to develop a new and precisely
tuned hybrid data-intelligent model overcoming non-stationarity issues
in forecasting upper and lower layer soil moisture with potential for
practical applications. Temporal hind-casted SM data generated from
the physically-driven hydrological model (i.e., Commonwealth
Scientific and Industrial Research Organisation's (CSIRO's) WaterDyn
model) incorporating climatic forcing (e.g., solar radiation, tempera-
ture, rainfall, etc.) (AWAP, 2016; Raupach et al., 2009) are utilized.
Two self-adaptive multi-resolution analysis methods (i.e., EEMD and
CEEMDAN) are embedded into an extreme learning machine (ELM)
algorithm to resolve the frequencies and to unveil the physical structure
of the input variable before the model is applied in the actual fore-
casting of soil moisture. The resulting hybrid EEMD-ELM and the
CEEMDAN-ELM based ensemble models are designed and then
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evaluated at seven hydrological sites within the Murray-Darling Basin
in Australia. To cross-validate the model's versatility in SM forecasting,
ELM-hybrid models are benchmarked against random forest (RF)
equivalent hybrid and standalone RF models, as the first study for SM
forecasting. Next, we outline the theory of the data-intelligent algo-
rithms followed by the decomposition techniques, methods, data, and
the results. An overview of the challenges and the prospects of real-time
SM forecasting using the proposed EEMD-ELM approach is presented
with concluding remarks for closing the paper.

2. Data-intelligent algorithms

2.1. Extreme learning machine

In this paper, ELM model is developed in accordance with single
layer feed-forward neural network (SLFN). The input weights in ELM
are randomly assigned while the output weights are analytically de-
termined, as depicted by the simplified schematic architecture in Fig. 1.
The general output function of the ELM algorithm with K hidden neu-
rons is expressed as (Huang et al., 2004; Huang et al., 2006):

∑ =
=

B G α β x z( , , )
i

K

i i i i t t
1 (1)

where xt∈Rd are predictor inputs (with d as the input dimension and t
as the occurrence instances), zt ∈ R represents the model output
(forecasted values), B ∈ RK represents the output weights, αi ∈ RK are
the input weights and βi ∈ R are the biases and i is the index of the
hidden neuron. Consequently, the additive hidden nodes with the ac-
tivation function of g(x): R→R is represented as (Huang et al., 2006):

= +G α β x g α x β( , , ) ( . )i i i t i t i (2)

where Gi(αi,βi,xt) is the output of the ith hidden node corresponding to
input x. In hydrology non-linear logistic functions (e.g., logarithmic
sigmoid) are the preferred activation functions (Deo and Sahin, 2016;
Deo and Şahin, 2015). For the training of the ELM model applied for the
forecasting of monthly relative upper and lower layer soil moisture
levels, the term N=218 denotes the pairs of the training predictor
samples (xt) and the observed soil moisture (SMOBS):
T={(xt,SMt

OBS) : xt∈Rd,SMt
OBS∈R} with d=the number of predictor

inputs (input neurons) and t=1, 2, …N=218 monthly data were

used. It is important to note that for the standalone ELM models de-
veloped in this paper, xt∈Rd are the significant lags of the intact soil
moisture time series i.e., the series without EEMD/CEEMDAN analysis.
On the other hand, for the ensemble EEMD-ELM/CEEMDAN-ELM
models, xt∈Rd represents the significant lagged series of the intrinsic
mode functions (IMFs) and the residual component, which result after
the EEMD/CEEMDAN transformations of the original input data series.
During training of the ELM model, the output (zt) is replaced with the
observed soil moisture values (SMt

OBS) since the observed input-output
pairs are used to determine the relevant weights and biases. As such,
the general equation (Eq. (1)) becomes:

∑ =
=

B G α β x SM( , , )
i

K

i i i i t t
OBS

1 (3)

Simplifying Eq. (3) with G being the hidden layer output, B being
the weights gives:

=SM GBOBS (4)

which in matrix notations are:

=
⎡
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B

B
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( . ) ( . )

( . ) ( . )
, ,
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K K

i N K N K N K K K

OBS

OBS

N
OBS

N

1 1 1 1

1

1

1

1

218 1

With suitable number of hidden neurons and randomized allocation
of input layer weights, and hidden neurons biases (α and β), the ELM
network's output weights (B) are analytically determined to yield zero
forecasting errors. Hence, following Eq. (4), the values of B are esti-
mated directly from the N input-output data samples via a least-square
solution as follows (Huang et al., 2006):

=B G SMOBS† (5)

where G† is the Moore–Penrose generalized inverse of G.
This process then enables an efficient and random selection of the

input weights and the corresponding hidden layer biases are able to
reduce the ELM modeling network to a linear prediction system. Thus,
the output weights (i.e., the features transferred from the hidden to the
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Fig. 1. The architecture of extreme learning machine (ELM) network. Details of input variables are provided in Tables 4a–b, while the modeling framework is given
in Table 6a. The hidden neurons from 50 to 200 were used.
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output layer) of this linear system are analytically determined by a
simple generalized inverse operation of the hidden layer output ma-
trices. This makes the ELM model computationally efficient in com-
parison with the conventional lengthy iterative adjustments required in
the case of the network parameters of an artificial neural network
model (Deo et al., 2017a). The suitability of ELM has been explored in
many fields (Deo and Sahin, 2016; Mouatadid and Adamowski, 2016;
Patil and Deka, 2016; Shamshirband et al., 2015; Tiwari et al., 2016;
Wang et al., 2017c; Yaseen et al., 2018; Yaseen et al., 2016), however, it
is yet to be extensively tested on huge datasets. In this paper, the
forecasts of the objective variable (i.e., monthly soil moisture) are then
generated and the results are compared with a Random Forest (RF)
model, which are described in the next section.

2.2. Random Forest

Random Forest (RF) is a regression tree-based ensemble technique
introduced by Breiman (2001) (an extension of bagging (Breiman,
1996)). RF aims to reduce the variance without undue increase in the
bias. Employing a bootstrap aggregation (bagging) approach, the RF
model is able to overcome the overfitting issue of conventional solitary
regression trees. During training, ‘n’ bootstrap replicas are taken from
the training data-set, using random sampling with replacement. For the
standalone RF models developed in this study, the significant lagged
soil moisture time series without the EEMD/CEEMDAN analysis were
used as the model's inputs. While, for the EEMD-RF/CEEMDAN-RF
models, the significant lagged series of the intrinsic mode functions
(IMFs) and the residual component, that were obtained after the EEMD/
CEEMDAN transformations were applied, were taken to be the model's
inputs. The outputs in all the modeling cases were the monthly relative
upper and the lower layer soil moisture level, as with the case of ELM-
based models. Henceforth, a single tree is constructed on every separate
‘n-replicas’ with simultaneous computation of out-of-bag (OOB) errors
of respective trees using the data that were not used during training as:

∑= −
=N

SM SMOOB error 1 ( )
t

N

t
OBS

t
FOR

1

2

(6)

where SMt
OBS is the tth instance of observed value and SMt

FOR is the
corresponding forecasted value.

The single regression trees are put together, whereby the forecasted
output is averaged over an ensemble of trees. This stabilizes the outputs
to allow for desirable adaptability and better generalization (Lin and
Jeon, 2006). At each split in decision trees, a random subset of features
is selected for testing. This further improves the accuracy (Breiman,
2001) and overcomes model over-fitting issues (Diaz-Uriarte and
Alvarez de Andres, 2006). Only three parameters in RF requires some
tuning: i) m, the number of randomly assigned predictor variables at
each node, ii) J, the number of trees in the forest and iii) tree size, the
maximum number of terminal nodes/leaf. J is not problematic
(Breiman, 2001), however, an excessively small value may lead to
convergence of the generalization error. The default value of m, one-
third of the total number of variables, has been reported to be ideal
(Liaw and Wiener, 2002) and therefore has been adopted in this study
with J=200 and tree size= 5, which has generated optimal results
shown later.

2.3. Ensemble empirical mode decomposition (EEMD)

The EEMD is an improvement to overcome the mode mixing issue of
empirical mode decomposition (EMD), offering a better time series
processing (Wu and Huang, 2009). EEMD features stronger self-adapt-
ability and local variation characteristics (Li et al., 2015) while effec-
tively detecting the non-stationarity and nonlinearity. It separates the
embedded oscillations at different scales into intrinsic mode functions
(IMFs) and a residual (trend) component (Wu and Huang, 2009).Ta
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A Gaussian white noise is added to the intact (i.e., unresolved) time
series to provide a uniform reference frame in gathering the compo-
nents of the same frequency. The noise is eliminated through averaging
of corresponding IMFs and the residual component. A brief realization
of the EEMD algorithm is as follows (Wu and Huang, 2009): For an
unresolved signal x(t), (1) Add a white noise series s(t) such that
x′(t)= s(t)+ x(t). (2) Decompose x′(t) into IMFs and residue. (3) Repeat
steps 1 and 2 ‘p’ numbers of times, with different white noise each time
(where ‘p’=ensemble number). (4) Compute the mean of all IMF
components (without mode mixing) and the mean of residue compo-
nents cancelling out the added white noise. Hence, the intact (un-
resolved) time series is expressed as the sum of IMFs and the residue as:

∑= +
=

x t IMF t r t( ) ( ) ( )
i

m

i m
1 (7)

where IMFi(t) is the intrinsic mode functions, rm(t) denotes the final
residue component, m is the total number of IMFs, and i is the com-
ponent indices.

Intrinsic mode functions should satisfy two admissibility conditions
(Huang et al., 1998; Wu and Huang, 2009); (i) Over its entire length,
the number of extrema and the number of zero-crossings must either be
equal, or differ at most by one; (ii) At any point, the mean value of the
signal defined by the local maxima and the envelope defined by the

local minima is zero. Therefore, IMF1 has a maximum amplitude and
highest frequency, while the subsequent IMFs have lower amplitude
and frequency. The final component, the residue (or trend) is a slowly
varying mode around the long-term average.

2.4. Complete ensemble empirical mode decomposition with adaptive noise
(CEEMDAN)

Alternatively, the CEEMDAN technique proposed by Torres et al.
(2011) has similar advantages as being self-adaptive and one that
avoids mode mixing problems. With that, the reconstructed time series
is identical to the intact (unresolved) one (Colominas et al., 2014;
Torres et al., 2011). The key dissimilarity is that during CEEMDAN
decomposition process, a Gaussian white noise with unit variance and
noise coefficient is added at each of the decomposition stages. This
noise-added signal is decomposed via EMD to obtain the first IMF and
the subsequent residual component. Consider an unresolved signal, x(t),
and added white noise, sn(t). To obtain the first IMF by CEEMDAN (i.e.
IMF1), for every n=1…, N decompose each xn′(t)= x(t)+ εsn(t) via
EMD where: N=ensemble number and ε=amplitude of the added
noise. Note that at each subsequent stage, the coefficient εp allows an
appropriate selection of the signal-to-noise ratio of the white noise.
Then collate the first IMFs produced by EMD (i.e. d1) and compute the
ensemble average as follows:

Fig. 2. Map of study region showing the selected stations and its geographical locations. The colored contour gradients show the elevation (in meters) above sea
level. (Refer to the key for the names of sites with respective marker labels.)

Table 2
Monthly climatic features of upper and lower layer relative soil moisture (SMUL and SMLL) at the selected sites.

Site no. Station names SMUL Monthly climatic features SMLL Monthly climatic features

Min. Max. Mean Skew-ness Kurtosis Min. Max. Mean Skew-ness Kurtosis

1 Menindee 0.013 0.434 0.139 0.791 0.058 0.205 0.703 0.343 1.241 1.421
2 Balranald 0.013 0.470 0.159 0.668 −0.182 0.034 0.187 0.092 0.695 −0.533
3 Wanaaring 0.011 0.452 0.141 0.979 0.302 0.098 0.485 0.213 1.302 1.487
4 Bobadah 0.015 0.520 0.197 0.572 −0.272 0.119 0.560 0.290 0.436 −0.840
5 Moorwatha 0.018 0.754 0.288 0.380 −0.635 0.147 0.999 0.571 0.158 −0.695
6 Jerrawa 0.026 0.893 0.302 0.598 0.097 0.210 1.000 0.584 0.446 −0.403
7 Rocky Creek 0.036 0.814 0.285 0.463 0.489 0.145 1.000 0.473 0.442 0.218

[NB: The relative soil moisture values are based on the base climatological reference period: 1961–1990].
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∑=
=

t
N

dIMF ( ) 1

n

N

1
1

1
(8)

The remaining component after obtaining IMF1 is described as:

= −r t x t t( ) ( ) IMF ( )1 1 (9)

Next, the computation of IMF2 of the intact signal, x(t), from the
remaining component, where Fj(.) is the operator which produces the jth

IMF obtained via EMD, is expressed as:

∑= +
=

t
N

F r t ε F s tIMF ( ) 1 [ ( ) ( ( ))]
n

N

n2
1

1 1 1 1
(10)

Hence, the subsequent IMFs (p=2,3…P) are expresses as follows:

= −

= ∑ +

⎫

⎬
⎪

⎭⎪

−

+
=

r t r t t

t F r t ε F s t

( ) ( ) IMF ( )

IMF ( ) [ ( ) ( ( ))]

p p p

p N
n

N

p p p n

1

1
1

1
1

(11)

The remaining component, rp(t), is repeatedly decomposed using
EMD to obtain subsequent IMFs until the residue does not satisfy the
conditions of IMF's. The final residual (R) component is expressed as:

∑= −
=

R t x t t( ) ( ) IMF ( )
p

P

p
1 (12)

3. Materials and method

3.1. Study area and description of model design data

The study area, New South Wales (NSW), hubs Australia's agri-
cultural belt, the Murray-Darling Basin (MDB) that covers 14% of land
area and encompasses 67% as agricultural land (Australian Bureau of
Statistics, 2010). MDB contributes to 1/3 of Australia's food supply
(Welsh et al., 2013) and 2% of the total economic output (Australian
Bureau of Statistics, 2014). Accordingly, seven sites were selected as
summarized in Table 1 with distinct geophysical characteristics ac-
quired from various sources (ABS, 2011; ASRIS, 2014; Australian
Bureau of Statistics, 2008; Department of Agriculture and Water
Resources, 2015; Hijmans et al., 2005). Fig. 2 illustrates the physical
locations with overlayed elevation shades for better visualization.

Data-intelligent models solely rely on historical information to
forecast the future SM. In this paper, we adopt the simulated SM data
from the physically-driven WaterDyn hydrological model developed by

Fig. 3. Monthly variations of a) upper layer (SMUL) and b) lower layer (SMLL) soil moisture. (NB: SMUL and SMLL are relative values and are dimensionless.)

Table 3
Data partitions used for model development in this study.

Sites Period Number of datum points Number of input features after lags Data partition

Training Validation Testing

All sites and for both soil moisture layers Jan 1990 to Dec 2016 324 324–12=312 70% 218 15% 47 15% 47
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the Commonwealth Scientific and Industrial Research Organisation
(CSIRO) in collaboration with Australian Bureau of Meteorology (BOM)
as part of the Australian Water Availability Project (AWAP) (AWAP,
2016; Raupach et al., 2009). Authentic and reliably gridded monthly
historical values of relative (i.e., fractional) soil moisture data bounded
by [0, 1] for the upper layer (denoted hereafter as SMUL) and the lower
layer (SMLL) over a 0.05°× 0.05° spatial resolution, are used (Raupach
et al., 2009). The physically-generated AWAP-based SM data provides a
realistic account of the soil's hydrological conditions by simulating
climatic variables to model terrestrial water balance across continental
Australia. Inputs and constraints include meteorological forcing (i.e.,
solar radiation, precipitation, minimum and maximum daily tempera-
ture) and continental parameter maps (e.g. albedo, soil characteristics,
seasonality of vegetation greenness). Due to this dependence on me-
teorological inputs, quality controlled meteorological fields generated
by BOM's network of rain gauge and weather sites are used byWaterDyn
model while solar irradiance data is obtained using geostationary sa-
tellite imageries (AWAP, 2016; Raupach et al., 2009).

The upper layer SM is up to a depth of 0.2 m from the surface and
the lower layer is from 0.2–1.5 m depth. The upper layer is usually
characterized as surface SM and the lower layer as root-zone SM
(Seneviratne et al., 2010). The SM is commonly expressed either as a
dimensionless ratio of two masses or two volumes or as a ratio of a mass
per unit volume (Petropoulos, 2014). However, the relative values in
this study are based on the base climatological reference period
[1961–1990] (Raupach et al., 2009). Consequently, the study period is
from January 1990–December 2016. The missing data were computed
and replaced via monthly climatology and interpolation techniques
(Beesley et al., 2009; Tozer et al., 2012).

In tandem with Table 2, variations in climatological patterns in
upper and lower layer SM at geographically-diverse sites are apparent
(Fig. 3a–b). SMUL (Fig. 3a) shows a maximum during June–August
(winter) and minimum during December–January (summer) and April
(autumn). However, with SMLL three sites (Sites 1, 2 and 3) showed no
clear trend while Sites 4, 5, 6 and 7 occupied the largest magnitudes
during the winter-spring transition periods (August–September) and

Table 4
Input variables for standalone, EEMD and CEEMDAN hybrid extreme learning machine (ELM) and random forest (RF) models based on PACF in forecasting: a)
relative soil moisture for upper layer (SMUL); b) relative soil moisture for lower layer (SMLL).

a) SMUL Significant input lag numbers at respective sites

Sites 1 2 3 4 5 6 7

Standalone models (Intact time series (i.e., without EEMD/CEEMDAN analysis) 1, 2, 5 1, 10, 11 1, 10, 12 1, 10, 11, 12 1, 2, 3, 4, 10, 11 1, 2, 4, 10, 11 1
EEMD (Hybrid ELM/RF Models)
IMF-1 2–3 1–5 2–4 1–3 1–4 1–6 1–4
IMF-2 1–6, 8 1–6, 8 1–4, 6 1–4, 6 1–4, 6 1–4, 6 1–8, 10
IMF-3 1–8 1–6, 8 1–6 1–6 1–6 1–6 1–6
IMF-4 1–6 1–6 1–6 1–6, 8 1–5, 7 1–6, 8 1–6, 8
IMF-5 1–6, 8 1, 8, 10 1–6 1–6 1–8 1–6 1–8, 10
IMF-6 1–8 1–8 1–6 1–6 1–8 1–6 1–7
IMF-7 1–6 1–8 1–5 1–6 1–7 1–6 1–6
IMF-8 1–7 1–7 1–6
Residual 1–6 1–12 1–6 1–12 1–12 1–6 1–8

CEEMDAN (Hybrid ELM/RF Models)
IMF-1 1–2 1–5 1–3, 5 1–3, 5 1–4 1–6 1–4
IMF-2 1–6, 8 1–4, 6 1–4, 6 1–7 1–4, 6–9 1–4, 6–8 1–4, 6–8
IMF-3 1–3, 5–6 1–5 1–3, 5–7 1–6 1–7 1–4, 6–7 1–3, 5–6
IMF-4 1–6, 8 1–6, 8–9 1–6, 8 1–6, 8 1–6, 8–10 1–6, 8–10 1–6, 8
IMF-5 1–6 1–5 1–5 1–6, 8 1–6, 8–11 1–6, 8 1–6, 8–9
IMF-6 1–8, 10 1–8 1–6 1–6 1–7 1–6 1–6
IMF-7 1–6 1–6 1–6 1–6 1–6 1–6 1–5
IMF-8 1–6 1–7 1–7 1–6 1–6 1–6
Residual 1–6 1–6 1–7 1–7 1–7, 9 1–5 1–6

b) SMLL Significant input lag numbers at respective sites

Sites 1 2 3 4 5 6 7

Standalone models (Intact time series (i.e., without EEMD/CEEMDAN analysis) 1, 2, 3 1, 2, 3, 12 1, 2 1, 2, 3 1, 2, 3, 8, 9, 12 1, 2, 8, 9 1, 2
EEMD (Hybrid ELM/RF Models)
IMF-1 2–5 2–5 1–6 2–6 2–6 1–5 2–7
IMF-2 1–6 1–6, 8 1–8, 10–11 1–6 1–7 1–6 1–6
IMF-3 1–8 1–7 1–6, 8 1–6 1–10 1–7 1–7
IMF-4 1–7 1–7 1–7 1–7 1–6 1–6, 8 1–7
IMF-5 1–7 1–8 1–7 1–7 1–7 1–8 1–8
IMF-6 1–6 1–6 1–7 1–6, 8 1–8 1–6 1–6
IMF-7 1–5, 7–10 1–8 1–7 1–5 1–6 1–5 1–5
IMF-8 1–6
Residual 1–12 1–12 1–5 1–6 1–12 1–6 1–12

CEEMDAN (Hybrid ELM/RF Models)
IMF-1 2–5 2–7 1–7 2–6 1–6 2–5 2–7
IMF-2 1–2 1–2 1–2, 4–5 1–5, 7–8 1–4 1–4, 6–7 1–4
IMF-3 1–3, 5–8 1–3, 5–7 1–3, 5–7 1–2, 4–6 1–6 1–6, 8 1–3, 5–7
IMF-4 1–6, 8 1–6, 8 1–6, 8 1–6, 8 1–6, 8–11 1–6, 8–9 1–6, 8
IMF-5 1–5 1–5 1–5, 7–8 1–5 1–6 1–5 1–5
IMF-6 1–7 1–7 1–7 1–5, 7 1–6 1–6 1–6
IMF-7 1–5 1–6 1–6 1–6 1–6 1–6 1–7
IMF-8 1–6 1–7 1–6 1–6
Residual 1–6 1–6 1–7 1–7 1–6 1–6 1–6
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Table 5
Performance of EEMD and CEEMDAN-hybridized ELM and random forest models, during model development phase: training and validation periods, based on
r=Pearson's correlation coefficient; RMSE=root mean square error and MAE=mean absolute error: a) Relative Soil Moisture - upper layer (SMUL) and b) Relative
Soil Moisture - lower layer (SMLL).

a) SMUL Extreme Learning Machine (ELM) Random Forest (RF)

Optimum models at respective sites Training Validation Training Validation

r RMSE MAE r RMSE MAE r RMSE MAE r RMSE MAE

SITE: 1
Standalone 0.641 0.070 0.055 0.591 0.085 0.066 0.829 0.056 0.044 0.607 0.082 0.063
EEMD 0.875 0.044 0.036 0.788 0.062 0.050 0.913 0.039 0.031 0.828 0.058 0.045
CEEMDAN 0.832 0.051 0.041 0.738 0.075 0.058 0.933 0.036 0.028 0.848 0.058 0.047

SITE: 2
Standalone 0.666 0.074 0.058 0.563 0.092 0.074 0.821 0.060 0.049 0.539 0.092 0.075
EEMD 0.940 0.034 0.027 0.820 0.061 0.046 0.944 0.036 0.028 0.866 0.062 0.049
CEEMDAN 0.944 0.033 0.027 0.637 0.086 0.069 0.946 0.036 0.028 0.842 0.062 0.050

SITE: 3
Standalone 0.542 0.087 0.067 0.212 0.103 0.082 0.820 0.067 0.052 0.397 0.094 0.072
EEMD 0.877 0.050 0.040 0.799 0.061 0.046 0.901 0.048 0.038 0.759 0.066 0.049
CEEMDAN 0.854 0.055 0.043 0.711 0.071 0.058 0.933 0.042 0.032 0.811 0.061 0.050

SITE: 4
Standalone 0.527 0.101 0.082 0.287 0.112 0.092 0.839 0.072 0.059 0.301 0.111 0.089
EEMD 0.886 0.055 0.043 0.734 0.079 0.062 0.929 0.051 0.040 0.768 0.076 0.061
CEEMDAN 0.922 0.046 0.036 0.719 0.088 0.061 0.938 0.047 0.038 0.795 0.073 0.058

SITE: 5
Standalone 0.789 0.101 0.078 0.479 0.126 0.099 0.891 0.080 0.064 0.471 0.125 0.094
EEMD 0.974 0.037 0.029 0.579 0.189 0.106 0.964 0.048 0.038 0.861 0.075 0.059
CEEMDAN 0.973 0.038 0.030 0.556 0.229 0.125 0.968 0.045 0.036 0.854 0.077 0.058

SITE: 6
Standalone 0.766 0.106 0.084 0.508 0.124 0.089 0.897 0.079 0.064 0.455 0.127 0.091
EEMD 0.957 0.049 0.039 0.691 0.103 0.076 0.96 0.052 0.041 0.756 0.091 0.073
CEEMDAN 0.958 0.048 0.039 0.646 0.111 0.082 0.963 0.051 0.041 0.726 0.095 0.075

SITE: 7
Standalone 0.394 0.122 0.101 0.489 0.121 0.101 0.643 0.104 0.083 0.404 0.125 0.100
EEMD 0.842 0.072 0.059 0.816 0.078 0.058 0.925 0.055 0.043 0.875 0.072 0.057
CEEMDAN 0.890 0.061 0.049 0.798 0.083 0.062 0.930 0.054 0.044 0.884 0.070 0.056

b) SMLL Extreme Learning Machine (ELM) Random Forest (RF)

Optimum models at respective sites Training Validation Training Validation

r RMSE MAE r RMSE MAE r RMSE MAE r RMSE MAE

SITE: 1
Standalone 0.992 0.013 0.007 0.986 0.024 0.016 0.980 0.020 0.010 0.953 0.046 0.027
EEMD 0.999 0.004 0.003 0.972 0.035 0.019 0.995 0.010 0.005 0.975 0.044 0.029
CEEMDAN 0.975 0.023 0.017 0.980 0.037 0.030 0.995 0.010 0.005 0.971 0.050 0.038

SITE: 2
Standalone 0.981 0.007 0.005 0.861 0.047 0.035 0.985 0.007 0.004 0.85 0.071 0.046
EEMD 0.998 0.002 0.002 0.991 0.013 0.008 0.994 0.004 0.003 0.932 0.064 0.044
CEEMDAN 0.997 0.003 0.002 0.522 0.105 0.051 0.994 0.004 0.003 0.909 0.056 0.040

SITE: 3
Standalone 0.984 0.014 0.008 0.977 0.017 0.011 0.985 0.014 0.009 0.965 0.021 0.014
EEMD 0.999 0.003 0.002 0.993 0.010 0.006 0.996 0.007 0.005 0.986 0.016 0.010
CEEMDAN 0.999 0.003 0.003 0.995 0.008 0.005 0.995 0.008 0.005 0.988 0.016 0.010

SITE: 4
Standalone 0.970 0.027 0.018 0.902 0.037 0.022 0.965 0.029 0.020 0.834 0.047 0.033
EEMD 0.997 0.009 0.006 0.872 0.042 0.020 0.992 0.014 0.010 0.963 0.029 0.022
CEEMDAN 0.996 0.010 0.007 0.904 0.036 0.020 0.993 0.014 0.009 0.960 0.028 0.022

SITE: 5
Standalone 0.972 0.049 0.035 0.920 0.084 0.061 0.966 0.058 0.044 0.905 0.094 0.076
EEMD 0.997 0.017 0.013 0.982 0.040 0.028 0.990 0.033 0.025 0.971 0.062 0.049
CEEMDAN 0.997 0.017 0.013 0.971 0.051 0.030 0.990 0.031 0.023 0.969 0.058 0.046

SITE: 6
Standalone 0.971 0.046 0.033 0.826 0.116 0.084 0.957 0.058 0.042 0.878 0.095 0.067
EEMD 0.993 0.023 0.016 0.922 0.092 0.055 0.982 0.037 0.028 0.934 0.093 0.069
CEEMDAN 0.991 0.026 0.017 0.874 0.117 0.061 0.988 0.032 0.024 0.942 0.096 0.074

SITE: 7
Standalone 0.910 0.068 0.051 0.845 0.095 0.065 0.936 0.059 0.043 0.854 0.091 0.069

(continued on next page)
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lowest values in May. Similarly, the least magnitude of upper layer SM
is registered at Site 3-Wanaaring while Site 6-Jerrawa recorded the
highest value (0.893) (Table 2). With, lower layer SM, however, the
least value is recorded at Site 2-Balranald (0.034). Both Site 6-Jerrawa
and Site 7-Rocky Creek recorded the highest levels (1.000). It is clear
that upper and lower layer relative SM exhibit distinct patterns, and so,
would be a worthy hydrological property to be tested through the re-
spective models.

The skewness of upper layer soil moisture at all study sites were
closer to zero confirming near-normal distributions. However, for lower
layer SM except for Site 1-Menindee [skewness= 1.24] and Site 3-
Wanaaring [skewness= 1.30], the other sites showed near-normal
distributions. Similarly, kurtosis factors (kurt≤ 3) of SMUL and SMLL at
all sites illustrated that the distributions had fewer and less extreme
outliers in comparison to normal distributions (Table 2).

3.2. Decomposition algorithms (EEMD & CEEMDAN) initialization
parameters

Two important parameters; the ensemble number and the amplitude
of added white noise, must be appropriately defined to attain optimum
results and also to cancel out the added white noise series from the
intact (i.e., unresolved) signal. Given below is the statistical rule used to
control the effect of the added white noise (Wu and Huang, 2009):

=e ε
Nn (13)

where the N=ensemble number, ε=amplitude of the added noise,
and en= final standard deviation (SD), which is the difference between
input signal and corresponding IMFs. The recommended amplitude of
added white noise is 20% of SD (Wu and Huang, 2009). Consequently,
based on previous similar studies (e.g., (Ouyang et al., 2016; Ren et al.,
2015; Wang et al., 2013)) for both EEMD and CEEMDAN, en=0.2
while, for EEMD, N=100 and for CEEMDAN, N=20 (Torres et al.,
2011) are used in this paper.

3.3. Predictive model development

With MATLAB running on Intel i7, 3.40 GHz processor, six forecast
models namely, ELM, RF, EEMD-ELM, EEMD-RF, CEEMDAN-ELM, and
CEEMDAN-RF were constructed to forecast two separate objective
variables: monthly upper and lower layer soil moisture. There is no set
rule for data partitioning (Deo et al., 2016), so the subsets in our study
had training-70%, validation-15% and testing-15% (Table 3). For all
model development, the data were serially divided, whereby the first
70% (218months) were used to train the model, then the next
47months for model validation and the final 47months for model
testing. The sequential division method was adopted to avoid distortion
of the natural embedded frequencies within the soil moisture time
series data. This is to allow the multi-resolution analysis utilities
EEMD/CEEMDAN to appropriately unveil and extract these entrenched
features for respective machine learning models which otherwise would
not have been possible. A memory of several (lagged) months in SM
time-series could result from serial correlation in time-space (i.e., per-
sistence) arising from hydro-meteorological factors (Chiew et al.,
1998). Hence, partial autocorrelation function (PACF) has been adopted

and lagged series with statistically significant relationship (i.e., at 95%
confidence interval) were screened as salient inputs (Ouyang et al.,
2016; Ren et al., 2015; Seo and Kim, 2016; Wang et al., 2013).

Two different modeling techniques have been adopted for this
study. Firstly, the conventional solitary modeling approach was
adopted for the standalone ELM and RF models. For standalone models,
PACF was applied to the monthly intact soil moisture time series (i.e.,
the time series without EEMD/CEEMDAN analysis) and statistically
significant set of predictor variables (Tables 4a-b) were determined.
Then these were channeled into the ELM and RF models for forecasting
of upper and lower layer soil moisture values at 1-month temporal re-
solution.

Alternatively, the ensemble modeling process as illustrated in Fig. 3
was used, which can be summarized as follows:

1. EEMD/CEEMDAN decompositions: The monthly intact SMUL and SMLL

time series data (without EEMD/CEEMDAN analysis) were decom-
posed into respective monthly IMFs and a residual component using
EEMD and CEEMDAN procedures, respectively. An example of the
IMFs and the residual component from respective EEMD and
CEEMDAN at Site 2, for SMUL, has been illustrated in Fig. 5a–b.

2. Input matrix creation: PACF was applied to each of the monthly IMFs
and residual component time series generated in the above phase.
Salient lagged inputs of each IMF and residual component were
determined. Individual input matrix was created for each IMF and
the residual component containing its respective significant lags as
summarized in Tables 4a–b for SMUL and SMLL, respectively.

3. Ensemble forecasting: These individual input matrices were used to
forecast the respective future IMFs and the residual component
using the ELM and RF models at a temporal resolution of 1month.
Then the forecasted IMFs and residual component were integrated at
the end to generate the monthly forecasts of either SMUL or SMLL

values. It must be noted that the EEMD and CEEMDAN transfor-
mations are purely self-adaptive and data dependent multi-resolu-
tion techniques. As such, the number of IMFs and the residual
component generated are contingent upon the nature of data which
in turn determines the ensemble numbers. Then optimal models
were averred based on r, RMSE, and MAE during validation phases
as described in Tables 5a–b with the least mean square error (MSE)
for affirmation.

4. Model testing and evaluation: The model performances were eval-
uated using an independent testing data-set at each site using the
model evaluation criteria described in Section 3.4.

For ELM, hidden neurons were set from 50 to 200 following earlier
studies to avoid overfitting and unnecessarily large or small network
architectures (Deo and Sahin, 2016; Deo et al., 2017a; Yaseen et al.,
2016). For optimal feature extraction, various combination of transfer
functions including sigmoidal, sine, hard-limit, triangular basis, and
radial basis were implemented. The resulting models with unique ar-
chitectures for both objective variables (SMUL or SMLL) are shown in
Table 6a.

Equivalent random forest (RF) models were constructed to bench-
mark the ELM model. During training, the RF model registers three
unique parameters: i) Delta Criterion Decision Split (C) showing the
split criterion contributions; ii) Number of predictor split (Np) showing

Table 5 (continued)

b) SMLL Extreme Learning Machine (ELM) Random Forest (RF)

Optimum models at respective sites Training Validation Training Validation

r RMSE MAE r RMSE MAE r RMSE MAE r RMSE MAE

EEMD 0.992 0.021 0.016 0.884 0.087 0.049 0.985 0.030 0.022 0.929 0.069 0.055
CEEMDAN 0.989 0.024 0.018 0.759 0.200 0.088 0.986 0.029 0.022 0.945 0.072 0.056
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Table 6
Modeling frameworks of a) extreme learning machine (ELM) and b) random forest (RF), in forecasting relative soil moisture in the upper and lower layers.

a) ELM
Optimum models at respective sites

Upper layer soil moisture (SMUL) Lower layer soil moisture (SMLL)

No. of neurons Transfer function No. of neurons Transfer function

Input layer Hidden layer Output layer Input layer Hidden layer Output layer

SITE: 1
ELM 3 177 1 hardlim 3 60 1 tribas
EEMD-ELM 50 113 1 hardlim 59 69 1 tribas
CEEMDAN-ELM 54 75 1 hardlim 49 59 1 hardlim

SITE: 2
ELM 3 57 1 tribas 4 56 1 tribas
EEMD-ELM 63 60 1 sin 65 51 1 sin
CEEMDAN-ELM 55 75 1 tribas 45 50 1 sig

SITE: 3
ELM 3 193 1 hardlim 2 81 1 tribas
EEMD-ELM 43 50 1 tribas 56 55 1 sin
CEEMDAN-ELM 53 61 1 hardlim 58 51 1 sin

SITE: 4
ELM 4 75 1 hardlim 3 61 1 tribas
EEMD-ELM 58 124 1 hardlim 49 50 1 sig
CEEMDAN-ELM 56 55 1 sig 54 50 1 sin

SITE: 5
ELM 6 117 1 hardlim 6 56 1 sig
EEMD-ELM 62 65 1 sig 61 50 1 sig
CEEMDAN-ELM 65 76 1 sig 56 52 1 radbas

SITE: 6
ELM 5 89 1 hardlim 4 88 1 sig
EEMD-ELM 48 52 1 sig 50 55 1 radbas
CEEMDAN-ELM 52 52 1 sig 48 51 1 sin

SITE: 7
ELM 1 81 1 hardlim 2 115 1 hardlim
EEMD-ELM 56 116 1 hardlim 57 68 1 sig
CEEMDAN-ELM 54 149 1 hardlim 47 51 1 sin

b) RF
Optimum models at
respective sites

Upper layer soil moisture (SMUL) Lower layer soil moisture (SMLL)

Avg. delta criterion
decision split (C)

Avg. number of
predictor split (Np)

Avg. permuted predictor
delta error (ED)

Avg. delta criterion
decision split (C)

Avg. number of
predictor split (Np)

Avg. permuted predictor
delta error (ED)

SITE: 1
RF 0.012 2169 0.917 0.022 2170 0.988
EEMD-RF 0.062 2300 0.730 0.119 2229 0.593
CEEMDAN-RF 0.078 2226 0.761 0.107 2405 0.743

SITE: 2
RF 0.014 2158 0.897 0.004 2981 0.857
EEMD-RF 0.086 2274 0.635 0.077 2242 0.579
CEEMDAN-RF 0.101 2278 0.761 0.047 2265 0.765

SITE: 3
RF 0.015 2159 0.680 0.020 3259 1.374
EEMD-RF 0.103 2142 0.775 0.139 2432 0.626
CEEMDAN-RF 0.096 2371 0.768 0.124 2398 0.712

SITE: 4
RF 0.018 2743 0.482 0.025 2167 1.020
EEMD-RF 0.128 2226 0.686 0.148 2350 0.715
CEEMDAN-RF 0.102 2331 0.763 0.089 2306 0.733

SITE: 5
RF 0.027 1878 0.604 0.055 1920 0.840
EEMD-RF 0.129 2261 0.689 0.117 2250 0.645
CEEMDAN-RF 0.084 2270 0.728 0.106 2135 0.759

SITE: 6
RF 0.033 2246 0.744 0.064 2844 1.234
EEMD-RF 0.121 2128 0.724 0.123 2279 0.702
CEEMDAN-RF 0.081 2149 0.750 0.094 2211 0.764

SITE: 7
RF 0.062 6508 0.720 0.080 3222 1.623
EEMD-RF 0.096 2222 0.686 0.130 2214 0.649
CEEMDAN-RF 0.093 2311 0.778 0.116 2268 0.768
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the number of decision splits and; iii) Permuted Predictor Delta Error
(ED) showing the variable importance to the prediction error. Table 6b
shows the averages of these values from optimum models in forecasting
of both SMUL and SMLL.

3.4. Model evaluation benchmarks

Comprehensive and robust model assessment requires both objec-
tive and subjective evaluations (Dawson et al., 2007) as no single sta-
tistical measure is purely definitive (Chai and Draxler, 2014; Dawson
et al., 2007). Thus, a wide range of statistical metrics are used whose
equations are as follows (Legates and McCabe, 1999; Legates and
McCabe, 2013; Nash and Sutcliffe, 1970; Shamseldin, 1997; Willmott,
1981; Willmott, 1984):

i. Correlation coefficient (r):

=
∑ − −

∑ − ∑ −
− ≤ ≤=

= =

r
SM SM SM SM

SM SM SM SM
r

( )( )

( ) ( )
, ( 1 1)i

N

UL
OBS i

UL
OBS

UL
FOR i

UL
FOR

i

N

UL
OBS i

UL
OBS

i

N

UL
FOR i

UL
FOR

1

, ,

1

, 2

1

, 2

(14)

ii. Root mean square error (RMSE):
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iv. Willmott's Index (WI):
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v. Nh–Sutcliffe Efficiency (ENS):
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vi. Legates-McCabe's Index (L):
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In these equations, SMUL
OBS=observed upper layer (UL) soil

moisture and SMUL
FOR= forecasted upper layer soil moisture, i=oc-

currence time and N=total number of data points. (Subscript UL is
replaced with LL for lower layer SM.

Table 7
Performance evaluation of EEMD and CEEMDAN-hybridized ELM and random forest (RF) models in forecasting of the upper layer and lower layer soil moisture
during the testing period, based on r=Pearson's correlation coefficient; RMSE=root mean square error andMAE=mean absolute error. (Maximum r and minimum
RMSE & MAE are boldfaced.)

Sites Upper Layer soil moisture (SMUL) Lower Layer soil moisture (SMLL)

ELM RF ELM RF

r RMSE MAE r RMSE MAE r RMSE MAE r RMSE MAE

SITE: 1
Standalone 0.731 0.084 0.059 0.635 0.097 0.071 0.963 0.018 0.012 0.856 0.037 0.021
EEMD 0.855 0.063 0.045 0.842 0.066 0.050 0.983 0.013 0.009 0.965 0.025 0.017
CEEMDAN 0.870 0.061 0.046 0.845 0.065 0.049 0.909 0.032 0.025 0.835 0.050 0.043

SITE: 2
Standalone 0.695 0.079 0.056 0.641 0.086 0.067 0.952 0.008 0.005 0.917 0.011 0.009
EEMD 0.925 0.042 0.034 0.875 0.056 0.043 0.992 0.003 0.002 0.866 0.017 0.015
CEEMDAN 0.897 0.049 0.035 0.878 0.059 0.046 0.965 0.008 0.006 0.889 0.018 0.016

SITE: 3
Standalone 0.602 0.098 0.071 0.590 0.104 0.076 0.977 0.015 0.009 0.948 0.023 0.014
EEMD 0.862 0.060 0.050 0.803 0.074 0.059 0.993 0.008 0.005 0.958 0.037 0.031
CEEMDAN 0.839 0.065 0.051 0.829 0.075 0.059 0.993 0.008 0.006 0.983 0.027 0.022

SITE: 4
Standalone 0.603 0.117 0.087 0.497 0.126 0.098 0.960 0.034 0.022 0.884 0.064 0.041
EEMD 0.834 0.082 0.063 0.844 0.090 0.072 0.995 0.013 0.010 0.975 0.053 0.035
CEEMDAN 0.877 0.070 0.056 0.864 0.085 0.068 0.990 0.018 0.013 0.969 0.054 0.037

SITE: 5
Standalone 0.762 0.122 0.090 0.724 0.131 0.102 0.965 0.052 0.041 0.883 0.09 0.076
EEMD 0.942 0.065 0.047 0.921 0.091 0.071 0.992 0.024 0.018 0.973 0.049 0.042
CEEMDAN 0.948 0.061 0.042 0.919 0.086 0.063 0.987 0.031 0.025 0.968 0.058 0.048

SITE: 6
Standalone 0.686 0.142 0.097 0.686 0.145 0.115 0.943 0.065 0.048 0.914 0.083 0.067
EEMD 0.943 0.066 0.056 0.904 0.096 0.076 0.993 0.023 0.018 0.954 0.070 0.056
CEEMDAN 0.943 0.065 0.054 0.896 0.101 0.083 0.987 0.033 0.025 0.961 0.075 0.057

SITE: 7
Standalone 0.451 0.133 0.101 0.353 0.141 0.105 0.892 0.075 0.051 0.862 0.086 0.066
EEMD 0.860 0.076 0.058 0.833 0.088 0.068 0.985 0.029 0.021 0.958 0.067 0.043
CEEMDAN 0.855 0.081 0.061 0.832 0.089 0.071 0.980 0.033 0.025 0.967 0.059 0.039
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The first evaluation metric, Pearson's correlation coefficient (r)
provides information on the strength and direction on the agreement
between SMUL

OBS(/SMLL
OBS) and SMUL

FOR(/SMLL
FOR), yet it is limited to

linear association of forecasted and observed data. The absolute error
measures, RMSE and MAE, glean information on the average dis-
crepancies between forecasted and observed values (Legates and
McCabe, 1999). However, MAE does not provide information about
under/over-predictions, while RMSE is oversensitive to peak SM levels
and insensitive to low levels (Hora and Campos, 2015; Willems, 2009).

With similar bounds [0↔ 1] as correlation-based measures good-
ness-of-fit, WI is advantageous, yet, it lacks meaningful zero in pro-
viding a convenient reference point (Dawson et al., 2007) causing ob-
scured physical meaning. The most popular metric, ENS is dimensionless
and scaled version of mean squared error (Willems, 2009), offering a
better physical interpretation of the goodness-of-fit: 1= perfect model;
0= no predictive advantage; and negative values when forecasted va-
lues diverge (Legates and McCabe, 2013; Mehr et al., 2013). Owing to
the squared values of residual terms, both WI and ENS are oversensitive
to the peak residual values (Legates and McCabe, 1999; Willems, 2009;
Willmott, 1981). In comparison, the Legate-McCabe's index (L) is not
overestimated since it takes absolute values into account and gives
errors and differences the appropriate weights (Legates and McCabe,
1999). L is also simple, easy to interpret and is acclaimed to yield a
relative assessment of model performances (Legates and McCabe,
1999).

We note the absolute error measures (RMSE and MAE) are in real
units which limit their ability to assess the model performances across
various case study sites. Hence, the percentage error measures viz.,
relative root mean square error (RRMSE) and mean absolute percentage

error (MAPE) are used, as shown below:

I. Relative root mean square error (RRMSE, %):
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II. Mean absolute percentage error (MAPE; %):
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[NB: The symbols used have the same meaning as mentioned above.]
RMSE and MAE are used to determine model performance with si-

multaneous monitoring of correlation r whereas WI, ENS, and L provides
further goodness-of-fit assessments and eventually, RRMSE and MAPE
compared models at different study sites. However, the limitation of the
above mentioned objective metrics is the quantification of assessment
in a few numbers (Willems, 2009). Thus, to get a better insight, sub-
jective model performance assessments via various diagnostic plots e.g.,
box-plots, forecasting error histogram, time series graphs and polar
plots are also performed.

4. Results and general discussion

This section provides results for an extensive evaluation of the
proposed hybrid EEMD-ELM model against standalone ELM, hybrid
CEEMDAN-ELM and the equivalent random forest models (i.e., RF,

Table 8
Performance evaluation of EEMD and CEEMDAN-hybridized ELM and random forest (RF) models during the testing period, based on WI=Willmott's Index;
ENS=Nash–Sutcliffe efficiency and L=Legates-McCabe's index, in forecasting upper and lower layer soil moisture. The models with largest L at each site have been
shown in boldface.

Optimum models at respective sites Upper layer soil moisture (SMUL) Lower layer soil moisture (SMLL)

ELM Random Forest ELM Random Forest

WI ENS L WI ENS L WI ENS L WI ENS L

SITE: 1
Standalone 0.593 0.485 0.390 0.300 0.315 0.273 0.973 0.925 0.733 0.831 0.695 0.534
EEMD (Hybrid) 0.837 0.710 0.534 0.813 0.680 0.483 0.988 0.961 0.811 0.934 0.863 0.626
CEEMDAN (Hybrid) 0.854 0.729 0.523 0.828 0.692 0.493 0.902 0.776 0.453 0.761 0.443 0.050

SITE: 2
Standalone 0.625 0.470 0.387 0.502 0.380 0.275 0.950 0.905 0.755 0.920 0.827 0.616
EEMD (Hybrid) 0.934 0.854 0.629 0.839 0.731 0.529 0.993 0.984 0.891 0.822 0.558 0.331
CEEMDAN (Hybrid) 0.906 0.797 0.617 0.817 0.711 0.505 0.963 0.909 0.749 0.794 0.525 0.291

SITE: 3
Standalone 0.414 0.317 0.240 0.219 0.242 0.188 0.983 0.953 0.823 0.956 0.893 0.740
EEMD (Hybrid) 0.893 0.743 0.470 0.783 0.616 0.375 0.995 0.986 0.906 0.865 0.726 0.423
CEEMDAN (Hybrid) 0.850 0.699 0.458 0.738 0.605 0.374 0.995 0.986 0.893 0.924 0.847 0.587

SITE: 4
Standalone 0.446 0.332 0.251 0.208 0.219 0.150 0.970 0.918 0.750 0.836 0.706 0.543
EEMD (Hybrid) 0.813 0.671 0.459 0.713 0.601 0.378 0.996 0.987 0.888 0.892 0.803 0.604
CEEMDAN (Hybrid) 0.888 0.763 0.518 0.770 0.648 0.410 0.992 0.978 0.856 0.885 0.791 0.578

SITE: 5
Standalone 0.759 0.569 0.430 0.653 0.504 0.357 0.970 0.923 0.752 0.881 0.772 0.535
EEMD (Hybrid) 0.941 0.877 0.699 0.843 0.761 0.548 0.993 0.984 0.890 0.968 0.933 0.747
CEEMDAN (Hybrid) 0.949 0.893 0.733 0.876 0.786 0.599 0.989 0.973 0.849 0.951 0.905 0.707

SITE: 6
Standalone 0.671 0.469 0.369 0.609 0.450 0.255 0.949 0.889 0.711 0.905 0.824 0.597
EEMD (Hybrid) 0.952 0.887 0.635 0.854 0.757 0.506 0.994 0.986 0.890 0.927 0.873 0.663
CEEMDAN (Hybrid) 0.953 0.889 0.648 0.830 0.731 0.463 0.987 0.972 0.846 0.908 0.854 0.657

SITE: 7
Standalone 0.385 0.203 0.130 0.322 0.099 0.099 0.919 0.795 0.563 0.874 0.731 0.444
EEMD (Hybrid) 0.888 0.738 0.505 0.797 0.648 0.412 0.990 0.969 0.824 0.914 0.837 0.639
CEEMDAN (Hybrid) 0.892 0.706 0.475 0.782 0.64 0.393 0.986 0.960 0.789 0.938 0.873 0.672
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EEMD-RF, and CEEMDAN-RF). The evaluation is carried out after
forecasting upper and lower layer soil moisture at seven hydrological
sites. EEMD-ELM models are optimized using a combination of activa-
tion functions and hidden layer neurons that yielded the lowest RMSE
and MAE during the validation stage to screen the optimal models.
Based on statistical metrics in Eqs. (14)–(21) and diagnostic (visual)
plots, the justifications of the results are made.

Evaluation of ELM and RF integrated with EEMD and CEEMDAN are
provided in Table 7, in terms of conventional metrics r, RMSE, and
MAE. In forecasting the upper layer SM, three sites (Sites 1, 4 and 5)
registered the maximum r-value from CEEMDAN-ELM models, while
three sites (Sites 2, 3 and 7) had the highest value reported by EEMD-
ELM models. Interestingly, Site 6 recorded the same magnitude
(r=0.943) from both models. Consequently, the lowest RMSE and
MAE values were attained by the hybrid EEMD-ELM model at three sites
(Sites 2, 3 and 7) and the other four sites (Sites 1, 4, 5 and 6) showed
the lowest errors from the hybrid CEEMDAN-ELM model. It is evident
thus far that the hybridized ensemble ELM and RF models indeed are
better in comparison to their standalone counterparts. However, due to
the rather unclear outcomes from these metrics, the decision to de-
termine the optimal ensemble model can be obscured. In contrast, for
lower layer SM forecasting, all three measures (r, RMSE, and MAE)
consistently displayed the superiority of the hybrid EEMD-ELM with the
largest r and lowest RMSE, and MAE values attained at all seven sites
(Table 7). In comparison to the ELM model, the highest percentage
increase in r was recorded at Site 7 (10.4%), whiles the lowest
RMSE0.003 and MAE0.002, were recorded by the hybrid EEMD-ELM
model for Site 2. The accuracy of the other data-intelligent models
(including the hybrid CEEMDAN-ELM/CEEMDAN-RF and EEMD-RF)
were disparate and confirmed that the hybrid EEMD-ELM model had a
better potential to generate accurate SMLL forecasts.

Numerical quantification of model performances using Willmott's
Index (WI), the Nash–Sutcliffe Efficiency (ENS), and Legates-McCabe's
Index (L), which ideally are unity for perfect models, showed that the
hybrid EEMD-based and CEEMDAN-based ensemble hybrids demon-
strated a dramatic improvement in comparison to the standalone
models for SMUL (Table 8). Comparing the hybrid EEMD-ELM model
with the standalone ELM noted the smallest increment in the value of L
by about 36.9% at Site 1 and a significant increment by about 288.5%
at Site 7. Similarly, the value of WI was about 0.503 (i.e., incremented
by 130.6%) and ENS was 0.535 (263.5%) at Site 7. The hybrid
CEEMDAN-ELM model did register higher values of L than the ELM
models with the highest percentage increase of about 265.4% (Site 7)
and the lowest increase of about 34.1% (Site 1). WI and ENS showed a
similar increase, however, these percentage increments were com-
paratively lower than the hybrid EEMD-ELM model. More closely with
the value of L taking the precedence on the basis of benefits discussed
earlier, it can be noted that hybrid EEMD-ELM model has had a better
performance in forecasting upper layer soil moisture (SMUL) at four
sites (Sites 1, 2, 3 and 7) than the hybrid CEEMDAN-ELM and RF
counterparts. Although at the three sites (Sites 4, 5 and 6) the
CEEMDAN-ELM had a slightly better performance, the superiority of
the hybrid EEMD-ELM in comparison with the hybrid CEEMDAN-ELM
was demonstrated by increments in L value, of about 2.1%, 1.9%, 2.6%
and 5.9% at Sites 1, 2, 3 and 7, respectively. A similar trend was con-
sistently demonstrated by the value of WI and ENS, despite their notable
drawbacks (Section 3.4). Likewise, in forecasting lower layer soil
moisture, the measures of WI, ENS, and L, (Table 8) unanimously re-
vealed the supremacy in the performance of the hybrid EEMD-ELM at
all seven study sites without any contention from the hybrid
CEEMDAN-ELM, CEEMDAN-RF and the hybrid EEMD-RF models, while
the standalone ELM and RF were beyond question in terms of their

Table 9
Model comparison at different sites using relative error measures, RRMSE and MAPE. The optimal model with lowest relative (%) error has been shown in boldface.

Optimum models at respective sites Upper Layer soil moisture (SMUL) Lower Layer soil moisture (SMLL)

ELM Random Forest ELM Random Forest

RRMSE (%) MAPE (%) RRMSE (%) MAPE (%) RRMSE (%) MAPE (%) RRMSE (%) MAPE (%)

SITE: 1
Standalone 49.80 46.83 57.45 58.17 4.60 2.83 9.30 4.75
EEMD (Hybrid) 37.40 34.60 39.28 48.41 3.31 2.04 6.23 4.02
CEEMDAN (Hybrid) 36.16 48.73 38.53 49.35 7.97 6.14 12.6 11.00

SITE: 2
Standalone 46.31 55.37 50.11 67.50 8.17 5.38 11.00 8.41
EEMD (Hybrid) 24.29 36.12 33.01 43.60 3.37 2.44 17.60 17.30
CEEMDAN (Hybrid) 28.64 38.97 34.22 48.42 7.99 5.99 18.20 18.60

SITE: 3
Standalone 58.29 66.17 61.42 66.72 6.75 3.90 10.20 5.48
EEMD (Hybrid) 35.73 57.02 43.71 59.10 3.74 2.06 16.30 14.70
CEEMDAN (Hybrid) 38.68 45.52 44.33 53.63 3.75 2.48 12.20 9.88

SITE: 4
Standalone 51.96 64.54 56.19 66.02 10.90 6.74 20.60 10.70
EEMD (Hybrid) 36.47 54.45 40.16 58.59 4.25 3.18 16.80 9.82
CEEMDAN (Hybrid) 30.96 54.04 37.72 59.23 5.64 3.88 17.30 10.70

SITE: 5
Standalone 38.14 42.95 40.92 53.13 8.75 7.32 15.10 13.10
EEMD (Hybrid) 20.39 17.56 28.43 32.99 4.01 3.14 8.14 7.28
CEEMDAN (Hybrid) 18.99 18.34 26.87 33.20 5.14 4.62 9.74 8.40

SITE: 6
Standalone 41.55 45.67 42.28 50.87 10.50 8.22 13.20 10.90
EEMD (Hybrid) 19.16 23.60 28.12 33.44 3.72 3.14 11.20 9.24
CEEMDAN (Hybrid) 19.00 24.47 29.58 35.75 5.30 4.20 12.00 8.99

SITE: 7
Standalone 44.55 46.23 47.37 47.84 16.30 11.00 18.6 13.50
EEMD (Hybrid) 25.53 25.36 29.60 31.25 6.30 4.73 14.50 8.06
CEEMDAN (Hybrid) 27.05 27.23 29.96 30.92 7.21 5.43 12.80 7.45
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comparison with the hybrid-equivalent models. The maximum magni-
tude of L=0.906 was recorded at Site 2, and the highest ENS=0.987
and WI=0.996 were registered at Site 4, by the respective hybrid
EEMD-ELM model. Intriguingly, the hybrid EEMD-ELM model at all the
sites ensued L > 0.800 with the lowest value of L=0.811 (Site 1).
Hence, it is evident that the hybridization based on EEMD acted to
enhance the performance of the standalone ELM models for both the
upper and lower layer SM forecasting.

The statistical performances for all sites were disparate in terms of
the range of performance metrics attained. EEMD-ELM model, in fore-
casting SMUL, exhibited the largest correlation (r=0.943) at Site 6,
while the lowest RMSE=0.060 was recorded at Site 3 and the lowest
MAE=0.034 at Site 2. Site 6 recorded the largest WI (≈0.952), ENS
(≈0.887) and Site 5 registered the largest L (≈0.699). Similarly, the
metrics of SMLL were also incongruent with the highest r=0.995 at Site
4 and the least RMSE=0.003 and MAE=0.002 at Site 2. These results
ascertain that the performance of the EEMD-ELM (and the RF coun-
terpart) model is not universally similar when the study sites are having
different geographical, physical and climatic characteristics as depicted
in Tables 1 and 2 and Fig. 2.

To enable model evaluations at geographically diverse sites, the
relative measures (i.e., RRMSE and MAPE) must alternatively be used.
Evidently, the results in Table 9 exhibited that the lowest value of
RRMSE for all seven sites from the ELM model were apparently lower
than the RF counterparts. In comparison with the hybrid EEMD-RF
models, the hybrid EEMD-ELM showed the largest reduction in RRMSE
value for Site 6 (−8.96%) while Site 1 (−1.88%) had the lowest re-
duction. Accordingly, the hybrid EEMD-ELM had the best performance
for Site 6 (RRMSE=19.16%), while the hybrid CEEMDAN-ELM model
registered the smallest value of relative error at Site 5
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Table 11
Modeling time of EEMD and CEEMDAN-hybridized extreme learning machine
(ELM) and random forest (RF) models for a) Relative Soil Moisture - upper layer
(SMUL) and b) Relative Soil Moisture - lower layer (SMLL).

Optimum models at
respective sites

a) Modeling time for SMUL

(seconds)
b) Modeling time for SMLL

(seconds)

ELM RF ELM RF

SITE: 1
Standalone 0.155 2.150 0.121 1.754
EEMD 0.516 17.149 0.544 16.703
CEEMDAN 0.488 19.215 0.484 17.477

SITE: 2
Standalone 0.228 1.857 0.197 2.012
EEMD 0.599 17.613 0.542 17.817
CEEMDAN 0.651 18.066 0.404 15.565

SITE: 3
Standalone 0.159 1.844 0.113 1.568
EEMD 0.535 14.491 0.677 15.949
CEEMDAN 0.584 18.722 0.524 18.520

SITE: 4
Standalone 0.169 1.834 0.107 1.646
EEMD 0.666 17.072 0.469 15.546
CEEMDAN 0.519 18.000 0.539 17.738

SITE: 5
Standalone 0.116 1.834 0.185 1.893
EEMD 0.490 17.686 0.473 16.464
CEEMDAN 0.465 19.083 0.536 17.476

SITE: 6
Standalone 0.196 1.836 0.160 1.751
EEMD 0.411 14.924 0.704 15.362
CEEMDAN 0.562 16.557 0.424 15.933

SITE: 7
Standalone 0.124 1.445 0.142 1.558
EEMD 0.694 15.617 0.429 16.628
CEEMDAN 0.790 18.545 0.431 15.747
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(RRMSE=18.99%) when applied for forecasting upper layer soil
moisture. Furthermore, the comparison of models at respective sites in
forecasting SMLL revealed that the hybrid EEMD-ELM model is able to
generate the best results for Site 1 (RRMSE=3.31% and
MAPE=2.04%). The lowest relative errors recorded by the hybrid
CEEMDAN-ELM models was for Site 3 (RRMSE=3.75% and
MAPE=2.48%), showing unarguably that the EEMD-ELM model can
yield very good accuracy. In accordance with the outcomes from ab-
solute measures, the relative measures concur on the suitability of the
hybrid EEMD-ELM for both upper and lower layer SM forecasting.

Further analysis of the spread of forecasting errors (FE) was carried
out to assess the capability of the best hybrid EEMD-ELM model (Site 6)
for forecasting upper layer soil moisture in the test period. FE is the
difference between the forecasted and observed SM

(FE= SMUL
FOR− SMUL

OBS). Ideally, FE must be 0, hence a better model
is bound to have higher frequencies of the forecasting error value closer
to zero. Fig. 6 plots a histogram showing the percentage frequency
distribution of FE computed in error brackets of 0.1 step-sizes. This
could assist in the understanding of model accuracy for practical ap-
plications (Deo et al., 2016). It clearly shows that the ELM models
outperformed the respective RF models since the FE values display a
narrower and a closer location to the zero frequency distribution. An in-
depth examination shows that the hybrid EEMD-ELM registered the
highest percentage of FE (91%) in the first bin (0 < FE≤ 0.1) followed
by the hybrid CEEMDAN-ELM (89%) and then the standalone ELM
model (64%). Accumulation of the percentages reveal that the total
(100%) of all FE values from the hybrid EEMD-ELM was below 0.2,
while the hybrid CEEMDAN-ELM yielded a total of 98% of percentage

IMF1 IMF2 Res.

EEMD/CEEMDAN

IMFN

Intact (unresolved) 

time series (TS) of 

soil moisture

(SMUL and SMLL).

…

…

…

Forecasted SMUL
and SMLL

Solitary Modelling

Forecasted 

SMUL and 

SMLL

…

Ensemble Modelling

Forecasted 

IMF1

Forecasted 

IMF2

Forecasted

IMFN

Forecasted

Res.…

PACF PACF PACFPACF

Sig. lags of 

IMF1

Sig. lags of 

IMF2

Sig. lags of 

IMFN

Sig. lags of 

Res.
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Significant lags of 
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time series
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ELM/RF
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Fig. 4. A schematic view of the model development process. (The definitions of acronyms used here are as follows: SMUL – upper layer soil moisture, SMLL – lower
layer soil moisture, IMF – intrinsic mode functions, subscript N represents the IMF number(s), PACF– partial auto-correlation function, Sig. – significant, Res. –
residual, ELM –extreme learning machine, RF – random forest.)
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errors in this band. This supports the suitability of the hybrid EEMD-
ELM model for forecasting upper layer soil moisture.

Next, the evaluation of the best hybrid EEMD-ELM was undertaken
with a time-series plot of upper layer SM (Fig. 7). These results confirm
that the SMUL forecasts from the standalone models (i.e., ELM and RF)
divert from the observed values, while the best hybrid ELM (both EEMD
and CEEMDAN based) are able to attain a better accuracy. A closer
examination showed that in congruence with the key statistical metrics
(i.e., Table 8), there was a very good visual agreement between ob-
served data and forecasted SMUL generated by the best hybrid EEMD-
ELM model. In addition, the forecasts generated by the best hybrid
EEMD-ELM recorded the highest number of points within one standard
deviation (i.e., 38 out of 47) to confirm its superiority.

Visual evaluation of forecasted upper layer soil moisture was per-
formed with scatter-plots and the coefficient of determination (R2) in
the testing set (Fig. 8a). The optimal hybrid EEMD-ELM and the hybrid
CEEMDAN-ELM models are seen to register identical R2 values of 0.889
and 0.899, respectively. With that, the gradient (m) of the linear fit
which is an alternative model performance metric, was found to be very
close to unity (i.e., 0.893) in case of the best hybrid EEMD-ELM model.
On the other hand, the y-intercept, which should ideally be zero, re-
gistered by the best hybrid EEMD-ELM was 0.029 whereas best hybrid
CEEMDAN-ELM registered a y-intercept of 0.027. To further affirm the
accuracy in forecasting lower layer soil moisture (SMLL), Fig. 8b dis-
plays the scatter plots of the best hybrid EEMD-ELM models (Site 1).
With R2= 0.966, it can be assuredly established that a huge 96.6% of
the observed SMLL values were forecasted using the best hybrid EEMD-

ELM model. In congruence with the results presented in Table 8, ELM
with the implementation of the self-adaptive multi-resolution analysis
utility, EEMD, yet again has enhanced forecasting.

Compelling evidence of the superiority of the hybrid EEMD-ELM
model, in terms of SM forecasting accuracy, has been noted so far.
However, for practical applications such as precision agriculture, sea-
sonal accuracy is also imperative. Based on average forecast errors
(Fig. 9a), seasonally ELM models have better accuracies, with the hy-
brid CEEMDAN-ELM achieving accurate forecasts of SMUL during the
summer and autumn seasons. Nevertheless, the best hybrid EEMD-ELM
attained very comparable accuracies in the winter and spring and has
the paramount accuracy with the least average error in October

=FE( 0.026) (Fig. 10a). While, November registered the highest
=FE 0.098 value (the lowest accuracy). Alternatively, all models have

better lower layer SM forecasting potential during summer (ELM being
the best) and perform the worst during spring (Fig. 9b). During summer
and autumn, however, both the hybrid CEEMDAN-ELM and the hybrid
EEMD-ELM have similar accuracy. On monthly basis (Fig. 10b), our
proposed hybrid EEMD-ELM model registered the best performance in
January with the least =FE 0.002.

The model preciseness was assessed using box-plots illustrating the
spread of observed and forecasted data with respect to their quartiles.
Being non-parametric, box-plots can offer a better understanding of the
degree of spread and skewness where whiskers indicate the variability
outside of 25th and 75th percentiles. In forecasting upper layer soil
moisture (Fig. 11a), the best hybrid EEMD-ELM model established very
similar distribution to the observations, however, the best hybrid

Fig. 5. Temporal waveforms of IMFs and the residual from a) EEMD and b) CEEMDAN transformation of intact (i.e., unresolved) time series (TS) (lag 0) of upper
layer soil moisture (SMUL) at Site 2 during the training period. The intact upper layer soil moisture TS has also been plotted for comparison. (The definitions of
acronyms used here are as follows: SMUL – upper soil moisture, IMF – intrinsic mode functions.)
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CEEMDAN-ELM showed distorted spread with overestimated upper
quartiles. Similarly, for lower layer SM, the best hybrid EEMD-ELM
model (Fig. 11b) produced very analogous distribution to that of fore-
casted values, yet again the best hybrid CEEMDAN-ELM showed skewed
distribution towards the upper-end with overestimated upper quartile.
Thus, the hybrid EEMD-ELM had better predictive performance on the
basis of box-plots and is reinforced by the previous assessment metrics
(Table 8).

The measures of spread (Table 10) showed that the best hybrid
EEMD-ELM models performed well in forecasting the upper layer soil
moisture. They registered the closest forecasted upper quartile (UQ),
lower quartile (LQ), maximum and minimum values, further con-
solidating their superiority. For lower layer SM forecasting, the mea-
sures of spread including the UQ, median, LQ and mean, of forecasts
generated by the best hybrid EEMD-ELM were practically equal to the
observed values. However, both maximum and minimum values were
slightly over-predicted. Overall the hybrid EEMD-ELM performed with
a better precision in terms of the forecast distribution of both upper and
lower soil moistures.

To validate the suitability of the hybrid EEMD-ELM models for
practical deployment, modeling time (in seconds) of EEMD-ELM models
were determined at all sites and compared to the other comparative
models as illustrated in Table 11. Modeling time is the time elapsed
during training and validation phases. It is evident that the ELM models
are faster than the random forest equivalents. In addition, the modeling
time for ensemble hybrid models (EEMD-ELM, CEEMDAN-ELM, EEMD-
RF, and CEEMDAN-RF) has increased in comparison to their standalone
counterparts. Despite this, the execution speeds of the proposed hybrid
EEMD-ELM models were far much less in comparison to all RF models.
For upper layer SM, the EEMD-ELM registered minimum modeling time
of 0.411 s (at Site 6) and a maximum of 0.694 s (at Site 7). The overall

average modeling time was 0.559 s (559ms), while for EEMD-RF it was
16.364 s. A comparison of average modeling times revealed that an
increase of 0.395 s was noted in moving from standalone ELM to hybrid
EEMD-ELM ensemble, while a huge 14.535 s increase was noted in
traversing from standalone RF to EEMD-RF. For lower layer SM, a
minimum modeling time of 0.429 s (at Site 7) and a maximum of
0.704 s (at Site 6) were registered by the EEMD-ELM while average
modeling time was 0.549 s (549ms). However, the equivalent EEMD-
RF registered an average of 16.353 s. Once again the increase in average
modeling times in moving from standalone ELM to EEMD-ELM en-
semble was far less (0.402 s) in comparison to a large 14.612 s increase
in moving from standalone RF to EEMD-RF. The outcome of modeling
time shows computation efficiency of EEMD-ELM and further affirms its
suitability for real-world soil moisture forecasting applications.

5. Further discussion and insights of data-intelligent models

In this study, the suitability of a hybrid model (EEMD-ELM) with a
self-adaptive multi-resolution tool, ensemble empirical mode decom-
position, coupled with the non-tuned ELM model in forecasting upper
and lower layer SM was examined and the performance was compared
with the equivalent random forest (RF) models. Overall, the ELM
models, established on the basis of single layer feed-forward neural
network, outperformed the RF models in all approaches under in-
vestigation (i.e., standalone, EEMD ensemble and CEEMDAN ensemble)
and showed its better capability for modeling and simulating the
monthly upper and lower layer soil moisture data derived from the
physically-based WaterDyn model (AWAP, 2016; Raupach et al., 2009).
It is noteworthy that if meteorological forcing and soil parameters are
not available in real-time, the data-intelligent models based on EEMD
and CEEMDAN ensemble approach with historically simulated soil

Fig. 6. Histogram illustrating the frequency (in per-
centages) of absolute forecasting errors (|FE|) of the
best performing ELM and random forest (RF) models
in forecasting upper layer soil moisture (SMUL). [Best
ELM: Site 5; Best EEMD-ELM: Site 6; Best CEEMDAN-
ELM: Site 5 and the corresponding RF models].
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moisture can amicably be incorporated into agricultural and environ-
mental decision-making purposes.

Fundamentally, standalone data-intelligent models incur challenges
in handling seasonality and non-stationarity of climate-based inputs
and the challenges are exacerbated by complex pedologic and hydro-
logical processes (e.g., soil moisture). The multi-resolution analysis
utility, EEMD was seen to enhance the data series by extracting the
entrenched frequency-based information that otherwise would not be
apparent from intact (i.e., unresolved) data-series. Channeling this in-
formation to respective models led to the formation of the hybrid
EEMD-ELM (EEMD-RF) models. The EEMD decomposition of the SM
time series evidently facilitated the training algorithm in ELM more
effectively to capture the deterministic components at various resolu-
tion levels, while effectively mapping the processes in forecasting the
SM data. This is likely to result in swifter model convergence, negligible
errors and improved precision. These desirable outcomes were apparent
from the largest values in performance metrics (r, WI, ENS, L) and the
lower error values, RMSE and MAE from EEMD-ELM model (Tables 7
and 8). This finding accedes with the outcomes of other EEMD based
studies (e.g., (Bai et al., 2015; Basha et al., 2015; Beltran-Castro et al.,
2013; Jiao et al., 2016; Ouyang et al., 2016; Ren et al., 2015; Seo and
Kim, 2016). Hence, it is certain that the EEMD process has a good

potential to provide a reliable physical basis to data-intelligent models
by isolating the embedded deterministic components and physical
processes in the time series data.

One obvious feature noted is that the hybrid EEMD-ELM was more
accurate for the majority of the sites in forecasting the upper layer soil
moisture, while for the lower layer soil moisture, the hybrid EEMD-ELM
was unanimously the best option. The upper (surface) layer being at the
boundary of Earth-Atmosphere system is in constant interaction with
meteorological variations and deep soil hydraulics. The upper layer is
also vulnerable to vegetation types, such as trees, crops, grass, or fallow
(Ladson et al., 2004). On the contrary, the lower layer (or root zone) SM
is less susceptible to exterior variations and is influenced mainly by
deep percolation, groundwater recharge, and plant uptake. These dif-
ferences in variations are apparent in the climatological pattern
(Fig. 4a–b), with upper layer SM showing greater seasonal pattern and
variability. Yet, the level of lower SM is rather stable. In addition, SM is
also dependent on soil type (e.g., thickness, texture, bulk density, ped-
ality, and soil organic carbon content), which hugely influences the soil
hydraulics and soil water retention capacity (Maraseni et al., 2008;
Maraseni and Pandey, 2014). This vertical (within profile) and spatial
(between profiles) soil type inconsistency (Ladson et al., 2004) may
affect the accuracy of data-driven models. The best hybrid EEMD-ELM

Fig. 7. Observed and forecasted upper layer soil moisture (SMUL) during the test period, from the ELM, EEMD-ELM and CEEMDAN-ELM and its RF counterparts. [Best
ELM: Site 5; Best EEMD-ELM: Site 6; Best CEEMDAN-ELM: Site 5 with their corresponding RF models].
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in forecasting upper layer SM was at Site 6-Jerrawa which falls in a
temperate climate zone with sodosol soil type and is covered with
modified pastures for grazing. Chief soils at Jerrawa are hard neutral
yellow and yellow mottled soils. In contrast, in SMLL forecasting, Site 1-
Menindee had the best hybrid EEMD-ELM model. Menindee is located
in the desert region with calcarosol soil type having brown sands with
clay substrata underneath where grazing is predominant and native
vegetation covers this site. Thus, the application of hybrid EEMD is
capable of overcoming the deleterious effects of distinctive

topographical and climatological conditions.
ELM without being constrained to extract pertinent information

using non-linearly connecting elements (i.e., neurons) is a meritorious
data-intelligent model for designing real-life agricultural and hydro-
logical decision-support systems, as stipulated in studies in different
areas (e.g., (Deo et al., 2017b; Guo, 2016; Kaya and Uyar, 2013; Sun
et al., 2008; Syed-Abdul et al., 2017; Yadav et al., 2017)). ELM has a
better generalization capability and is able to handle large-scale data
with computationally fast predictions (Mouatadid and Adamowski,

Fig. 8. Scatter plots of the best ELM and random forest (RF) models in forecasting a) upper layer soil moisture (SMUL) [Best ELM: Site 5; Best EEMD-ELM: Site 6; Best
CEEMDAN-ELM: Site 5 with their corresponding RF models] and b) lower layer soil moisture (SMLL) [Best standalone-ELM: Site 1; Best EEMD-ELM: Site 1; Best
CEEMDAN-ELM: Site 3 with their corresponding RF models].
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2016), giving it an added versatility for such decision-support systems.
The promising results from the hybrid EEMD-ELM is a very good be-
ginning for their prospective applications in hydrology, however, it
only is worthwhile if the modeling and forecasting are carried out in
real-time. The challenges in real-time deployments include computa-
tional time and memory since the efficiency and scalability becomes a
relevant dimension (Bequé and Lessmann, 2017).

ELM overcomes this due to high efficiency, random input weights
and hidden layer biases generation and analytical determination of
output weights (Chen et al., 2012b; Deo and Sahin, 2016; Wan et al.,
2014; Xu and Wang, 2016). The other challenges are the automated
self-optimization capability which the ELM has no issues with, since

fewer user-defined parameters are required and the network para-
meters are automatically generated (Şahin et al., 2014) avoiding issues
like, learning rates, learning epochs, stopping criteria, and local optima
(Chen et al., 2012b). This allows ELM to have better generalization
capability with much faster learning rate (Huang et al., 2015) as clearly
illustrated by the modeling times (Table 11). Even when the model is
hybridized using the computationally expensive ensemble technique,
viz. EEMD, the random forest becomes exceedingly slow as the mod-
eling time increased by almost 14.5 s. However, the modeling time of
ELM is not affected much as there is a slight increase (≈0.4 s) in the
modeling times of EEMD-ELMs in comparison to standalone ELMs at all
the sites. This ease of tuning, efficient running capability with reduced

Fig. 8. (continued)
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modeling time, reduced computational complexity and very less human
intervention makes ELM well-suited for big data analytics, online sys-
tems and efficient real-time applications (Deo et al., 2017b; Frances-
Villora et al., 2016; Huang et al., 2015).

In addition, the multi-resolution utility, EEMD is self-adaptive re-
quiring trivial human intervention making the novel hybrid EEMD-ELM
model an encouraging prospect for real-time applications in decision-

support systems. This technique can be transformed and embedded into
hand-held low memory devices (e.g., mobile phones and tablets) and
within user-friendly mobile apps. For everyday real-time applications,
the technology needs to become portable, smaller, cheaper and more
reliable. Particularly with low memory devices, it is important to
compute forecasts with low latency where the hybrid EEMD-ELM
models certainly provide an edge. This is evident from the reduced
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Fig. 9. Bar graphs of average seasonal forecasting errors (Summer-DJF; Autumn-MAM; Winter-JJA; Spring-SON) in forecasting: a) upper layer (SMUL) and b) lower
layer (SMLL) soil moisture using the best: ELM, EEMD-ELM and CEEMDAN-ELM models and the corresponding RF models [NB: Best models for SMUL forecasting were
ELM: Site 5; EEMD-ELM: Site 6; CEEMDAN-ELM: Site 5 while for forecasting SMLL the best models were as follows ELM: Site 1; EEMD-ELM: Site 1; CEEMDAN-ELM:
Site 3].
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modeling time (Table 11). The EEMD-ELM being super fast is more
adaptable to a real-time forecasting system than the RF counterpart
models. Alternatively, external cloud-based servers could be used to
execute background sophisticated models, however, this may not be
feasible in everyday farming situations. Real-time easy to use apps
would be convenient to farmers, farm managers, and the government
for precision agriculture, agricultural and hydrological decision support
systems (Leeuwen et al., 2011) and flood/drought early warning sys-
tems, which are projected to increase in frequency and severity under
future warmer climate scenario (IPCC, 2014).

Prior to any real-time applications, the model's testing with smaller
time-steps (e.g., weekly, daily, and hourly horizons) could provide more
detailed understanding through finer predictions which are desirable

decision time-scale for real-life applications (Deo et al., 2017b). Ex-
treme events such as periods of high, moderate and low SM levels could
also be explored in a follow-up study. In addition, other decomposition
techniques like the singular value decomposition (Chitsaz et al., 2016;
Wallace et al., 1992), wavelet transforms (Daubechies, 1990), max-
imum overlap discrete wavelet and Fourier transform (Percival and
Walden, 2000) could be trialed for shorter time horizons in in-
dependent studies. The recently proposed two-phase decomposition
(Wang et al., 2017a; Wang et al., 2017b) and empirical wavelet trans-
form (EWT) (Kedadouche et al., 2016; Peng et al., 2017) could also be
tested with hybrid EEMD and hybrid CEEMDAN-based models for
forecasting soil moisture data.

The ability of ELM's potential in spatial SM forecasting needs to be
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Fig. 10. Polar plots showing monthly average of forecasting errors in forecasting: a) upper layer (SMUL) and b) lower layer (SMLL) soil moisture using the best ELM,
EEMD-ELM and CEEMDAN-ELM models and their RF counterparts. [The best models were as follow: for SMUL ELM: Site 5; EEMD-ELM: Site 6; CEEMDAN-ELM: Site 5
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carried out in subsequent independent studies as a key limitation of
ELM is that it has not been extensively tested on huge data sets and in
extensive spatial forecasting applications. Deepa and Lakshmi (2016)
also pointed out that the universal approximation capability of basic
ELM and its performance in sparse high-dimensional applications are
yet to be answered and suggested an introduction of sparse coding
techniques to allow ELM to aptly handle high dimensional data. The
progression of ELM has been a continuous process with studies being
conducted in the implementation of ELM as deep learning networks or
multiple-layer neural networks in solving classification problems (Ding
et al., 2015; Kasun et al., 2013; Tang et al., 2016) and time-series ap-
plications are underway.

6. Conclusion

Based on the antecedent soil moisture from the physically-based
WaterDyn (hydrological) modeled data from January 1990–December
2016, upper and lower layer soil moisture has been forecasted in this
study, using hybrid data intelligent models tested at seven sites in the
MDB region, NSW, Australia. Self-adaptive multi-resolution utilities
based on the EEMD and CEEMDAN approaches helped resolve the in-
tact (i.e., undecomposed) time series into intrinsic mode functions
(IMF) and a residual component. After determining the significant
lagged inputs of corresponding IMFs and residual component via a
partial-auto-correlation function, inputs were channeled into ELM (and
RF) forming the hybrid models. Model performances were assessed
using the objective (statistical measures) and subjective (graphical)
methods and the findings are as follows:

(1) The ELM performed better than the random forest model in fore-
casting upper and lower layer SM at all study sites.

(2) Incorporation of the ensemble empirical mode decomposition
(EEMD) based on the multi-resolution analysis utility led to an

enhanced accuracy of the standalone models.
(3) The objective evaluation showed that the hybrid EEMD-ELM model

had the best performance in forecasting the upper layer SM at four
(out of the seven) sites viz., Sites 1, 2, 3 and 7. This is evident in
percentage increase in Legates-McCabe's Index (L) values ranging
between 36.9% and 288.5%, Willmott's Index (WI) values ranging
between 24% and 130.6%, and the Nash–Sutcliffe Efficiency (ENS)
values ranging between 46.4% and 263.5% in comparison to the
standalone ELM model. On the other hand, the hybrid CEEMDAN-
ELM model performed better at the other 3 study sites. Similarly, in
forecasting the lower layer SM the hybrid EEMD-ELM model was
unanimously the best objective model for all study sites with the
highest percentage increase in the value of L=46.4%, WI=7.7%,
and ENS=21.9%, in comparison to the standalone ELM model.

(4) Site 6-Jerrawa registered the best hybrid EEMD-ELM with the sig-
moid activation function and a neuronal architecture of 48-52-1
(Input-Hidden-Output) for forecasting the upper layer SM. For the
lower layer SM forecasting, Site 1-Menindee had the best hybrid
EEMD-ELM model with the triangular basis activation function and
a neuronal architecture of 59-69-1. Remarkably, both of these are
grazing sites, and therefore, have very important implications for
the potential use of the newly designed hybrid models in real-time
applications for portable devices (e.g., soil moisture prediction apps
on mobile phones) for farmers and other decision-makers.

(5) Subjective evaluations using the various diagnostic plots also af-
firmed the superiority of the hybrid EEMD-ELM model in fore-
casting both the upper and the lower layer soil moisture.
Importantly, monthly evaluations showed that in the forecasting of
upper layer SM, the best hybrid EEMD-ELM model yielded the
highest accuracy for the month of October ( =FE 0.026) while for
the lower layer SM, the month of January ( =FE 0.002) had the
highest accuracy.

(6) Although a computationally expensive ensemble modeling

Fig. 11. Box plots of optimal ELM and RF models in forecasting a) upper layer soil moisture (SMLL) [Best ELM: Site 5; EEMD-ELM: Site 6; CEEMDAN-ELM: Site 5] and
b) lower layer soil moisture (SMLL) [Best standalone-ELM: Site 1; EEMD-ELM: Site 1; CEEMDAN-ELM: Site 3]. (NB: SM are relative values and is dimensionless.
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approach, viz. EEMD was adopted there is a slight increase of ≈0.4
on average in the modeling times of EEMD-ELMs in comparison to
standalone ELMs at all the sites revealing the better efficiency of the
EEMD-ELM. While with the random forest becomes exceedingly
slow in the ensemble method.

Overall, the standalone ELM and RF models had similar computa-
tion efficiency and model performances. However, despite the compu-
tationally expensive ensemble techniques (i.e., EEMD) being im-
plemented, the hybrid ensembles EEMD-ELM was highly efficient with
improved performances. Based on the newly designed data-intelligent
model incorporating extreme learning machine with multi-resolution
technique, it is ascertained that the hybrid EEMD-ELM model has the
greatest ability to forecast both the upper and the lower layer soil
moisture than its comparative counterparts. However, the forecasting
accuracy is sensitive to meteorological factors (especially the upper
layer SM) and the vertical and spatial soil texture inconsistencies. The
capability of data-intelligent models has been explored in many areas,
yet, this has been lagging behind in the very important agricultural
applications. Further independent studies with the incorporation of
meteorological variables and the testing of the hybrid model over
smaller time-steps with various MRA utilities is still an open research
problem. ELM has the potential for real-time SM monitoring and fore-
casting via its user-friendly mobile app applications that could be useful
in agricultural decision systems, precision agriculture, flood and
drought early warning and adaptive water resources planning that are
major challenges exacerbated by the consequences of projected warmer
climates in most parts of the world.
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Supplementary analysis and discussions 

The scatterplot with an X = Y line and the percentage deviations of the 

forecasted values from this line were computed to have a better understanding of the 

model performances in forecasting upper layer (SMUL) and lower layer soil moisture 

(SMLL) values. The scatterplots clearly showed that the ELM models performed 

better in comparison to the comparative random forest (RF) models in both the SMUL 

(Figure S2a) and SMLL (Figure S2b) forecasts. A closer examination showed that it 

was lucid from the scatterplots (Figure S2 (a-b)) that the hybridized EEMD-ELM 

and CEEMDAN-ELM models outperformed the other standalone models in 

forecasting both the SMUL and SMLL, as the 1:1 lines were very close to the 

regression lines.  

A detailed analysis via the percentage deviations from the 1:1 line from all 

models was conducted.  The appendix Table A2 details the full data on percentage 

deviations. Summarizing the data on the number of points that deviated from the 5% 

tolerance limit (Table S2 a-b) showed that in forecasting SMUL, the best CEEMDAN-

ELM model registered a total of 28/47 points that were over/underpredicted. This 

was far less in comparison to other competing models in forecasting upper layer soil 

moisture values. Interestingly, in forecasting SMLL, both the hybridized models, 

EEMD-ELM and CEEMDAN-ELM models registered the least number of 

over/under predicted values which apparently was 5/47. This result further supports 

the outcomes of the study presented in the main chapter that was published in the 

journal Geoderma (Vol. 330, Pages 136-161). 
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Figure S2  Scatter plots of the best ELM and random forest (RF) models in 

forecasting: a) upper layer soil moisture (SMUL) [Best ELM: Site 5; 

Best EEMD-ELM: Site 6; Best CEEMDAN-ELM: Site 5 with their 

corresponding RF models] and b) lower layer soil moisture (SMLL) 

[Best standalone-ELM: Site 1; Best EEMD-ELM: Site 1; Best 

CEEMDAN-ELM: Site 3 with their corresponding RF models]. 

 

b) 

(Note: The dashed line in blue and green is the least-squares fitting line to the 

respective scatter plots and the solid red line is 45°, X = Y line for comparison). 
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Table S2  Number of points that were under and overpredicted by the 

hybridized EEMD-ELM, CEEMDAN-ELM, EEMD-RF, 

CEEMDAN-RF, and the standalone ELM and RF models with 

respect to 5% tolerance limit at the sites that recorded the best 

performance in forecasting a) SMUL and b) SMLL. 

 

a) SMUL ELM EEMD-ELM CEEMDAN-ELM RF EEMD-RF CEEMDAN-RF 

  Site-30 Site 43 Site 30 Site-30 Site 43 Site-30 

Under 

prediction 
21 22 16 21 21 18 

Over 

prediction 
21 19 12 22 17 18 

Total 42 41 28 43 38 36 

 

b) SMLL ELM EEMD-ELM CEEMDAN-ELM RF EEMD-RF CEEMDAN-RF 

  Site-30 Site 43 Site 30 Site-30 Site 43 Site-30 

Under 

prediction 
5 2 3 10 4 6 

Over 

prediction 
3 3 2 2 13 30 

Total 8 5 5 12 17 36 
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Chapter 5: Ensemble committee-based 

data intelligent approach for generating 

soil moisture forecasts with multivariate 

hydro-meteorological predictors 

 

Wisdom of crowds 

“When a group of diverse and independent individuals make a 

prediction or an estimate about a quantity, then often the mean of 

these estimates is better than the individual predictions or 

estimates.” (Surowiecki, 2004) 

Foreword  

This chapter is an exact copy of the published article in the Soil & Tillage Research 

journal (Vol. 181, Pages 63-81).  

Since soil moisture level is contingent upon many interrelated hydro-meteorological 

variables, a total of sixty input variables are utilized to forecast upper and lower 

layer soil moisture in this particular study. The sixty inputs are screened using a two-

phase feature selection method. Firstly, the Neighbourhood Component Analysis 

(NCA) based feature selection algorithm for regression purposes (fsrnca) is applied 

to determine the relative feature weights. Following that, a basic ELM is utilized to 

determine the optimal set from the fsrnca determined feature weights. Inspired by 

the ideology of ‘wisdom of crowds’, the committee of models approach is developed 

in this chapter. Four different standalone models including second-order Volterra, 

M5 model tree, random forest, and an ELM are utilized as initial feature extracting 

expert models from the screened predictor inputs. Following that, a novel ensemble 

committee of model is developed with the artificial neural network as the basis 

(ANN-CoM).  

The ANN-CoM is evaluated against the standalone models (the second-order 

Volterra, M5 model tree, random forest, and ELM models) in forecasting monthly 

upper and lower layer soil moisture at four candidate sites. 
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A B S T R A C T

Soil moisture (SM) is a key component of the global energy cycle that regulates all domains of the natural
environmental and the agricultural system. In this research, the challenge is to develop a low-cost data-in-
telligent SM forecasting model using climate dynamics (i.e., the climate indices, atmospheric and hydro-me-
teorological parameters) as the model inputs. A newly designed, multi-model ensemble committee machine
learning approach based on the artificial neural network (ANN-CoM) is developed to forecast monthly upper
layer (∼0.2 m from the surface) and the lower layer (∼0.2–1.5 m deep) SM at four agricultural sites in
Australia’s Murray-Darling Basin. ANN-CoM model is validated with respect to non-tuned second-order Volterra,
M5 model tree, random forest, and an extreme learning machine (ELM) models. To construct the ANN-CoM
model, the input variables comprised of the hydro-meteorological data from the Australian Water Availability
Project, large-scale climate indices and atmospheric parameters derived from the Interim ERA European Centre
for Medium-Range Weather Forecasting ECMWF reanalysis fields leads to a total of 60 potential predictors used
for SM forecasting. To reduce the model input data dimensionality for accurate forecasts, the Neighborhood
Component Analysis (NCA) based feature selection algorithm for regression purposes (fsrnca) is applied to de-
termine the relative feature weights related to the targeted variable. The optimal predictor variables are then
screened with an ELM model as the fitness function of the fsrnca algorithm to identify the set of most pertinent
model variables. Extensive performance evaluation using statistical score metrics with visual and diagnostic
plots show that the ensemble committee based, ANN-CoM model is able to effectively capture the nonlinear
dynamics involved in the modeling of monthly upper and lower layer SM levels. Therefore, the ANN-CoM multi-
model ensemble-based approach can be considered to be a superior SM forecasting tool, portraying as an
amicable, integrated (or ensemble) machine learning stratagem that can be explored for soil moisture modeling
and applications in agriculture and other hydro-meteorological phenomena.

1. Introduction

Being a vital component of the response loop within a climatic
system and gas exchange mechanism, the soil moisture (SM) plays an
important role in hydrological and agricultural processes (Tian et al.,
2017). SM controls the partitioning of energy into sensible and latent
heat fluxes, and precipitation into evapotranspiration and runoff
(Brocca et al., 2017; Munro et al., 1998; Petropoulos, 2014). SM is not
only important for agricultural production but is also imperative for
biomass production, biophysical and ecological processes, runoff po-
tential, soil erosion/slope failure, flood control mechanisms, reservoir
management and water quality assessments. The SM levels are greatly
influenced by vegetation cover, soil characteristics, climate dynamics
and land use. In addition, the rising global temperature trend shows
significant reductions in projected SM level within the Australian

Murray-Darling Basin region (Cai et al., 2009; Timbal et al., 2015)
which is expected to severely affect the hydrological cycle, agriculture,
and human lives. Thus, forecasted SM is critical for an assessment and
development of sustainable agricultural and hydrological management
practices (Tian et al., 2017).

Advancements in measurement and estimation techniques have led
to a variety of ways to quantify SM, some of which include in-situ
measurements, remote sensing, and formulation of physical models.
However, the spatial in-situ measurements and now-casts of SM are
expensive in terms of the installation, calibration, and maintenance
issues of apparatus, time-consuming and labor-intensive. This has re-
sulted in limited spatial and temporal monitoring of SM using ground-
based point measurement techniques (Grayson and Western, 1998;
Walker et al., 2003). To increase spatial coverage, remote sensing of SM
via satellites has been developed. Yet, satellites are only able to
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estimate the SM in the top few centimeters of soil (1–5 cm) in areas
away from large water bodies (e.g., ocean or lake) with low vegetation
(Dharssi and Steinle, 2011; Du et al., 2000; Walker et al., 2003). The
vegetation water content, dew, radiative fog and soil roughness add
uncertainties in the satellite-derived observations (Dharssi and Steinle,
2011). As a result, significant vertical gradients in the SM can be
overlooked.

Accordingly, the WaterDyn physical model has been developed to
simulate SM and several other hydrological parameters across the
Australian continent at a grid resolution of 0.05°×0.05° (Raupach
et al., 2009, 2012). Developed under the Australian Water Availability
Project (AWAP), the WaterDyn physical model incorporates meteor-
ological forcing, i.e., solar radiation, precipitation, minimum and
maximum temperatures coupled with continental parameter maps, e.g.,
albedo, soil characteristics, seasonality of vegetation greenness to
compute SM for the upper layer (up to a depth of 0.2m from the sur-
face) and the lower layer (0.2–1.5 m depth). The meteorological fields
for this model are generated by the Australian Bureau of Meteorology
(BOM) from its network of rain gauge and weather stations while solar
irradiance data is obtained using geostationary satellites (Raupach
et al., 2009, 2012). However, the main constraint faced by this physical
model is the high spatial and temporal variability of meteorological
data, which may not be appropriate for small-scale applications, such as
‘on-farm’ decision making. Another drawback is that the WaterDyn
physical model is accustomed to determine instantaneous (‘now-casts’)
SM level at the point in time when meteorological inputs are channeled,
requiring a constant supply of input variables. More precisely, this
physical model is hindcasting since the system operates using already
recorded meteorological data. For instance, monthly SM levels are at-
tained after the observation and the accumulation of all the essential
meteorological parameters are completed at the end of the month.
Despite the advancements in measurement techniques, delayed pro-
gress in SM forecasting is evident. Particularly, the forecasted value of
SM at the local scale (e.g., at the farm level) is imperative for key de-
cision making but the current limitations in SM forecasting tools pre-
sent a significant challenge in this respect.

To ameliorate SM predictability issues, the forecasting ability of
advanced data-driven models offer feasible alternatives at the local
scale modeling of SM. The predictive models are able to ‘learn’ from
historical data making it advantageous for practical applications (Zhang
et al., 1998). Data intelligent models have been successfully applied in
agricultural and soil science applications to forecast field capacity and
permanent wilting point (Ghorbani et al., 2017), soil water retention
and saturated hydraulic conductivity (Merdun et al., 2006; Schaap and
Leij, 1998) and soil temperature (Samadianfard et al., 2018). Yet, SM
forecasting applications are still in their nascent stages (Liu et al., 2014;
Matei et al., 2017; Myers et al., 2009; Yang et al., 2017). Researchers
argue that forecasting of hydro-climatic variables must explore hybrid
(rather than standalone) models building on the strengths of individual
data-driven models (Jain and Kumar, 2007; Maier et al., 2010; Tiwari
and Adamowski, 2013). Consequently, a new two-stage multi-model
ensemble committee of models constructed on the basis of artificial
neural networks (ANN) is explored in this study. The notion is to extract
the pertinent information simulated by standalone expert models and
further optimize it via an ANN for a collective forecast. This overcomes
the weaknesses of conventional simple averaging forecast combinations
whereby the overall model performance is compromised by the worst
performing model(s). This novel multi-model ensemble committee of
models approach has to overcome the inherent drawbacks of individual
standalone models, building on the aptness, and subsequently sur-
passing the individual performances (Barzegar et al., 2017; Hatampour,
2013). The key advantage is that the committee based model combi-
nation reaps the benefit of all expert models yielding better general-
ization and performance, i.e., obtains a comparable or lower error than
simple averaging and individual best single expert models (Barzegar
and Moghaddam, 2016; Barzegar et al., 2015; Chen and Lin, 2006).

Although, varying degree of a standalone ANN has been successfully
applied in SM forecasting (Huang et al., 2010; Yang et al., 2017), model
combination techniques have been overlooked in environmental ap-
plications (Baker and Ellison, 2008). Related committee modeling ap-
proaches were successfully applied in preparing groundwater vulner-
ability maps (Barzegar et al., 2017), groundwater contamination risk
assessment (Barzegar et al., 2015) and groundwater salinity forecasting
(Barzegar and Moghaddam, 2016). However, to the best of the authors’
knowledge, SM forecasting is yet to be performed using the novel two-
stage ensemble committee of models.

To collate the relevant features, four-standalone expert data-in-
telligent models viz., 2nd order Volterra, M5 tree, random forest (RF)
and an extreme learning machine (ELM) model have been used. The
2nd order Volterra performed well in forecasting of streamflow
(Maheswaran and Khosa, 2012, 2015; Rathinasamy et al., 2013),
however, SM forecasting has not been piloted. Likewise, the M5 model
tree has not been applied so far in SM forecasting, although a similar
regression tree algorithm (Cubist) was noted (Myers et al., 2009). The
SM forecasting from the bootstrapped-aggregated tree approach, RF,
has yielded good performance with a reasonable prediction accuracy in
one study in Romania (Matei et al., 2017). Literature shows that ELM is
also uncommon in SM forecasting as only one study by Liu et al. (2014)
in Victoria, Australia applied ELM and support vector machine for a
short period (14 months) ignoring the long-term dynamics. Hence,
overall, the application of data-driven models in the area of SM fore-
casting has not been fully exploited.

The objective of this study is to develop a low cost (saving labor,
time, energy, and money) SM forecasting model using climate dy-
namics, i.e., the climate mode indices, atmospheric and hydro-me-
teorological drivers as the model inputs. The other factors such as ve-
getation cover, soil characteristics, i.e., soil texture, soil structure,
initial SM, hydraulic conductivity, and SM pressure and land-use are
assumed to be site-specific and constant in this study. Thus, historical
hydro-meteorological variables from AWAP, climate indices, and the
Interim ERA European Centre for Medium-Range Weather Forecasting
reanalysis derived atmospheric data are collated leading to sixty inputs.
Consequently, salient inputs are screened using a two-stage feature
selection technique via Neighborhood Component Analysis based fea-
ture weights and modeled minimum relative error criteria. A novel
well-trained two-stage hybrid multi-model ensemble committee based
on ANN (ANN-CoM) data intelligent model is developed in forecasting
upper and lower layer SM within the Murray-Darling Basin region,
Australia. The performance of the new ANN-CoM model is evaluated
with various statistical measures together and the diagnostic plots and
this is benchmarked against the four primary standalone models.

2. Materials and methodology

2.1. Machine learning algorithms used in developing ensemble committee
model

2.1.1. 2nd order volterra model
The Volterra model is built upon the Taylor series expansion for

nonlinear autonomous causal systems with memory. A second-order
representation has been adopted, as substantiated by previous studies
(Labat et al., 1999; Maheswaran and Khosa, 2012, 2015; Rathinasamy
et al., 2013). With z t( ) as the model output and t as the tth instances,
the 2nd-order Volterra expansion could be expressed as:
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where k τ( )1 1 and k τ τ( , )2 1 2 are the Volterra kernels. In a condensed
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notation Eq. (1) gives:

= +z t K x t K x t( ) [ ( )] [ ( )]1 2 (2)

where K x t[ ( )]1 and K x t[ ( )]2 are the 1st and 2nd order Volterra opera-
tors, respectively.

Since SM forecasting requires multiple predictor inputs, the Volterra
series expansion for a multiple input single output (MISO) system is
expressed as:
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where N is the number of inputs; M represents the memory length of
each significant lagged input variable; the k n

1
( ) is the first order kernels;

k s
n

2
( ) is the second order self kernels and ×k n n

2
( 1, 2) is the second order

cross-kernels.
Finally, the estimation of Volterra kernels was achieved via the

principle of orthogonal least squares (OLS) since OLS suitably handles
collinearity amongst predictor inputs (Billings et al., 1988; Wei and
Billings, 2004).

2.1.2. M5 tree model
The M5 model tree developed by Quinlan (1992) is a hierarchical

solitary modeling process with linear regression functions at the leaves
having clearly expressed and easily understood decision structures. The
algorithm splits the training data into subsets via ‘divide-and-conquer’
lemma (Bhattacharya and Solomatine, 2005). The splitting is con-
tingent upon the minimization of intra-subset variation in the output
variable’s values down each branch. To achieve this, the attribute that
maximizes the standard deviation reduction (SDR) is selected for
splitting. For a training data set T, the SDR is computed as follows
(Bhattacharya and Solomatine, 2005; Witten et al., 2011):

∑= − ×SDR sd T T
T

sd T( ) | |
| |

( )
i

i
i

(4)

where sd T( ) is the standard deviation of the class values,
= …T i S: 1, 2,i are the sub-sets resulting from node splits. The splitting

process ceases when the standard deviation is less than 5% of the ori-
ginal instance or when only a few instances remain.

A local specialized linear regression model is built, as depicted in
Fig. 1a, leading to a large overfitting regression tree. Finally, the tree is
pruned back from leaves and a smoothing process is employed to fade
away the sharp discontinuities in between adjacent linear models at the
leaves.

2.1.3. Random Forest (RF)
Random forest introduced by Breiman (2001) utilizes ensemble

bootstrap aggregation (bagging) techniques (Breiman, 1996) to reduce
the variance by computing the average of forecasts from several single
regression tree models.

From the training data, ‘btrp’ numbers of bootstrap replicas are
taken through random sampling with replacement. Then ‘J’ numbers of
individual tree models are constructed and trained on a randomly se-
lected subset of predictors of size ‘m’ out of a total number of predictors,
‘P’. Finally, the outputs of single regression trees are put together,
forming an ensemble and the forecasts are averaged over the ensemble.
A built-in cross validation is carried out through the computation of
out-of-bag (OOB) error, using the unutilized training data.

Three parameters require slight tuning i) the number of randomly
assigned predictor variables (m), ii) the number of trees (J), and iii) the
maximum number of terminal nodes/leaf (tree size). J is almost a non-

issue, however, a high value diminishes the variance and increases the
computational cost (Breiman, 2001). The recommended value of m, i.e.,
one-third of the total number of variables ( =m P1

3 ) (Liaw and Wiener,
2002) has been adopted, while, the parameters =J 500 and =tree size 5
generated the optimal results.

2.1.4. Extreme learning machine (ELM)
Developed by Huang et al. (2004), the ELM is a single layer feed-

forward neural network (SLFN) acclaimed to have a good general-
ization capability. Fig. 1b illustrates a simplified architecture. ELM has
proven to be computationally efficient overcoming the issues of over-
fitting, stopping criteria, learning epochs.

For a training of N samples, the mathematical realization of the ELM
algorithm can be described as follows (Huang et al., 2004):

∑ =
=

B G α β x z( , , )
i

K

i i i i t t
1 (5)

where ∈ Rzt represents the model output, ∈ RB K represents the
output weights, ∈ Rαi

K are the input weights and ∈ Rβi are the biases
and; = …i K1, 2, are the indices of hidden neurons. Compactly re-
writing Eq. (5) after replacing the model output z( )t with observed
training data (Y) yields:

=Y GB (6)

where G is the hidden layer output matrix, B are the weights and Y are
the observed target training matrices. With the objective to yield zero
forecasting errors, the ELM algorithm can be summarized as follows:

1 Aleatory allocation of input weights (αi) and the biases (βi).
2 Computation of hidden layer output matrix G.
3 Analytical determination of output weights matrix via a least-square
solution as:

=B̂ G Y† (7)

where G† is the Moore–Penrose generalized inverse of G.

1 Finally, generation of forecasts by feeding in the test dataset as in-
puts.

2.1.5. Artificial neural network - the basis of committee of models
The artificial neural network (ANN) developed by McCulloch and

Pitts (1943) mimics the complex nonlinear structure of the human
brain. ANNs have the ability to learn subtle functional relationships
among the input-output data without a priori knowledge of the un-
derlying physical system (Zhang et al., 1998). ANNs are nonlinear
models proven to be robust, efficient, adaptive in noisy environments
and working well with non-Gaussian data (Jain et al., 1999; Sehgal
et al., 2014), therefore having been adopted as the basis of the com-
mittee of models (CoM) as shown in Fig. 1(c and d).

The multilayer feed-forward neural network comprises of three
layers: an input layer, a hidden layer, and an output layer. During the
network training, the input data series propagates in a forward direc-
tion, layer by layer, with simultaneous construction of the nonlinear
relationship between the inputs and output based on the logical input-
output mapping system (Fausett, 1994; Haykin, 1999). The interneuron
weights and added biases are determined in a logical manner, via a
learning algorithm, such that the mean squared error (MSE) in between
the modeled output and the observed target is minimized.

An early stopping criterion has been adopted to avoid overfitting
and finally, the effectiveness of the network was evaluated and verified
using new (unseen) data sets in the testing phase. For more information,
readers can refer to Haykin (1999).

R. Prasad et al. Soil & Tillage Research 181 (2018) 63–81

65



2.1.6. Feature selection algorithm based on neighbourhood component
analysis (NCA): ‘fsrnca’

Feature selection is an integral component of the model develop-
ment process in order to minimize input dimensionality, reduce com-
putational complexity, improve the accuracy, and increase the inter-
pretability and understanding of the system dynamics (Bowden et al.,
2005; Maier et al., 2010; Yang et al., 2012). The feature selection for
regression based on Neighborhood Component Analysis (NCA) called
fsrnca has been employed to isolate the salient inputs from the initial
sixty input variables. Developed by Yang et al. (2012), the fsrnca al-
gorithm is simple, efficient, nonlinear and a non-parametric embedded
method. The fsrnca algorithm uses the training data to perform NCA
feature selection with regularization in learning the feature weights via
minimization of an objective function that measures the average leave-
one-out regression loss.

In brief, for a training data set = =T x y i N{( , ): 1, 2, 3, ... , }i i
where ∈ Rx P

i are the feature vectors, ∈ Ryi are the target and N is
the number of samples in the training data set. The fsrnca algorithm
learns a function →R Rg x( ): ,P to predict the response y from pre-
dictors, optimizing the nearest distances. The weighted distance (Dw)
between two samples (for e.g., xα and xβ) could be denoted as:

∑= −
=

D x x w x x( , ) | |w α β
j

J

j αj βj
1

2

(8)

where wj is a weight associated with the jth feature.
A probability distribution (pαβ) is used to approximate the reference

point to maximize its leave-one-out prediction accuracy on the training
data set, whereby the probability of xα selects xβ as its reference point.
Subsequently, using a gradient ascent method, the fsrnca algorithm

Fig. 1. The architecture of the newly proposed two-stage data-driven model used in relative soil moisture (SM) forecasting: (a) M5 model tree; (b) ELM; (c) Schematic
view of the model development steps; (d) Multilayer Feed-forward Neural Network based Committee of Model (ANN-CoM).
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finds a weighting vector ‘w’ that offers itself in selecting the feature
subset. A regularization parameter is introduced to avoid overfitting.
Since the input feature vectors are in different scales and units, all the
predictors were standardized before application of fsrnca feature se-
lection. Fig. 2a and b illustrates the feature weights of all 60 inputs at
Site 1.

2.2. Study region and data description

The study region, New South Wales (NSW), Australia, situated
within the Murray-Darling Basin accounted for ∼ 23% of Australia’s
agricultural production by value in the financial year 2015–16
(Australian Bureau of Statistics, 2017). Additionally, agriculture is the
most important industry for rural dwellers (Campbell and Scarlett,
2014). Therefore, development and implementation of adequate SM
forecasting tools are important to continue this thriving industry. As
such, four sites (illustrated in Fig. 3) with distinct geophysical condi-
tions including major climate classes (Hijmans et al., 2005), land use
(Department of Agriculture and Water Resources, 2015), range of
agricultural holding (Australian Bureau of Statistics, 2008) and soil
types (ASRIS, 2014) were selected (Table 1) to test the performance of
ensemble ANN-CoM under various situations.

The ° × °0.05 0.05 spatially gridded monthly relative SM data for the
upper soil layer (SMUL) (0.2 m from surface) and the lower soil layer
(SMLL) (0.2–1.5m deep) were obtained from the Australian Water
Availability Project (AWAP) (Raupach et al., 2009, 2012). In order to
create gridded data, AWAP employs an anomaly-based three-dimen-
sional smoothing splines approach (Beesley et al., 2009; Tozer et al.,
2012). It must be noted that the AWAP generated relative SM values are
relative to the base climatological reference period: 1961 to 1990
(Raupach et al., 2009). Hence, the study period has been from January
1990 to December 2016 and the SMUL and SMLL soil layer depths were
consistent as abovementioned for possible integrations into decision
support systems in the future.

Mean climatological patterns of the SMUL (Fig. 4a) and SMLL

(Fig. 4b) showed varied trends at the four candidate sites. The SMUL

(Fig. 4a) exhibited vivid maxima during June to August (winter). Three
sites viz., Site 1-Menindee, Site 3-Bobadah, and Site 4-Rocky Creek re-
corded minimum in April (autumn) while Site 2-Balranald recorded a
minimum in March. However, the SMLL at Sites 1 and 2 were very stable
with no clear monthly or seasonal trend. At Sites 3 and 4, the largest
magnitudes occurred during August-September months, i.e., winter-
spring transition periods, while the lowest values were recorded in May.
The increased through-flow and deep percolation with varying me-
teorological factors could have been the possible contributing factors
for this occurrence.

The monthly statistical features of SMUL and SMLL, shown in Table 2,
reveal that Site 1-Menindee and Site 2-Balranald registered the least
magnitude of SMUL while Site 4-Rocky Creek recorded the highest value
(0.814). Interestingly, the least value of SMLL was recorded at Site 2-
Balranald (0.034) while Site 4-Rocky Creek recorded the highest values
(1.000). Subsequently, the skewness and kurtosis were computed to
determine the characteristics of data distribution. The skewness mea-
sures the degree of symmetricity of a distribution and values outside the
range of -2 and +2 indicate significant deviations from normality
(Esmaeili et al., 2018). While, kurtosis is a measure of whether the data
are heavy-tailed or light-tailed relative to a normal distribution and the
kurtosis is 3 for a univariate normal distribution (DeCarlo, 1997). The
skewness values for SMUL were much closer to zero to confirm ap-
proximate symmetric data distributions. In the case of SMLL, all sites
except for Site 1-Menindee ( =skewness 1.24) showed near-symmetric
distributions. At all the four sites and for both SMUL and SMLL, the
kurtosis coefficients were less than three (platykurtic), revealing that the
distributions of both SMUL and SMLL displayed fewer and less extreme
outliers (lighter tails and is flatter) (Table 2). Hence, distinctive geo-
graphical features are lucid which is bound to offer varying model
testing conditions.

2.3. Data inputs and feature selection procedure

Data-driven models are completely dependent on the information
from historical data-sets. Therefore, authentic and reliable global sets of

Fig. 2. The feature weights determined by the Neighbourhood Component Analysis for regression feature selection algorithm (fsrnca) from a pool of 60 input
variables (Panel 1), and the corresponding changes in relative root mean square errors (RRMSE) with subsequent addition of each input (in the ascending order
determined by the fsrnca feature weights) using a basic ELM model (Panel 2). (a) Site 1 upper layer soil moisture and (b) Site 1 lower layer soil moisture. Note the
bars in Panel 2 show the decrement contribution in the RRMSE value of each variable, while the line graph shows the cumulative decrement in RRMSE values. (NB:
Refer to Table 3 for full names of selected variables from abovementioned acronyms).
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predictors, including hydro-meteorological AWAP data (Raupach et al.,
2009, 2012), ECMWF reanalysis derived atmospheric data (Dee et al.,
2011) and synoptic scale climate indices were collated, leading to 60
inputs (Table 3).

Next, the global predictor set was screened via Neighborhood
Component Analysis feature selection for regression algorithm (fsrnca)
to select optimal features (Section 2.1.6). The fsrnca algorithm com-
putes the relative weights of each predictor inputs in determining the

objective variable, SM (Yang et al., 2012) (e.g., Fig. 2a and b (left-hand
side panels)). However, the problem regarding the optimum threshold
weight (above which the input variable needs to be selected) remained
unresolved. To address this, an innovative and effective method was
developed whereby all the input variables were ranked according to
fsrnca feature weights. Then a basic-ELM model with 50 hidden neurons
and sigmoid transfer functions was applied to assess the effectiveness of
each historic input variable in predicting the SM based on the relative

Fig. 3. Map of the study region showing the selected hydrological study sites and their geographical locations within Australian Murray-Darling basin region.

Table 1
Geographic locations and physical characteristics of the selected sites in the Australian Murray-Darling Basin.

Site No. Station Names Location Physical Characteristics

Long. (°E) Lat. (°S) Approx.
Elevation (m)

Major Climate
Classes (Hijmans
et al., 2005)

Land Use (Department of
Agriculture and Water
Resources, 2015)

The range of agricultural holding
(ha) (Australian Bureau of
Statistics, 2008)

Soil Type
(ASRIS, 2014)

1 Menindee 142.15 −32.45 75.3 Desert Grazing-Native vegetation 18700-38600 Calcarosol
2 Balranald 143.30 −34.75 65.5 Savannah Dry-land cropping 3700-18700 Calcarosol
3 Bobadah 146.75 −32.45 277.3 Savannah Dry-land cropping 600-3700 Kandosol
4 Rocky Creek 150.20 −30.15 689.0 Sub-Tropical Dry-land cropping 3700-18700 Sodosol
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root mean square error (RRMSE). Consequently, the most significant
variables (based on fsrnca feature weights) were successively added to
the input variable set and the basic-ELM was executed with simulta-
neous monitoring of RRMSE. When no significant improvements in the
performance were achieved, i.e., when the selection of a further vari-
able led to a decrease of RRMSE lower than 0.01%, the algorithm ter-
minated. The Panel 2 (i.e., right-hand side panel) of Fig. 2a and b shows
examples of plots of RRMSE and the selected variables at Site 1. For
SMUL, the cumulative RRMSE decreased monotonically with the
number of selected variables, up to the sixth variable, minimum tem-
perature (Tmin). When the seventh variable i.e., the Vertical integral of
the divergence of ozone flux (VIDOF) is selected, no further significant
decrease in RRMSE is recorded and the algorithm terminated. Likewise,
for SMLL, after selecting the third variable i.e., the Vertical integral of
the divergence of thermal energy flux (VIDThEF), the cumulative
RRMSE increased asserting three significant variables. Table 4a and b
show a summary of salient input variables with monthly statistical
features. The salient inputs for forecasting SMUL showed varied statis-
tical properties. At Site 1-Menindee, three inputs (FWSoil, PhiE, and
PCN) showed leptokurtic (kurtosis > 3) distributions, i.e., the central
peaks of data distributions were higher, sharper, with longer and fatter
tails in comparison to a normal distribution. While, the other three
inputs (PhiH, FWE, and Tmin) showed platykurtic distribution, i.e., in
comparison to a normal distribution, the central peaks were lower and

broader with shorter and thinner tails. Interestingly, FWSoil at Site 2-
Balranald showed a mesokurtic (almost normal) distribution with kur-
tosis= 3.05. At Site 4-Rocky Creek all inputs were platykurtic. For SMLL

forecasting, except for VIDThEF (skewness=−0.15: kurtosis= 0.01),
the distributions of all other inputs at all sites were highly positively
skewed (skewness > +1) and leptokurtic (kurtosis > 3).

2.4. Model development

One-month antecedent salient inputs as shown in Table 4a-b were used
as predictors to the standalone models, while the target data were the time-
series of posterior observed monthly SMUL and SMLL. Prior to training the
models, all inputs were normalized to conform to the range (0, 1) (Deo and
Sahin, 2016; Deo et al., 2017a,b). Then the data were sequentially divided
into subsets having training (70%), validation (15%) and testing (15%) as
indicated in Table 5. It is important to note that the independent (valida-
tion) data were used to screen the optimal model (from several trained
models with ELM and ANN algorithms were used) to ensure that the most
accurately trained model was selected. The selected model that performed
the best in terms of the root mean square error in the validation set was thus
used to forecast soil moisture in the testing phase. Initially, following this
procedure, the standalone models were developed and implemented, fol-
lowed by the ensemble committee of models for the final forecasting of
relative soil moisture.

Fig. 4. The monthly variations in (a) upper layer (SMUL) and (b) lower layer soil moisture (SMLL) at the four study sites. (SMUL and SMLL are the relative fractional
values and the unit is dimensionless).

Table 2
Monthly hydrological statistics of the upper and lower layer relative soil moisture at the selected sites. (SMUL and SMLL are the relative fractional values and the unit is
dimensionless).

Site No. Station Names Monthly statistical features of upper layer soil moisture (SMUL) Monthly statistical features of lower layer soil moisture (SMLL)

Min. Max. Mean Skew-ness Kurtosis Min. Max. Mean Skew-ness Kurtosis

1 Menindee 0.013 0.434 0.139 0.791 0.058 0.205 0.703 0.343 1.241 1.421
2 Balranald 0.013 0.470 0.159 0.668 −0.180 0.034 0.187 0.092 0.695 −0.533
3 Bobadah 0.015 0.520 0.197 0.572 −0.272 0.119 0.560 0.290 0.436 −0.840
4 Rocky Creek 0.036 0.814 0.285 0.463 0.489 0.145 1.000 0.473 0.442 0.218

[NB: The relative soil moisture values are based on the base climatological reference period: 1961–1990, recommended by Australian Bureau of Meteorology].
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Table 3
Database of the input variables used to develop the ANN-CoM and the comparative data-driven models in forecasting the SMUL and SMLL.

Variables Acronym Units Source

I
N
P
U
T
S

Total Monthly Local Discharge (Runoff+Drainage) FWDis mm Australian Water Availability Project (AWAP) (Raupach
et al., 2009, 2012) [Definitions of abbreviations in Units
used: mm=millimeters, W=Watts, m=meters, MJ =
Mega-Joules, °C = degrees Celsius]

Total Monthly Total Evaporation (Soil +Vegetation) FWE mm
Total Monthly Deep Drainage FWLch2 mm
Total Monthly Soil Evaporation FWsoil mm
Total Monthly Total Transpiration FWTra mm
Total Monthly Open Water Evaporation ('pan' equiv.) FWWater mm
Monthly Average Sensible Heat Flux PhiH W/m2

Monthly Average Latent Heat Flux PhiE W/m2

Total Monthly Precipitation PCN mm
Monthly Average Incident Solar Radiation SolarMJ MJ/m2

Monthly Average Maximum Temperature Tmax °C
Monthly Average Minimum Temperature Tmin °C
SST of NINO 1+2 region NINO 1+2 Sea Surface Temperature (SST): Extended Reconstructed Sea

Surface Temperature Version 4 (ERSST.v4) - Climate
Prediction Centre-NOAA

SST of NINO3 region NINO3
SST of NINO4 region NINO4
SST of NINO3.4 region NINO3.4
Tripole Index for the Interdecadal Pacific Oscillation TPI (IPO)
Dipole Mode Index (Previously known as IOD) DMI Japan Agency for Marine-Earth Science and Technology

(JAMSTEC)El Nino Modoki Index EMI
Pacific Decadal Oscillation PDO Joint Institute of the Study of Atmosphere and Ocean

(JISAO)
Southern Oscillation Index SOI BOM-Australia
Southern Annular Mode Index SAM Natural Environment Research Council (NERC)
Vertical integral of the mass of the atmosphere VIMA kg/m2 Interim ERA European Centre for Medium-Range Weather

Forecasting (ECMWF) (Dee et al., 2011) [Definitions of
abbreviations in Units used: kg= kilograms, m = meters,
K=Kelvin, J= Joules, W=Watts, s= seconds,
Pa= Pascals, °C = degrees Celsius]

Vertical integral of temperature VIT K kg/m2

Vertical integral of water vapor VIWA kg/m2

Vertical integral of cloud liquid water VICLWA kg/m2

Vertical integral of ozone VIO kg/m2

Vertical integral of kinetic energy VIKE J/m2

Vertical integral of thermal energy VIThE J/m2

Vertical integral of potential+ internal energy VIPIE J/m2

Vertical integral of potential+ internal+latent energy VIPILE J//m2

Vertical integral of total energy VITotE J/m2

Vertical integral of energy conversion VIEC W/m2

Vertical integral of the divergence of cloud liquid water flux VIDCLWF kg/m2s
Vertical integral of divergence of mass flux VIDMF kg/m2s
Vertical integral of divergence of kinetic energy flux VIDKEF W/m2

Vertical integral of divergence of thermal energy flux VIDThEF W/m2

Vertical integral of divergence of moisture flux VIDMF kg/m2s
Vertical integral of divergence of geopotential flux VIDGF W/m2

Vertical integral of divergence of total energy flux VIDTotEF W/m2

Vertical integral of divergence of ozone flux VIDOF kg/m2s
Vertical integral of mass tendency VIMT kg/m2s
Surface air pressure sp Pa
Total column water tcw kg/m2

Total column water vapour tcwv kg/m2

Soil temperature level 1 (depth: 0.00 - 0.07m) stl1 °C
Soil temperature level 2 (depth: 0.07 - 0.28m) stl2 °C
Soil temperature level 3 (depth: 0.28 – 1.00m) stl3 °C
Soil temperature level 4 (depth: 1.00 – 2.89m) stl4 °C
Mean sea level pressure msl Pa
Total cloud cover tcc (0 - 1)
10 metre U wind component u10 m/s
10 metre V wind component v10 m/s
2-meter temperature t2m °C
2-metre dewpoint temperature d2m °C
Surface albedo al (0 - 1)
Low cloud cover lcc (0 - 1)
Medium cloud cover mcc (0 - 1)
High cloud cover hcc (0 - 1)
Total column ozone tco3 kg/m2

Objective Variables Relative soil moisture: upper layer (UL) and the lower layer
(LL)

SMUL SMLL Fraction 0 - 1 Australian Water Availability Project (AWAP)
(Raupach et al., 2009, 2012)
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2.4.1. Standalone model development
The 2nd order Volterra model was the first standalone model to be

developed. Then the M5 Tree software package developed by Jekabsons
(2010) was utilized to erect, prune and validate using 10-fold cross-
validations (Bhattacharya and Solomatine, 2005; Deo et al., 2017a,b).
Table 6a-b summarize the number of rules for each optimal model.
Following that, random forest (RF) models were built using the ‘tree-
bagger’ MATLAB functions. Average values of the three unique para-
meters i) Delta criterion decision split (C), ii) Number of predictor split
(Np), and iii) Permuted predictor delta error (ED) are shown in Table 6a
and b. For ELM, hidden neurons from 50 to 200 were trialed (Deo and
Sahin, 2016; Yaseen et al., 2016) with various combinations of transfer
functions including sigmoidal, sine, hard-limit, triangular basis, and
radial basis. Table 6a-b show resulting best ELM models with unique
architectures at all four sites.

2.4.2. Multi-model ensemble committee of model development
A second-stage optimized hybrid ensemble model was established

by channeling the outputs from the above-mentioned models as inputs
to the feed-forward ANN model producing a multi-model ensemble
committee of models (ANN-CoM). Fig. 1c illustrates a schematic view of
modeling stages. Through determination of appropriate weights and
biases, the ANN was used to generate the optimized collective forecasts.
Fig. 1d shows a simplified architecture of the ANN-CoM while the
modeling frameworks of best ANN-CoM models at respective sites are
presented in Table 6a and b. The determination of optimal hidden layer
neurons is important to avoid significantly small architecture that could
lack sufficient degrees of freedom or unnecessarily large architecture
that might cause overfitting (Karunanithi et al., 1994). Thus, hidden
neurons from 1 to 40 in increments of 1 were trialed. The newly de-
veloped ANN-CoM model was further optimized by trialing various
combinations of the hidden transfer and output functions one at a time
combined with two training algorithms (i.e., the Levenberg–Marquardt
(trainlm) and the Quasi-Newtonian Broyden-Fletcher-Goldfarb, and
Shanno (trainbfg) algorithms). The optimal models in each case were
averred based on Pearson’s correlation coefficient (r), root mean square

Table 4
The most salient input variables with respective statistical features applied at the candidate study sites, as determined by the Neighbourhood Component Analysis for
regression (fsrnca) feature selection algorithm with the minimum relative root mean square error (RRMSE) for the forecasting of (a) upper layer soil moisture and (b)
lower layer soil moisture. (SMUL and SMLL are the relative fractional values and the unit is dimensionless).

a) Upper Layer Soil Moisture (SMUL)

Site No. & Station names Names of Selected Variable Acronym (units) Monthly statistical features

Min. Max. Mean Skew-ness Kurtosis

Site 1- Menindee Soil Evaporation Fwsoil (mm) 2.09 85.29 18.76 1.71 4.36
Latent Heat Flux PhiE (W/m2) 0.31 79.50 13.90 2.09 6.50
Sensible Heat Flux PhiH (W/m2) 3.55 135.86 34.63 1.31 2.46
Total Evaporation (Soil+Vegetation) FWE (mm) 64.13 340.36 195.83 −0.10 −1.26
Precipitation PCN (mm) 0.00 171.10 19.40 2.81 12.91
Minimum temperature Tmin (°C) 2.49 23.63 11.96 0.15 −1.15

Site 2 - Balranald Soil Evaporation Fwsoil (mm) 0.38 54.14 11.23 1.76 3.05
Latent Heat Flux PhiE (W/m2) 6.10 119.94 46.08 0.72 0.06
Sea Surface Temperature (SST) in NINO 1+2 region NINO 1+2 (dimensionless) 35.61 309.65 171.37 −0.04 −1.37
Sensible Heat Flux PhiH (W/m2) 19.69 29.12 23.38 0.27 −1.02

Site 3 - Bobadah Soil Evaporation FWSoil (mm) 0.29 71.54 15.94 1.48 2.71
Latent Heat Flux PhiE(W/m2) 47.25 333.93 176.29 0.06 −1.17
Precipitation PCN (mm) 0.00 210.70 35.52 2.02 5.60

Site 4 - Rocky Creek Soil Evaporation FWSoil (mm) 1.37 55.18 18.39 0.91 0.31
Latent Heat Flux PhiE (W/m2) 61.19 305.94 170.09 0.10 −1.06
Precipitation PCN (mm) 47.39 302.80 141.47 0.44 −0.53
Open Water Evaporation ('pan' equiv.) FWWater (mm) 0.00 314.50 69.17 1.42 2.38
Maximum temperature Tmax (°C) 13.85 34.84 24.62 −0.12 −1.26

b) Lower Layer Soil Moisture (SMLL)

Site No. & Station names Names of Selected Variable Acronym (units) Monthly statistical features

Min. Max. Mean Skew-ness Kurtosis

Site 1- Menindee Deep Drainage FWLch2 (mm) 0.08 27.42 0.99 9.52 116.77
Local Discharge (Runoff+Drainage) FWDis (mm) 0.08 6.43 0.88 2.46 6.47
Vertical integral of divergence of thermal energy flux VIDThEF (W/m2) −323.02 854.70 252.31 −0.15 0.01

Site 2 - Balranald Deep Drainage FWLch2 (mm) 0.00 0.21 0.01 4.61 26.44

Site 3 - Bobadah Deep Drainage FWLch2 (mm) 0.01 40.04 1.18 7.42 62.03
Local Discharge (Runoff+Drainage) FWDis (mm) 0.01 6.49 0.64 3.01 12.20

Site 4 - Rocky Creek Deep Drainage FWLch2 (mm) 0.02 96.98 6.88 4.07 17.24
Local Discharge (Runoff+Drainage) FWDis (mm) 0.02 24.76 3.13 2.94 10.15

Table 5
Data partitions used in this study.

Sites Period Number of datum
points

Data Partition

Training Validation Testing

All sites and for both upper
and lower soil moisture

Jan 1990 to Dec 2016 324 – 1=323 70% 227 1990-2008 15% 48 2009-2012 15% 48 2013-2016
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error (RMSE) and mean absolute error (MAE) during validation phases
(Table 7a-b) with the least mean square error (MSE) for confirmation.
The multi-model ensemble ANN-Committee of models and comparative
models (viz., Volterra, M5 model tree, random forest, ELM) were de-
veloped on the MATLAB platform running over Intel i7, 3.40 GHz
processor. Finally, the testing data were utilized to assess the general-
ization capabilities of ANN-CoM based on the following model eva-
luation measures.

2.5. Model evaluation measure

Model evaluation is an important process as it confirms the ac-
ceptability and reliability of respective models. To carry out a com-
prehensive assessment, various statistical evaluation measures were
used to capitalize on the benefits of the individual measures. The
equations are as follows:

i Correlation coefficient (r):
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Table 6
The model development framework for the extreme learning machine (ELM), random forest, M5model tree and the Multilayer Feed-forward Neural Network based
Committee of Model (ANN-CoM) adopted in forecasting (a) SMUL, (b) SMLL.

Lower Layer Soil
Moisture (SMLL)

M5
Tree

Random Forest Extreme Learning Machine (ELM) ANN-based committee of models (ANN-CoM)

No. of
Rules

Avg. Delta
Criterion
Decision
Split (C)

Avg.
Number of
predictor
split (Np)

Avg. Permuted
Predictor Delta
Error (ED)

No. of Neurons Transfer
Function

No. of Neurons Hidden
transfer
function

Output
transfer
function

Training
algorithm

Input
Layer

Hidden
Layer

Output
Layer

Input
Layer

Hidden
Layer

Output
Layer

Site 1- Menindee 10 5.34exp -05 146.97 1.07 6 65 1 sig 4 26 1 tansig tansig trainlm
Site 2 - Balranald 20 8.97exp -05 217.42 1.55 4 74 1 tribas 4 16 1 logsig purelin trainlm
Site 3 - Bobadah 11 0.0001 166.67 1.78 3 52 1 sig 4 6 1 logsig tansig trainbfg
Site 4 - Rocky Creek 6 0.0001 176.87 1.18 5 55 1 sig 4 13 1 logsig purelin trainbfg

Table 7
The performances of ANN-CoM vs. the comparative models in the model development (i.e., training and validation) phase, based on the Pearson’s correlation
coefficient (r), root mean square error (RMSE) and the mean absolute error (MAE). Note: (a) upper layer (SMUL), b) lower layer (SMLL) soil moisture. (All statistical
metrics are dimensionless).

a) Upper Layer Soil Moisture (SMUL) 2nd order Volterra M5 Tree Random Forest ELM ANN-CoM

r RMSE MAE r RMSE MAE r RMSE MAE r RMSE MAE r RMSE MAE

Training Phase
Site 1- Menindee 0.981 0.018 0.015 0.989 0.014 0.009 0.986 0.017 0.010 0.999 0.004 0.003 0.999 0.004 0.003
Site 2 - Balranald 0.917 0.041 0.028 0.981 0.020 0.015 0.986 0.019 0.012 0.992 0.013 0.010 0.996 0.010 0.007
Site 3 - Bobadah 0.863 0.072 0.052 0.975 0.028 0.020 0.982 0.026 0.019 0.994 0.014 0.010 0.990 0.017 0.013
Site 4 - Rocky Creek 0.948 0.052 0.042 0.982 0.027 0.020 0.981 0.030 0.018 0.996 0.012 0.009 0.995 0.013 0.010

Validation Phase
Site 1- Menindee 0.982 0.020 0.016 0.986 0.018 0.014 0.973 0.030 0.022 0.950 0.040 0.011 0.988 0.019 0.007
Site 2 - Balranald 0.885 0.050 0.035 0.965 0.028 0.023 0.946 0.039 0.029 0.890 0.060 0.030 0.945 0.035 0.023
Site 3 - Bobadah 0.822 0.078 0.057 0.972 0.028 0.023 0.960 0.035 0.028 0.981 0.024 0.017 0.977 0.024 0.018
Site 4 - Rocky Creek 0.942 0.062 0.048 0.960 0.039 0.026 0.963 0.040 0.029 0.991 0.019 0.014 0.989 0.022 0.015

b) Lower Layer Soil Moisture (SMLL) 2nd order Volterra M5 Tree Random Forest ELM ANN-CoM

r RMSE MAE r RMSE MAE r RMSE MAE r RMSE MAE r RMSE MAE

Training Phase
Site 1- Menindee 0.923 0.046 0.032 0.998 0.007 0.005 0.996 0.010 0.005 1.000 0.002 0.002 1.000 0.003 0.002
Site 2 - Balranald 0.933 0.016 0.013 0.994 0.005 0.003 0.997 0.003 0.001 0.998 0.003 0.002 1.000 0.001 0.001
Site 3 - Bobadah 0.932 0.045 0.033 0.997 0.010 0.007 0.996 0.011 0.004 1.000 0.004 0.003 1.000 0.002 0.002
Site 4 - Rocky Creek 0.908 0.080 0.058 0.996 0.016 0.011 0.994 0.019 0.007 0.999 0.006 0.004 1.000 0.005 0.003

Validation Phase
Site 1- Menindee 0.959 0.043 0.033 0.995 0.015 0.009 0.987 0.026 0.013 1.000 0.002 0.002 0.813 0.092 0.022
Site 2 - Balranald 0.948 0.036 0.024 0.953 0.066 0.031 0.944 0.039 0.019 0.985 0.025 0.010 0.930 0.036 0.021
Site 3 - Bobadah 0.916 0.046 0.033 0.999 0.007 0.006 0.999 0.004 0.002 0.994 0.011 0.004 0.996 0.008 0.004
Site 4 - Rocky Creek 0.923 0.094 0.070 0.997 0.015 0.010 0.995 0.018 0.008 0.916 0.114 0.042 0.998 0.012 0.007
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vi Legates-McCabe’s Index (L):
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The, SMUL
OBS represents the observed upper layer (UL) soil moisture

and SMUL
FOR is the forecasted upper layer soil moisture, i represents the

occurrence time/place and N is the number of data points. (N.B.
Subscript UL is replaced with LL in the case of lower layer soil
moisture). The first metric, Pearson’s correlation coefficient (r)

= − + = +Range Ideal value[ ( 1, 1); 1] is absolute and non-dimensional.
It quantifies the strength and direction of linear association in between
observed SM or SMUL

OBS
LL
OBS and forecasted values SM or SMUL

FOR
LL
FOR. Yet,

mediocre or poor models could achieve high correlations. The root
mean square error (RMSE) = + ∞ =Range Ideal value[ (0, ); 0] and
mean absolute error (MAE) = +∞ =Range Ideal value[ (0, ); 0] are ab-
solute error measures and cannot be applied to compare the perfor-
mance of models in different unitary systems/sites (Hora and Campos,
2015). However, both are deemed to provide more information about
respective model performances than the relative measures (Legates and
McCabe, 1999). A bias towards high SM level events is induced in RMSE
by the square-root of the squared error values. Likewise, the goodness-
of-fit measure Willmott’s Index (WI) or index of agreement

= + = +Range Ideal value[ (0, 1); 1] being a ratio of mean square error
to potential error, is better at handling differences in modelled and
observed means and variances (Bennett et al., 2013; Willmott, 1984).
However, its limitation is the interpretation of physical meaning since
zero is rather meaningless and it registers higher values (≥0.65) for
poor models. Instead, the Nash–Sutcliffe Efficiency (ENS)

= − ∞ + = +Range Ideal value[ ( , 1); 1] compares the performance of
the model to a model using mean of the observed data (Bennett et al.,
2013; Legates and McCabe, 2013). =E 0NS indicates that the perfor-
mance is no better than using the means while negative values indicate
that the forecasted values diverge. Both, WI and ENS, are sensitive to
outliers due to the squaring of the difference terms. In contrast, the
Legate-McCabe’s index (L) = − ∞ + = +Range Ideal value[ ( , 1); 1]
considers absolute values for computation and gives errors and differ-
ences the appropriate weights (Legates and McCabe, 1999). Therefore,
L is not inflated by the squared values and is insensitive to outliers
making it simple and easy to interpret.When comparing models at
different sites, the relative measures, Relative Root Mean Square Error
(RRMSE) = +∞ =Range Ideal value[ (0, ); 0] and Mean Absolute Per-
centage Error (MAPE) = +∞ =Range Ideal value[ (0, ); 0] are used. The
advantage of being scale independent makes these relative measures
more appropriate (Hyndman and Koehler, 2006). Particularly, MAPE
does not have to offset positive and negative values of forecasting error
(Hora and Campos, 2015). The equations are as follows:

I
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II Mean absolute percentage error (MAPE; %):
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[NB: The symbols used have the same meaning as mentioned
above.]

The primary measures for model assessments were RMSE and MSE
and r. Then WI, ENS, and L provided further goodness-of-fit assessments
whereby L was superior and eventually, RRMSE andMAPE were used to
compare models at different sites. In addition, graphical comparisons of
data patterns using various diagnostic plots e.g., scatter plots, histo-
grams, box-plots, polar plots, Taylor diagram and bar graphs were used
to provide further insights and to avoid traducing model errors in terms
of single magnitudes.

3. Results and discussion

The newly proposed hybrid multi-model ensemble ANN based
committee of models (ANN-CoM) is evaluated against standalone 2nd
order Volterra model, M5 model tree, random forest (RF) and ELM
models at four sites within the Murray-Darling Basin. The outcomes of
the assessments based on evaluation measures (Eqs. (9)–(16)) and di-
agnostic plots are as follows.

Performance evaluation with respect to the metrics, Pearson’s cor-
relation coefficient (r), root mean square error (RMSE) and mean ab-
solute error (MAE) (Table 8a and b) showed cluttered outcomes. In
SMUL forecasting (Table 8a), the largest r was recorded from ELM at
Sites 1 ( =r 0.999) and 3 ( =r 0.992), while ANN-CoM had highest values
at Sites 2 ( =r 0.994) and 4 ( =r 0.995). At Site 1, the least RMSE was
recorded by both ELM and ANN-CoM. Interestingly, at Site 3 both ELM
and ANN-CoM registered =RMSE 0.019. In terms of MAE, the ELM had
the best performance at Site 3, while ANN-CoM had the best perfor-
mance at Site 2. At Sites 1 ( =MAE 0.005) and 4 ( =MAE 0.011), both
ELM and ANN-CoM had similar performances. For SMLL forecasting
(Table 8b), all three measures unanimously exhibited superior perfor-
mance of the hybrid ANN-CoM revealing that ANN-CoM has the best
potential in generating accurate forecasts. Remarkably, at Sites 3 and 4,
the ideal value of =r 1.000 was obtained by ANN-CoM. At Site 2, the
ANN-CoM and random forest registered equal values of r, RMSE, and
MAE, while at Site 3 ELM had the same values as ANN-CoM. Although,
it was certain that the new ANN-CoM potentially outperformed the
other standalone models, the precise forecasting capability of ANN-CoM
seemed rather concealed.

Next, the assessment in terms of Willmott’s Index (WI), Nash-Sutcliffe
Efficiency (ENS,) and the Legate-McCabe’s Index (L) demonstrated vivid im-
provements in the performance of hybrid ANN-CoM model (Table 9a and b).
Particularly, for SMUL forecasts at Site 1, all threemeasures showed that ANN-
CoM and ELM had identical performances. Considering WI only, at the other
three sites (Sites 2, 3 and 4) ANN-CoM was the best. Similarly, the Nash-
Sutcliffe Efficiency also showed better performance of ANN-CoM at Sites 1, 2
and 4. While capriciously at Site 3, ELM registered equal value of ENS to that
of ANN-CoM. From the perspective of Legate-McCabe’s Index, which takes

R. Prasad et al. Soil & Tillage Research 181 (2018) 63–81

73



the precedence based on benefits discussed earlier, at all four sites ANN-CoM
performs better. The percentage increase in L at Sites 2, 3 and 4 in com-
parison to best standalone model, i.e., ELM was 0.9% (Site 2), 0.46% (Site 3)
and 0.55% (Site 4). Yet, ELM and ANN-CoM performed evenly at Site 1. The
hybrid ANN-CoM model’s precision was impeccable with very high predictor
metric values ≥ ≥ ≥WI E L( 0.992, 0.982 and 0.878)NS , at all candidate
sites. Similarly, in forecasting SMLL, the measures, Willmott’s Index (WI),
Nash-Sutcliffe Efficiency (ENS,) and the Legate-McCabe’s Index (L), (Table 9b)
consistently revealed better performance of hybrid ANN-CoM at all four study
sites. At Site 2, the performance of random forest was in par with ANN-CoM.
In addition, the ELM (Site 3) and ANN-CoM (Sites 3 & 4) registered a

=WI 1.000 indicating a perfect model fit, which practically is ambiguous
due to the inherent drawbacks of this measure. With that, the preeminent
indicator, Legate-McCabe’s Index, was highest at all the four sites confirming
the superior performance of ANN-CoM model. It must be noted that at all
sites, the ANN-CoM model registered very high performance indicator values

≥ ≥ ≥WI E L( 0.999, 0.998 and 0.944NS ). Hence, with sufficient certainty,
it can be seen that the hybrid ANN-CoMmodel has enhanced performance in
forecasting both SMUL and SMLL values.

To further explore the suitability of ANN-CoM in SM forecasting,
diagnostic plots were used to overcome the shortcomings of objective

metrics. Fig. 5a and b show scatterplots of the observed and forecasted
SM during the test period from all five models at all four candidate sites.
For better exemplification, the linear fit equation and the coefficient of
determination (R2) = + = +Range Ideal value[ (0, 1); 1] which provides
a measure on the global adequacy of the model (Hora and Campos,
2015) were included. In SMUL forecasts, the plots clearly show that 2nd
order Volterra, M5 tree and the random forest underperformed as the
scatter points diverted from the =y x linear form. Conversely, the ELM
had very similar performance to the ANN-CoM model with comparable
R2 values. In congruence with the outcomes of Willmott’s Index (WI),
Nash–Sutcliffe Efficiency (ENS) and Legates-McCabe’s index (L), the
scatterplots of Sites 1, 2 and 4 confirmed the superior performance of
ANN-CoM. At Site 3 the R2 of ANN-CoM was slightly lower than that of
ELM, however, owing to the fact that Willmott’s Index and Legates-
McCabe’s index were greater, the superiority of ANN-CoM is lucid.
Likewise, in SMLL forecasts, the ANN-CoM model outperformed at all
sites registering larger values of R2 (Fig. 5b). The minimum =R 0.9982

was recorded at Site 1 revealing that even at a worst-case scenario an
overall 99.8% of the observed SMLL values could be well simulated
using the ANN-CoM model. The other values were close to unity
( =R 0.9992 ). The gradient of the linear fit = +Ideal value[ 1] and the y-

Table 8
The performance ANN-CoM vs. the standalone models applied in forecasting: (a) upper layer (SMUL) and (b) lower layer soil moisture (SMLL) in the testing period,
based on Pearson’s correlation coefficient (r); root mean square error (RMSE) and mean absolute error (MAE). The optimal models yielding the lowest RMSE at each
site are shown in boldface.

Model Performance Metrics Upper Layer Soil Moisture (SMUL) Lower Layer Soil Moisture (SMLL)

Site 1 Site 2 Site 3 Site 4 Site 1 Site 2 Site 3 Site 4

2nd order Volterra r 0.985 0.923 0.884 0.948 0.917 0.956 0.975 0.968
RMSE 0.021 0.042 0.075 0.059 0.034 0.012 0.037 0.053
MAE 0.015 0.029 0.058 0.047 0.022 0.010 0.029 0.039

M5 Model Tree r 0.985 0.985 0.970 0.967 0.997 0.998 0.998 0.998
RMSE 0.023 0.020 0.037 0.041 0.006 0.002 0.008 0.012
MAE 0.014 0.014 0.027 0.029 0.004 0.002 0.005 0.007

Random Forest r 0.973 0.978 0.965 0.948 0.994 0.999 0.998 0.997
RMSE 0.039 0.026 0.045 0.052 0.007 0.001 0.008 0.015
MAE 0.023 0.019 0.034 0.035 0.006 0.001 0.004 0.007

Extreme Learning Machine (ELM) r 0.999 0.993 0.992 0.994 0.998 0.998 1.000 0.998
RMSE 0.006 0.013 0.019 0.017 0.004 0.002 0.003 0.010
MAE 0.005 0.010 0.015 0.011 0.003 0.001 0.002 0.007

ANN-Committee of models (ANN-CoM) r 0.998 0.994 0.991 0.995 0.999 0.999 1.000 1.000
RMSE 0.007 0.012 0.019 0.016 0.003 0.001 0.003 0.005
MAE 0.005 0.009 0.014 0.011 0.003 0.001 0.002 0.003

Table 9
The performance ANN-CoM vs. the standalone models applied in forecasting: (a) upper layer (SMUL) and (b) lower layer soil moisture (SMLL) in the testing period
based on Willmott’s Index (WI); Nash–Sutcliffe Efficiency (ENS) and Legates-McCabe’s index (L). The models with the largest value of the Legates-McCabe’s index at
each site are in boldface.

Model Performance Metrics Upper Layer Soil Moisture (SMUL) Lower Layer Soil Moisture (SMLL)

Site 1 Site 2 Site 3 Site 4 Site 1 Site 2 Site 3 Site 4

2nd order Volterra WI 0.988 0.924 0.892 0.935 0.919 0.871 0.972 0.968
ENS 0.969 0.851 0.730 0.840 0.742 0.778 0.900 0.896
L 0.851 0.685 0.501 0.586 0.510 0.544 0.666 0.664

M5 Tree WI 0.983 0.984 0.967 0.961 0.997 0.996 0.999 0.998
ENS 0.963 0.967 0.934 0.923 0.992 0.993 0.996 0.995
L 0.857 0.849 0.770 0.742 0.912 0.930 0.946 0.940

Random Forest WI 0.937 0.972 0.948 0.932 0.996 0.999 0.999 0.997
ENS 0.891 0.943 0.904 0.875 0.988 0.998 0.996 0.992
L 0.768 0.797 0.706 0.697 0.876 0.966 0.954 0.938

Extreme Learning Machine (ELM) WI 0.999 0.994 0.993 0.994 0.999 0.998 1.000 0.999
ENS 0.997 0.986 0.982 0.987 0.996 0.995 0.999 0.996
L 0.953 0.891 0.874 0.902 0.935 0.938 0.974 0.942

ANN-Committee of models (ANN-CoM) WI 0.999 0.995 0.992 0.995 0.999 0.999 1.000 1.000
ENS 0.997 0.987 0.982 0.989 0.998 0.998 0.999 0.999
L 0.953 0.899 0.878 0.907 0.944 0.966 0.978 0.971
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intercept =Ideal value[ 0] for both SMUL and SMLL and at all sites were
very close to idyllic magnitudes further reinforcing the outcomes of the
scatterplots and the predictor metrics (Table 9a and b).

Additionally, the model evaluations were carried out via the box
plots that illustrate the spread of the SMUL

OBS and SMUL
FOR values with

respect to quartiles while the whiskers indicate the variability outside
of the 1st and 3rd quartiles, (Fig. 6a and b). For forecasting SMUL, the
distributions of the observed (OBS) and the forecasted values from
ANN-CoM were congruent, revealing its better performance. Following
that was ELM, while the other three models had disparate distributions.
The ANN-CoM better captured the high SM levels at Sites 1 and 2. In
SMLL forecasts, the ANN-CoM outperformed the standalone models in
terms of forecast distributions and handled the high SM levels better.
Hence, forecast distribution also demonstrated that the ANN-CoM has a
predictive advantage in comparison to standalone models.

Moreover, the model preciseness was assessed using histograms of
forecasting errors (FE) (Fig. 7a-b). FE is the difference between fore-
casted and observed SM during the test period and is computed as

= −SM SMFE UL
FOR

UL
OBS; =Ideal value[ 0]. Hence, a better model is

bound to have higher occurrences of FE closer to zero. Four years of
data (48 datum points) were used for testing the models, in error
brackets of step-size 0.02 commencing from zero. For SMUL, Volterra,
M5 tree and random forest showed a larger degree of spread of fore-
casting errors in-between − ≤ ≤FE0.18 0.18 (Fig. 7a). Conversely, the
ANN-CoM registered very small spreads in forecasting error that were
closer to zero. At Sites 1 and 2 the inaccuracy ranged between

− ≤ ≤0.04 FE 0.04, while at Sites 3 and 4 the range was
− ≤ ≤0.06 FE 0.06. On the other hand, for forecasting SMLL at all

sites, the ANN-CoM’s enhanced forecasting capability was clearly illu-
strated as all 48 datum points were in the first error bracket
− ≤ ≤( 0.02 FE 0.02) (Fig. 7b). Accordingly, the forecasting error his-
togram also confirmed the suitability of ANN-CoM as lower forecasting
errors and improved accuracies are apparent.

Since the sites are having different geographical, physical and cli-
matic characteristics (Fig. 3 and Tables 1 and 2), suitable relative
measures (i.e., relative root mean square error (RRMSE) and mean-
absolute percentage error (MAPE)) were alternatively used (Table 10a
and b) to compare model performances at these sites. In forecasting

SMUL, the ANN-CoM model outperformed at two sites with percentage
decrease in comparison to ELM (i.e., best standalone model) as follows
RRMSE MAPE| Sites 2 − −3.64% | 26.56% and 4 − −8.39% | 0.25%
(Table 10a). At the other two sites i.e., Sites 1 and 3, ELM had least
RRMSE and MAPE values. Based on least relative errors, the best model
out of all sites was ELM at Site 1 = =RRMSE MAPE3.89%| 3.05%. Yet,
the correlation-based measures vividly showed that ANN-CoM out-
performed at the majority of sites. On the other hand, the results of
SMLL, exhibited that the lowest values of both RRMSE and MAPE re-
gistered by the ANN-CoM model at all the four sites were apparently
lower than those of standalone counterparts confirming that un-
arguably the ANN-CoM is the optimal choice (Table 10b). In compar-
ison to the best standalone models, i.e., ELM (Sites 1, 3, & 4) and
random forest (Site 2), the percentage decrease in RRMSE and MAPE
values were as follows RRMSE MAPE| : Site 1 − −17.00% | 10.00%; Site
2 − −3.77% | 6.25%; Site 3 − −11.00% | 16.88%; and Site 4

− −53.21% | 44.30%. Overall, Site 1 = =RRMSE MAPE0.83%| 0.63%
had the optimal performance.

So far, the analysis of predictor metrics and various diagnostic plots
have provided compelling evidence of the superiority of ANN-CoM
model, in terms of the accuracy. Polar plots of monthly averages of
absolute forecasting errors (|FE|) were then used for assessing the
monthly performance of ANN-CoM model (Fig. 8). For brevity, two
instances have been selected on the basis of the best (Site 1) and the
worst (Site 4) performing ANN-CoM models in forecasting SMLL based
on least RRMSE (Table 10b). The polar plots revealed that there is a
decrease in maximum monthly averages of absolute forecasting error
values recorded by all models at the best-case scenario (Site 1) in
comparison to the worst-case site (Fig. 8). The best ANN-CoM appar-
ently has the least |FE| in all the months in comparison to its standalone
counterparts at Site 1. This reduction evidently suggests that the fore-
casts generated by the best ANN-CoM are more stable. The hybrid ANN-
CoM proved to be the best with |FE| very much closer to zero, in the
order of 10−3 in all the months. The best ANN-CoM ensued minimum
forecasting errors in January, which was consistent with other models
at Site 1 while the maximum magnitude was recorded in February. In
contrast, worst ANN-CoM model (Site 4) registered dissimilar perfor-
mance outcomes with June recording the highest |FE| value. For more

Fig. 5. Scatterplots of the observed (SMUL
OBS) and the forecasted (SMUL

FOR) soil moisture generated from ANN-CoM vs. the comparative standalone models applied at the
candidate sites in the testing period (a) upper layer soil moisture (SMUL) (b) lower layer soil moisture (SMLL). Each panel shows a linear regression fit y=mx+ C, and
the coefficient of determination (R2) denoting the goodness-of-fit. (SMUL and SMLL are the relative fractional values and the unit is dimensionless).
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perspicacity, the Taylor diagrams were used which illustrate a concise
statistical summary of correlation, root-mean-square difference, and the
ratio of the model’s variances on a single figure (Taylor, 2001). The

Taylor plot vividly asserted that in both the best (Fig. 9a) and worst
(Fig. 9b) cases the ANN-CoM was better than all the standalone models
while the 2nd order Volterra was the most underperforming one further

Fig. 6. Box plots of the observed (OBS) vs. the forecasted values of (a) the upper layer soil moisture (SMUL) and (b) the lower layer soil moisture (SMLL) generated
from the ANN-CoM vs. the standalone data-driven models at the candidate study sites. (SMUL and SMLL are the relative fractional values and the unit is dimensionless).

Fig. 7. Histograms illustrating the frequency (i.e., no. of tested points) within each of the absolute forecasting errors (|FE|) generated from the ANN-CoM vs. the
standalone models for (a) upper layer soil moisture (SMUL), (b) lower layer soil moisture (SMLL).
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establishing the superior forecasting capability of this new ANN-CoM
model.

Finally, seasonal forecasting ability of ANN-CoM model was tested
since seasonal accuracy is imperative for agricultural productivity and
practical model deployment. This was achieved via bar graphs of the
average seasonal relative root mean square errors (Fig. 10a and b).
Overall, the RRMSE in forecasting SMLL, were lower (< 0.9) in com-
parison to SMUL conveying that ANN-CoM can generate more precise
SMLL forecasts. The least RRMSE in forecasting SMUL was recorded at
Site 1 during spring (SON), while largest magnitude was recorded
during summer (DJF) at Site 3 (Fig. 10a). An interesting feature was
recorded during winter (JJA) as the RRMSE values were consistent
across all four sites. In SMLL forecasts the least relative error was re-
gistered at Site 3 during spring (SON), while the RRMSE were con-
sistently higher during summer (DJF) throughout all sites (Fig. 10b).
Henceforth, the ANN-CoM has better performance in winter in SMUL

forecasts. Conversely, for SMLL forecasts the models may generate
larger uncertainties during summer, yet these uncertainties would be
lower than those of SMUL forecasts.

Owing to the fact that, the single data-intelligent models have dis-
similar theoretical and mathematical underpinnings, these algorithms
capture the predictive features differently. For instance, the 2nd order
Volterra model captures the memory effects on the basis of Taylor series
while the M5 model tree utilizes smoothed localized regression trees.
Although the random forest has regression trees as basic learners, it
incorporates a bootstrapped aggregated ensemble approach. The final
expert model, ELM employs non-linear elements, i.e., neurons, for
feature extraction. These aforementioned differences in modeling
structure may lead to some algorithms skipping or overlooking vital
features (e.g., seasonality, peaks or extreme SM levels) and are apparent
from the differences in predictive performances of the standalone
models whereby ELM has a better performance and 2nd order Volterra
having the worst.

However, this multi-model ensemble committee of models approach
based on ANN (ANN-CoM) is able to overcome this by determining a
collective forecast. The scaled performance of ANN-CoM (Tables 8 and
9, Figs. 5–9) ascertains that this ensemble committee approach is able
to harness the predictive features that otherwise would have been left
out in the standalone modeling method. Being nonlinear, the ANN is
able to use the internal interconnected multiple neurons and iterative
adjustment of feature weights to further improve the forecasts devoid of
being constrained to a specific form. Without any assumption of prob-
ability distribution like normality or equal dispersion and covariance
matrix requirements (Moghaddamnia et al., 2009), the ANN-CoM ef-
fectively simulates the stochastic and complex hydrological system of
the SM. The liberty to select the number of hidden layers and the as-
sociated nodes in each of these layers provides ANN with added ver-
satility and robustness (ASCE Task Committee on Application of ANN in

Hydrology, 2000; Yilmaz et al., 2011). The best ANN-CoM (Site 1) had a
neuronal architecture of (4-24-1: Input-Hidden-Output) with ‘trainlm’ as
the learning algorithm. In addition, the lower average forecasting errors
suggest that the model combination stabilizes the forecasts. Above all,
the purpose of combining models is not only to improve accuracy but
also to protect against the failure of the individual expert models (Baker
and Ellison, 2008), which is very important for real-life applications.

This neural network based multi-model ensemble could possibly be
utilized as a forecasting tool for farmers, farm managers, and other
decision makers. ANN’s capability to operate in the non-stationary
environment and subsequently adapt to minor changes in the sur-
rounding makes it more suitable for field deployment as an adaptive
system is more likely to remain stable producing a robust performance
(Haykin, 1999). In addition, failure in the hardware implementation of
ANNs shows a gradual degradation instead of an abrupt malfunction
(Haykin, 1999). This further makes the ANN-CoM inherently fault tol-
erant and well suited for field implementation.

Prior to model development, appropriate feature selection is im-
portant to increase forecasting accuracy (Prasad et al., 2017). Two-fold
feature selection technique; the Neighborhood Component Analysis
feature selection for regression algorithm (fsrnca) derived feature
weights followed by the innovative modeled minimum RRMSE criteria,
was pivotal in selecting appropriate inputs in the development of par-
simonious models. Fundamentally, the Australian climate is dependent
upon many factors, including, rainfall (Abawi et al., 2000; Ummenhofer
et al., 2009); Indian Ocean Dipole (IOD) (i.e., the low-frequency cou-
pled ocean-atmosphere variability in the Indian Ocean) (Ashok et al.,
2003; Ummenhofer et al., 2009); El Nino Southern Oscillation (ENSO)
(Deo et al., 2009); Southern Oscillation Index (SOI) and sea surface
temperatures (SST) (Abawi et al., 2000). Correspondingly, sixty pre-
dictor input variables were agglutinated. Despite this, feature selection
revealed that soil evaporation (FWsoil) and latent heat flux (PhiE) are
most important ones for SMUL forecasts while the deep drainage
(FWLch2) was important for SMLL forecasting.

Moreover, a contesting platform for the model evaluations was
provided by the four sites with distinctive geophysical, topographical
and climatological conditions. Besides ANN-CoM generating enhanced
SM forecasts, it was noted that the SMLL ( ≤ ≤L0.944 0.978) were better
forecasted than SMUL ( ≤ ≤L0.878 0.953). This difference could have
resulted due to different climatological patterns of SMUL and SMLL

(Fig. 4a-b). The SMUL (surface layer) showed greater seasonal varia-
bility as it is contingent upon surface meteorological variations, vege-
tation types (trees, crops, grass, or fallow) (Ladson et al., 2004) and the
deep soil hydraulics. On the contrary, the SMLL largely depends on deep
percolation, groundwater recharge, and plant uptake that are relatively
steady across the seasons. In spite of this geophysical disparity amongst
sites and vertical soil inconsistencies, the ensemble approach ANN-CoM
captured and simulated pertinent physical patterns as is apparent from

Table 10
A comparison at the different sites’ performances using the relative error measures, relative root mean square error (RRMSE) and mean absolute percentage error
(MAPE) for the forecasting of (a) upper layer soil moisture (SMUL) and (b) lower layer soil moisture (SMLL). The optimal model with lowest relative (%) error is shown
in boldface.

Model Performance Metrics (%) Upper Layer Soil Moisture (SMUL) Lower Layer Soil Moisture (SMLL)

Site 1 Site 2 Site 3 Site 4 Site 1 Site 2 Site 3 Site 4

2nd order Volterra RRMSE 12.53 25.20 33.89 19.74 8.46 12.40 11.94 11.51
MAPE 11.64 19.01 36.16 17.76 5.22 10.78 9.13 9.45

M5 Tree RRMSE 13.72 11.87 16.69 13.69 1.44 2.22 2.43 2.50
MAPE 9.58 10.63 15.64 11.03 0.93 1.44 1.37 1.38

Random Forest RRMSE 23.51 15.52 20.25 17.43 1.83 1.06 2.50 3.25
MAPE 12.45 12.69 21.98 11.84 1.31 0.80 1.01 1.55

ELM RRMSE 3.89 7.69 8.69 5.72 1.00 1.89 1.00 2.18
MAPE 3.05 8.66 8.72 3.94 0.70 1.74 0.77 1.49

ANN-CoM RRMSE 4.10 7.41 8.76 5.24 0.83 1.02 0.89 1.02
MAPE 3.15 6.36 9.85 3.93 0.63 0.75 0.64 0.83
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the enhanced performance. However, the context of the present study
was limited to time-series forecasting via data-driven ANN based en-
semble committee of modelling approach. To gain a better under-
standing on the capacity ANN based machine-learning techniques into
real-life decision support systems, further independent studies with
respect to other physical models (e.g., HYDRUS-1D, MACRO, VS2DTI,
etc.) need to be performed.

4. Conclusion

In this paper, a new multi-model ensemble committee framework
with ANN as the final prediction tool (i.e., ANN-CoM model) was

developed and evaluated for forecasting the SMUL (0–0.2 m) and SMLL

(0.2–1.5m). Four study sites within Murray-Darling basin region; Site
1-Menindee, Site 2-Balranald, Site 3-Bobadah, and Site 4-Rocky Creek
were selected to assess the model performances. The Neighborhood
Component Analysis based feature selection algorithm, fsrnca, and a
basic ELM ( = ′ ′h sigmoid50;n transfer function) determined the optimal
set of predictors from 60 predictor inputs variables.

A holistic evaluation via statistical metrics and diagnostic plots re-
vealed that the ANN-CoM generated superior forecasts in comparison to
benchmark standalone models (viz., 2nd order Volterra, M5 model tree,
random forest, and extreme learning machine). The site comparisons
showed that the ANN-CoM model had the best performance at Site 1

Fig. 8. Polar plots showing the monthly average values of the absolute forecasting error generated from the ANN-CoM vs. the standalone models in forecasting lower
layer soil moisture with: a) best ANN-CoM model (Site 1) and b) worst ANN-CoM model (Site 4) based on RRMSE values. (SMUL and SMLL are the relative fractional
values and the unit is dimensionless).
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= =RRMSE MAPE0.83%| 0.63% in forecasting SMLL. Seasonally, the
hybrid ANN-CoM generated better SMLL forecasts than SMUL forecasts.

The findings of this study ascertain that with appropriate input se-
lection (such as fsrnca feature weights and the minimum RRMSE cri-
teria), the two-stage multi-model ensemble committee based ANN
(ANN-CoM) indeed effectively captured the nonlinear dynamics and
interactions amongst the input data and SMUL and SMLL in generating
optimally combined and stabilized forecasts. The ANN-CoM model is a
feasible alternative for SMUL and SMLL forecast implementations in
terms of determining the future trends in SM levels and could be ex-
plored as a data intelligent tool for hydrological and agricultural re-
courses. In accordance with the performance measures, while the ANN-
CoM model was successful in simulating the upper and lower layer soil
moisture, there are limitations of the approach that can be addressed in
independent follow-up studies.

In this paper, the forecasting horizon was restricted to the monthly
scale but for real-time applications such as in the day-to-day agri-
cultural and farming decisions, one also needs to emulate the soil

moisture over a much shorter and a practically realistic timescale (e.g.,
weekly, hourly or sub-hourly). To address this, the application of a set
of physically simulated meteorological outputs from the nationally
adapted Australian Community Climate and Earth-System Simulator
(ACCESS) model and further integrating the data fields into a data in-
telligent model within a multi-model ensemble committee approach
can lead to a new paradigm for real-time soil moisture forecasting. This
has an imperative advantage over the present approach as the ACCESS
is based on the UK Meteorological Office's Unified Model with a grid
resolution of 0.11° (∼12 km) and a temporal resolution of 3-hourly up
to a lead time of 3-days. Therefore, in a follow-up study, one could
utilize ACCESS model simulated meteorological fields coupled with
measured soil moisture data in various farming locations to further re-
processed them with the ANN-CoM approach to generate soil moisture
estimates for local (e.g., farming) applications.

Another limitation was that the ANN-CoM approach has used a
single hidden layer neuronal system optimized by trial and error. To
improve the ensemble committee model and to test its ability to be

Fig. 9. Taylor plots showing the correlation and standard deviation (SD) of the ANN-CoM vs. the standalone models in forecasting SMLL with a) best ANN-CoM model
(Site 1) and b) worst ANN-CoM model (Site 4) based on RRMSE values. (SMUL and SMLL are the relative fractional values and the unit is dimensionless).

Fig. 10. Bar graphs of the average seasonal relative root mean square errors (RRMSE) in forecasting a) upper layer (SMUL) and b) lower layer (SMLL) soil moisture
from the best ANN-CoM model at the four candidate sites. The seasons are Summer-DJF; Autumn-MAM; Winter-JJA; Spring-SON. (SMUL and SMLL are the relative
fractional values and the unit is dimensionless).
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embraced as a short-term, real-time prediction tool, a follow-up study
could explore algorithms that are more advanced, such a deep learning-
based Long Short-Term Memory (LSTM) model where multiple hidden
layers in neuronal systems can be incorporated for robust feature ex-
traction. LSTM is becoming a popular tool for prediction where the role
of antecedent features are significant estimate a target variable. Deep
learning model has a greater ability to capture data patterns and is
effective in analyzing the data features related to a given target (e.g.,
soil moisture). While the use of LSTM was out of the scope of this study,
a model based on deep learning can also be explored in digital systems
such as mobile phone apps and hand-held devices to provide estimates
of soil moisture over a much shorter time-scale than explored in this
research paper.
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Supplementary analysis and discussions 

The performance of the newly developed hybrid model was diagnosed via a 

scatterplot with a corresponding linear regression line and the X = Y line. Figure S3 

a-b displays the scatter plots of committee of models based on artificial neural 

networks (ANN-CoM) and the standalone models (including Volterra, M5 Tree, 

random forest and the extreme learning machine - ELM) in forecasting the upper 

layer (SMUL) and lower layer soil moisture (SMLL) at four study sites. Comparing the 

regression fitting line and the 1:1 line, it is clear that three standalone models viz. 

Volterra, M5 Tree, and the random forest did not perform well as the regression line 

spurned from the 1:1 line in forecasting SMUL (Figure S3a). The ELM performed 

comparatively well, yet the regression line and the X = Y lines were almost exactly 

on top of each other for the forecasted values generated from the ANN-CoM model 

for both the SMUL (Figure S3a). In forecasting SMLL (Figure S3b) the standalone 

models did perform quite well as the respective regression lines were in close 

agreement with the X = Y lines. However, the hybrid ANN-CoM outperformed since 

again the regression lines were on top of the 1:1 lines. The outcomes further 

ascertain the discussion presented in the main chapter. 

With a 5% tolerance limit, the percentage deviations from the 1:1 line for all 

models at all sites were conducted in forecasting both the upper and lower layer soil 

moisture values. The full data set on percentage deviations are provided in the 

Appendix (Table A3). Summarizing the data on under and over-predictions (Table 

S3 a-b) showed that in forecasting the SMUL (Table S3a), the performance of ELM 

was in close contention with the ANN-CoM with both ELM and ANN-CoM having 

the same total number of over/under predictions at Sites 2 (i.e., 26 points) and 3 (i.e., 

28 points). At Site 1, the ANN-CoM had an extra point in the total in comparison to 

ELM, while at Site 4, the ANN-CoM has the least total number of over/under 

predicted data (i.e., 15 points). For the case of lower layer soil moisture forecasts, the 

ANN-CoM showed no over/under predictions with respect to the 5% tolerance limit 

applied in this study. The supplementary result also reinforces the previous 

discussion on the suitability of the hybrid ANN-CoM for SMUL and SMLL 

forecasting.  
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Figure S3  Scatter plots of observed and forecasted values registered by the 

ANN-CoM and the extreme learning machine (ELM), random forest, 

M5 Tree and the Volterra in emulating a) SMUL and b) SMUL at four 

study sites.  

(Note: The dashed lines are the least-squares regression line and the solid red 

line is the 45° or the X = Y line for comparison). 
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Table S3  Number of data points that were over/underpredicted in comparison 

to a 5% tolerance limit in forecasting a) upper layer (SMUL) and b) lower layer soil 

moisture (SMLL) by the ANN-CoM and the contrasting standalone models.  

a) SMUL Volterra M5 Tree RF ELM ANN-CoM 

 Site 1 - Menindee 

Underprediction 21 16 15 6 8 

Overprediction 13 13 22 5 4 

Total 34 29 37 11 12 

Site 2- Balranald 

Underprediction 22 16 12 13 10 

Overprediction 19 19 19 13 16 

Total 41 35 31 26 26 

Site 3 - Bobadah 

Underprediction 24 16 16 6 10 

Overprediction 15 18 23 22 18 

Total 39 34 39 28 28 

Site 4 - Rocky Creek 

Underprediction 34 21 15 13 12 

Overprediction 7 13 20 3 3 

Total 41 34 35 16 15 

 

b) SMLL Volterra M5 Tree RF ELM ANN-CoM 

 Site 1 - Menindee 

Underprediction 12 0 0 0 0 

Overprediction 2 0 0 0 0 

Total 14 0 0 0 0 

Site 2- Balranald 

Underprediction 35 0 0 2 0 

Overprediction 2 0 0 1 0 

Total 37 0 0 3 0 

Site 3 - Bobadah 

Underprediction 30 0 1 0 0 

Overprediction 7 1 0 0 0 

Total 37 1 1 0 0 

Site 4 - Rocky Creek 

Underprediction 18 0 2 0 0 

Overprediction 8 1 1 0 0 

Total 26 1 3 0 0 
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Chapter 6: Weekly soil moisture 

forecasting with multivariate sequential, 

ensemble empirical mode decomposition 

and Boruta-random forest hybridizer 

algorithm approach 

 

Foreword 

This chapter is an exact copy of the submitted manuscript to the Catena journal.  

As outlined in Chapter 5, the soil moisture is dependent upon many factors, which 

need to be appropriately incorporated into the respective forecasting models. 

However, if non-stationarity features are not appropriately accounted for, the 

performance of classical models may degrade. As a result, the advanced and self-

adaptive multi-resolution utility, EEMD, is suited for the purpose. Yet currently, 

EEMD could only be used in a single variable input approach. Hence in this study, a 

novel multivariate sequential EEMD approach is developed and evaluated in 

forecasting of near-real-time i.e., weekly soil moisture levels. In addition to 

methodological improvement, the operational improvement is also achieved with 

shorter forecasting horizon. Thirteen inputs are decomposed using sequential 

multivariate EEMD approach into six intrinsic mode functions (IMFs) and a residual 

component. A two-stage feature selection is utilized to extract the relevant features 

from the IMFs and residual signals.  

The feature selection included cross-correlation function (CCF) followed by random 

forest driven Boruta wrapper-based algorithm. Integration of this with ELM led to 

the development of hybrid multivariate sequential EEMD-Boruta-ELM, which is 

evaluated against comparative hybrid multivariate adaptive regression splines 

(MARS) (EEMD-Boruta-MARS), classical MARS and classical ELM in forecasting 

weekly soil moisture values at four study sites. 

It must be noted that the standard tolerance for in-situ soil moisture measuring 

instruments is ± 3% (Zamora et al., 2011) and for remotely sensed soil moisture 

retrieval the tolerance of 4 - 5% is often considered as an acceptable level of 
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accuracy (Kornelsen and Coulibaly, 2013), yet so far there has not been any 

standardized or allowed error range for soil moisture forecasts. As such the key 

forecasting tolerance in this study is based upon the percentage/relative RMSE 

(RRMSE) criteria set by Li et al. (2013), which has been widely used. In here, the 

model is “Excellent” (����� < 10%), “Good” (10% < ����� < 20%), “Fair” 

(20% < ����� < 30%) or “Poor” (����� ≥ 30%). 
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Weekly soil moisture forecasting with multivariate sequential, 

ensemble empirical mode decomposition and Boruta-random forest 

hybridizer algorithm approach 

Ramendra Prasad, Ravinesh C Deo, Yan Li, and Tek Maraseni 

University of Southern Queensland, Australia 

Abstract 

Soil moisture forecasts are vital for understanding climatic change processes, 

environmental monitoring, health of ecological systems, agriculture and 

hydrology. In this study, we design a new multivariate sequential predictive 

model that utilizes the ensemble empirical mode decomposition (EEMD) 

algorithm hybridized with extreme learning machines (ELM) to forecast soil 

moisture (SM) over weekly horizons. The EEMD data pre-processing utility is a 

self-adaptive tool, does not require a predefined basis function and avoids 

frequency-mode mixing issues. The proposed multivariate sequential EEMD 

model is designed to sequentially demarcate model predictor variables and the 

target (SM) into analogous intrinsic mode functions (IMFs) and a residue 

component using the EEMD process, to address the complexities and associated 

non-linearities in hydrologic-based inputs. To validate the new approach, four 

diversely characterized sites in Australia’s Murray-Darling Basin are purposely 

selected where 13 weekly hind-casted predictors are collated from Australian 

Water Availability Project WaterDyn physical model. After sequential EEMD 

transformation process, a two-stage feature selection employing cross-correlation 

and random forest Boruta wrapper algorithm is adopted to extract pertinent 

features from hydro-meteorological predictor series to construct a hybridized 

multivariate sequential EEMD-Boruta-ELM model. Comprehensive model 

evaluation using statistical metrics and diagnostic plots against alternative 

methods: hybrid multivariate adaptive regression splines (MARS) (EEMD-

Boruta-MARS) and classical MARS and ELM, establish the superiority of hybrid 

EEMD-Boruta-ELM model, yielding relatively low errors and high performance. 

The study ascertains that the EEMD-Boruta-ELM hybrid model can be explored 

as a pertinent data-driven tool for relatively short-term soil forecasts, thus 

advocating its practical use in near real-time hydrological applications. 
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1.0 Introduction 

Despite being a minuscule percentage (0.0001% of the Earth’s water), soil moisture 

(SM) is an important terrestrial water reservoir controlling the hydrological and 

ecological systems from boundary layer dynamics to global energy cycles (Islam and 

Engman, 1996). Prolonged low SM level combined with a lack of strategic planning, 

can threaten the hydro-meteorological and agricultural process culminating in health 

and socio-economic issues. Hence, efficient and reliable predictive systems can serve 

as an integrated tool for SM forecasting and realization of future trends. Besides 

realizing profitable and agile primary industries, the future SM information can 

permit users and respective authorities to make informed decisions in managing this 

limited resource and the potential risks resulting from reduced or excessive levels 

(Argent et al., 2015; Zhang et al., 2017). 

Data-intelligent models are able to extract pertinent predictive features from 

historical data. Subsequently, they have been successfully applied in forecasting 

hydro-meteorological variables like stream-flow (Srinivasulu and Jain, 2006; Londhe 

and Dixit, 2012; Mehr et al., 2014; Ni et al., 2010; Prasad et al., 2017; Yaseen et al., 

2016; Deo and Sahin, 2016), air temperature (Kisi and Sanikhani, 2015), drought 

(Deo, Tiwari, et al., 2016; Deo, Ravinesh C. et al., 2017), rainfall run-off (Zhang and 

Govindaraju, 2000; Young et al., 2017; Hosseini and Mahjouri, 2016) and water 

demand (Tiwari and Adamowski, 2013; Tiwari et al., 2016; Mouatadid and 

Adamowski, 2016). Few studies pertaining to soil moisture forecasting has also been 

conducted, with applications of artificial neural network (ANN) (Elshorbagy and 

Parasuraman, 2008; Kornelsen and Coulibaly, 2014), extreme learning machine 

(ELM) (Liu et al., 2014), multivariate relevance vector machine (Zaman and McKee, 

2014) and random forest (Matei et al., 2017). Yet, these studies implemented 

classical non-tuned standalone modelling techniques that have innate limitations in 

terms of generalization capabilities. To address this, scholars have tried heuristic 

optimizations, particularly with ANNs to improve the forecasting capability 

including genetic algorithm-GA (Huang et al., 2010) and particle swarm 

optimization-PSO (Xiaoxia and Chengming, 2016; Yang et al., 2017). Recently, 

Prasad et al. (2018) designed a hybrid ANN based committee ensemble model to 

forecast SM at monthly horizons. However, this study together with the 
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aforementioned optimization studies did not employ any kind of multi-resolution 

data pre-processing schemes. 

A major concern with traditional standalone data-driven models is their 

inability to handle non-stationarity features if the inputs are not properly pre-

processed (Adamowski et al., 2012; Adamowski and Chan, 2011; Wang, D. et al., 

2017; Deo, Ravinesh C et al., 2017). Soil moisture and interconnected hydro-

meteorological predictors naturally comprise of entrenched non-stationarity features 

that induce non-normality, bimodality, asymmetric cycles and non-linearities (Wu et 

al., 2011). To overcome this and simultaneously improve the model performance, it 

is necessary to incorporate a multi-resolution data pre-processing tool to 

appropriately unveil the features. The application of classical multi-resolution 

analysis (MRA) tools, i.e., Fourier transformation, only performs the transformations 

at frequency resolutions losing the time stamp, which is a major drawback. 

Alternatively, discrete wavelet transformation (DWT) has been propitiously adopted 

in forecasting applications (Mallat, 1998, 1989; Nourani et al., 2014; Nourani et al., 

2009; Deo, Tiwari, et al., 2016; Deo, Wen, et al., 2016; Krishna et al., 2011) and has 

been trialled by Yang et al. (2017) as DWT-ANN combined with PSO to forecast 

SM in China. However, the key weakness of DWT is the inherent decimation effect 

that curtails the information and generates half the wavelet coefficients, while the 

other half of the smooth version is recursively processed at a coarser resolution by 

high and low pass filters (Rathinasamy et al., 2014). Instead, a more advanced 

wavelet tool viz. maximum-overlap discrete wavelet transformation (MODWT) is 

preferred that solves the critical decimation issue of DWT (Prasad et al., 2017; 

Rathinasamy et al., 2014; Cornish et al., 2005; Dghais and Ismail, 2013; Percival et 

al., 2011). Fundamentally, both DWT and MODWT analysis translate the time-

frequency information over the time-variable window and therefore requires a well-

suited user-defined basis function/mother wavelet (Chen et al., 2012). The selection 

of an apt mother wavelet is yet an unresolved concern which is achieved via a rather 

lengthy trial and error process (Prasad et al., 2017). The other conventional time 

series decomposition approaches (e.g., singular value decomposition (SVD), singular 

spectrum analysis (SSA) (Chau and Wu, 2010; Chitsaz et al., 2016), principal 

component analysis (PCA) (Hu et al., 2007), and empirical decomposition) are 

contingent upon autocorrelations and are non-local making it unsuitable for 
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extracting physically meaningful information from non-stationary time series (Wu et 

al., 2011). 

Consequently, the empirical mode decomposition (EMD) was developed to 

segregate higher frequency input series into lower frequency resolved components 

(Huang et al., 1998). The key merit of EMD technique is that the decompositions do 

not require prescribed frequency bands or imposed basis functions forming a 

completely self-adaptive procedure. In addition, EMD is a temporally local 

decomposition technique that uses extrema information of the riding waves in non-

stationary time series to extract and isolate salient features representing the physical 

structure of the data (Wu et al., 2011). Yet, the end-points extending problem (Qiu et 

al., 2017) together with an important ‘mode mixing’ shortcoming impedes the EMD 

algorithm. Hence, an advanced noise-assisted version, the ensemble-EMD (EEMD) 

was devised by Wu and Huang (2009), whereby a Gaussian white noise is added to 

the original (undecomposed) series to efficiently extract the embedded periodic and 

trend information within a time series. Successful applications of EEMD-based data-

driven models has been noted in forecasting precipitation (Jiao et al., 2016; Beltran-

Castro et al., 2013; Ouyang et al., 2016), reservoir inflows (Bai et al., 2015), daily 

river data (Seo and Kim, 2016) and soil moisture (Prasad et al., 2018b). Despite 

these studies substantiating that EEMD ensemble models generate improved 

forecasts, SM forecasting via this approach has not been extensively explored. The 

literature shows only one study by Basha et al. (2015) utilized EEMD coupled Non-

Stationary Oscillation Resampling (NSOR) model to forecast temperature, 

precipitation and SM patterns that were compared with the Coupled Model 

Intercomparison Project phase 5 (CMIP5) projections. They found improved 

forecasting capability of the EEMD-NSOR model. In addition to having improved 

forecasts, the EEMD-based models also reduce the difficulties in the forecasting 

process by making the time series less intricate (Di et al., 2014). 

In spite of the aforementioned enhancements, so far all EEMD-based studies 

used single predictor forecasting technique whereby the lagged time series of the 

objective variable was used to forecast the future data (Beltran-Castro et al., 2013; 

Jiao et al., 2016; Ouyang et al., 2016; Bai et al., 2015; Basha et al., 2015; Seo and 

Kim, 2016). None of these studies utilized multiple input variables, which is a 

critical issue since environmental and hydrological variables are driven by many 
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influencing parameters that may have been left out. For instance, the SM level is 

naturally contingent upon the antecedent condition of soil evaporation, 

evapotranspiration, surface runoff and deep percolation (i.e., groundwater recharge) 

(Van Loon, 2015) and therefore, these parameters need to be appropriately 

incorporated into the respective models.  

To utilize several predictors and subsequently extract most, if not all, 

possible relevant predictive features, a new multivariate sequential EEMD 

hybridized modelling approach is developed in this study and applied to forecast soil 

moisture at the weekly horizon. Twelve hydro-meteorological predictor time series 

and a lagged SM series (thirteen in total) hindcasted by the WaterDyn physical 

model, developed under the Australian Water Availability Project (AWAP), are 

acquired. These inputs are transformed into respective intrinsic mode functions 

(IMFs) and a residual component in a sequential manner. Then the cross-correlation 

function followed by Boruta feature selection algorithm (a random forest-based 

wrapper process) is further implemented to reduce the input dimensions and 

optimize the forecasts. Boruta input selection is an easy to tune wrapper algorithm 

developed by Kursa et al. (2010) and has been strongly recommended as a feature 

selection tool for predictive model applications (Li et al., 2016; Christa et al., 2017). 

With random forest (RF) as the underlying instrument model, Boruta incorporates 

the interactions between features and iteratively removes the irrelevant input(s). 

Although Boruta has been successfully applied as a feature selection utility in 

modeling and predicting forest biodiversity (Leutner et al., 2012), asymptomatic 

stress (Poona and Ismail, 2014), seabed hardness (Li et al., 2016), sponge species 

richness (Li et al., 2017) and PM2.5 air quality (Lyu et al., 2017), this technique has 

been not been explored in hydrological applications anywhere. 

In this study, we hybridize extreme learning machines (ELM) with feature 

selection and multi-resolution utilities, leading to the design of a newly proposed 

EEMD-Boruta-ELM hybrid model. This is the first study to utilize the multivariate 

sequential EEMD hybrid technique in forecasting SM, and evaluating its predictive 

capability in a drought-prone region. ELM model used in this study is a robust, 

convenient to use and a computationally efficient nonlinear artificial intelligence 

algorithm (Shamshirband et al., 2015; Huang et al., 2015; Xu and Wang, 2016) 

developed by Huang et al. (2004). Alternatively, a comparative multivariate 
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sequential EEMD hybridized multivariate adaptive regression splines (MARS) 

model (i.e., EEMD-Boruta-MARS) is also developed. MARS is a nonlinear model 

that utilizes partitioned input space to develop piecewise associations within the 

training data into basis functions to generate forecasts (Friedman, 1991). Finally, the 

performance of the hybrid EEMD-Boruta-ELM model is validated against the 

comparative hybridized EEMD-Boruta-MARS and standalone ELM and MARS 

models. The next section outlines the study area and data followed by the description 

of hybrid data-intelligent model development procedure. After that, the empirical 

study and results are presented and finally, the paper is concluded encapsulating the 

findings and key considerations for future study. 

2.0 Brief accounts of data-driven modeling frameworks 

This section provides a brief account of data-driven modeling algorithms used in this 

study. 

2.1 Extreme learning machine (ELM) 

The ELM is a single layer feed-forward neural network (SLFN) proven to 

have good generalization capability with computationally inexpensive easy to tune 

network (Ahila et al., 2015; Huang et al., 2006; Huang et al., 2015). The 

mathematical realization of the ELM network can concisely be outlined as follows 

(Huang et al., 2004; Huang et al., 2006): 

∑ 
�	ℎ ��� · �� + 	��	� = ��																																																																����  (1) 

where {(��, !�): �� ∈ %&, !� ∈ %} are ( = 1, 2, … * distinct samples of training 

data; P = the number of input neurons; �� ∈ % represents the model output,	
 ∈ %� 

represents the weights in between ‘J’ hidden layers and output node, �� ∈ % are the 

weights between the input layer and hidden layer and �� are the learning parameters 

of the hidden layers; ℎ(·	) is the activation function, and; + = 1, 2, … , are the indices 

of hidden neurons. 

In a concise form with ‘H’ as the hidden layer output matrix, ‘W’ as the 

weights and ‘Y’ as the training output, Eq. 1 can be rewritten as: 

- = .
	                                       (2) 

After randomly assigning suitable input weights (��) and corresponding 

biases, the algorithm analytically determines the hidden layer output matrix, H. 

Subsequently, the network establishes a linear system whereby the output weights 
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matrix is determined via a least-square solution to yield zero forecasting errors 

(between	��	/01	!�) as: 


	2 = .3-                                       (3) 

where .3 is the Moore–Penrose generalized inverse of H. 

Finally, the forecasts are generated using these aleatory assigned input 

weights and algorithm computed output weights. 

2.2 Multivariate adaptive regression splines (MARS) 

The MARS algorithm, introduced by Friedman (1991), is a non-parametric 

combination of additive and/or interactive simple linear functions. Over an 

equivalent interval, the algorithm partitions the training data into several splines, 

which again are split into several subgroups separated by knots. Subsequently, a pair 

of basis functions (BF) describing the associations between the predictor variable 

and the target are created at respective knots to produce continuous models with 

continuous derivatives (Friedman, 1991). Considering a knot of the ith subgroup at 

position k, the output (O) with predictor input training vector,	4: �5 ∈ %, and 

corresponding target vector,	6: !5 ∈ %, where t=1, 2 …N is the number of datum 

points, could be formulated as: 

� = BF� (�) = max(0, � − =)/01	(>?	@(AABA:� = BF� (�) = max(0, = − �)C                          (4) 

The final modeled output, Y’, is the summation of a series of BFs, as: 

6′ = E + ∑ (F� × HI�)J�                 (5) 

where α is a general constant, ρ is a unique constant for respective BF and I 

represents the maximum number of subgroups. 

Initially, a forward stepwise approach maximizes the number of potential 

knots creating a large overfitting model. Consequently, a backward deletion phase 

iteratively prunes the BFs that contribute the least towards model fit based on 

minimum Generalized Cross Validation (GCV) computed as follows (Craven and 

Wahba, 1979; Deo et al., 2017a; Friedman and Silverman, 1989): 

KLM = 	 NOP
(�QR(S)T )U                    (6) 

where MSE is mean squared error and C(M) is the penalty factor for M number of 

BFs. Eventually, the optimal model with least GCV is selected. 
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3.0 Materials and Methods 

3.1  Study area 

To develop and effusively investigate the performance of the proposed hybrid 

model in forecasting weekly soil moisture, the agricultural Murray-Darling basin 

region (MDB) with an area of 1,042,730 km² (14% of mainland Australia) is 

considered (The Murray–Darling Basin Authority, 2010). The region of focus is the 

state of New South Wales (NSW), located on the east coast of Australia. The key 

agricultural commodities for export growth in NSW over the last 5 years were beef, 

vegetables, and fruit (NSW-Department of Industry, 2017). NSW accounted 

for	~ 1 4X 	of Australia's wine exports by volume and 38% of Australian total sheep 

and lamb flock size in the last financial year (2015-2016) (Australian Bureau of 

Statistics, 2017) asserting that NSW is one of the most significant agricultural states 

in Australia. Consequently, four sites (Site 1-Menindee, Site 2-Cooinbil, Site 3-

Fairfield, and Site 4-Bodangora) were selected as illustrated in Figure 1.  

 

Figure 1  The study region showing the candidate test sites and their 

geographical locations within the Australian Murray-Darling Basin 

overlayed with elevation contours (grey lines). 
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The study sites show disparate geophysical features as demonstrated by the primary 

climate classes (Hijmans et al., 2005), land use (Department of Agriculture and 

Water Resources, 2015), soil types (ASRIS, 2014) and range of agricultural holding 

(Australian Bureau of Statistics, 2008) data combined with differing elevations 

(Table 1). 

Table 1  Geographic and physical characteristics of the tested study sites 

where the hybrid EEMD-Boruta-ELM model is evaluated against the 

EEMD-Boruta-MARS, MARS, and ELM for forecasting soil 

moisture over weekly horizons. 

 

Site 

No. 
Site Name 

Geographic 

characteristics 
Physical characteristics 

Long. 
(°E) 

Lat. 
(°S) 

Elev. 
(m) 

Primary 
climate 
classes 

(Hijmans 

et al., 
2005) 

Land-use 
(Department 

of 
Agriculture 
and Water 
Resources, 

2015) 

Soil type 
(ASRIS, 

2014) 

The range of 
agricultural 
holding (ha) 
(Australian 
Bureau of 

Statistics, 2008) 

1 Menindee 142.15 32.45 75.3 Desert 

Grazing-

Native 

vegetation 

Calcarosol 18700-38600 

2 Cooinbil 145.60 34.75 111.4 Savannah 

Grazing-

modified 

pastures 

Sodosol 600-3700 

3 Fairfield 147.90 30.15 131.0 Savannah 
Dry-land 

cropping 
Vertosol 3700-18700 

4 Bodangora 149.05 32.45 486.7 
Sub-

Tropical 

Dry-land 

cropping 
Sodosol 600-3700 

 

 

The weekly data for the study were sourced from Australian Water 

Availability Project (AWAP) that commenced weekly data generation at 0.05° ×
0.05° grid resolution in January 2007 (Raupach et al., 2009; Raupach et al., 2012). 

Accordingly, the study period is from January 2007 to December 2016 and the cut-

off was 01 January 2017 to account for final week overlap. A total of 13 AWAP 

derived predictors were collated, including twelve weekly hydro-meteorological 

inputs and a lagged SM data series as shown in Table 2, while the target was 

successive future SM data. AWAP utilizes the WaterDyn physical model to simulate 

the soil hydrological parameters including SM level after incorporating previously 

recorded meteorological data, soil characteristics, vegetation greenness, solar 
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irradiance and albedo (Raupach et al., 2009; Raupach et al., 2012). The SM data are 

relative values bounded by [0, 1] computed with respect to the base climatological 

reference period (from 1961 to 1990)  and is up to a depth of 0.20 m from the surface 

(Raupach et al., 2009) while the hydro-meteorological inputs are in their respective 

standard units (Table 2). 

The stochastic nature of weekly SM¸that warrants the utilization of a multi-

resolution data pre-processing method, is apparent from Figure 2, supported by 

descriptive statistics (Table 3). The data at Sites 1 (Skew = 1.140) and 3 (Skew = 

1.450) are positively skewed while the other two show symmetrical distributions. 

The kurtosis factors show that distributions at all sites have fewer and less extreme 

outliers (Kurt<3). In addition, lower levels of soil moisture were recorded at Site 1-

Menindee with the lowest value of 0.012. This site falls in the desert climate class 

(Table 1), while Site 4-Bodangora is in sub-tropical class and Sites 2 (Cooinbil) and 

3 (Fairfield) lie in the savannah climate class. 

 

Table 2  Database of the weekly input variables for the study period January 

2007–December 2016 adopted for developing the multivariate 

sequential hybrid EEMD-Boruta-ELM, hybrid EEMD-Boruta-

MARS, ELM, and MARS models. Source: Australian Water 

Availability Project-AWAP (Raupach et al., 2012, 2009). 

 

 Variables Acronym Units 

I 

N 

P 

U 

T 

S 

Total weekly local discharge (Runoff + Drainage) FWDis mm 

Total weekly total evaporation (Soil + Vegetation) FWE mm 

Total weekly deep drainage FWLch2 mm 

Total weekly soil evaporation FWsoil mm 

Total weekly total transpiration FWTra mm 

Total weekly open water evaporation ('pan' equiv.) FWWater mm 

Weekly average sensible heat flux PhiH W/m2 

Weekly average latent heat flux PhiE W/m2 

Total weekly precipitation PCN mm 

Weekly average incident solar radiation SolarMJ MJ/m2 

Weekly average maximum temperature Tmax °C 

Weekly average minimum temperature Tmin °C 

Antecedent weekly relative soil moisture SM t-1 Fraction  0 - 1 

Objective 

variable 
Relative soil moisture (0-0.20 m deep) SM Fraction  0 - 1 
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Figure 2  Time-series of the normalized weekly soil moisture (SM) at the 

respective sites showing the stochastic nature of the hydrological 

variable. 
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Table 3  Weekly hydrological statistics of the relative soil moisture at the 

candidate test sites. 

Site 

No. 
Site Name  

Weekly statistical features of relative soil moisture 

Minimum Maximum Mean Skewness Kurtosis 

1 Menindee 0.012 0.699 0.160 1.140 1.185 

2 Cooinbil 0.014 0.762 0.217 0.739 0.024 

3 Fairfield 0.016 0.913 0.188 1.450 2.872 

4 Bodangora 0.015 0.878 0.291 0.475 -0.500 

 
Note: The relative soil moisture values are based on a base climatological reference period: 1961–

1990, recommended by the Australian Bureau of Meteorology. 

 

3.2 The proposed hybrid multivariate sequential EEMD-Boruta-ELM 

approach 

A hybrid multivariate sequential EEMD transformation technique integrated with 

Boruta feature selection and ELM modeling algorithm for weekly soil moisture 

forecasting is proposed. The sequential EEMD ensemble-modeling scheme using 

multivariate inputs is illustrated in Figure 3 and can be described as follows: 

a) Sequential EEMD stage: Initially, all 13 predictor inputs (Table 2) and the 

target (SM) were partitioned into training (40% i.e., 207 datum points), 

validation (30% i.e., 155 datum points) and testing (30% i.e., 155 datum 

points) after excluding five points to allow for five weekly lags from a total 

of 522 weekly datum points. This was done to prevent any inclusion of future 

data into the training and validation sets. Then, all 13 predictor inputs and the 

target data were sequentially transformed using EEMD into six IMFs and a 

residual component. Algorithm detail of EEMD is provided in the following 

subsection 3.4. 

b) IMF Collation: The IMFs of similar nature were pooled together, i.e., all IMF 

1s (of inputs and target) were pooled into one set, then all IMF 2’s were 

pooled into the next set until the sixth one, then finally all residuals were 

pooled into the final set. 

c) Feature selection and significant inputs: Besides reducing the input 

dimensions, the important feature selection stage also increases the model 

efficiency, optimizes the model performances and could provide an insight 
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into the underlying physical processes without altering the data (Bennasar et 

al., 2015).  

 

Figure 3  Schematic of the two-phase hybrid multivariate sequential ensemble 

empirical mode decomposition-extreme learning machine model 

optimized with the Boruta wrapper-based feature selection (i.e., 

hybrid EEMD-Boruta-ELM) and the comparative EEMD-Boruta-

MARS model constructed for weekly soil moisture forecasting. [For 

model input names, see Table 2]. 

 



Prasad R.  Streamflow and Soil Moisture Forecasting (Hybrid Machine Learning Approaches) 

118 

 

A two-stage feature selection was carried out to reduce the input 

dimensionality. First, the cross-correlation function (CCF) was applied to 

determine the significant lags of analogous IMFs and residual inputs. Later 

the significant lags of IMFs and residuals were subjected to Boruta feature 

selection algorithm for a final screening process. Using an underlying 

random forest wrapper mechanism, Boruta computes the Z-scores of each 

predictor inputs relative to the shadow attribute (Boruta algorithm detail is 

provided in subsection 3.5). The distribution of Z-score metrics determines 

the importance factors (Kursa et al. (2010). A minimal-optimal feature 

selection strategy was adopted by ranking the salient IMFs and residual based 

on the Boruta determined importance factors and then a stepwise model 

building was carried. Table 4 illustrates the salient model inputs determined 

after the two-phase feature selection for all models at all sites. Both the 

hybrids EEMD-Boruta-ELM and EEMD-Boruta-MARS models required the 

same number of inputs at Site 1 (3 significant inputs) and Site 3 (10 

significant inputs). In comparison to the hybrid EEMD-Boruta-ELM, the 

EEMD-Boruta-MARS required one and four more features to reach its peak 

performance at Sites 2 and 4, respectively. To get all data on a uniform scale, 

prior to feature selection the data normalization was carried out to confine in 

the range of 0 and 1. 

d) Ensemble forecasting: Channelling the screened multiple predictor inputs (as 

in part c), into the ELM or MARS models, respective IMFs and the residual 

component were forecasted. Brief accounts of ELM and MARS data-driven 

modeling frameworks are outlined in section 2. 

e) Ensemble averaging: Then the forecasted IMFs and the residual component 

were integrated at the end to generate the forecasted SM values. 
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Table 4  The salient model input variables, determined by cross-correlation 

and Boruta feature selection. [For standalone models the inputs were 

the statistically significant lags of intact or undecomposed time series 

whereas, for hybrid EEMD-Boruta models, the lagged intrinsic mode 

functions (IMFs) and residual components were inputs. Table 2 

contains input variable names while t – 1, t – 2… t – 5 are the weekly 

lagged data series]. 

 

  Model 

platform 
 ELM MARS 

Site 1 - Menindee 

Standalone 

model 
 

FWDist-1, FWEt-1, FWLch2t-1, FWPTt-1, FWSoilt-1, FWTrat-1, 
FWWatert-1, PhiEt-1, PhiHt-1, PCNt-1, SolarMJt-1, Tmaxt-1, Tmint-1 

H
y
b

ri
d

 M
o

d
el

 

EEMD-

Boruta 

 3 significant inputs 3 significant inputs 

IMF-1 SMt-2, PCNt-1, SolarMJt-1 SMt-2, PCNt-1, SolarMJt-1 

IMF-2 SMt-1, PCNt-1, SMt-2 SMt-1, PCNt-1, SMt-2 

IMF-3 SMt-1, SMt-2, PhiHt-1 SMt-1, SMt-2, PhiHt-1 

IMF-4 SMt-1, SMt-2, SMt-3 SMt-1, SMt-2, SMt-3 

IMF-5 SMt-1, SMt-2, SMt-3 SMt-1, SMt-2, SMt-3 

IMF-6 SMt-1, SMt-2, SMt-3 SMt-1, SMt-2, SMt-3 

Residual SMt-2, SMt-1, SMt-3 SMt-2, SMt-1, SMt-3 

Site 2 - Cooinbil 

Standalone 

model 
 

FWDist-1, FWLch2t-1, FWPTt-1, FWWatert-1, PhiEt-1, PhiHt-1, 
PCNt-1, SolarMJt-1, Tmaxt-1, Tmint-1, SMt-1 

H
y
b

ri
d

 M
o
d

el
 

EEMD-

Boruta 

 7 significant inputs 8 significant inputs 

IMF-1 
SMt-2, FWLch2t-1, FWTrat-1, 

PCNt-1, FWSoilt-1, FWEt-1, 

PhiEt-1 

SMt-2, FWLch2t-1, FWTrat-1, 

PCNt-1, FWSoilt-1, FWEt-1, 

PhiEt-1, PhiEt-2 

IMF-2 
SMt-1, PCNt-1, FWLch2t-2, 

FWLch2t-1, SMt-4, PhiHt-1, SMt-3 

SMt-1, PCNt-1, FWLch2t-2, 

FWLch2t-1, SMt-4, PhiHt-1, SMt-

3, FWSoilt-1 

IMF-3 
SMt-1, SMt-2, PCNt-1, PhiHt-1, 

SMt-3, FWLch2t-5, FWSoilt-1 

SMt-1, SMt-2, PCNt-1, PhiHt-1, 

SMt-3, FWLch2t-5, FWSoilt-1, 

FWLch2t-3 

IMF-4 
SMt-1, SMt-2, SMt-3, SMt-4, 

FWLch2t-5, FWTrat-2, FWTrat-4 

SMt-1, SMt-2, SMt-3, SMt-4, 

FWLch2t-5, FWTrat-2, FWTrat-

4, PCNt-1 

IMF-5 
SMt-1, SMt-2, SMt-3, PhiEt-4, SMt-

4, SMt-5, PhiEt-5 

SMt-1, SMt-2, SMt-3, PhiEt-4, SMt-

4, SMt-5, PhiEt-5, FWLch2t-5 

IMF-6 
SMt-1, SMt-2, SMt-3, PhiHt-5, SMt-

4, PhiHt-4, PhiHt-3 

SMt-1, SMt-2, SMt-3, PhiHt-5, SMt-

4, PhiHt-4, PhiHt-3, SMt-5 

Residual 

FWTrat-3, FWTrat-5, SMt-1, 

FWTrat-4, SMt-2, SMt-3, FWTrat-

1 

FWTrat-3, FWTrat-5, SMt-1, 

FWTrat-4, SMt-2, SMt-3, FWTrat-

1, SMt-5 

Site 3 - Fairfield 
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Standalone 

model 
 

FWDist-1, FWEt-1, FWPTt-1, FWSoilt-1, FWTrat-1, FWWatert-1, 
PhiEt-1, PhiHt-1, PCNt-1, SolarMJt-1, Tmaxt-1, SMt-1 

H
y

b
ri

d
 M

o
d

el
 

EEMD-

Boruta 

 10 significant inputs 10 significant inputs 

IMF-1 

FWLch2t-1, FWSoilt-1, PhiEt-

1, PCNt-2, PCNt-1, FWDist-2, 

FWSoilt-2, FWEt-1, 

SolarMJt-1, PCNt-3 

FWLch2t-1, FWSoilt-1, PhiEt-1, 

PCNt-2, PCNt-1, FWDist-2, FWSoilt-

2, FWEt-1, SolarMJt-1, PCNt-3 

IMF-2 

PCNt-1, SMt-1, PhiHt-1, SMt-4, 

SMt-5, SolarMJt-1, PhiEt-1, 

PCNt-2, FWSoilt-1, 

FWLch2t-2 

PCNt-1, SMt-1, PhiHt-1, SMt-4, SMt-5, 

SolarMJt-1, PhiEt-1, PCNt-2, 

FWSoilt-1, FWLch2t-2 

IMF-3 

SMt-1, SMt-2, PhiHt-1, 

FWLch2t-4, FWLch2t-3, 

PCNt-1, FWLch2t-5, PhiEt-1, 

PCNt-2, FWEt-1 

SMt-1, SMt-2, PhiHt-1, FWLch2t-4, 

FWLch2t-3, PCNt-1, FWLch2t-5, 

PhiEt-1, PCNt-2, FWEt-1 

IMF-4 

SMt-1, SMt-2, SMt-3, 

FWLch2t-5, SMt-4, FWLch2t-

4, FWEt-1, FWLch2t-2, 

FWLch2t-3, FWLch2t-1 

SMt-1, SMt-2, SMt-3, FWLch2t-5, SMt-

4, FWLch2t-4, FWEt-1, FWLch2t-2, 

FWLch2t-3, FWLch2t-1 

IMF-5 
SMt-1, SMt-2, SMt-3, FWEt-3, 

FWEt-1, FWEt-4, FWLch2t-3, 

FWEt-2, Tmaxt-1, FWLch2t-5 

SMt-1, SMt-2, SMt-3, FWEt-3, FWEt-1, 

FWEt-4, FWLch2t-3, FWEt-2, Tmaxt-

1, FWLch2t-5 

IMF-6 

SMt-1, SMt-4, SMt-5, SMt-3, 

SMt-2, FWSoilt-1, FWSoilt-2, 

PhiHt-5, PhiHt-4, PhiHt-3 

SMt-1, SMt-4, SMt-5, SMt-3, SMt-2, 

FWSoilt-1, FWSoilt-2, PhiHt-5, 

PhiHt-4, PhiHt-3 

Residual 
SMt-1, SMt-2, SMt-4, SMt-3, 

PCNt-1, SMt-5, FWDist-1, 

PCNt-2, PCNt-3, PhiEt-1 

SMt-1, SMt-2, SMt-4, SMt-3, PCNt-1, 

SMt-5, FWDist-1, PCNt-2, PCNt-3, 

PhiEt-1 

Site 4 - Bodangora 

Standalone 

model 
 

FWDist-1, FWLch2t-1, FWPTt-1, FWWatert-1, PhiHt-1, PCNt-1, 
SolarMJt-1, Tmaxt-1, SMt-1 

H
y
b

ri
d

 M
o
d

el
 

EEMD-

Boruta 

 6 significant inputs 10 significant inputs 

IMF-1 
FWLch2t-1, FWSoilt-1, SMt-2, 

SMt-1, FWEt-1, PCNt-1 

FWLch2t-1, FWSoilt-1, SMt-2, SMt-1, 

FWEt-1, PCNt-1, PhiEt-1, FWTrat-1, 

PCNt-3, PhiHt-2 

IMF-2 
SMt-1, PCNt-1, SMt-4, PhiHt-1, 

SMt-3, SolarMJt-1 

SMt-1, PCNt-1, SMt-4, PhiHt-1, SMt-3, 

SolarMJt-1, FWLch2t-1, FWPTt-1, 

FWWatert-1, PhiHt-4 

IMF-3 
SMt-1, PCNt-1, SMt-2, PCNt-2, 

PhiHt-1, FWSoilt-1 

SMt-1, PCNt-1, SMt-2, PCNt-2, PhiHt-

1, FWSoilt-1, SMt-3, FWLch2t-5, 

FWLch2t-4, FWLch2t-3 

IMF-4 
SMt-1, SMt-2, SMt-3, PCNt-1, 

SMt-4, PCNt-2 

SMt-1, SMt-2, SMt-3, PCNt-1, SMt-4, 

PCNt-2, PhiEt-2, SMt-5, PhiEt-1, 

PhiEt-3 

IMF-5 
SMt-1, SMt-2, SMt-3, SMt-4, 

SMt-5, FWTrat-4 

SMt-1, SMt-2, SMt-3, SMt-4, SMt-5, 

FWTrat-4, FWTrat-5, FWTrat-3, 

FWDist-1, FWSoilt-1 

IMF-6 
SMt-1, SMt-2, FWSoilt-1, 

FWSoilt-2, SMt-3, FWEt-1 

SMt-1, SMt-2, FWSoilt-1, FWSoilt-2, 

SMt-3, FWEt-1, PCNt-5, PhiEt-1, 

FWSoilt-3, SMt-4 

Residual 
SMt-1, SMt-2, SMt-3, SMt-4, 

PhiEt-1, PCNt-1 

SMt-1, SMt-2, SMt-3, SMt-4, PhiEt-1, 

PCNt-1, SMt-5, FWTrat-1, FWEt-1, 

FWSoilt-3 
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3.3 Model development procedure 

In the forecasting of weekly SM (i.e., the predictant), the MATLAB platform 

running on Intel i7, 3.40 GHz processor was utilized to develop all models. Firstly, 

the ELM models with hidden neurons varying from 1 to 200 were developed. In 

addition, different transfer functions including sigmoidal, sine, hard-limit, triangular 

basis, and radial basis were trialed. Then using the ARESLab toolbox (version 

1.13.0) (Jekabsons, 2016), a piecewise cubic MARS model was developed in two 

phases, i.e., forward selection and backward deletion. During the forward selection 

phase, the algorithm iteratively adds the basis function pairs to the initial intercept 

term in order to minimize the objective function (i.e., MSE) creating a large model. 

This model is prone to overfitting, therefore a backward deletion phase is executed 

whereby the model is pruned backward with the elimination of functions one by one 

until the intercept term is left. The final, best-performing model’s selection was 

contingent upon least Generalized Cross-Validation (GCV) value. 

For the case of hybrid multivariate sequential-EEMD based models (i.e., 

EEMD-Boruta-ELM and EEMD-Boruta-MARS), the significant IMFs and residuals 

were used as inputs, while in developing the standalone models (ELM and MARS), 

intact or undecomposed hydro-meteorological time series were used as inputs. 

During experimentation, the validation data set was utilized to determine the optimal 

models based on Pearson’s correlation coefficient (r), root mean square error 

(RMSE) and mean absolute error (MAE) that are presented in Table 5. 

Correspondingly, the architectures of best-performing hybrid EEMD-Boruta-ELM 

and standalone ELM models at all candidate sites are shown in Table 6. Similarly, 

Table 7 illustrates the basis functions (BF) and GCV statistics for the EEMD-Boruta-

MARS and standalone MARS at all sites. The maximum number of BFs for 

standalone MARS model was 8 at Site 4-Bodangora, while to forecast individual 

IMFs, up to 15 BFs were required. 

3.4 Ensemble empirical mode decomposition (EEMD)  

Besides effectively overcoming the mode mixing issue of EMD, the multi-

resolution analysis utility EEMD features a strong self-adaptability and local 

variation characteristics (Li et al., 2015; Wu and Huang, 2009). With an added 

Gaussian white noise providing a uniform reference frame in the time-frequency 
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domain, EEMD detects and separates the embedded oscillations at different scales 

into intrinsic mode functions (IMFs) and the trend/residual component (Wu and 

Huang, 2009). The band-limited IMFs must fulfill two acceptability conditions 

(Huang et al., 1998; Sharpley and Vatchev, 2005; Wu and Huang, 2009) i.e., (a) it 

needs to have exactly one zero between any two consecutive local extrema and (b) 

have a zero “local mean”. 

 

 

Table 5 Evaluation of the multivariate sequential hybrid EEMD-Boruta-ELM 

vs. the hybrid EEMD-Boruta-MARS, MARS and ELM models during 

model-development phase (i.e., training and validation) using the r = 

Pearson’s correlation coefficient, RMSE = root mean square error and 

MAE = mean absolute error. 

 

 ELM MARS 

Model 
Training Validation Training Validation 

r RMSE MAE r RMSE MAE r RMSE MAE r RMSE MAE 

 Site 1 - Menindee  
Stand-
alone 
model 

0.871 0.054 0.033 0.842 0.072 0.044 0.864 0.055 0.035 0.844 0.064 0.039 

Hybrid: 
EEMD-
Boruta 

0.956 0.033 0.020 0.781 0.082 0.052 0.954 0.033 0.021 0.825 0.070 0.051 

             
 Site 2 - Cooinbil  
Stand-
alone 
model 

0.760 0.090 0.065 0.628 0.098 0.068 0.760 0.090 0.064 0.685 0.092 0.064 

Hybrid: 
EEMD-
Boruta 

0.879 0.066 0.046 0.850 0.067 0.044 0.923 0.054 0.039 0.828 0.075 0.053 

          
 Site 3 - Fairfield 
Stand-
alone 
model 

0.766 0.099 0.070 0.845 0.071 0.055 0.791 0.094 0.067 0.822 0.072 0.055 

Hybrid: 
EEMD-
Boruta 

0.922 0.060 0.044 0.830 0.074 0.048 0.909 0.064 0.047 0.884 0.063 0.046 

          
 Site 4 - Bodangora 
Stand-
alone 
model 

0.770 0.107 0.080 0.689 0.122 0.096 0.765 0.108 0.083 0.622 0.144 0.113 

Hybrid: 
EEMD-
Boruta 

0.887 0.078 0.058 0.886 0.075 0.059 0.918 0.067 0.051 0.908 0.069 0.049 
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Table 6 Model development framework of multivariate sequential hybrid 

EEMD-Boruta-ELM and standalone ELM applied in forecasting the 

relative soil moisture. 

 

Models 

Number of  Neurons 
Transfer 

function 
Input 

layer 

Hidden 

layer 

Output 

layer 

Site 1 - Menindee    
ELM 13 14 1 sigmoid 

multivariate sequential hybrid EEMD-Boruta-ELM 3 5 1 sine 

     

Site 2 - Cooinbil    

ELM 11 8 1 sine 

multivariate sequential hybrid EEMD-Boruta-ELM 7 6 1 
radial 

basis 

     

Site 3 - Fairfield    

ELM 12 6 1 sine 

multivariate sequential hybrid EEMD-Boruta-ELM 10 17 1 sine 

     

Site 4 - Bodangora    

ELM 9 16 1 sine 

multivariate sequential hybrid EEMD-Boruta-ELM 6 7 1 sigmoid 

 

 

Table 7 Model development framework of (a) standalone MARS and (b) 

hybrid EEMD-Boruta-MARS including the respective model 

equations with the basis functions (BF) and generalized cross-

validation (GCV) statistic during the training period.  

 

a) MARS 

 

 

 

Model equations 

Optimal 

basis 

functions 
GCV 

Site 1 - 

Menindee 

y = 0.348 – 1.107BF1 + 1.601BF2 – 0.451BF3 – 
1.158BF4 + 0.377BF5 

5 0.00347 

Site 2 - 

Cooinbil 
y = 0.287 – 0.861BF1 + 0.232BF2 + 0.397BF3 3 0.00887 

Site 3 - 

Fairfield 

y = 0.263 – 1.295BF1 + 0.400BF2 + 0.252BF3 + 
0.321BF4 

4 0.01009 

Site 4 - 

Bodangora 

y = 0.724 – 0.559BF1 – 0.861BF2 + 0.371BF3 – 

1.395BF4 + 0.531BF5 – 0.330BF6 + 1.828BF7 – 

0.412BF8 

8 0.01397 

b) hybrid EEMD-Boruta-MARS   

S
it

e 
1
 -

 M
en

in
d

ee
 IMF1 IMF1

FOR = 0.493 – 1.653BF1 + 0.965BF2 2 0.00381 

IMF2 
IMF2

FOR = 0.538 + 1.121BF1 – 1.783BF2 + 0.747BF3 – 
0.304BF4 + 0.555BF5 – 0.450BF6 – 0.347BF7 

7 0.00107 

IMF3 IMF3
FOR = 0.425 – 2.932BF1 + 1.697BF2 – 0.884BF3 3 0.00129 

IMF4 
IMF4

FOR = 0.521 – 0.204BF1 + 0.477BF2 + 0.914BF3 – 
1.495BF4 

4 0.00023 
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IMF5 IMF5
FOR = 0.669 – 0.911BF1 + 1.015BF2 2 0.00894 

IMF6 
IMF6

FOR = 0.178 + 1.871BF1– 25.371BF2 + 0.052BF3 
+ 38.040BF4 – 10.812BF5 

5 0.01179 

Residual Res
FOR = 0.203 + 0.669BF1 – 0.544BF2 2 0.00155 

Overall-
ensemble 

SM
FOR = IMF1

FOR + IMF2
FOR + IMF3

FOR + IMF4
FOR + 

IMF5
FOR + IMF6

FOR + Res
FOR 

- 0.00410 

S
it

e 
2
 -

 C
o
o
in

b
il

 

IMF1 
IMF1

FOR = 1.393 – 1.691BF1 + 2.381BF2 – 0.787BF3 + 
0.561BF4 + 1.456BF5 – 1.065BF6 – 1.702BF7 

7 0.01877 

IMF2 
IMF2

FOR = 0.450 + 0.812BF1 – 0.456BF2 – 9.954BF3 + 
7.445BF4 – 0.696BF5 

5 0.00263 

IMF3 
IMF3

FOR = 1.367 – 0.968BF1 + 0.946BF2 + 1.463BF3 – 
0.122BF4 + 2.136BF5 – 1.922BF6 

6 0.00059 

IMF4 

IMF4
FOR = 0.877 + 2.175BF1 – 1.598BF2 + 0.095BF3 – 

0.685BF4 + 0.524BF5 + 0.487BF6 + 0.335BF7 – 
0.180BF8 – 0.445BF9 + 0.176BF10 – 0.464BF11 – 
0.638BF12 

12 0.00018 

IMF5 

IMF5
FOR = 1.632 – 4.428BF1 + 4.418BF2 + 1.259BF3 – 

0.223BF4 + 3.387BF5 – 3.505BF6 – 3.054BF7 + 
2.239BF8 – 1.140BF9 + 0.303BF10 – 0.331BF11 + 
0.222BF12 – 1.874BF13 + 3.289BF14 – 2.276BF15 

15 0.00009 

IMF6 
IMF6

FOR = 0.806 + 1.052BF1 – 0.923BF2 – 0.491BF3 + 
0.855BF4 – 0.164BF5 – 0.133BF6 

6 0.00005 

Residual 
Res

FOR = 0.182 + 1.270BF1 – 0.917BF2 – 0.203BF3 + 
0.343BF4 

4 0.00001 

Overall-
ensemble 

SM
FOR = IMF1

FOR + IMF2
FOR + IMF3

FOR + IMF4
FOR + 

IMF5
FOR + IMF6

FOR + Res
FOR

 
- 0.00319 

S
it

e 
3
 -

 F
a
ir

fi
el

d
 

IMF1 
IMF1

FOR = 0.498 – 4.602BF1 – 0.525BF2 – 0.876BF3 + 
4.272BF4 

4 0.01159 

IMF2 
IMF2

FOR = 0.131 + 0.397BF1 – 0.578BF2 – 0.305BF3 + 
0.533BF4 + 0.718BF5 – 1.070BF6 – 0.258BF7 + 
0.141BF8 + 0.526BF9 

9 0.00462 

IMF3 
IMF3

FOR = -0.255 + 1.865BF1 – 1.850BF2 – 0.769BF3 
+ 0.999BF4 + 0.427BF5 – 0.081BF6 

6 0.00090 

IMF4 

IMF4
FOR = -0.041 – 1.780BF1 + 2.004BF2 + 2.002BF3 

– 2.199BF4 + 0.228BF5 – 1.067BF6 + 0.020BF7 + 
0.267BF8 + 0.732BF9 – 0.142BF10 + 0.770BF11 – 
1.155BF12 – 1.082BF13 + 1.424BF14 + 0.402BF15 

15 0.00038 

IMF5 
IMF5

FOR = 0.407 + 0.627BF1 – 0.652BF2 – 0.126BF3 + 
0.426BF4 – 0.335BF5 + 0.530BF6 + 0.037BF7 

7 0.00006 

IMF6 
IMF6

FOR = 1.808 + 0.573BF1 – 0.637BF2 + 2.739BF3 – 
2.654BF4 – 2.272BF5 + 2.392BF6 

6 0.00001 

Residual 
Res

FOR = 0.658 + 1.265BF1 – 0.887BF2 + 0.099BF3 – 
0.176BF4 

4 0.00000 

Overall-
ensemble 

SM
FOR = IMF1

FOR + IMF2
FOR + IMF3

FOR + IMF4
FOR + 

IMF5
FOR + IMF6

FOR + Res
FOR

 
- 0.00251 



Prasad R.  Streamflow and Soil Moisture Forecasting (Hybrid Machine Learning Approaches) 

125 

 

S
it

e 
4
 -

 B
o
d

a
n

g
o
r
a

 

IMF1 
IMF1

FOR = 0.613 – 0.396BF1 – 4.242BF2 +4.046BF3 – 
0.640BF4 

4 0.02006 

IMF2 

IMF2
FOR = 0.371 – 0.826BF1 + 0.907BF2 – 0.796BF3 + 

0.477BF4 + 0.449BF5 – 3.172BF6 + 0.274BF7 + 
3.815BF8 + 0.264BF9 + 0.946BF10 – 1.293BF11 – 
4.837BF12 + 3.496BF13 

13 0.00420 

IMF3 
IMF3

FOR = 0.227 + 0.477BF1 – 1.230BF2 + 0.289BF3 + 
0.876BF4 – 0.249BF5 – 0.227BF6 + 0.149BF7 + 
1.157BF8 – 1.502BF9 

9 0.00102 

IMF4 
IMF4

FOR = 0.564 + 0.556BF1 – 0.680BF2 + 0.407BF3 – 
0.807BF4 + 0.497BF5 + 0.084BF6 + 2.342BF7 – 
2.695BF8 – 1.492BF9 + 1.850BF10 

10 0.00018 

IMF5 
IMF5

FOR = – 0.239 – 3.615BF1 + 4.336BF2 + 4.928BF3 
– 5.187BF4 

4 0.00117 

IMF6 
IMF6

FOR = 1.086 + 1.687BF1 – 1.697BF2 – 0.519BF3 + 
0.619BF4 – 0.045BF5 + 0.259BF6 

6 0.00002 

Residual 
Res

FOR
 = 0.165 +1.342BF1 – 1.459BF2 – 0.362BF3 + 

0.350BF4 
4 0.00001 

Overall-
ensemble 

SM
FOR = IMF1

FOR + IMF2
FOR + IMF3

FOR + IMF4
FOR + 

IMF5
FOR + IMF6

FOR + Res
FOR

 
- 0.00381 

 
Note: The ‘IMF(n)

FOR’ is the respective forecasted IMFs from n = 1 to 6. ‘SM
FOR’ is the forecasted 

soil moisture and GCV for “Overall-ensemble” is an average value. 

 

 

Considering an undecomposed time-series z(t), the concise realization of the 

EEMD algorithm is as follows (Wu and Huang, 2009): 

(1) Add a Gaussian white noise series g(t) to get z’(t) = z(t) + g(t).  

(2) Decompose z’(t) into IMFs and repeat this procedure with altered white 

noise series each time until the maximum number of repetitions/ensemble 

number is reached. 

(3) Finally, the ensemble mean of all IMFs and the mean of residue 

components are computed eliminating the added Gaussian noise. 

After extensive decompositions, the time series can be expressed as: 

\(>) = 	 ∑ ]�I�(>) + �^(>)�̂��                 (7)  

where IMFi(t) is the intrinsic mode functions,	�^(>) denotes the final residue 

component, p is the total number of IMFs, and i is the component indices. 

The output optimization is achieved via a statistical rule devised by Wu and 

Huang (2009) that is based on the ensemble number (N) and the amplitude of the 

added white noise (ε) with en as the final standard deviation as below: 
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_` = 
a

√c                   (8) 

The recommended values of respective parameters; en = 0.20 and N=100, were used 

(Ouyang et al., 2016; Ren et al., 2015; Wang et al., 2013; Wu and Huang, 2009). 

3.5 Feature selection algorithm: Boruta input selection 

For a set of T distinct samples of predictors (xt ∈ Rn) and target (yt ∈ R) with n = 

the number of inputs and t =1, 2, …T,  the algorithm can briefly be outlined as 

follows (Kursa et al., 2010; Kursa and Rudnicki, 2010): 

1) Create a permuted (i.e., randomly ordered) shadow (duplicated) variable, �5d 
for respective input vector, xt, to add randomness and remove correlations 

between shadow inputs and the target (yt). 

2) Using a random forest model predict the target (yt) using both �5d and xt as 

inputs. 

3) Compute the variable importance measures i.e., permutation importance or 

Mean Decrease Accuracy (MDA) for every input (xt) and the respective 

shadow input (�5d) over all trees (mtree = 500 in this study) as (Hur et al., 2017; 

Strobl et al., 2008): 

�ef = 	 �
ghijj ∑ ∑ J(kh�l(mh))h∈nno Q∑ J(kh�l(mhp))h∈nno|rrs|ghijjg��             (9) 

where I(•) is the indicator function; OOB (Out-of-Bag) is the prediction error 

of each of the training samples utilizing bootstrap aggregation; (!5 = t(�5)) 

are forecasted values before permuting; and  (!5 = t(�5̀ )) are forecasted 

values after permuting. 

4) Calculate the Z-scores as: 

Z-score = 		 uvw
xv                                     (10) 

such that SD is the standard deviation of accuracy losses, and then determine 

the maximum Z-score among shadow attributes (MZSA). 

5) Following that, the Z-scores of the inputs are compared with the 

corresponding shadows and evaluated using a variable importance 

distribution. The inputs with Z-scores < MZSA are tagged “Unimportant” and 

permanently removed while inputs having Z-scores > MZSA are tagged 

“Confirmed”. 

6) During each iteration, new shadows are created and the algorithm stops when 

all inputs are either “Confirmed”, or the iteration threshold (maxRuns i.e., 
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500 in this study) is reached. The unassigned inputs after reaching maxRuns 

are classed as “Tentative” and are either confirmed or rejected by comparing 

the respective median Z-scores with the median Z-scores of the best shadow 

input. 

An example of the ‘importance plot’ from Boruta input selection algorithm at 

Site 4-Bodangora, is shown in Figure 4. It illustrates that precipitation (PCN) is the 

most important input followed by 1 week antecedent SM (SM(t-1)). 

 

 

Figure 4  Box plots of the Z-scores registered by the Boruta input selection 

algorithm (Site 4-Bodangora as an example) used in determining 

significant antecedent original time-series data used for weekly soil 

moisture forecasting. Blue corresponds to the shadow inputs while the 

green represents the Z-score distributions of confirmed inputs with a 

notably large importance. [For the names of input variables, see Table 

2.] 

 

 

 



Prasad R.  Streamflow and Soil Moisture Forecasting (Hybrid Machine Learning Approaches) 

128 

 

3.6 Model performance comparison measures 

Although at least one of the goodness-of-fit measure and a relative error measure 

and/or at least one absolute error measure is recommended (Legates and McCabe, 

1999), a robust evaluation of hybrid EEMD-Boruta-ELM model in forecasting 

weekly soil moisture was performed. To achieve this, a diverse range of model 

evaluation metrics have been used, as outlined below (Bennett et al., 2013; Legates 

and McCabe, 1999; Legates and McCabe, 2013; Nash and Sutcliffe, 1970; 

Shamseldin, 1997; Willmott, 1981; Willmott, 1984), that concurrently avoids 

selective interpretation of the statistical outcomes by building on the advantages of 

each metric. The equations of metrics are presented below with a brief discussion of 

each. Note that in the equations, ��	rsx represents observed soil moisture, ��	yrz is 

forecasted soil moisture values, i represents the time-stamp and N is the total number 

of data points. 

The first measure, Pearson’s correlation coefficient (r) []1_/|	}/|~_ = +1] 
describes the degree of collinearity in between forecasted	(��	yrz) and observed 

data (��	rsx) (Moriasi et al., 2007). However, r is absolute and based on linear 

relations.  
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In terms of absolute forecasting error measures, the root mean square error 

(RMSE) []1_/|	}/|~_ = 0] and mean absolute error (MAE) []1_/|	}/|~_ = 0] 
provides an assessment of the actual forecasting errors with respect to the total 

number of observations. Yet, the involvement of the squared term in RMSE induces 

a bias towards high SM level, while the absolute computations (no squared values) in 

MAE reduces the biases (Chai and Draxler, 2014; Legates and McCabe, 1999; Roy et 

al., 2016):  

( ) )0( ,
1

1

2,, +∞<≤−= ∑
=

RMSESMSM
N

RMSE
N

i

iOBSiFOR            (12) 
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=
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MAE
1

,, )0( ,
1

                    (13) 

Additionally, the ratio of mean square error to potential error i.e., the Willmott’s 

Index (WI) or index of agreement []1_/|	}/|~_ = +1] can detect additive and 

proportional differences in the observed and forecasted means and variances 

(Legates and McCabe, 1999; Moriasi et al., 2007). 
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With that, the normalized statistic Nash–Sutcliffe Efficiency (ENS) 

[]1_/|	}/|~_ = +1] compares the residual variance to the observed data variance 

and indicates the fitting of observed and forecasted data to 1:1 line (Bennett et al., 

2013; Moriasi et al., 2007; Nash and Sutcliffe, 1970). 
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Both WI and ENS utilize squaring of the difference terms making them sensitive to 

extreme values and registering relatively high metrics. 

Alternatively, the Legate-McCabes index (L) []1_/|	}/|~_ = +1] is insensitive 

to extreme SM levels and not inflated since the goodness-of-fit is computed using 

absolute values with ease of interpretation (Legates and McCabe, 1999). 
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The performance characterization of models at different sites is an integral 

component for which relative measures instead of the absolute measures are 

germane. The Relative Root Mean Square Error (RRMSE) and Mean Absolute 
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Percentage Error (MAPE) are used for this purpose since RRMSE and MAPE provide 

an overall relative forecasting accuracy of respective models and are always positive 

with	[]1_/|	}/|~_ = 0]. 
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4.0 Results and discussions 

This section provides an account of the empirical results of the experiments 

carried out and the assessments of the performance of the novel multivariate 

sequential EEMD technique combined with Boruta feature selection in forming the 

hybrid EEMD-Boruta-ELM model to forecast weekly SM. Hence, an equivalent 

MARS based model (EEMD-Boruta-MARS) and standalone ELM and MARS were 

developed to benchmark the hybrid EEMD-Boruta-ELM model. The performance 

evaluation of the multivariate sequential hybrid EEMD-Boruta-ELM model in 

forecasting SM for the short-term i.e., weekly forecast horizon in comparison to an 

equivalent EEMD-Boruta-MARS and the traditional models; ELM and MARS 

during the testing period was carried out using the abovementioned statistical metrics 

(Eq. 11-18), at four hydrological sites within Australian MDB. Using the testing 

data-sets, the non-normalized metrics, r, RMSE, and MAE were initially used as 

performance measures due to their wide usage and ease of communication (Bennett 

et al., 2013). Next, the normalized WI, ENS, and L characterized the goodness-of-fit 

and RRMSE and MAPE provided model comparisons at different sites. Despite the 

use of numerical assessment metrics, holistic evaluation is imperative for model 

acceptance and adoption. Hence, graphical assessments using scatter plots, 

histograms, box-plots, and Taylor plots are performed. 
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The initial evaluation of the forecasting capability of the hybridized 

multivariate sequential EEMD-Boruta-ELM model based on non-normalized 

measures; r, RMSE, and MAE are presented in Table 8. 

 

Table 8 Evaluation of multivariate sequential hybrid EEMD-Boruta-ELM vs. 

the hybrid EEMD-Boruta-MARS, MARS and ELM models in the 

testing phase. r = Pearson’s correlation; RMSE = root mean square 

error; MAE = mean absolute error; WI = Willmott’s Index; ENS = 

Nash–Sutcliffe efficiency, L = Legates-McCabe’s index. The 

maximum L & minimum RMSE and the corresponding measures for 

each site are boldfaced. 

 

 ELM MARS 

Model 

Type 

Non-normalized 

measures 

Normalized 

measures 

Non-normalized 

measures 

Normalized 

measures 

r RMSE MAE WI ENS L r RMSE MAE WI ENS L 

   Site 1 - Menindee  

Stand-
alone 
model 

0.895 0.057 0.038 0.896 0.790 0.617 0.872 0.061 0.041 0.888 0.758 0.592 

Hybrid 
EEMD
-
Boruta 

0.948 0.040 0.027 0.952 0.893 0.735 0.956 0.036 0.026 0.961 0.913 0.746 

   Site 2 - Cooinbil  

Stand-
alone 
model 

0.816 0.094 0.064 0.801 0.658 0.525 0.804 0.098 0.068 0.759 0.628 0.499 

Hybrid 
EEMD
-
Boruta 

0.912 0.068 0.052 0.912 0.821 0.615 0.860 0.094 0.072 0.866 0.655 0.471 

   Site 3 - Fairfield  

Stand-
alone 
model 

0.834 0.074 0.059 0.831 0.662 0.414 0.820 0.078 0.066 0.834 0.617 0.342 

Hybrid 
EEMD
-
Boruta 

0.938 0.050 0.037 0.920 0.843 0.634 0.925 0.059 0.043 0.877 0.784 0.568 

   Site 4 - Bodangora  

Stand-
alone 
model 

0.805 0.099 0.077 0.772 0.644 0.447 0.721 0.115 0.092 0.687 0.514 0.340 

Hybrid 
EEMD
-
Boruta 

0.909 0.072 0.052 0.881 0.812 0.628 0.902 0.073 0.056 0.905 0.804 0.598 
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It shows that at three sites (Site 2-Cooinbil, Site 3-Fairfield, and Site 4-

Bodangora), the hybrid EEMD-Boruta-ELM models had better performances 

yielding lowest error measures (RMSE, and MAE) and largest correlation values 

when compared to the EEMD-Boruta-MARS (the MARS hybrid counterpart) and 

the traditional (MARS and ELM) models. At Site 1-Menindee, the EEMD-Boruta-

MARS model outperformed the other models. A significant decrease in RMSE and 

MAE were noted when hybrid EEMD-Boruta-ELM models are compared to the 

standalone ELM models at all sites. For example, the RMSE/MAE values were lower 

by 29.82%/28.95% (Site 1); 27.66%/18.75% (Site 2); 32.43%/37.29% (Site 3); 

27.27%/32.46% (Site 4). Similarly, the correlation coefficient, r, was relatively 

larger for hybrid EEMD-Boruta-ELM models at all hydrological sites. The 

advantage of the multivariate sequential EEMD scheme with the MARS model i.e., 

EEMD-Boruta-MARS over the classic MARS model is also noticeable in Table 8 

with EEMD-Boruta-MARS having scaled performances. 

In congruence, the normalized goodness-of-fit indicators (Willmott’s Index 

(WI), Nash-Sutcliffe Efficiency (ENS,) and the Legate-McCabe’s Index (L)) justified 

a better utility of the hybridized multivariate sequential EEMD-Boruta-ELM model 

compared to the competing models. In accordance with Table 8, the model 

hybridization (EEMD-Boruta-ELM) led to dramatic improvements in the values of 

all three metrics (WI, ENS, and L) in comparison to the classical ELM model at all 

hydrological sites. For instance, the magnitude of WI increased from 0.896 to 0.952 

at Site 1-Menindee, it increased from 0.801 to 0.912 at Site 2-Cooinbil, it increased 

from 0.831 to 0.920 at Site 3-Fairfield and it increased from 0.772 to 0.881 at Site 4-

Bodangora. Likewise, the value of ENS also increased by 0.103 (Site 1-Menindee), 

0.163 (Site 2-Cooinbil), 0.181 (Site 3-Fairfield) and 0.168 (Site 4-Bodangora). The 

final normalized metric Legate-McCabe’s Index (L) that can be considered a better 

measure, on the basis of its advantages as discussed earlier, also registered large 

increases. The percentage increases in L at all sites achieved by hybrid EEMD-

Boruta-ELM model in comparison to standalone ELM model were 19.12% (Site 1), 

17.14% (Site 2) and a huge 53.14% at Site 3 and 40.49% at Site 4. The outcomes of 

the model assessment metrics confirms that the multivariate sequential EEMD based 

ELM modeling scheme with Boruta feature selection unveiled and aptly selected the 

entrenched features within the multiple inputs with the lowest errors (RMSE ≤ 0.072, 
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MAE ≤ 0.052) and high performances metrics (r ≥ 0.909, WI ≥ 0.881, ENS ≥ 0.812 

and L ≥ 0.615) realized during the testing period. 

Next, the scatterplot of the observed (SM
OBS) vs. the forecasted (SM

FOR) 

weekly soil moisture values from the four models depicted the concurrent 

comparisons of SM
OBS and SM

FOR during the testing period at all four sites (Figure 

5). The scatter plots also include the least squares fitting line and the corresponding 

equation; SM
FOR = (m × SM

OBS) + C, where m is the gradient of the regression line, 

and C is the y-intercept. A perfectly fitting model is ought to have a unity-

slope/gradient (m), zero y-intercepts (C) and the regression line through the origin 

with scatter points distributed in the very close proximity of the regression line 

denoting least discrepancies between SM
OBS and SM

FOR (Bennett et al., 2013). The 

gradient (m) together with the coefficient of determination (R2) are alternative model 

performance metrics []1_/|	}/|~_ = +1]. The magnitudes registered from the 

hybrid EEMD-Boruta-ELM models were close to unity which in pairs (m|R2) are 

0.862|0.837 for Site 1-Menindee, 0.747|0.832 for Site 2-Cooinbil, 0.772|0.884 for 

Site 3-Fairfield and 0.749|0.827 for Site 4-Bodangora whereas for the case of 

EEMD-Boruta-MARS models, the R2 values were 0.914, 0.739, 0.856 and 0.813 at 

these sites, respectively. Alternatively, the y-intercept	[]1_/|	}/|~_ = 0], were 

found to be close to naught i.e., 0.025 (Site 1); 0.071 (Site 2); 0.020 (Site 3); and 

0.063 (Site 4). Probably due to the nature of the data series, at Site 1 there were three 

outlier points in hybrid EEMD-Boruta-ELM model’s scatterplot, which may have 

degraded its performance relative to EEMD-Boruta-MARS model. The scatterplots 

display the 1:1 lines together with the linear regression fitting lines of the observed 

and forecasted values. Comparing these two lines also show that the EEMD-Boruta-

ELM had a better performance in comparison to the competing models as the lines 

were similar in nature and regression line was in very close agreement with the 1:1 

lines. Hence, in tandem with the predictor metrics (Table 8), the scatter plots also 

supported the suitability of hybridized EEMD-Boruta-ELM in forecasting of weekly 

SM. 

The boxplots illustrating the data distribution of the observed (OBS) and 

forecasted SM values from the four models is shown in Figure 6. Boxplots gives a 

clear visualization of the data distribution with respect to quartiles distinctly 

indicating the outliers. The lower and upper horizontal lines of the box represent the 
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lower (Q25) and upper (Q75) quartiles, while the median (Q50) is denoted by the 

middle line. At all sites, the distributions of forecasted SM values generated from the 

hybrid EEMD-Boruta-ELM models are very similar to that of the observed values. 

Even the observed and hybrid EEMD-Boruta-ELM model-generated forecasts have a 

similar number of outlier points. While the forecast distributions of EEMD-Boruta-

MARS, standalone ELM, and MARS model are disparate, in comparison to the 

distribution of observed values. 

 

Figure 5 Scatterplot of the observed (SM
OBS) vs. the forecasted (SM

FOR) weekly 

normalized soil moisture generated from hybrid EEMD-Boruta-ELM, 

compared with three other data-driven models (i.e., EEMD-Boruta-

MARS, MARS, and ELM) in the testing phase. A perfect model 

linear fit y = x (middle dashed) with upper and lower bounds of 95% 

prediction intervals, a linear regression fit y = mx + C, and the 

coefficient of determination (R2) are displayed in each panel. (Note: 

The dashed colored lines are the least-squares fit line to the respective 

scatter plots and the solid orange line is 45°, X = Y line for 

comparison). 
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In considering the under and over predictions, percentage deviations from the 1:1 

line were calculated and the data is available in the Appendix, Table A4. A succinct 

table is presented here (Table 9) that outlines the number of over and under predicted 

data points with respect to 5% tolerance limit. Capriciously, at Site 1, EEMD-MARS 

has a slightly lower total number of over and under predicted data points (i.e., 

117/155). Yet, at the other three sites, the hybridized multivariate sequential EEMD-

ELM has a least total number of over and under predicted data points showing 

superior performance of the multivariate sequential EEMD-ELM model in 

comparison to the similar MARS model. 

Table 9  Number of data points that were over/underpredicted in comparison 

to a 5% tolerance limit in forecasting upper layer soil moisture (SMUL) 

by the multivariate sequential EEMD-ELM, EEMD-MARS, and the 

standalone ELM and MARS models.  

MARS ELM 

EEMD-Boruta-

MARS 

EEMD-

Boruta-ELM 

 Site 1 - Menindee  

Underprediction 45 62 59 58 

Overprediction 84 73 58 65 

Total 129 135 117 123 

Site 2 - Cooinbil  

Underprediction 66 55 85 53 

Overprediction 76 79 58 78 

Total 142 134 143 131 

Site 3 - Fairfield  

Underprediction 37 40 104 87 

Overprediction 110 101 37 49 

Total 147 141 141 136 

Site 4 - Bodangora  

Underprediction 49 45 47 62 

Overprediction 86 92 81 61 

Total 135 137 128 123 

 

For more perspicacity, the values of maximum, minimum, Q75, Q50, Q25, 

mean and range of observed and forecasted SM generated by the respective models 

are compared in Table 10. At Sites 2, 3 and 4, the above statistics of SM forecasts 

generated by the hybridized EEMD-Boruta-ELM model were on par with the 

observed values reinforcing the results in Table 8 and Figures 5 and 6. At Site 1, 
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despite EEMD-Boruta-MARS model recording slightly better values of Q75, Q50, and 

minimum, the hybrid EEMD-Boruta-ELM model better captured the lower quartile 

(Q25), mean, range, and maximum values, affirming the better accuracy of hybrid 

EEMD-Boruta-ELM model. 

 

 

Figure 6 Box plots of the observed vs. the forecasted weekly normalized soil 

moisture generated by the hybrid EEMD-Boruta-ELM vs., the 

comparative models EEMD-Boruta-MARS, ELM and MARS 

models. [Soil moisture (SM) is quantified as relative fractional value 

and is dimensionless]. 
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Table 10 The testing phase statistics: maximum, minimum, upper quartile 

(Q75), median (Q50), lower quartile (Q25), mean and range of observed 

and forecasted soil moisture generated by hybrid EEMD-Boruta-ELM 

vs. the comparative EEMD-Boruta-MARS, MARS and ELM models. 

(Note: SM is dimensionless.) 

  Site 1 - Menindee Site 2 - Cooinbil 

Statistic 

Name 
Standalone 

Hybridized:      

EEMD-Boruta OBS 
Standalone 

Hybridized: 

EEMD-Boruta OBS 

  MARS ELM MARS ELM MARS ELM MARS ELM 

Maxi-

mum 
0.443 0.586 0.579 0.621 0.699 0.591 0.613 0.699 0.594 0.664 

Mini-

mum 
0.049 

-
0.006 

0.006 0.002 0.026 0.086 0.046 -0.135 0.047 0.025 

Q75 0.078 0.080 0.085 0.090 0.080 0.120 0.125 0.090 0.151 0.120 

Q50 0.142 0.147 0.152 0.148 0.152 0.213 0.211 0.181 0.234 0.215 

Q25 0.278 0.246 0.260 0.257 0.257 0.317 0.325 0.358 0.368 0.372 

Mean 0.180 0.167 0.178 0.180 0.180 0.230 0.238 0.235 0.259 0.251 

Range 0.394 0.592 0.572 0.619 0.673 0.504 0.567 0.834 0.546 0.639 

  Site 3 - Fairfield Site 4 - Bodangora 

Statistic 

Name 
Standalone 

Hybridized: 

EEMD-Boruta 
OBS 

Standalone 
Hybridized: 

EEMD-Boruta 
OBS 

  MARS ELM MARS ELM MARS ELM MARS ELM 

Maxi-

mum 
0.522 0.477 0.492 0.501 0.631 0.636 0.628 0.751 0.670 0.762 

Mini-

mum 
0.072 0.059 -0.012 0.005 0.022 0.041 0.072 0.094 0.068 0.037 

Q75 0.127 0.121 0.069 0.071 0.074 0.227 0.223 0.189 0.174 0.163 

Q50 0.168 0.171 0.126 0.130 0.136 0.327 0.311 0.333 0.297 0.303 

Q25 0.255 0.223 0.201 0.207 0.236 0.398 0.412 0.413 0.391 0.422 

Mean 0.199 0.185 0.143 0.152 0.171 0.320 0.313 0.323 0.294 0.308 

Range 0.450 0.417 0.504 0.496 0.610 0.595 0.556 0.657 0.602 0.724 

 

Further to that, the absolute values of the weekly forecasting error were 

calculated as |FE| = ��yrz − ��rsx and a histogram was designed to display the 

percentage frequency of |FE| (Figure 7). In comparison to standalone models, both 

the hybridized multivariate EEMD models (i.e., EEMD-Boruta-ELM and EEMD-

Boruta-MARS) have a narrower range of |FE| showing a better accuracy. A closer 
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examination of the percentage |FE| from the hybrid multivariate EEMD models 

further strengthens the suitability of hybrid EEMD-Boruta-ELM model with larger 

percentages (98% at Site 1, 86% at Site 2, 93% at Site 3, and 84% at Site 4) in the 

first error bracket (−0.1 ≤ |FE| ≤ 0.1). Although, the EEMD-Boruta-MARS 

recorded 1% more error values than hybridized EEMD-Boruta-ELM at Site 1 in the 

first two error bracket (−0.2 ≤ |FE| ≤ 0.2), the differences in percentages for the 

EEMD-Boruta-MARS were lower by 3% (Site 2) and 1% (Site 4) in comparison to 

the proposed hybrid EEMD-Boruta-ELM model. While at Site 3 both the hybrids 

EEMD-Boruta-ELM and EEMD-Boruta-MARS had 100% of errors within −0.2 ≤
|FE| ≤ 0.2. Consequently, a better realization of the performance comparison was 

achieved with the Taylor diagram (Figure 8). Using a single figure, the Taylor 

diagram concisely provides an angular statistical summary of root-mean-square 

difference, correlation coefficients, and the ratio of the model’s variances by plotting 

standard deviation against the correlations on the polar and radial axis, respectively 

(Taylor, 2001). Once more, at Sites 2, 3, and 4, the hybridized EEMD-Boruta-ELM 

model clearly outperformed attaining the closest proximity with respect to the 

observed statistics. At Sites 3 and 4, the hybrid EEMD-Boruta-ELM model yielded 

larger r with little variance and the EEMD-Boruta-MARS model yielded close 

results providing good contention. At Site 2-Cooinbil, however, the performance of 

EEMD-Boruta-MARS was very contrasting in comparison to hybrid EEMD-Boruta-

ELM which had the optimal performance. Yet, at Site 1 the correlation noted from 

EEMD-Boruta-MARS were higher. On the other hand, the angular statistics of 

standalone ELM and MARS models were farther away than the expected/observed 

magnitude showing lower performances. 

In terms of accuracy, the superiority of multivariate sequential EEMD 

decomposition prescribed SM models is clearly evident. However, the result 

ascertains that the performances of hybrid EEMD-Boruta-ELM (and the comparative 

EEMD-Boruta-MARS) model are not universally similar when the study sites with 

different geophysical and pedologic conditions are taken into account as in Tables 1 

and 3; Figures 1 and 2. The geographical signature is reflected in the performance of 

the models at these sites with a varied range of statistics being conceded (Table 8; 

Figures 5-8).  
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Figure 7 Histograms illustrating the percentage frequency of the absolute value 

of weekly forecasting error (|FE|) generated from the hybrid EEMD-

Boruta-ELM, vs. the EEMD-Boruta-MARS, ELM, and MARS 

models. 

 

To overcome the shortcoming of the absolute measures, Table 11 compares 

the alternative relative error measures (i.e., RRMSE and MAPE). Usually, the 

RRMSE is used to categorize the model performances as “Excellent” (����� <
10%), “Good” (10% < ����� < 20%), “Fair” (20% < ����� < 30%) or 

“Poor” (����� ≥ 30%) (Li et al., 2013). Following this classification, the 

performance of hybrid EEMD-Boruta-ELM model at all sites was “Fair” since the 

RRMSE recorded by the hybrid  EEMD-Boruta-ELM models at all sites were 

between 22.39% and 29.32%. While, the EEMD-Boruta-MARS models at Site 2 and 

3 were “Poor” with RRMSE values of 37.46% and 34.35%, respectively. Based on 

MAPE the hybrid EEMD-Boruta-ELM model had the best performance at Site 4-



Prasad R.  Streamflow and Soil Moisture Forecasting (Hybrid Machine Learning Approaches) 

140 

 

Bodangora (MAPE = 20.61% and RRMSE = 23.26%), followed by Site 1-Menindee. 

The corresponding model architecture of this best hybrid EEMD-Boruta-ELM model 

was 6-7-1 (input–hidden–output layer combinations) with the sigmoid transfer 

function (Table 6). Similarly, this site features Sodosol soil, with dry land cropping 

and has sub-tropical climatic characteristics (Table 1). 

 

 

Figure 8 Taylor plots indicating the correlation coefficient and standard deviation 

(SD) in the testing phase based on the hybrid EEMD-Boruta-ELM, vs. 

the EEMD-Boruta-MARS, ELM and MARS models for forecasting 

weekly normalized soil moisture at the candidate study sites. 
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Table 11 Model comparison at different sites using relative error in testing 

phase: RRMSE and MAPE. The optimal model with lowest relative 

(%) error at each site has been shown in boldface. 

 ELM MARS 

Sites 
RRMSE 

(%) 

MAPE 

(%) 

RRMSE 

(%) 

MAPE 

(%) 

 Site 1 - Menindee  

Standalone 
model 

31.41 28.01 33.68 28.64 

Hybridized: 
EEMD-Boruta 

22.39 20.81 20.27 18.71 

     

 Site 2 - Cooinbil  

Standalone 
model 

37.27 37.99 38.91 37.72 

Hybridized: 
EEMD-Boruta 

26.98 39.01 37.46 43.43 

     

 Site 3 - Fairfield  

Standalone 
model 

42.97 58.98 45.73 72.62 

Hybridized: 
EEMD-Boruta 

29.32 24.77 34.35 32.43 

     

 Site 4 - Bodangora  

Standalone 
model 

32.03 34.73 37.44 43.11 

Hybridized: 
EEMD-Boruta 

23.26 20.61 23.74 29.19 

 

Since two contesting modelling frameworks were used in this study, a 

comparison of standalone ELM and MARS models at all hydrological sites evidently 

showed that the ELM model outperformed the MARS models. The ELM model 

being a purely non-linear SLFN model was able to better extract the predictive 

features than the MARS model that is a combination of additive and/or interactive 

simple linear functions. For hybridized model comparisons, the superior 

performance of hybrid EEMD-Boruta-ELM models further illustrated that ELM is 

apparently more robust in simulating SM in comparison to the MARS model. For 

feature selection, the two-step method; CCF followed by Boruta were integral in 
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determining the salient inputs. During the final feature selection stage, an equal 

opportunity was provided to both the models as the best Boruta ranked inputs were 

iteratively used in the modelling process. At Site 2, the hybridized EEMD-Boruta-

ELM model required 7 significant variables while the EEMD-Boruta-MARS 

required 8 significant variables to reach its peak performance. Likewise, at Site 4 

EEMD-Boruta-MARS model required 4 additional significant variables to reach 

optimum performance. Yet, the optimum performances of these MARS established 

models (i.e., EEMD-Boruta-MARS) were significantly lower than the ELM 

established hybrid models (i.e., EEMD-Boruta-ELM). 

The outcomes also revealed that the self-adaptive MRA utility, EEMD, has 

proven to be a valuable tool for detecting and isolating non-linear signal properties 

into subseries i.e., intrinsic mode functions (IMFs) and the residual component. This 

is evident from the improved forecasting accuracies of multivariate sequential 

EEMD based models (Tables 8-11; Figures 5-8). However, a common practice with 

EEMD forecasting is to utilize only significant lagged IMFs and residual of SM to 

forecast future SM values (Jiao et al., 2016; Beltran-Castro et al., 2013; Ouyang et 

al., 2016; Bai et al., 2015; Seo and Kim, 2016). This is the first study that clearly 

ascertains that in order to forecast weekly SM, more than lagged SM time series is 

required (Table 4) as the multivariate sequential EEMD approach outperformed the 

classical models (Tables 8-11; Figures 5-8). Table 4 depicts that a minimum of three 

significant inputs are needed in this multivariate EEMD forecasting. For instance, at 

Site 1, to forecast IMF 1 the inputs were SMt-2, PCNt-1, SolarMJt-1, and to forecast 

IMF 2 the inputs were SMt-1, PCNt-1, SMt-2, while the forecasting of the residual 

component required SM only (SMt-2, SMt-1, SMt-3). A similar result is seen at other 

sites as well (Table 4), however, interestingly at Site 3-Fairfield none of the lags of 

SM time-series were selected to forecast IMF 1 despite a large number (10) of inputs 

were required. So, if only SM were used in all these cases, many important predictive 

features may have been left out affecting the overall forecasting performances. 

Additionally, the SM forecasting was performed at a shorter forecast horizon to 

concur with the real-life decision support systems that require precise forecasting 

within a specified time limit (Yu et al., 2011), which in this case was weekly. The 

short-time weekly forecasts would potentially allow for the development of such 

systems for near real-time agricultural and hydrological applications. 
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5.0 Future scope 

Despite the efficacy of the approach proposed in this study, in further studies, 

the multivariate EEMD technique can be improved by combining the tool with the 

variational mode decomposition (VMD) into a two-stage decomposition scheme as 

demonstrated by Wang, Deyun et al. (2017) and Wang, D. et al. (2017). Studies with 

the variants of EMD including complete ensemble empirical mode decomposition 

with adaptive noise (CEEMDAN) (Torres et al., 2011), improved complete 

ensemble empirical mode decomposition with adaptive noise (ICEEMDAN) 

(Colominas et al., 2014) and empirical wavelet transform (EWT) (Kedadouche et al., 

2016; Peng et al., 2017) could also provide greater insight into the performance of 

the multivariate ensemble modelling approach. With that, alternative optimization 

techniques in terms of the feature determination could also be explored. For instance, 

iterative input selection (IIS) (Galelli and Castelletti, 2013), Neighborhood 

Component Analysis feature selection for regression algorithm (fsrnca) (Yang et al., 

2012), modified minimum redundancy maximum relevance (mMRMR) algorithm 

(Hejazi and Cai, 2009), joint mutual information maximisation feature selection 

(JMIM) (Bennasar et al., 2015) or bootstrap rank-ordered conditional mutual 

information (broCMI) (Quilty et al., 2016) can be explored as alternative tools to 

improve the proposed method. Moreover, an extensive set of model inputs could be 

incorporated from various sources like several atmospheric parameters derived from 

satellite measurements, Interim ERA European Centre for Medium-Range Weather 

Forecasting (ECMWF) (Dee et al., 2011) and climate indices (e.g., Sea Surface 

Temperatures-SSTs, Dipole Mode Index-DMI, Pacific Decadal Oscillation-PDO, 

etc.) of longer time series than investigated in this paper. 

6.0 Conclusions 

Multivariate sequential EEMD scheme is proposed to address naturally embedded 

non-stationary features within multivariate hydro-meteorological predictor inputs in 

forecasting weekly soil moisture. Optimization with Boruta feature selection 

algorithm led to the establishment of hybrid EEMD-Boruta-ELM model. The 

performance of the hybrid multivariate sequential EEMD-Boruta-ELM model in 

emulating weekly soil moisture at four hydrological sites within Australian MDB 

was benchmarked with a comparative multivariate sequential EEMD-Boruta-MARS 
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and standalone ELM and MARS models. Using an independent testing dataset, 

several numerical assessment metrics were determined including Pearson’s 

correlation coefficient (r), mean absolute error (MAE), root mean square error 

(RMSE), Willmott’s Index (WI), the Nash-Sutcliffe coefficient (ENS), the Legates-

McCabe Index (L) and relative errors (i.e., MAPE and RRMSE). 

  The performance of the hybridized multivariate sequential EEMD-Boruta-

ELM model at all sites was “Fair” with	22.39% ≤ ����� ≤ 29.32%. The best 

hybrid multivariate sequential EEMD-Boruta-ELM model was established at Site 4-

Bodangora (MAPE = 20.61% and RRMSE = 23.26%) that featured Sodosol soil, with 

dry land cropping and has sub-tropical climatic characteristics. A comprehensive 

evaluation via numerical assessment metrics and diagnostic plots revealed that the 

hybrid multivariate sequential EEMD-Boruta-ELM model outperformed the 

comparative multivariate sequential EEMD-Boruta-MARS and classical models in 

forecasting soil moisture at a weekly forecasting horizon. 

Further improvements in this multivariate ensemble modelling approach 

could be achieved by cascading it into a two-stage decomposition scheme using 

VMD process. In addition, different EMD variants could be considered with various 

feature selection algorithms and a larger dataset need to be explored in future 

independent studies. Despite these limitations, the hybrid EEMD-Boruta-ELM 

model proved to be an effective tool in capturing the non-linear dynamics in 

forecasting weekly soil moisture. This hybrid multivariate sequential EEMD-Boruta-

ELM model can amicably be embedded in designing of hydrological and precision 

agricultural (PA) applications as well as for drainage mapping, drought stress 

identification, crop yield prediction and other emerging intelligent and autonomous 

systems. 
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Chapter 7: Synthesis and future scope 

 

7.1  Synthesis 

In this study, an attempt is made to advance the science of hydrological prediction by 

developing accurate and high precision data intelligent models using hybridized 

machine learning or computational intelligence techniques for streamflow water 

level and soil moisture forecasting within the Murray-Darling Basin, Australia. The 

streamflow water level was forecasted at monthly forecast horizon. While the soil 

moisture forecasting was commenced from monthly down to weekly forecast 

horizon to realize near real-time forecasting. In improving the hydrological 

forecasting of streamflow water level and the upper and lower layer soil moisture 

levels, hybridized models were developed with new methodological approaches. The 

machine learning algorithms that were utilized to design the hybrid models included, 

2nd order Volterra, M5 Model Tree, random forest, multivariate adaptive regression 

splines, extreme learning machine, and the artificial neural networks.  

Two important issues were addressed in this study i) the problem of selection 

of non-redundant predictor inputs from sets of multivariate input in hydrological 

forecasting and ii) non-stationarity and non-linearity issue. Input selection algorithms 

resolved the first issue of feature optimization, while the latter issue was resolved by 

time-scale multi-resolution representation of the respective hydrological input time 

series.  

In the first objective (Chapter 3), the iterative input selection algorithm 

screened the salient inputs. Then an advanced and non-decimated wavelet 

transformation known as the maximum overlap discrete wavelet transformation 

(MODWT) was utilized in addressing non-stationarity problem whilst designing 

high precision streamflow water level forecasting at monthly forecast horizons. 

Hybridization led to the formation of IIS-W-ANN model that outperformed the 

comparative M5 Tree based model (IIS-W-M5 Tree), IIS-ANN, IIS-M5 Tree and the 

standalone ANN and M5 Tree models. 
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In addition, two self-adaptive techniques that do not require any basis 

function or pre-defined mother wavelet were utilized in Chapter 4 to further address 

the non-stationarity and non-linearity issues (Objective 2). This included the 

ensemble empirical mode decomposition (EEMD) and complete ensemble empirical 

mode decomposition with adaptive noise (CEEMDAN). The monthly upper and 

lower layer soil moisture time series were resolved using these multi-resolution 

utilities into intrinsic mode functions and a residual component. Then partial-auto 

correlation function (PACF) was utilized to determine the input lagged sub-series in 

the designing of the subsequent hybrid machine learning approaches (EEMD-ELM 

and CEEMDAN-ELM). The EEMD-ELM model was found to have better 

performances in emulating upper and lower soil moisture compared to the 

CEEMDAN-ELM, and the random forest-based hybrid models (EEMD-RF, 

CEEMDAN-RF) and the standalone ELM and RF models. 

Moreover, for Objective 3 an ensemble model combination method called the 

ensemble committee of models based on ANN (ANN-CoM) was developed and 

explored for its preciseness in emulating upper and lower layer soil moisture using 

sixty potential inputs (Chapter 5). A two-stage feature optimization was formulated 

by employing the Neighbourhood Component Analysis based regression feature 

(fsrnca) selection algorithm and a basic ELM model with sine transfer function and 

50 hidden neurons. In this objective, the ANN-CoM model was found to outperform 

the standalone second order Volterra, M5 Model Tree, random forest and ELM 

models in monthly upper and lower layer soil moisture forecasting. 

Finally, in the fourth objective (Chapter 6), forecasting of near-real-time i.e., 

weekly soil moisture levels was achieved by designing and employing a novel 

multivariate sequential EEMD approach. This technique was developed to permit the 

utilization of multiple predictor inputs in EEMD-based modelling approaches. A 

total of thirteen predictor inputs were collated with two-stage feature optimization 

via cross-correlation function (CCF) followed by Boruta wrapper algorithm was 

adopted in developing the hybrid multivariate sequential EEMD-Boruta-ELM. The 

EEMD-Boruta-ELM proved to be better in forecasting weekly soil moisture in 

comparison to the MARS counterpart (EEMD-Boruta-MARS) and the standalone 

ELM and MARS models. 
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The findings clearly showed improved performances of hybridized models 

developed with respect to standalone counterparts. A further elaboration of the 

research outcomes are as follows: 

a) Feature selections 

• The iterative input selection (IIS) algorithm served as an important input 

determination procedure since enhanced performance by the IIS-based 

models in forecasting of streamflow water level was lucid. The key 

important feature of IIS is that the algorithm iteratively selects the most 

significant inputs in a forward selection method then uses an extra trees-

based ranking method to estimate the relative contribution of each 

candidate input(s) in explaining the output. Finally, the underlying model 

assesses the effectiveness of each input variable in predicting the output 

and successively adds the most significant ones in multiple input single 

output (MISO) technique. When the performance of the MISO model 

starts to decrease, the IIS algorithm stops executing and the most 

significant inputs averred at this epoch. 

• The fsrnca feature selection also played a key role. It utilizes an embedded 

Neighbourhood component analysis model to determine the relative 

feature weights of each of the inputs in emulating the target variable. Yet, 

fsrnca only provides respective feature weights and an additional add-on 

such as basic ELM that was developed in this study is required to 

determine the threshold feature weight in order to obtain an optimal set of 

inputs. 

• With that, the Boruta input selection is a wrapper algorithm that uses 

random forest model as the underlying learning algorithm. The principal 

of Boruta input selection method is the maximum-optimal feature 

selection that generates a large predictor set. Hence, a reduction of inputs 

becomes necessary which in this study was achieved by a stepwise model 

building process. 

Feature selection or input determination is a critical process in the development 

of data-intelligent models. Appropriate feature selection is necessary in order to 

develop parsimonious yet peak performing models.  
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Another additional characteristic noted during feature selection for streamflow 

forecasting (Objective 1 – Chapter 3) and soil moisture forecasting (Objectives 2 & 3 

– Chapter 4 & 5) was that precipitation, which is traditionally understood to be an 

important indicator of hydrological parameters (SWL and SM), was not selected as 

the significant input for all study sites.  

For SWL, soil type could probably have played an important role in soil water 

retention and subsequently affecting the runoff and streamflow. For instance, if the 

catchment is largely consisting of sandy soil type that has high drainage coefficient, 

the response time of rainfall to runoff is reduced. In other words, there is bound to be 

a higher direct correlation between rainfall and SWL at that site. However, if the 

catchment has a mixture of soil types and more of clay and loamy soil that has more 

water retention capacity, then there will be low dependence of SWL on rainfall.  

On the other hand, for soil moisture forecasting study, the vegetation cover and 

land-use are also major determinants of SM. If the land is bare, then solar radiation 

will directly cause evaporation, which would be a key influential factor. For regions 

that are shaded by vegetation, they could have a greater chance of retaining water 

due to rainfall and hence SM would have more dependence on rainfall. 

In this study, geographically distinct sites with dissimilar hydro-physical features 

were selected for robust model evaluations. 

 

b) Multi-resolution analysis utilities 

i) Maximum overlap discrete wavelet transformation (MODWT) 

• Integration of MODWT multi-resolution analysis into the proposed hybrid 

ANN models (IIS-W-ANN) substantially improved the performances in 

forecasting of monthly streamflow water level. 

• Determination of apt mother wavelet improves the performance of 

MODWT-hybrid models. Daubechies wavelet was adopted in this study. 

The db2 (2-vanishing moment) did not yield satisfactory results, while db3 

(3-vanishing moment) and db4 (4-vanishing moment) were the most 

effective ones. 

• The determination of optimal wavelet decomposition level is also vital and 

is usually done using a formula (Chapter 3: Eq. 7). The formula 
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determined level was three, yet in this study, four decomposition levels 

achieved better forecasting accuracy. The wavelet decomposition level is 

apparently data-dependent and a cautious approach is required when 

determining the optimal level. Different numbers of decomposition via 

trial and error may be tested. 

Overall, the MODWT feature resolving is indeed beneficial, provided 

optimal mother wavelet and decomposition levels are selected, which essentially are 

dependent on the nature of the data-set. 

ii) Ensemble empirical mode decomposition (EEMD) and Complete 

ensemble empirical mode decomposition with adaptive noise 

(CEEMDAN) 

• Both EEMD and CEEMDAN are self-adaptive multi-resolution methods 

hence the number of IMFs and residual component (i.e., resolved 

frequencies) are contingent upon the embedded features within the data 

sets. 

• Both EEMD and CEEMDAN improved the model performances with 

respect to the standalone models. 

• EEMD models outperformed the CEEMDAN model in forecasting both 

upper and lower layer soil moisture values. The EEMD-ELM 

outperformed the alternative models at four (out of the seven) sites applied 

for upper layer SM forecasts and the hybrid the EEMD-ELM model was 

superior at all seven sites for the lower layer soil moisture forecasts. 

The key benefit of the self-adaptive MRA tool, EEMD, integrated with ELM 

is that the hybrid EEMD-ELM model requires trivial human interventions. This has 

the prospects of being embedded into advanced forecasting apps for portable devices 

such as tablets and mobile phones and to provide hydrological forecasts at local farm 

levels. 

 

7.2 Novel contributions of the study 

This study makes novel contributions in the development of data-intelligent 

predictive models for hydrological forecasting. In addition to the development of 
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hybridized data-intelligent models, the further novel methodological improvements 

are as follows: 

i) Ensemble committee of models 

A new committee-based modelling approach has been developed in this 

study, which is a major contribution. Generally, model combinations are 

lacking in the hydrological and environmental applications. 

• The ANN-based ensemble committee of models (ANN-CoM) was able to 

achieve better performance than the non-ensemble counterparts. 

• The ANN-CoM was able to further optimize and stabilize the forecasts, 

since ANN generated appropriate weights, rather than simply averaging 

out the magnitudes, in forecasting of upper and lower layer soil moisture. 

• This ensemble committee of models have huge potential and could 

possibly be integrated with the global climate models. 

 

ii) Multivariate sequential ensemble empirical mode decomposition 

• This is an important new development in this study since previously 

EEMD was only used as a single-variable forecasting tool. 

• The forecasting performance increased with the integration of multivariate 

sequential EEMD hybridization approach to forecast weekly soil moisture 

values. 

 

� Another important finding is that the predictive performances of hydrological 

models are highly data-sensitive and site dependent due to geographical 

influences.  

� In addition, near-real-time forecasting was achieved with a gradual reduction 

in the forecast horizon from monthly to weekly (near-real-time) with 

evaluation of respective models at the shorter forecast horizon.  

The innovative new approaches being explored showed promising outcomes and 

could provide the scientific tenets for integrated on-farm decision-support systems 

for hydrological and precision agricultural purposes. 
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7.3   Limitations of the current study and recommendations for future 

research 

This subsection outlines the limitations of the current study and suggests 

recommendations that need to be properly addressed in future independent studies. 

� In streamflow water level forecasting study, the key limitation was the 

unavailability of concurrently recorded streamflow water level and hydro-

meteorological data at the same hydrological station. In future studies, the 

use of concurrently observed data is recommended that may improve the 

accuracy of the respective models. 

� Monthly forecasting horizon was adopted in streamflow water level 

forecasting study while down to weekly forecasting was carried out for soil 

moisture level. However, for operational applications, testing with smaller 

time-steps such as daily, and hourly are recommended that can provide 

greater understanding. 

� Individual forecasts of high, moderate and low streamflow events and SM 

level events could also be explored independently. 

� Integration of add-on optimizer algorithms (e.g., particle swarm optimization 

(PSO), firefly optimizer algorithm (FFA), or ant colony optimization (ACO)) 

could also be applied in these hydrological models. 

� Studies with additional multi-resolution analysis utilities such as improved 

complete ensemble empirical mode decomposition with adaptive noise 

(ICEEMDAN), empirical wavelet transformation (EWT) and variational 

mode decomposition (VMD) are also suggested, which could provide greater 

insight into the performance of such data-intelligent hydrological models. 

� Alternative feature selection algorithms, modified minimum redundancy 

maximum relevance (mMRMR) algorithm, joint mutual information 

maximization feature selection (JMIM) or bootstrap rank-ordered conditional 

mutual information (broCMI) can further be explored. 

� In soil moisture forecasting, the hydro-meteorological data at a horizontal 

resolution of 5 km × 5 km from AWAP was utilized. An increase in data 

resolution may assist in better forecasting at localized farm levels. Studies 

pertaining to higher spatial resolution are also recommended. 
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� Incorporation of additional potential predictor variables and satellite-based 

data such as from Giovanni or MODIS are also recommended in future 

forecasting studies. 

� For data analysis, the scatter plots with regression lines were presented in this 

study, which is one way of evaluating the model. An alternative method is 

recommended in further studies, whereby an X = Y line [also known as the 

1:1 line or the 45° line) is to be drawn together with the linear regression 

fitting line on the respective scatterplots. In order to extract the pertinent 

information on over and under predictions, it is also recommended to 

compute the percentage deviations of the forecasted values from this 1:1 line. 

 

In closing, this study has made novel contributions towards the practical problem 

of hydrological forecasting using hybridized machine learning techniques. The easy-

to-implement, hybridized machine learning data-intelligent forecasting models used 

in this study have high computational efficiency, and low latency. This could 

revolutionize the streamflow water level and soil moisture level modelling and 

forecasting, concurrently serving as an important contrivance for water resource 

management and agricultural management applications. 
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Appendix 

Table A1  Percentage deviations of forecasted values from the X=Y line from 

the IIS-W-ANN, IIS-W-M 5 Tree, IIS -ANN, IIS-M 5 Tree models at 

respective sites. 

Data point 
reference 
nos. 

Site 1-Menindee River Site 2-Gwydir River Site 3-Darling River 

IIS-
W-

ANN 
% 

IIS-
W-M5 
Tree 
% 

IIS-
ANN 

% 

IIS-
M5 
Tree 
% 

IIS-
W-

ANN 
% 

IIS-
W-M5 
Tree 
% 

IIS-
ANN 

% 

IIS-
M5 
Tree 
% 

IIS-
W-

ANN 
% 

IIS-W-
M5 
Tree 

% 

IIS-
ANN 

% 

IIS-
M5 
Tree 
% 

1 -38.08 -18.71 -3.13 -1.20 -7.89 -8.15 -22.75 -19.98 13.92 -33.19 9.45 11.19 

2 -34.71 17.01 -2.95 0.24 -14.72 -14.48 -5.18 -6.35 9.84 -52.72 5.38 -0.88 

3 -24.67 -51.91 -25.22 -23.95 -20.05 -16.13 -9.05 -6.69 -27.55 62.40 -42.06 -46.75 

4 -1.17 -18.56 10.06 1.86 -1.69 -6.96 1.73 1.96 18.87 -13.79 -17.05 -40.68 

5 -21.05 8.26 -37.44 -40.42 4.46 -0.97 -10.46 -6.32 4.37 -20.15 -5.69 -24.77 

6 -1.17 -17.50 -19.88 -36.36 6.00 -3.40 -15.09 -24.98 -3.45 -19.57 -2.61 -13.30 

7 -7.22 -25.73 2.65 -6.33 9.56 2.35 -27.29 -34.44 -8.94 -23.07 -11.42 -14.43 

8 -10.55 -22.70 -9.05 -11.42 16.84 23.39 35.07 36.21 -8.48 -13.15 -6.40 -10.24 

9 -20.56 -32.12 12.60 10.71 39.55 44.46 27.72 33.84 -15.63 -14.58 225.28 220.45 

10 -2.43 -32.48 -27.21 -26.61 35.73 17.65 4.44 7.95 -39.56 -20.07 40.70 -36.76 

11 -25.68 -40.12 -24.89 -23.74 32.54 15.78 6.35 2.18 -9.18 30.45 36.60 72.07 

12 -45.76 -26.64 -9.07 -11.56 37.82 11.69 7.75 7.75 -6.56 -5.23 10.54 -0.58 

13 -49.45 -2.22 -16.94 -13.66 22.82 8.04 0.83 3.51 2.27 57.17 19.30 6.86 

14 -35.43 -4.59 -8.48 -7.02 -10.36 -9.70 -20.45 -21.10 0.65 -38.47 10.71 3.51 

15 -27.37 -18.60 -8.03 8.40 -2.28 9.50 21.60 24.34 1.94 -61.66 16.99 5.68 

16 -29.63 -33.71 -7.74 2.81 -9.71 -18.61 -25.93 -15.93 0.84 85.06 13.11 4.09 

17 -22.92 -31.00 -13.90 -3.66 8.54 -16.22 -21.76 -15.18 -45.00 39.42 -45.34 -50.51 

18 -4.06 -56.75 -16.55 -16.68 22.92 9.72 31.31 29.41 8.95 -4.69 -14.80 -40.88 

19 -5.85 20.24 -3.54 -29.39 12.38 -2.74 -42.60 -41.18 -3.19 -8.56 -5.53 -8.48 

20 -4.18 -22.47 -10.94 -15.66 22.17 2.49 2.43 28.53 -10.14 -10.30 -9.68 -14.79 

21 6.09 -26.84 24.53 27.67 4.63 -13.66 -0.13 2.77 -7.12 -34.34 -2.22 -6.95 

22 2.46 -6.94 -20.36 -17.70 6.04 -3.80 -14.58 -15.59 4.82 1.42 15.97 17.46 

23 -21.81 -34.70 -1.47 -5.63 12.70 -2.27 26.90 19.63 -15.22 -8.57 -0.25 74.41 

24 -26.27 -24.71 -19.13 -15.93 -10.62 -8.69 -25.47 -26.76 -0.54 13.99 -5.15 5.72 

25 -29.60 -7.38 -0.32 -5.99 9.34 2.91 28.13 16.02 -36.06 -8.45 -27.89 -33.30 

26 -21.83 -9.83 -1.48 -0.11 -15.55 -14.62 -9.49 -16.75 -27.08 -24.33 31.24 10.39 

27 -11.94 21.29 4.65 -1.51 -8.58 -12.36 -9.78 -16.79 -14.95 -29.38 8.69 4.74 

28 -1.93 4.32 10.79 9.09 -5.78 -8.32 22.74 29.19 -35.22 -33.27 -23.88 -31.69 

29 5.87 5.46 2.92 3.36 -7.54 -13.40 -23.32 -32.16 -41.13 31.36 -24.53 -25.72 

30 -16.06 -36.44 -33.11 -26.57 -0.95 -5.08 5.83 -11.16 -21.07 34.70 -10.61 19.69 

31 -9.44 11.17 -10.35 -26.13 -2.44 -15.33 1.09 8.99 -13.54 28.05 -11.54 -9.81 

32 -28.62 36.55 -10.03 -40.16 9.34 2.68 0.26 7.40 -2.05 35.10 -12.56 -15.12 

33 -9.08 -12.52 60.80 29.38 30.58 16.94 34.95 30.73 30.73 -23.42 -31.61 -30.19 

34 14.63 4.38 -10.67 -4.21 39.63 22.96 5.08 5.89 -24.22 -20.35 -5.01 27.94 

35 -9.58 -13.24 -25.89 -14.32 25.49 7.39 13.66 -0.36 12.24 15.39 38.27 42.97 

36 9.99 -38.87 -40.84 -37.99 16.33 2.81 3.47 2.78 11.27 5.22 27.64 19.72 

37 -25.24 -14.31 7.09 10.80 9.59 0.38 11.74 9.77 14.30 3.75 14.79 7.74 

38 -33.25 -9.80 -3.89 0.72 -23.10 -17.97 -20.02 -14.71 13.17 17.64 7.08 1.60 
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39 -18.56 10.48 6.78 0.04 -20.93 -12.65 3.04 -9.52 11.81 9.60 9.39 9.02 

40 6.51 -0.01 24.39 8.36 -15.24 -9.20 -13.66 -10.80 8.64 1.77 7.79 1.22 

41 31.14 8.23 0.54 -1.50 -9.34 -13.76 -7.59 -9.35 -17.13 -19.74 -19.85 -27.61 

42 17.96 -4.04 4.06 10.39 -13.59 -11.72 -8.94 -6.46 -11.93 11.13 22.55 16.33 

43 14.92 14.28 8.78 1.10 -2.55 -8.23 20.89 14.86 1.05 -4.79 12.15 5.22 

44 6.27 -7.93 4.84 7.89 10.77 20.69 17.29 48.53 13.39 10.12 27.18 11.64 

45 22.03 14.60 0.70 10.07 33.89 17.80 25.04 35.51 13.51 2.70 9.80 4.10 

46 30.43 -4.17 1.60 2.84 41.59 19.33 2.42 6.17 18.52 8.45 18.73 10.33 

47 44.10 -0.82 6.22 -1.33 29.10 17.63 5.74 4.88 18.64 8.00 7.67 4.41 

48 44.08 8.73 13.10 -4.93 20.33 13.76 6.98 9.14 18.95 7.21 7.79 4.45 

49 0.36 -22.57 39.39 57.96 11.25 17.84 5.84 8.54 17.06 5.19 5.49 12.57 

50 1.30 11.45 3.98 3.89 -12.12 -19.34 -11.39 -12.67 20.76 8.15 12.39 18.18 

51 2.08 26.89 27.50 9.43 -0.85 -9.33 -1.24 -7.63 20.09 7.11 3.71 4.18 

52 8.76 28.22 13.33 4.46 2.00 4.83 33.87 23.85 21.03 9.00 6.98 11.65 

53 2.03 11.09 33.18 38.37 9.94 4.41 -21.06 -13.89 22.91 11.46 6.65 12.47 

54 -2.77 43.85 0.33 -3.80 12.01 17.33 -2.32 -5.68 22.75 11.35 2.77 8.33 

55 -7.78 -29.54 -42.85 -38.54 15.74 -9.31 -0.06 -6.70 21.34 20.68 5.50 8.80 

56 -34.29 16.33 1.39 -1.16 7.73 36.29 42.53 49.30 25.30 9.73 10.07 14.84 

57 -36.99 -1.99 -19.09 -14.36 -0.70 16.80 11.05 6.54 26.03 21.89 4.94 1.91 

58 -16.32 -20.84 -21.97 -18.49 4.27 26.48 9.79 12.96 52.28 30.29 36.46 43.16 

59 6.23 -14.71 8.15 13.04 0.32 20.15 16.63 9.72 58.35 38.65 -1.68 16.85 

60 8.57 -15.09 -7.31 -5.73 -5.15 16.77 12.93 9.10 44.99 34.78 -8.26 3.58 

61 -0.91 15.64 1.57 -0.45 -3.74 24.58 3.25 6.20 25.35 14.55 -4.18 -3.45 

62 -4.39 12.92 -0.68 -0.82 19.22 33.23 20.76 12.38 28.45 5.25 17.94 8.74 

63 -1.54 -13.89 0.10 -7.37 19.57 42.48 -4.56 12.65 21.64 -0.91 -4.54 0.45 

64 -5.72 -29.15 39.70 48.01 33.38 45.24 21.70 25.72 23.84 4.24 9.81 6.99 

65 -12.62 -25.76 -22.29 -18.05 16.29 33.39 1.40 -25.70 34.16 22.82 11.73 13.25 

66 -30.76 -13.14 3.28 9.64 20.37 35.62 -10.87 3.61 52.46 45.38 10.64 22.36 

67 -20.45 -24.37 -27.50 -19.94 28.15 28.40 58.54 66.98 52.78 63.73 -3.28 13.53 

68 -10.60 -17.26 -1.51 2.66 16.51 40.62 19.04 49.50 60.48 76.52 10.25 19.46 

69 -15.96 -11.80 -2.08 6.31 8.06 32.32 15.68 9.65 54.85 111.45 0.82 11.94 

70 -27.60 -9.71 3.61 -6.13 -14.55 -4.26 -5.93 -7.08 50.31 64.83 5.99 11.02 
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Table A2  Percentage deviations of forecasted values from the X=Y line from 

the Best EEMD-ELM, CEEMDAN-ELM and the comparative RF 

models in forecasting a) upper layer soil moisture and b) lower layer 

soil moisture. 

a) upper layer soil moisture (SMUL) 

Data 
point 

reference 
nos. 

ELM 
(Site 30) 

% 

EEMD-
ELM 

(Site 43) 
% 

CEEMDAN-
ELM 

(Site 30) 
% 

RF 
(Site 30) 

% 

EEMD-RF 
(Site 43) 

% 

CEEMDAN-
RF (Site 30) 

% 

1 356.57 8.67 130.88 595.68 17.22 189.08 

2 7.24 -24.75 -3.65 -35.90 -19.98 -11.73 

3 -6.74 15.11 -2.82 24.89 61.29 -6.04 

4 22.76 61.37 12.30 8.54 112.95 -2.94 

5 -31.41 -19.02 -18.64 -38.33 -18.96 -25.05 

6 30.50 -14.36 1.06 0.91 -22.12 -0.86 

7 -9.35 -12.10 -2.33 -13.93 -20.92 -11.88 

8 8.39 -12.98 -13.56 11.84 2.19 -10.59 

9 37.23 31.44 -17.02 53.55 91.45 36.88 

10 55.49 -31.64 83.08 92.24 -1.40 131.10 

11 -100.78 -30.70 -16.52 6.96 36.83 10.36 

12 -12.12 15.09 -4.52 31.68 91.29 -2.05 

13 -3.80 57.04 -0.57 23.26 57.85 -6.79 

14 -22.89 26.48 4.68 3.27 -4.22 4.94 

15 -26.53 -6.41 -2.40 -38.86 -14.78 -15.52 

16 6.70 21.46 18.94 5.08 30.46 5.26 

17 -26.86 -1.07 4.15 -17.17 0.44 3.24 

18 -4.92 -7.60 -10.34 1.06 -6.00 -0.65 

19 42.03 1.55 -1.85 78.02 -4.23 28.76 

20 39.20 -15.07 19.51 27.08 -11.12 50.72 

21 -28.45 -14.81 21.96 6.94 19.22 21.94 

22 -26.83 89.45 -12.62 -12.03 102.84 -4.38 

23 24.02 -10.52 16.45 -24.70 -23.26 -0.57 

24 -27.70 -39.21 -4.18 -54.17 -45.74 -10.72 

25 -1.91 36.94 -11.36 9.80 6.70 -3.73 

26 28.46 31.99 3.90 116.46 106.75 66.15 

27 -40.54 -17.75 -11.92 -27.09 -32.81 7.85 

28 13.74 0.73 -0.83 -12.33 -8.48 -5.58 

29 -10.39 -0.87 -2.56 -31.87 -14.78 -16.67 

30 -0.77 -4.52 -3.59 -2.12 -11.57 -11.41 

31 -15.39 -12.85 -14.13 -15.59 -13.73 -19.37 

32 34.53 -11.29 -1.15 20.43 -4.81 -2.70 

33 167.76 8.59 54.31 272.61 60.16 199.26 

34 -41.14 -39.12 -21.42 -43.46 -19.73 -24.66 

35 165.87 90.71 58.80 127.98 123.28 88.51 

36 -83.04 -13.66 -25.86 -27.77 -8.85 7.13 

37 -5.83 -50.07 -3.38 -11.52 -13.34 18.65 

38 97.02 45.37 -20.36 85.47 52.78 86.64 
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39 69.46 66.03 16.52 131.97 125.74 168.71 

40 -45.54 -16.03 4.96 -46.72 -13.80 -22.93 

41 -12.20 -15.79 -20.70 -25.09 -31.87 -16.57 

42 8.65 7.96 9.24 -13.56 -4.92 -4.83 

43 -15.07 10.13 14.41 -24.67 -4.08 -6.84 

44 -58.80 -7.06 -17.13 -49.90 -27.45 -29.15 

45 4.51 -1.15 -33.29 -31.09 -32.08 -33.44 

46 36.39 24.51 2.55 72.35 3.60 23.33 

47 103.25 28.13 -85.40 91.22 33.81 104.06 

 

 

b) lower layer soil moisture (SMLL) 

Data 
point 

reference 
nos. 

ELM 
(Site 30) 

% 

EEMD-
ELM 

(Site 43) 
% 

CEEMDAN-
ELM 

(Site 30) 
% 

RF 
(Site 30) 

% 

EEMD-RF 
(Site 43) 

% 

CEEMDAN-
RF (Site 30) 

% 

1 -0.52 2.39 1.14 1.32 -0.43 -0.45 

2 -0.50 0.51 -1.96 1.88 -0.47 -1.70 

3 0.11 1.55 0.84 1.40 0.33 2.74 

4 1.09 5.13 1.24 2.69 2.95 5.61 

5 -9.90 -0.45 -0.92 -9.02 -4.04 4.71 

6 -0.19 0.45 1.30 -14.35 -5.09 4.58 

7 13.21 4.60 0.01 -2.90 -3.79 3.72 

8 -4.37 -1.11 0.97 5.14 -1.60 5.43 

9 0.19 -1.13 1.16 4.46 0.84 6.66 

10 1.26 -4.81 0.15 3.99 -0.23 6.65 

11 -0.72 1.91 2.36 3.04 0.00 7.63 

12 -0.05 -0.30 2.97 1.02 1.18 9.07 

13 0.42 0.58 3.17 0.42 2.16 9.37 

14 1.39 2.59 0.49 1.37 5.30 7.08 

15 -4.38 0.29 2.08 -3.72 1.11 5.72 

16 -4.16 3.46 4.68 -9.28 0.74 8.81 

17 5.71 -0.18 -1.16 -5.97 1.21 8.22 

18 2.18 -1.82 2.51 -0.35 2.21 10.88 

19 0.32 2.23 3.57 0.82 2.34 13.38 

20 -1.44 -0.31 -0.16 -1.37 2.29 10.90 

21 4.04 4.01 -0.52 2.21 5.88 11.21 

22 -2.48 0.32 -1.25 3.89 5.85 13.67 

23 1.31 1.35 2.93 3.04 7.01 21.80 

24 -0.20 -0.38 -2.26 0.16 5.67 17.36 

25 1.16 -1.56 -4.04 -0.80 4.43 14.88 

26 2.37 0.33 -2.40 2.85 5.69 17.56 

27 0.99 0.48 -1.72 3.72 5.80 19.82 

28 0.56 0.77 0.36 1.10 4.84 20.87 

29 1.07 1.17 0.09 -0.32 6.12 20.81 

30 -2.45 -0.24 -7.91 -1.97 3.67 0.97 

31 0.55 0.62 -2.38 -0.99 4.23 4.69 
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32 -2.70 -2.31 -2.54 -1.38 0.96 6.46 

33 3.79 1.01 -4.58 2.35 2.96 7.34 

34 -0.53 -0.62 -2.46 3.73 -0.81 9.89 

35 1.24 -1.27 1.19 2.91 -1.28 12.82 

36 4.57 0.97 -8.84 7.39 1.15 2.21 

37 -2.91 -1.13 0.66 4.61 0.71 3.58 

38 1.21 4.28 5.81 1.64 6.91 9.58 

39 0.26 2.80 4.70 0.53 7.82 14.56 

40 -4.42 -0.52 2.42 -3.39 9.74 7.19 

41 -8.05 5.69 10.73 -10.20 8.83 -2.15 

42 -6.83 -6.14 -1.72 -14.16 5.39 -15.42 

43 -1.14 -4.45 0.07 -14.09 4.64 -10.17 

44 -8.09 3.67 -2.80 -19.65 -3.34 -14.35 

45 -7.01 0.06 -6.52 -27.25 -16.26 -18.30 

46 6.35 9.03 -0.24 -12.45 -10.88 -16.19 

47 -4.66 -5.12 2.45 -1.79 -9.78 -17.34 
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Table A3  Percentage deviations of forecasted values from the X=Y line from 

the ANN-CoM and the competing standalone models (Volterra, M5 

tree, random forest (RF) and extreme learning machine (ELM)) in 

forecasting a) upper layer soil moisture and b) lower layer soil 

moisture at the four study sites. 

a) upper layer soil moisture (SMUL) 

Data 
point 

reference 
nos. 

Site 1- Menindee Site 2- Balranald 

Volterra 
% 

M5 
Tree 
% 

RF 
% 

ELM 
% 

ANN
-CoM 

% 
Volterra 

% 

M5 
Tree 

% 
RF 
% 

ELM 
% 

ANN-
CoM 

% 

1 -6.86 -50.22 20.16 5.45 -4.93 -50.81 -60.22 50.96 -26.88 -1.16 

2 -17.75 -3.81 15.02 -1.64 -3.22 -58.73 -31.88 -6.41 -13.57 -23.04 

3 -3.48 6.46 2.52 0.13 1.25 8.53 13.53 20.02 12.03 16.98 

4 0.02 14.28 -3.05 0.45 -0.58 15.11 29.16 17.47 3.95 7.75 

5 -6.63 -6.01 -10.16 -6.62 -5.32 28.01 6.15 8.21 0.17 3.27 

6 -16.61 -22.62 -26.61 -1.53 -1.76 -37.34 -18.81 -12.48 -1.11 1.72 

7 1.34 -4.52 -12.32 1.08 0.12 -9.06 0.49 2.27 3.92 1.67 

8 22.09 12.64 4.39 -1.52 2.62 33.54 6.22 13.87 1.59 7.63 

9 2.11 3.19 36.08 -1.66 -3.76 26.12 19.26 32.35 9.33 17.94 

10 -45.51 -8.44 35.64 -0.74 0.84 -29.94 5.78 42.74 -2.12 7.72 

11 -74.00 -27.05 31.51 -10.27 2.53 -27.20 -5.74 12.91 19.98 6.59 

12 11.23 -7.64 10.86 0.65 0.08 17.81 5.29 3.98 1.61 1.00 

13 16.77 -19.03 22.08 -4.81 -6.44 4.60 -10.62 10.36 -4.18 5.12 

14 -22.11 20.91 -3.13 -3.16 -3.29 -15.87 -4.11 -2.61 -8.99 -5.71 

15 -7.51 5.68 0.06 -0.39 0.16 7.44 6.99 10.92 9.61 10.28 

16 17.01 -0.58 -17.84 3.19 5.41 7.43 -4.41 -15.94 11.42 -3.34 

17 2.68 1.39 -21.91 5.78 0.17 -8.73 10.93 -1.28 11.35 8.09 

18 -6.66 4.00 -9.83 -0.62 -2.67 -26.91 -8.47 -17.34 -4.46 -5.70 

19 12.71 17.65 4.20 2.69 3.56 13.77 -0.65 2.88 -0.04 1.13 

20 16.79 14.38 9.80 6.23 9.37 64.22 13.15 20.53 -11.80 0.37 

21 7.91 4.37 5.16 -1.19 -0.44 17.49 43.41 37.25 19.09 25.33 

22 -22.99 -7.42 12.73 -3.39 -3.53 -40.30 5.21 28.57 25.24 7.30 

23 -20.35 -7.33 9.29 5.05 5.68 -4.70 -1.54 -1.45 -2.98 -1.45 

24 8.97 -21.63 10.74 -2.01 -5.18 14.86 -6.76 -2.60 -7.08 -1.56 

25 4.90 -0.04 8.47 -7.54 -9.03 15.19 -0.32 -3.59 -0.54 -4.53 

26 -18.67 20.75 2.31 -3.93 -3.09 -7.64 -4.14 3.68 -0.65 1.20 

27 -25.18 2.51 11.91 1.82 4.60 -45.03 13.09 19.91 47.62 15.99 

28 -4.69 -4.36 -6.69 -1.44 -2.46 -10.38 -7.97 -16.17 -3.28 -8.05 

29 3.03 12.26 0.37 3.14 1.78 12.72 19.69 14.98 4.01 11.23 

30 -4.71 2.32 -6.92 -3.53 -5.12 -19.16 -5.31 -17.20 -6.29 -6.66 

31 -5.95 -2.88 -4.12 0.06 -0.13 -8.38 -5.68 -13.06 -8.27 -7.63 

32 2.89 7.62 10.71 1.99 1.18 30.26 3.09 4.23 0.13 0.36 

33 -0.86 -5.99 -5.30 -5.35 -5.29 -9.42 11.54 12.06 -7.83 -0.30 

34 -15.97 -0.85 17.96 1.26 2.21 -27.87 5.46 18.05 -13.06 -3.20 

35 0.89 1.63 8.85 2.51 1.99 3.11 -4.23 -0.33 -1.04 -0.45 

36 10.25 -6.37 18.95 2.34 2.25 7.93 -29.94 14.06 -18.77 10.00 

37 7.94 4.55 0.46 2.21 3.72 16.94 -1.66 -12.62 7.71 -4.48 
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38 -9.30 13.99 4.38 -7.93 -6.32 -0.94 0.09 9.24 -3.36 3.04 

39 -9.34 -3.19 6.28 -5.45 -5.64 -1.15 6.70 -2.88 11.17 3.87 

40 -3.09 11.62 8.21 2.66 3.27 -14.57 21.05 -1.46 -13.33 -5.20 

41 8.15 -4.94 -13.67 3.33 2.46 -11.06 -4.96 -15.27 -3.01 -7.55 

42 -12.09 -14.73 -16.85 -3.57 -3.90 -29.80 -8.12 -14.04 -8.43 -7.65 

43 -8.30 -10.85 -14.70 -0.38 -1.62 -13.15 -8.30 -3.09 -4.64 -4.46 

44 0.05 -10.55 -16.16 -1.90 -2.23 14.85 -5.43 -3.22 1.12 -0.57 

45 6.03 -11.78 -34.14 2.48 -0.01 -0.65 -6.99 -18.65 3.26 2.44 

46 -5.64 -2.58 -15.78 1.87 -0.06 -16.21 -6.66 -8.60 -8.51 -8.42 

47 -9.85 1.17 8.37 3.31 3.88 4.60 0.62 2.56 9.83 5.30 

48 10.62 11.00 20.96 6.04 5.95 22.83 10.40 4.90 17.37 11.11 

 

 

Data 
point 

reference 
nos. 

Site 3- Bobadah Site 4 – Rocky Creek 

Volterra 
% 

M5 
Tree 
% 

RF 
% 

ELM 
% 

ANN-
CoM 

% 
Volterra 

% 

M5 
Tree 
% 

RF 
% 

ELM 
% 

ANN-
CoM 

% 

1 -13.21 -74.60 57.01 -6.96 29.01 -36.48 3.67 10.89 15.46 13.76 

2 147.05 12.10 129.11 19.13 -17.67 -5.58 6.83 -7.88 4.46 2.85 

3 -3.15 3.91 -3.47 4.38 1.88 18.28 7.28 13.25 6.10 5.66 

4 -95.60 21.57 -2.46 22.13 15.41 -40.50 -0.34 0.53 -2.44 -7.82 

5 35.36 23.39 7.98 -0.54 -2.37 -12.29 18.96 25.34 -4.20 0.07 

6 15.44 -11.49 -15.25 1.76 -0.32 -19.69 -3.69 -3.27 -5.80 -3.15 

7 -40.29 -10.39 -14.88 2.65 0.24 -22.13 -18.72 -11.23 0.21 1.94 

8 -86.29 -4.57 -20.39 -2.71 -0.27 -18.77 13.59 0.46 -0.10 1.14 

9 24.07 16.30 20.50 8.86 10.47 -0.90 9.79 10.15 7.52 5.63 

10 -70.08 -24.22 -4.89 -16.85 -15.49 -25.24 -9.37 6.21 -0.60 -5.58 

11 -67.16 -76.97 35.36 8.12 87.34 6.39 -3.89 32.76 -2.47 1.37 

12 29.01 -27.92 97.01 18.52 12.93 -22.05 -1.21 -21.46 -7.11 -6.07 

13 1.68 -4.24 21.51 12.05 7.10 -43.58 -87.72 65.30 -6.37 0.24 

14 26.92 -4.46 9.45 -2.70 -3.13 -23.22 -7.45 7.69 -6.06 -5.54 

15 19.57 2.92 -0.98 6.26 4.48 0.02 -7.68 5.51 -1.14 -0.18 

16 -26.59 19.90 -15.73 6.34 -0.56 -35.11 -6.10 -1.69 2.71 -0.84 

17 -25.40 28.05 20.60 20.83 22.03 -28.15 -3.71 -1.41 -2.67 -3.95 

18 -4.18 -6.96 -4.45 -0.53 0.88 -17.34 9.58 4.63 -0.85 1.90 

19 -75.03 -10.34 -16.35 -2.57 1.11 -35.19 -3.70 -2.62 -2.17 -4.44 

20 3.49 7.48 10.06 4.42 6.30 18.79 15.10 16.67 -0.68 2.62 

21 -39.68 1.07 -6.00 -3.26 -12.76 -13.85 -0.80 -6.97 -2.34 -2.22 

22 -32.79 0.05 6.38 -5.73 -12.41 -27.02 -25.75 4.01 -6.55 -11.64 

23 -3.72 -0.79 27.94 1.50 1.25 -33.70 -27.36 12.61 -10.60 -11.85 

24 16.78 11.50 8.82 8.23 8.89 -1.30 5.73 17.47 0.41 0.71 

25 4.16 6.29 -1.91 6.92 3.19 3.92 6.04 -3.96 0.41 0.58 

26 -31.25 -1.37 -4.66 2.23 -6.68 -28.50 1.03 -9.59 1.86 1.07 

27 -55.57 11.90 13.41 15.95 9.49 -7.59 1.53 9.62 -5.94 -5.07 

28 38.24 23.43 24.63 16.87 19.78 -2.22 -13.25 -8.95 0.69 -0.22 

29 -19.35 12.37 11.76 10.60 9.85 -21.40 -3.31 7.69 1.03 -1.28 

30 -22.42 -6.75 -9.17 -4.31 -4.09 -8.81 -1.71 0.22 -1.25 0.48 

31 -15.98 -15.55 -13.89 -9.12 -8.09 -20.57 -10.61 -1.03 -0.44 1.40 
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32 -32.77 3.25 4.07 0.54 0.01 5.92 5.20 9.83 -0.88 -0.35 

33 -70.58 -19.60 -20.02 -13.70 -18.82 -12.83 -0.68 -7.73 -3.35 -3.01 

34 84.30 4.39 67.25 5.59 -7.93 -8.74 -13.06 20.95 -2.59 -2.81 

35 -20.56 -9.70 -17.99 -9.77 -11.04 -5.05 -6.05 -5.32 -11.97 -11.70 

36 25.18 5.30 43.91 16.44 8.45 -7.48 1.41 15.14 -0.97 0.28 

37 36.14 16.20 19.46 12.66 10.30 11.15 8.34 12.43 2.94 4.82 

38 -82.91 3.41 -18.86 -2.83 -3.54 -49.53 -10.14 -22.75 -11.30 -12.08 

39 -0.56 31.91 41.45 30.50 15.37 -20.20 -23.39 4.31 4.68 -4.69 

40 159.55 81.70 74.25 19.32 -4.50 -28.39 -13.35 3.49 -6.45 -7.41 

41 1.74 -5.79 -4.40 6.88 6.60 -4.47 22.85 14.93 1.78 3.91 

42 5.31 -19.54 -25.23 1.45 -6.38 -18.14 -16.54 -15.34 -6.43 -8.12 

43 -30.48 -9.77 -15.61 -2.26 -3.69 -23.85 -17.48 -8.88 0.01 2.09 

44 -12.69 -1.50 -5.75 -4.63 -4.04 10.33 -9.34 -13.17 -0.07 -0.68 

45 -0.04 -17.61 -19.86 2.07 -2.11 -2.92 -17.15 -30.54 -6.87 -4.10 

46 -31.48 -4.92 -13.74 -3.48 -0.72 25.01 -8.84 -17.27 -3.67 0.06 

47 -10.82 5.49 6.47 8.36 12.23 -9.30 -8.41 -19.03 -10.45 -8.89 

48 41.10 27.59 20.88 24.91 21.83 -10.69 11.78 16.19 -4.02 -2.28 

 

b) lower layer soil moisture (SMLL) 

Data 
point 

reference 
nos. 

Site 1- Menindee Site 2- Balranald 

Volterra 
% 

M5 
Tree 
% 

RF 
% 

ELM 
% 

ANN
-CoM 

% 
Volterra 

% 

M5 
Tree 

% 
RF 
% 

ELM 
% 

ANN-
CoM 

% 

1 1.44 0.85 -0.84 0.50 0.68 -17.01 -1.97 0.79 0.44 -0.05 

2 -4.03 -2.83 -2.92 -2.66 -2.44 -24.06 -2.92 -2.14 -2.12 -2.66 

3 1.81 0.09 0.87 0.17 0.70 -11.90 0.59 0.06 0.33 -0.27 

4 0.01 -1.13 -0.26 -0.59 -0.22 -8.72 0.76 -0.03 -0.05 0.17 

5 0.64 -0.29 0.59 0.39 0.69 -6.12 0.01 0.57 0.03 0.61 

6 -2.54 0.10 -1.01 -0.88 -0.21 -7.11 -1.64 1.74 0.57 0.64 

7 -3.75 -2.18 1.21 1.91 0.88 -0.41 -3.76 0.27 0.36 1.06 

8 3.96 -1.94 1.46 0.75 0.47 -0.16 -3.36 0.47 0.75 1.07 

9 -30.23 -1.95 4.08 -1.60 -0.16 -7.24 -3.70 0.31 -0.05 0.35 

10 3.90 -0.14 3.27 0.01 0.65 -8.26 -1.18 0.14 0.93 -0.37 

11 -19.07 -0.47 -3.46 -1.53 -1.77 -10.18 0.40 -1.07 -0.53 -0.92 

12 0.58 0.16 -0.47 0.05 0.38 -16.16 2.24 0.56 0.30 0.60 

13 1.65 -0.11 0.75 0.11 0.65 -14.10 1.06 0.24 0.98 0.65 

14 -11.77 -3.08 -1.29 -2.51 -2.30 -11.93 -2.84 -2.50 -2.81 -2.49 

15 0.82 -0.29 1.19 0.34 0.81 -9.72 1.27 1.14 0.88 1.05 

16 -4.31 -1.21 -0.99 -0.92 -0.77 -13.57 -0.20 -1.53 -0.04 -0.66 

17 -11.38 -0.59 1.69 0.49 0.36 -11.59 0.60 -0.69 -0.07 -0.64 

18 1.13 -1.61 1.22 -0.27 -0.45 -11.28 -1.91 -0.72 -0.56 -1.54 

19 4.31 -0.57 3.27 -0.03 0.39 -9.91 -1.51 -0.16 0.60 -0.73 

20 3.11 -0.15 2.07 0.17 0.55 -12.51 0.70 2.26 0.68 0.77 

21 -3.97 0.23 -1.37 -0.16 -0.06 -13.99 -0.52 0.27 -0.52 -0.22 

22 1.14 0.37 -0.68 0.46 0.54 -13.40 -0.61 1.63 1.44 -0.01 

23 0.18 -1.10 -0.80 -0.69 -0.35 -9.22 -1.49 -1.96 3.82 -1.36 

24 -5.63 -0.28 -0.05 0.29 0.21 0.87 0.10 0.57 4.60 0.23 
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25 -1.33 -0.40 -0.37 0.19 0.26 3.45 0.13 1.15 3.54 0.21 

26 -13.43 -3.08 -0.80 -2.01 -2.05 -0.28 -1.18 -2.64 -1.11 -2.42 

27 -4.05 -0.28 0.53 0.89 0.58 -14.50 1.72 0.20 -0.29 -0.02 

28 -4.11 -1.14 0.94 -0.15 -0.04 -26.79 0.20 -1.01 -3.59 -1.36 

29 -2.76 -0.26 1.46 0.73 0.79 -23.62 1.32 0.21 -1.18 -0.23 

30 -6.20 -1.07 1.35 -0.36 -0.09 -12.35 0.32 -0.71 -2.19 -1.31 

31 -1.82 -0.37 0.54 0.55 0.55 -16.14 -0.36 -0.01 4.83 -0.26 

32 -2.50 -0.32 0.66 0.51 0.54 -20.50 -0.60 -0.63 5.10 -0.42 

33 -1.25 -1.17 -0.55 -0.43 -0.30 -22.28 1.43 -0.48 -0.14 -0.34 

34 -3.07 0.02 0.44 0.79 0.63 -37.48 1.61 0.45 -3.41 -0.03 

35 -2.07 -1.61 -1.00 -0.04 -0.81 -24.54 1.17 -0.60 -5.15 -1.00 

36 -6.15 -0.69 0.76 0.81 0.09 7.70 2.56 0.64 -4.21 0.19 

37 -3.28 -0.12 0.23 0.93 0.14 -1.08 1.14 0.60 -2.42 -0.47 

38 0.06 -1.28 -0.68 -1.13 -1.58 -1.79 -0.46 -1.54 -4.68 -2.21 

39 0.22 0.53 2.00 0.85 0.38 1.64 1.58 0.23 -3.77 -0.33 

40 -3.57 -0.65 -1.57 -0.17 -0.78 3.40 1.44 0.35 -5.03 -0.59 

41 -13.56 -0.06 1.60 0.45 -0.01 6.60 1.36 -0.06 -3.95 -0.59 

42 -3.59 -1.90 -1.45 -0.35 -1.16 0.12 -1.83 -2.00 3.74 -1.34 

43 1.48 -0.32 1.02 -0.12 0.52 -5.51 -0.61 0.55 -0.65 0.25 

44 -16.72 -0.70 0.95 0.50 -0.01 -8.22 0.94 -0.70 -0.03 -0.42 

45 -14.54 -2.22 -0.10 -1.71 1.05 -9.63 -2.30 -1.11 -0.19 -1.56 

46 6.95 3.42 -2.92 0.31 0.22 -1.21 -1.77 -0.06 0.26 -0.43 

47 10.43 0.71 -1.91 -0.97 -0.74 -6.03 -4.36 -0.39 -0.26 -0.44 

48 -5.88 0.72 -3.38 1.43 0.36 -13.41 -3.60 -0.11 0.34 -0.66 

 

 

Data 
point 

reference 
nos. 

Site 3- Bobadah Site 4 – Rocky Creek 

Volterra 
% 

M5 
Tree 
% 

RF 
% 

ELM 
% 

ANN-
CoM 

% 
Volterra 

% 

M5 
Tree 
% 

RF 
% 

ELM 
% 

ANN-
CoM 

% 

1 -14.16 -0.80 -0.13 0.19 0.04 -35.39 -0.84 0.23 4.09 0.04 

2 -10.54 -3.42 -2.16 -2.58 -2.71 -4.65 -1.59 -2.29 -2.89 -2.46 

3 -5.17 -1.22 -0.36 -0.30 -0.34 -3.53 -1.81 1.68 0.39 0.21 

4 -9.31 -1.03 -0.46 -0.25 -0.63 -2.50 0.86 -0.19 -0.29 -0.01 

5 3.78 1.21 0.45 1.88 1.10 0.56 0.36 0.47 2.13 1.11 

6 -8.49 3.43 0.78 2.26 1.79 -5.23 -1.41 -1.93 0.67 -0.70 

7 -3.66 -2.56 0.52 0.22 0.38 -4.40 -1.61 -0.48 0.36 -0.11 

8 -0.25 -2.10 -0.38 1.11 0.71 -3.33 -1.11 0.95 0.58 0.49 

9 -12.30 -1.74 -0.30 -0.08 -0.53 -3.37 0.59 -0.79 -0.40 -0.26 

10 -8.26 2.31 0.78 1.00 0.74 0.59 0.61 0.22 2.74 1.36 

11 -8.69 -1.32 -1.35 -0.15 -0.33 -18.28 0.24 -1.67 -1.92 -1.59 

12 -5.89 -0.71 0.19 0.54 0.56 8.99 1.80 1.02 -0.93 0.50 

13 -7.90 -1.02 0.04 -0.08 -0.09 -19.85 3.15 -0.90 2.33 2.19 

14 -24.82 -3.15 -2.86 -2.36 -3.30 -21.85 1.57 -2.79 -0.97 -0.59 

15 -21.18 -0.89 -0.24 0.00 -0.14 -16.80 2.79 22.80 -4.27 -2.80 

16 -8.80 -0.84 0.07 -0.92 -0.64 -3.26 -0.63 -1.25 0.57 -0.52 

17 -18.61 -0.13 -0.14 0.24 0.04 0.38 0.06 0.97 1.39 0.83 

18 -8.46 -0.71 -1.53 -0.75 -1.16 0.14 -1.57 -1.86 -1.42 -1.21 
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19 -8.11 -0.78 0.53 0.75 0.44 -23.77 -0.40 -0.86 0.52 -0.52 

20 -8.95 1.67 -0.29 0.92 0.34 -0.59 -0.65 -0.93 -0.60 -0.39 

21 -7.73 -0.88 -0.26 0.00 0.05 -2.37 0.27 1.28 0.19 0.06 

22 -4.23 -0.63 0.22 0.33 0.35 2.58 0.29 0.98 0.48 0.81 

23 -1.12 -0.62 -0.42 0.00 -0.29 -10.06 2.42 0.27 -0.89 0.05 

24 -41.25 1.13 0.34 1.79 0.03 -30.21 2.79 -0.25 2.61 2.72 

25 -10.34 1.26 -0.74 1.18 0.42 -17.81 2.28 0.10 -1.07 -0.03 

26 0.54 -1.70 -2.05 -0.69 -1.58 9.28 -0.46 -2.40 -3.38 -1.92 

27 4.68 0.81 1.27 2.85 1.24 12.71 3.05 -1.21 1.61 0.96 

28 6.92 -0.21 -0.89 -1.31 -1.12 6.23 -0.33 -0.02 -2.18 -0.67 

29 6.07 0.56 0.12 0.35 -0.05 3.91 -0.07 0.29 -0.78 0.09 

30 -1.64 -0.39 -0.76 1.36 -0.07 0.89 0.43 0.59 3.11 1.32 

31 -5.43 -1.09 0.24 -0.12 0.05 -1.54 -0.89 0.90 1.07 0.55 

32 -8.62 -0.45 0.17 0.31 0.36 -1.19 -0.99 -0.02 1.11 0.42 

33 -7.88 -1.32 -0.71 0.11 0.00 -6.93 -1.22 0.39 1.03 0.41 

34 -10.71 -0.38 0.94 0.49 0.24 -12.25 1.67 1.07 1.16 1.21 

35 -8.56 -1.20 -1.20 -0.51 -0.97 -27.19 -0.11 0.76 -0.22 -0.16 

36 1.18 1.84 0.06 1.13 1.04 -25.14 0.36 -0.03 2.75 0.94 

37 -14.61 -1.18 -0.04 -0.24 -0.42 -19.25 0.56 0.07 -0.28 0.18 

38 -7.08 -2.87 -1.78 -1.94 -1.88 -10.23 -0.56 -1.65 -1.71 -1.32 

39 -2.67 -0.74 1.49 0.14 0.40 -6.67 0.58 0.77 2.88 1.33 

40 1.66 0.91 -1.24 0.53 0.07 5.87 0.19 0.41 -1.63 -0.20 

41 -9.23 -0.99 -0.11 -0.07 -0.19 12.74 3.20 0.97 -0.25 1.27 

42 -11.14 -0.56 1.67 1.88 1.96 -16.22 4.27 3.71 3.43 3.89 

43 16.32 0.09 2.56 -0.97 -0.08 12.31 -3.05 -0.55 0.00 -0.16 

44 7.43 1.75 -0.88 0.96 0.15 4.76 -2.34 -0.35 -0.59 -0.46 

45 -7.26 3.57 -5.45 -0.53 -0.74 -3.24 2.43 -5.32 -4.96 -0.40 

46 6.92 5.70 -4.46 0.55 0.22 -0.01 5.89 -5.18 0.19 -0.04 

47 16.01 -0.74 1.87 -0.02 -0.14 14.34 0.26 0.55 2.05 0.36 

48 13.78 -1.09 3.04 -0.20 0.76 -0.22 -1.66 -0.11 0.28 0.23 
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Table A4 Percentage deviations of forecasted values from the X=Y line from 

the multivariate sequential EEMD-ELM, EEMD-MARS and the 

standalone models MARS and ELM models in forecasting of upper 

layer soil moisture at the four study sites. 

Data 
point 

reference 
nos. 

Site 1 - Menindee Site 2 - Cooinbil 

MARS 
% 

ELM 
% 

EEMD-
MARS 

% 

EEMD-
ELM 

% 
MARS 

% 
ELM 

% 

EEMD-
MARS 

% 

EEMD-
ELM 

% 

1 46.78 6.63 12.68 957.52 265.27 316.86 422.07 166.01 

2 42.78 44.05 1.32 10.99 -46.02 -63.62 18.34 3.23 

3 105.54 117.84 -9.71 87.39 30.12 21.15 46.85 -41.47 

4 113.70 34.25 79.33 37.71 41.23 18.49 39.43 20.61 

5 1.20 -19.36 26.73 11.02 -51.67 -45.20 -17.65 -9.24 

6 -29.55 -1.22 -20.63 -7.45 0.76 3.47 11.30 -7.60 

7 12.04 -11.62 22.45 14.39 -30.96 -48.30 17.70 5.90 

8 -4.62 -4.37 -7.69 9.42 -39.89 -27.65 -18.63 -10.05 

9 15.13 25.50 -2.70 11.33 25.03 1.36 24.25 0.02 

10 14.13 39.73 29.54 49.12 6.12 43.07 8.91 5.59 

11 -43.17 -32.78 22.69 20.92 -72.50 -63.74 -34.09 -38.66 

12 -43.84 -44.80 8.51 -3.33 7.11 8.75 8.57 6.63 

13 -30.73 -38.88 -15.55 -22.16 -31.34 -23.73 -9.93 -7.03 

14 17.51 12.06 -2.16 0.90 18.19 24.55 9.04 15.15 

15 25.87 10.32 23.48 10.72 -8.41 5.23 10.84 -0.04 

16 -1.34 -20.74 0.14 -4.52 -28.19 -20.84 -25.42 -2.39 

17 9.05 -7.89 -14.47 -11.02 4.82 -2.51 -17.79 -2.45 

18 38.16 9.64 -5.94 -7.90 -4.73 -2.10 -12.81 -8.88 

19 41.79 6.40 4.92 -4.58 15.29 16.42 22.46 21.40 

20 13.46 -1.62 1.77 -1.96 -43.64 -47.39 -7.52 -13.75 

21 2.77 -12.56 -3.43 -11.38 -9.63 -18.63 -15.69 -7.66 

22 25.74 8.55 2.40 -0.94 -5.35 7.91 11.58 23.43 

23 24.17 6.13 -6.68 -3.87 -10.99 -11.32 -14.38 0.88 

24 21.24 2.63 -6.22 -5.72 -9.37 -0.26 -20.95 2.75 

25 9.83 8.86 -6.13 -5.75 2.00 8.51 -24.51 3.95 

26 3.15 5.06 1.34 -3.81 -1.69 6.74 -21.58 16.52 

27 -20.85 -5.58 -6.18 -13.33 -7.42 -3.78 -26.24 4.81 

28 -19.26 9.70 -12.99 -12.54 14.76 14.46 -12.92 22.29 

29 10.57 -0.48 -14.97 -12.18 21.07 18.75 -12.06 38.00 

30 -3.85 -7.55 17.36 15.78 36.66 28.23 -36.61 35.06 

31 -60.63 -60.88 10.02 2.16 64.83 45.67 -70.70 49.61 

32 -55.03 -45.26 -15.31 -17.88 26.62 4.56 -73.22 10.45 

33 30.10 10.73 26.93 23.70 80.55 50.60 -49.87 57.93 

34 8.73 -16.54 4.37 -0.66 14.64 -14.27 -69.44 22.70 

35 36.28 14.42 12.83 10.09 29.09 11.72 -60.65 28.05 

36 27.10 0.76 8.74 11.49 52.49 38.19 -54.97 47.99 

37 -21.52 -32.47 -3.60 -5.69 -34.30 -34.12 -58.68 -6.23 

38 13.39 2.63 10.87 9.71 36.77 15.30 -32.21 27.98 

39 19.10 -13.27 -0.17 5.17 -9.90 -8.89 -41.52 42.22 

40 30.22 16.18 -5.18 29.49 -29.09 -24.08 -54.85 6.19 



 

185 

 

41 28.17 -24.10 1.04 1.74 63.18 71.28 -38.95 53.63 

42 35.13 13.09 4.62 48.53 37.95 58.62 -77.33 52.05 

43 98.64 16.88 11.72 15.23 61.94 85.35 -70.33 55.25 

44 112.16 -74.00 18.81 -33.15 49.43 57.41 -55.11 45.56 

45 36.36 34.98 -14.48 6.88 21.71 30.95 -15.90 8.99 

46 -15.97 -13.21 -26.28 -12.79 -57.58 -47.32 -46.96 -31.24 

47 3.21 -6.58 -14.19 -13.25 42.07 36.57 -24.58 11.65 

48 5.34 17.60 -33.09 -17.91 15.06 56.62 -40.41 12.19 

49 35.71 45.25 -48.35 -1.60 54.37 125.27 -9.92 52.09 

50 60.95 21.07 -36.80 -15.23 68.83 109.82 12.66 107.20 

51 156.99 108.42 168.94 197.74 204.25 280.26 283.89 446.77 

52 -51.46 -60.70 46.01 20.89 -67.98 -64.62 -3.08 1.29 

53 -41.30 -29.33 -32.36 -22.18 -32.35 -21.38 -30.33 -17.50 

54 33.36 28.74 19.09 29.54 42.20 15.89 6.62 37.77 

55 34.09 35.28 54.23 49.80 -5.53 15.58 -71.09 29.21 

56 24.27 7.72 81.22 49.02 43.02 53.76 94.74 139.74 

57 23.85 5.10 51.49 50.77 -67.74 -59.60 -16.10 -5.52 

58 -23.35 -40.21 13.18 -11.44 -6.28 -16.14 -38.90 -15.33 

59 -1.51 14.70 -14.92 -24.10 -11.98 -12.37 -35.92 -16.55 

60 26.86 45.96 -26.90 -26.94 32.64 55.40 -57.03 2.87 

61 59.39 64.13 -38.21 -17.38 35.86 93.00 49.11 52.39 

62 61.79 -5.76 -47.06 -80.88 80.01 98.32 41.56 79.80 

63 108.01 40.78 -78.28 -92.70 174.75 172.85 58.85 134.34 

64 158.72 133.76 -66.91 -36.08 218.89 182.03 52.53 175.52 

65 21.80 49.63 -13.35 10.04 14.32 -13.59 -44.93 2.55 

66 -48.71 -55.75 -7.95 -23.86 -18.74 -20.41 -35.00 -11.36 

67 -22.47 -17.22 -14.53 -19.58 -5.36 -18.62 -27.92 -19.32 

68 21.46 1.85 4.95 -1.62 -12.56 -1.24 -8.07 1.35 

69 35.30 16.00 9.96 2.99 -0.56 15.82 0.41 10.03 

70 25.62 15.68 9.78 4.04 5.87 9.73 -18.34 -11.34 

71 -5.94 -5.85 -1.03 -13.95 10.78 13.33 -28.22 -22.03 

72 9.45 12.75 -4.04 -15.58 33.22 22.03 -34.29 -8.02 

73 37.37 39.56 -8.64 -7.40 18.08 7.52 -5.92 1.07 

74 -13.63 11.66 6.43 -6.18 30.55 18.68 56.70 39.80 

75 -39.47 -36.61 -18.31 -24.63 -65.68 -69.13 -27.84 -36.37 

76 -16.44 -10.40 -7.72 -15.40 9.22 13.40 4.32 8.78 

77 4.79 -1.36 -6.94 -7.96 11.29 14.95 15.92 17.35 

78 2.65 -0.57 0.75 -1.48 -19.42 -6.24 24.25 15.14 

79 -8.68 -13.65 -12.22 -13.07 -26.57 -29.16 -26.65 -11.60 

80 -9.80 4.43 -4.32 -11.14 -8.75 -3.05 -14.88 -3.82 

81 20.07 8.94 -9.35 -10.27 -4.78 -1.41 1.31 -3.28 

82 12.61 2.58 -9.46 -14.58 -14.00 -9.53 -2.79 -3.35 

83 1.72 25.31 -4.26 -2.56 -22.19 -4.70 -8.94 -6.18 

84 0.66 7.08 22.20 9.82 9.07 16.25 11.39 7.72 

85 -53.47 -50.10 -24.60 -29.69 -47.45 -39.50 -28.96 -23.74 

86 10.45 1.69 4.80 -1.37 -1.46 0.93 -15.06 -2.53 

87 31.63 12.08 6.01 7.58 -0.58 -5.32 -10.46 2.31 

88 38.89 18.11 24.07 15.01 7.83 11.32 -9.37 11.28 

89 28.34 0.26 25.14 14.09 17.11 23.32 -15.92 3.22 
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90 8.18 -7.34 22.58 12.95 57.04 66.60 -27.01 70.12 

91 4.29 -46.60 23.35 8.46 70.79 2.78 57.66 138.68 

92 17.88 54.20 15.59 33.24 -47.66 -56.08 -35.58 -36.80 

93 -13.86 -21.50 -18.83 -26.09 30.63 22.35 -4.45 -10.94 

94 31.27 57.50 31.64 36.66 -7.57 -2.38 17.84 30.35 

95 -67.53 -65.20 -27.97 -34.20 -65.40 -66.32 -29.79 -30.52 

96 -4.58 -1.56 -4.44 -4.65 26.27 7.93 3.35 36.21 

97 31.52 36.40 17.22 30.27 16.16 -8.35 -36.25 47.15 

98 15.23 -5.71 43.44 27.69 38.12 13.43 72.65 144.53 

99 35.52 30.93 27.30 21.14 105.32 114.40 107.52 283.06 

100 70.64 43.78 2.26 -13.76 77.34 89.19 109.24 217.26 

101 145.22 182.25 45.73 76.80 221.78 274.57 371.08 291.31 

102 -16.51 19.14 -5.99 -3.68 -56.60 -57.58 -17.49 -26.23 

103 -14.93 1.03 3.27 -15.25 40.99 43.77 0.53 -12.63 

104 17.59 70.08 1.21 34.69 -11.91 8.82 -38.94 -30.10 

105 22.88 26.48 17.30 8.86 38.79 100.90 40.00 50.78 

106 -15.22 18.12 0.99 9.14 -27.23 7.50 70.61 48.98 

107 -16.46 27.36 -4.93 4.20 -37.41 -33.13 -1.41 -7.86 

108 3.19 18.74 -3.70 -1.03 -16.70 -1.54 -10.77 -10.14 

109 33.60 38.32 7.63 18.72 63.69 29.33 19.85 36.40 

110 15.88 39.30 3.79 22.81 45.37 50.32 -27.81 89.81 

111 70.98 47.71 20.66 39.57 122.53 135.08 197.73 205.43 

112 103.14 113.72 61.26 81.77 140.56 95.33 136.29 160.24 

113 -21.79 -15.66 11.82 6.09 96.98 33.02 95.30 55.06 

114 -30.65 17.99 -20.40 -13.81 -12.35 -34.95 -8.04 -38.58 

115 26.67 29.84 1.69 5.85 15.86 21.33 -12.74 -31.63 

116 18.11 12.09 1.24 4.99 10.11 46.34 -26.27 -34.63 

117 31.20 32.59 1.77 16.48 38.93 57.08 -33.43 -38.81 

118 15.02 8.84 -15.85 1.99 87.90 65.09 9.31 -20.98 

119 21.83 38.01 17.21 42.99 151.19 91.29 80.25 63.46 

120 -46.19 -37.71 5.85 12.11 29.20 -13.95 79.90 62.89 

121 -40.97 -35.59 0.03 -7.55 -6.11 -33.10 26.43 4.33 

122 -14.11 -27.03 -8.37 -8.32 -41.79 -49.60 -26.94 -26.25 

123 28.07 9.77 16.39 22.11 33.04 35.97 38.33 31.98 

124 4.54 -17.18 -1.66 0.03 -35.48 -29.72 5.60 -8.16 

125 5.57 -9.72 -7.97 -8.93 -21.90 -26.32 -6.89 -22.18 

126 21.27 6.10 -8.67 -0.44 -4.13 -6.00 1.44 -21.30 

127 3.31 -10.33 -2.05 0.89 -8.25 13.39 29.99 -9.70 

128 -17.86 -30.31 -13.90 -12.99 -49.08 -45.29 -7.67 -29.84 

129 -1.34 4.64 9.36 9.76 30.29 37.43 34.35 25.64 

130 4.27 -10.35 -6.23 -1.95 -30.86 -19.17 -4.36 -22.93 

131 1.30 -0.74 -7.58 -1.77 -7.88 -6.74 -4.34 -14.46 

132 -4.19 -18.08 -17.90 -17.68 -15.48 -1.41 13.65 -23.01 

133 30.61 8.10 -9.33 -3.90 -3.70 -3.79 38.04 -5.10 

134 -24.29 -37.42 -23.09 -23.45 -37.26 -28.71 23.19 -16.39 

135 -5.48 -7.20 -3.27 -4.69 22.70 29.47 80.13 18.41 

136 22.94 1.77 2.19 4.11 -20.50 -1.05 102.35 8.41 

137 3.19 -20.32 -19.35 -14.56 -21.67 -25.62 62.90 12.82 

138 -9.86 -22.24 -20.12 -20.56 -49.07 -37.17 16.41 -10.12 
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139 -7.91 -17.70 -23.47 -18.44 -8.10 -6.24 30.08 -0.22 

140 -21.49 -16.87 -2.23 -7.26 -14.34 -4.84 39.40 -7.31 

141 -48.64 -41.80 -24.39 -20.00 -47.46 -34.71 6.57 -18.92 

142 -38.32 14.89 13.40 21.74 -13.97 -1.91 16.33 8.56 

143 -21.89 1.47 10.40 7.80 -21.25 -10.60 -25.58 -0.79 

144 17.80 21.13 20.95 15.63 16.76 37.33 -58.33 -4.97 

145 38.81 5.37 10.07 29.53 -29.70 -8.14 -113.28 -31.81 

146 26.72 -19.08 25.74 37.75 28.34 42.33 -102.91 45.10 

147 15.80 -75.85 51.09 52.09 25.46 2.79 28.35 186.47 

148 -2.70 -90.50 61.22 37.21 -29.45 -63.03 14.31 101.28 

149 -3.56 -85.43 53.17 33.30 -4.95 -32.90 -26.58 7.57 

150 -5.26 -88.37 44.74 21.04 -37.29 -22.64 -74.87 -5.96 

151 29.19 -65.53 56.34 15.19 45.53 59.53 -117.69 59.33 

152 4.42 -108.61 40.18 26.25 -2.70 16.78 -121.14 134.51 

153 -38.81 -70.08 -25.63 -32.93 -48.65 -45.91 -97.74 26.84 

154 -3.98 -28.69 -28.92 -30.49 27.71 25.97 -114.03 15.89 

155 -31.94 -70.86 -46.71 -50.96 -18.46 12.90 -186.40 9.42 

 

 

Data 
point 

reference 
nos. 

Site 3 - Fairfield Site 4 - Bodangora 

MARS 
% 

ELM 
% 

EEMD-
MARS 

% 

EEMD-
ELM 

% 
MARS 

% 
ELM 

% 

EEMD-
MARS 

% 

EEMD-
ELM 

% 

1 74.43 129.60 -34.60 -59.87 25.43 46.34 2.08 20.59 

2 242.05 106.93 -102.78 -64.51 40.77 69.59 -24.84 -1.85 

3 218.80 222.93 58.49 -17.58 0.21 27.13 -5.25 -15.19 

4 328.58 175.72 124.34 14.56 133.52 154.06 22.24 11.80 

5 407.79 245.70 284.93 142.67 62.23 51.99 177.09 179.38 

6 -15.49 2.86 -24.55 -38.94 -36.72 -47.89 -12.61 -7.82 

7 7.88 2.43 -24.69 -29.59 -15.79 -20.68 -21.90 -22.42 

8 18.36 19.13 -30.36 -26.13 4.02 -1.41 -13.14 -8.36 

9 75.23 52.30 -1.84 -9.84 19.55 16.75 -5.21 1.99 

10 86.64 67.18 37.37 42.20 35.60 23.89 23.22 24.99 

11 -41.92 -48.12 -23.90 -24.06 -45.40 -55.68 -23.11 -33.19 

12 -6.78 -8.85 -33.35 -24.96 -0.52 -1.24 8.84 3.53 

13 13.20 18.02 -22.54 -15.97 -10.95 -10.00 -12.70 -11.75 

14 29.42 19.25 -11.04 -8.71 12.04 14.07 -5.06 -0.98 

15 54.20 28.37 3.66 10.01 49.25 28.50 21.71 19.77 

16 29.04 29.73 0.16 5.83 -4.49 -13.51 11.31 -3.89 

17 31.31 42.77 -9.65 2.93 -17.05 -3.43 -9.48 -15.97 

18 20.26 34.45 -17.87 -5.29 9.60 11.10 -1.94 -1.52 

19 62.74 80.26 10.55 18.96 51.48 35.78 11.30 25.09 

20 9.97 44.39 15.68 11.38 12.54 2.16 20.74 20.78 

21 -33.16 -0.47 -37.25 -33.01 -33.90 -20.19 -20.15 -23.60 

22 24.39 -4.23 -11.79 -5.22 -12.36 0.14 10.84 6.33 

23 10.98 6.06 -23.89 -15.70 -13.43 -2.66 -8.02 -4.99 

24 50.37 23.45 -0.48 14.00 -2.66 2.77 0.30 0.27 

25 61.89 44.91 -10.32 5.64 1.34 9.74 -0.89 -3.34 
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26 60.09 52.06 7.45 24.60 23.89 21.90 22.91 14.71 

27 -19.87 -20.21 -35.34 -23.39 -28.36 -29.18 -19.69 -22.52 

28 22.77 39.89 -19.24 -1.41 -8.44 3.21 -3.00 -8.11 

29 34.72 63.10 14.67 19.75 0.09 9.88 -3.64 -4.59 

30 12.74 2.18 26.65 35.24 37.56 20.14 5.81 10.91 

31 -15.96 -5.88 26.55 25.58 37.64 25.11 28.05 20.65 

32 -33.97 -26.32 -35.81 -28.13 -35.50 -17.42 -16.57 -27.99 

33 16.01 2.80 -0.80 11.99 36.34 29.68 20.38 4.53 

34 44.58 12.89 13.10 30.21 39.70 37.08 14.80 6.31 

35 57.99 23.57 29.10 37.61 -3.64 10.84 3.90 -13.05 

36 78.47 44.48 39.97 48.49 53.56 89.47 15.75 -5.89 

37 -26.71 -39.66 -26.53 -15.21 -13.51 -0.70 2.73 -19.39 

38 27.92 45.88 -32.40 -4.34 38.88 77.36 40.11 6.37 

39 98.26 58.69 -16.04 3.83 80.10 71.70 71.56 38.91 

40 135.73 86.31 -27.34 -0.41 -58.13 -58.13 -31.81 -45.16 

41 126.99 62.28 5.36 58.30 45.09 59.23 6.64 -18.09 

42 174.31 91.70 -24.08 14.22 111.96 110.98 27.94 -0.06 

43 72.82 84.69 -51.38 -26.41 83.43 64.37 53.84 22.44 

44 210.79 116.77 -36.79 -22.20 86.52 79.25 45.64 22.41 

45 415.84 268.51 -41.30 11.51 112.53 104.63 74.27 46.76 

46 212.43 117.95 -53.26 -1.04 0.22 -5.86 39.89 21.24 

47 70.22 114.38 -63.11 -85.11 -22.44 -16.32 -0.09 -11.03 

48 173.04 163.89 -1.58 -90.14 7.30 5.75 -5.05 -14.03 

49 271.00 186.43 121.22 7.86 48.45 49.89 23.35 20.00 

50 -27.62 -38.08 -26.31 -21.33 -28.78 -28.24 -17.94 -14.89 

51 25.65 23.29 -35.44 3.42 42.41 39.28 8.36 7.41 

52 77.32 34.77 2.19 -23.72 -24.93 -20.41 -13.15 -24.40 

53 47.59 43.10 -36.04 -23.39 -14.18 -14.84 0.31 -9.65 

54 105.53 78.76 16.04 36.27 19.65 17.32 29.18 29.14 

55 -10.43 -20.05 -26.79 -14.04 -11.39 -7.90 -12.03 -15.05 

56 60.52 35.75 -29.57 -10.56 45.02 31.06 -1.57 -17.73 

57 124.86 63.48 -10.76 3.58 27.96 21.86 -0.58 -27.17 

58 174.10 106.79 -48.73 12.27 99.23 89.83 40.21 27.55 

59 218.18 190.85 -43.10 28.84 43.12 19.08 9.76 2.04 

60 354.74 284.64 -64.04 -0.85 87.34 67.34 -0.66 -9.91 

61 199.97 134.49 -68.80 -21.03 54.03 20.79 -2.55 -22.35 

62 229.51 199.80 -62.47 -21.90 114.05 67.78 17.15 -1.74 

63 381.69 309.99 -38.50 -11.61 81.09 9.52 20.98 -3.62 

64 154.78 134.99 -31.54 -0.88 44.27 11.13 54.95 28.86 

65 -10.45 70.30 -48.42 -47.12 -33.76 -34.23 -20.31 -30.00 

66 16.99 13.71 -10.70 -17.53 38.01 31.79 35.12 18.13 

67 -34.22 -21.84 -45.24 -40.83 -32.12 -35.79 -28.86 -36.91 

68 31.51 10.45 -10.90 -6.30 0.35 10.51 17.54 11.70 

69 48.75 32.58 1.23 4.66 50.29 26.48 26.89 19.39 

70 62.01 35.94 23.43 27.45 63.09 37.76 78.60 48.32 

71 -12.72 -14.40 -17.61 -24.93 -42.60 -43.16 -17.59 -28.23 

72 1.35 19.53 -17.52 -14.27 1.13 7.69 -12.64 -17.91 

73 -14.14 -6.45 -28.96 -28.27 -7.53 -1.33 -10.00 -6.85 

74 30.25 -2.77 3.05 10.71 22.40 7.60 24.50 25.41 
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75 -33.57 -44.90 -23.78 -19.95 -42.67 -49.45 -27.14 -31.26 

76 -4.12 -14.14 -23.13 -18.26 -10.57 4.39 3.75 1.68 

77 -11.25 -21.75 -17.79 -11.89 1.15 5.07 3.90 9.26 

78 3.37 -16.79 -7.55 -0.16 6.01 -3.23 28.78 20.62 

79 -11.06 -27.77 -15.30 -7.27 -42.38 -35.22 -21.08 -30.12 

80 -7.94 -29.78 -21.78 -16.97 -31.42 -12.28 -1.27 -11.94 

81 14.03 -0.62 -20.70 -17.07 -1.71 12.93 -5.59 -6.26 

82 31.80 -4.55 -8.61 -1.90 25.91 13.75 12.04 2.95 

83 55.95 10.02 4.85 12.08 38.68 30.61 27.96 13.35 

84 56.36 22.60 67.51 69.45 42.32 43.79 55.72 28.56 

85 -68.69 -65.43 -46.40 -47.27 -54.20 -42.40 -25.28 -40.47 

86 59.35 46.40 -11.11 1.96 10.15 15.98 8.87 -4.02 

87 53.64 20.30 9.61 14.41 33.39 22.72 2.52 -0.66 

88 67.33 23.36 -21.53 -12.68 68.11 60.54 39.22 11.08 

89 81.51 72.66 -16.30 -7.02 47.22 88.04 67.52 10.43 

90 88.99 39.58 10.95 -3.93 -17.05 44.06 146.40 45.06 

91 192.40 145.28 76.62 17.63 59.82 75.19 197.89 84.34 

92 129.02 84.31 102.04 74.82 -2.97 11.09 29.57 6.89 

93 4.79 -4.58 43.06 48.40 -14.63 0.60 24.40 6.31 

94 -21.40 -14.45 13.95 32.29 -21.87 -3.62 19.64 7.05 

95 -45.92 -48.38 -37.59 -26.88 -43.28 -39.72 -14.25 -25.12 

96 18.80 24.01 -13.40 -16.51 -3.51 -5.08 1.28 -8.22 

97 22.29 30.48 2.38 -3.61 8.83 9.28 -3.70 -6.64 

98 99.00 53.25 -14.43 -17.15 86.10 88.26 23.83 0.80 

99 132.12 53.63 17.87 45.33 25.19 82.66 131.67 50.87 

100 138.32 95.20 33.94 81.33 -69.60 -25.86 40.90 5.65 

101 111.79 84.62 18.43 22.72 -2.70 39.75 16.08 13.63 

102 134.71 98.97 73.12 -8.27 -41.22 -28.06 -32.12 -30.41 

103 68.23 119.22 77.74 -5.99 41.91 44.80 -3.28 6.14 

104 -47.31 -28.98 -38.31 -40.54 13.27 7.34 -18.05 0.60 

105 75.21 58.91 13.24 -22.17 23.45 25.12 41.15 35.09 

106 88.92 78.57 89.97 96.08 17.24 24.31 41.00 34.69 

107 -55.19 -63.71 -43.14 -24.50 -40.82 -38.09 -20.93 -28.18 

108 5.51 -8.60 -34.04 -26.99 18.31 11.17 6.67 -3.82 

109 0.01 21.00 -30.26 -10.84 49.26 42.29 -10.08 -2.39 

110 54.12 41.16 -34.06 -35.84 88.16 96.16 58.74 21.72 

111 109.94 58.59 7.90 20.11 122.62 114.08 148.63 40.22 

112 170.70 111.27 -18.36 33.41 255.22 167.95 215.74 69.50 

113 203.00 179.16 45.98 74.96 288.41 134.47 230.35 170.64 

114 79.32 92.92 -12.24 12.40 4.68 -43.19 -16.37 -17.12 

115 105.80 179.07 1.48 1.14 46.75 54.88 -8.60 -17.12 

116 26.02 27.03 -27.34 -28.74 100.69 57.01 -18.83 -24.22 

117 77.78 130.48 -18.79 -12.10 175.72 99.77 8.29 -3.89 

118 -22.08 -4.37 -47.03 -36.70 299.39 138.10 106.83 36.03 

119 12.19 20.72 -35.16 -22.78 42.60 -31.86 51.32 8.01 

120 55.81 56.78 12.06 14.55 28.62 18.60 57.10 20.96 

121 -27.02 -4.18 -35.23 -34.53 -16.05 -4.55 -8.79 -18.14 

122 9.82 12.38 -24.85 -24.78 -19.29 -31.22 -17.33 -29.86 

123 49.03 41.65 26.05 23.53 31.94 35.64 29.67 19.60 



 

190 

 

124 -10.46 0.70 22.40 17.82 12.29 -6.22 19.99 14.43 

125 -35.19 -34.70 -20.26 -21.53 -22.74 -19.40 0.87 -4.90 

126 -11.46 -20.94 -30.89 -23.89 -32.67 -24.42 -12.03 -18.67 

127 -18.76 -27.64 -6.40 -7.31 -32.96 -11.75 17.84 8.66 

128 -30.21 -33.10 -26.67 -20.66 -48.17 -40.01 -10.12 -20.86 

129 -18.24 -13.83 3.70 5.47 -35.44 -2.88 48.35 32.36 

130 -13.33 -30.26 -14.46 -6.60 -28.33 -25.75 -11.59 -11.79 

131 12.90 -6.49 -5.56 -5.32 -7.12 7.47 10.95 -1.82 

132 21.42 -14.16 -7.25 -4.69 -27.24 -33.98 -9.62 -27.40 

133 39.27 18.47 -1.26 5.86 11.37 25.78 51.29 18.69 

134 -39.32 -55.74 -26.47 -22.59 6.19 -6.38 -6.06 -9.42 

135 19.06 11.44 -10.43 -13.97 48.25 51.40 16.68 9.12 

136 27.31 -0.02 22.61 17.46 79.88 34.18 11.74 8.57 

137 -34.48 -37.62 -10.68 -13.28 16.36 -14.00 9.35 -9.54 

138 -32.78 -40.13 -26.33 -30.07 -10.03 -23.20 -3.15 -19.25 

139 -3.64 -7.00 -27.02 -22.88 16.52 15.08 28.31 4.89 

140 -33.51 -31.38 -28.74 -27.84 -0.62 -5.50 -2.49 0.32 

141 -14.03 -16.09 -36.69 -33.72 -20.95 -17.36 -0.14 -13.86 

142 9.42 12.27 -8.89 6.30 -14.35 2.69 13.32 -6.15 

143 9.88 -6.16 -15.68 -9.64 1.91 12.32 -8.96 -9.83 

144 57.30 33.28 -23.75 -27.75 56.22 33.51 3.53 0.17 

145 -1.24 -21.89 -39.46 -39.95 -19.78 -35.79 -22.45 -38.05 

146 46.71 52.78 -30.34 -24.87 44.74 8.94 9.29 -15.50 

147 80.65 86.75 -10.72 -4.73 65.69 5.99 27.87 -4.78 

148 -3.26 -14.76 -55.31 -35.79 -4.77 -47.57 12.01 -10.33 

149 66.44 105.81 -63.71 -44.34 38.64 -4.33 2.65 -16.35 

150 118.78 114.12 -75.78 -43.07 139.29 47.24 5.01 2.37 

151 168.36 192.03 -132.71 -41.21 207.82 107.66 135.02 109.88 

152 335.94 294.50 -111.12 8.70 216.79 129.32 269.22 192.16 

153 21.74 71.41 -90.49 -41.12 -13.31 -35.68 23.48 4.01 

154 21.24 62.39 -76.99 -56.80 42.53 15.80 -8.51 -23.17 

155 34.92 21.42 -63.63 -64.62 88.99 45.43 -29.65 -26.73 
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