
Numerical Algorithms (2024) 95:1–30
https://doi.org/10.1007/s11075-023-01563-4

ORIG INAL PAPER

Parameter estimation for time-fractional Black-Scholes
equation with S&P 500 index option

Xingyu An1 ·Qingxia (Jenny) Wang2,3 · Fawang Liu1 · Vo V. Anh4 ·
Ian W. Turner1

Received: 16 May 2022 / Accepted: 11 April 2023 / Published online: 27 June 2023
© The Author(s) 2023

Abstract
This paper aims to estimate the parameters of the time-fractional Black-Scholes
(TFBS) partial differential equation with the Caputo fractional derivative by using
the real option prices of the S&P 500 index options. First, the numerical solution is
obtained by developing a high-order scheme with order (3 − α) for the time discreti-
sation. Some theoretical analyses such as stability and convergence are presented in
order to verify the efficiency and accuracy of the proposed scheme. Secondly, we
employ a modified hybrid Nelder-Mead simplex search and particle swarm optimiza-
tion (MH-NMSS-PSO) to identify the fractional order α and implied volatility σ of the
TFBS equation, and explore the financial meanings of α under extreme stock market
conditions such as the Covid-19 and the 2008 global financial crisis. We analyse the
values of α and compare the mean squared errors of both the TFBS model and the
BS model. Our empirical results show that α may be regarded as a market fluctuation
indicator for classifying financial environments, and the TFBS model is more capable
of fitting real option data compared with the BS model, especially for put options
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during the economic downturn. In addition, we find and discuss an interesting relation
between α and σ from both the TFBS model and the BS model in three expressions,
which could be an open problem for further research.

Keywords Parameter estimation · Time-fractional Black-Scholes · Option pricing ·
Empirical studies

1 Introduction

The Black-Scholes (BS) or Black-Scholes-Merton (BSM) model for option pricing
[1, 2] has two common expressions as a stochastic differential equation (SDE) or a
partial differential equation (PDE). In thiswork,we concentrate on the PDE expression
of the BS model, namely:

∂V (S, τ )

∂τ
+ 1

2
σ 2S2 ∂2V (S, τ )

∂S2 + r S
∂V (S, τ )

∂S
− r V (S, τ ) = 0 (1)

where V (S, τ ) denotes the option value at time τ and at asset price S; σ and r represent
the volatility and risk-free interest, respectively. The above equation can be used to
describe the valuation of European call or put options in terms of different parameters.
The traditional BS model imposes strict assumptions and this leads to inadequacy in
describing complex financial processes in real markets. For example, it is assumed that
the market is frictionless, complete and liquid, but financial assets incur transaction
costs from securities trading. Therefore, the BS equation has been modified to relax
some of the assumptions, resulting in, for example, jump-diffusion models [3, 4],
stochastic volatility models [5, 6], models with transactions costs [7–9], stochastic
interest models [10, 11] and regime-switching models [12, 13].

These models use standard integer-order derivatives, which can only capture
localised information of a function at a particular point and time. Due to the appear-
ance of heavy tails and long memory (or long-range dependence) in stock returns,
these equations may underestimate the large price changes in market turbulence. A
remedy is to employ a fractional operator, which is known to be global and incorpo-
rate memory, meaning that the solution of the equation involves previous time steps
as well as the current time step. Many fractional BS equations have been proposed
in the literature. Wyss [14] derived a BS equation with a time-fractional derivative.
Chen et al. [15] modified a time-fractional BS model for double-barrier options. Two
fractional BS equations were proposed by using the Taylor series of fractional order
[16]. Prathumwan and Trachoo [17] studied a two-dimensional BS equation for a
European put option and derived its analytic solution by the Laplace homotopy per-
turbation method. Chen andWang [18] developed a two-dimensional space-fractional
BS model governing two-asset option pricing.

Analytical and numerical solutions for fractional BSmodels have been investigated.
Kumar et al. [19] used the homotopy perturbation method and analysis method for the
TFBSmodel. Chen et al. [15] derived an analytical solution of a modified BS equation
with a spatial-fractional derivative. Chen et al. [20] proposed a predictor-corrector
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method based on the spectral collocation method to price American options. Golbabai
et al. [21] used the radial basis functions for spatial approximation to deal with the
TFBS equation. Zhang et al. [22] derived an implicit discrete scheme with a temporal
accuracy of order (2−α) and spatial accuracy of second order for solving the fractional
BSmodel. Huang et al. [23] developed an adaptive moving mesh approach and carried
out error analysis for the proposed scheme for the TFBS model.

For most fractional PDEs, it is not feasible to obtain their analytical form. A com-
mon method for approximation of the Caputo derivative is the L1 method with order
(2− α) where piecewise linear interpolating polynomials are used to replace the inte-
grand in the fractional derivative [24, 25]. Several analogs of theCaputo approximation
were proposed to achieve higher orders. Gao et al. [26] developed an L1-2 formula
to approximate the time-fractional sub-diffusion equations and fractional ordinary
differential equations. An L2 scheme with order (3 − α) was constructed by using
piecewise quadratic interpolating polynomials [27, 28]. The L2-1σ method was intro-
duced to approximate the Caputo fractional derivative at a special point; this method
can achieve an accuracy of O(3 − α) [29].

These numerical methods were proposed to obtain the solutions of fractional BS
models which is a forward problem. However, the option prices that can be obtained
from financial markets are the solutions of many generalised BS equations, and some
parameters such as volatility and fractional order are unknown. Therefore, it is neces-
sary to investigate these unknown parameters in order to make the theory into practice,
and the process of which is named as an inverse problem. For the BS model, Bayram
et al. [30] employed a non-parametric estimation method and maximum likelihood to
estimate its parameters. Ota et al. [31] used a Bayesian inference approach to solve
an inverse problem of option pricing in the extended BS model. Riane and David
[32] considered an inverse BS problem by using a gradient algorithm. In addition, the
inverse problems of fractional-order models have been investigated in recent years.
Cheng et al. [33] showed the uniqueness of an inverse problem for a one-dimensional
fractional diffusion equation. Jin and Rundell [34] used the Mittag-Leffler function
and singular value decomposition to examine the degree of ill-posedness of several
traditional inverse problems. The MH-NMSS-PSO method was developed and used
to solve the inverse problem of fractional dynamical models in biological systems [35,
36]. Fan et al. [37] used the MH-NMSS-PSO algorithm to estimate the parameters for
fractional differential equations. Qin et al. [38] solved the multi-term time-fractional
Bloch equations for anomalous relaxation processes in human tissue. Li et al. [39]
considered a multi-term fractional dynamical epidemic model of dengue fever.

This paper considers a fractional version of the Black-Scholes equation in which
the integer-order derivative ∂V

∂τ
is replaced by the Caputo fractional derivative ∂αV

∂τα .
The fractional order α is a key parameter of the TFBS equation, which indicates the
long-range dependence property of the solution of the model. To our knowledge, there
are many papers discussing developing analytical or numerical methods for solving
fractional BS equations. However, the study of investigating the meaning of α of the
TFBS model has not been examined. As a huge amount of options are traded in the
market nowadays, how to choose a value of α under different financial environments
is necessary to be studied. Therefore, this paper will estimate α by using S&P 500
index options data and explore its empirical implications.
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This work contributes three main aspects. First, we employ the L2 scheme with an
accuracy of O(τ 3−α) for approximating the Caputo fractional derivative. This high-
order scheme is used to reduce approximation errors in order to obtain more accurate
theoretical values of option price. We present stability and convergence analyses as
measures to confirm the efficiency and accuracy of the proposed scheme, and present a
numerical example to show the maximum errors and convergence order of L2 scheme.

Secondly, this work focuses on exploring the underlying meanings of the fractional
order α of the TFBSmodel. First, we classify the market conditions into three periods:
one stable period and two unstable periods (the Covid-19 economic downturn in 2020
and the global financial crisis in 2008). Then we obtain and analyse the estimated
α of the TFBS equation under different periods by using the S&P 500 monthly and
weekly options and discuss our empirical results in three cases. We also compare the
mean squared errors (MSEs) of both the TFBS model and the BS model with respect
to different strike prices of options on the same expiration date in order to illustrate
that the TFBS equation is able to fit the data well under extreme economic conditions.
From the empirical experiments, we conclude that the fractional order α may be seen
as an indicator to describe large fluctuations of stock price or even financial markets.
This work may provide a general framework for the application of fractional-order
option pricing models to fit and interpret real option pricing data.

Thirdly, we find an interesting empirical relation involving α and implied volatil-
ity σ of both the TFBS equation and the BS equation. We introduce the functional
parameter ρ in order to balance the units of the TFBS equation (more details in the
next section). Under the assumption of ρ = 1, α is approximately related to the ratio
of volatility σF of the TFBS model and volatility σBS of the BS model. We discuss
this empirical relation in three angles and hope to provide insights for future research.

The paper is structured as follows. Section2 presents the TFBS model. The numer-
ical scheme for the TFBS model is proposed in Section3. Then in Section4, we carry
out the solvability, stability and convergence analyses of the proposed scheme. Sec-
tion5 reviews the methodology of the MH-NMSS-PSO algorithm. In Section6, the
empirical results are summarised in four empirical cases and one discussion. Section7
draws some conclusions on the work.

2 Model description

In this paper, we consider the following time-fractional Black-Scholes model:

∂αV (S, τ )

∂τα
+ 1

2
σ 2S2 ∂2V (S, τ )

∂S2 + r S
∂V (S, τ )

∂S
− r V (S, τ ) = 0,

(S, τ ) ∈ (SL , SR) × (0, T ),

(2)

subject to the boundary conditions

V (SL , τ ) = p(τ ), V (SR, τ ) = q(τ ),

123



Numerical Algorithms (2024) 95:1–30 5

and the terminal condition
V (S, T ) = Payoff(S),

where V (S, τ ) denotes the price of a European option for stock price S at time τ ,
and σ represents the volatility of the returns from the underlying asset. r denotes the
risk-free rate and T is the maturity date of the contract. ∂αV (S,τ )

∂τα represents the Caputo
derivative. By changing x = lnS and t = T − τ , u(x, t) = V (S, T − τ), the model
(2) can be changed into:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

C
0 Dα

t u(x, t) = μ
∂2u(x, t)

∂x2
+ λ

∂u(x, t)

∂x
− ru(x, t), (x, t) ∈ (xL , xR) × (0, T ),

u(x, 0) = Payoff(ex ),

u(xL , t) = p̃(t), u(xR, t) = q̃(t),
(3)

where μ = σ 2

2 , λ = r − μ and C
0 Dα

t is the Caputo fractional derivative on a finite
domain, which is given by:

C
0 Dα

t u(x, t) = 1

�(1 − α)

∫ t

0

∂u(x, η)

∂η

dη

(t − η)α
, 0 < α < 1.

From Eq. (3), we can find that the left-hand side has the dimensions of (Y ear)−α

while the right-hand side has the dimensions of (Y ear)−1. In order to keep the unit
balanced on both sides, a new functional parameter ρ is introduced with the unit of
(Y ear)α−1. For simplification, we let ρ = 1, since adding one more parameter makes
computing time longer and it may be too complex to analyse the underlying meaning
of α. The property of ρ can be considered in future research. Then Eq. (3) can be
written as:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ρ C
0 Dα

t u(x, t)=μ
∂2u(x, t)

∂x2
+λ

∂u(x, t)

∂x
−ru(x, t), (x, t) ∈ (xL , xR) × (0, T ),

u(x, 0) = Payoff(ex ),

u(xL , t) = p̃(t), u(xR, t) = q̃(t),
(4)

For a European call option,

u(x, 0) = max{ex − K , 0},
p̃(t) = 0,

q̃(t) = xR − K e(−r(T −t)).

(5)

For a European put option,

u(x, 0) = max{K − ex , 0},
p̃(t) = K e(−r(T −t)),

q̃(t) = 0.

(6)
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3 Numerical approximation

In this section, we discretise the TFBS equation using difference approximation. Let
h = (xR − xL)/M be the spatial step and xi = xL + ih (i = 0, 1, 2, · · · , M),

t = T /N be the temporal step and tk = k
t (k = 0, 1, 2, · · · , N ). Assume that
u(x, t) ∈ C3(xL , xR) × (0, T ) at the fixed point tk . For k = 1, L1 scheme is used:

C
0 Dα

t u(x, t1) = 1

�(1 − α)

∫ t1

0
∂ηu(x, η)

dη

(t1 − η)α

= 1

�(1 − α)

u(x, t1) − u(x, t0)


t

∫ t1

0

dη

(t1 − η)α
+ r1

= 1

�(2 − α)
tα
(u(x, t1) − u(x, t0)) + r1,

(7)

where r1 is the first step truncation error. Similarly, for 2 ≤ k ≤ N , we have

C
0 Dα

t u(x, tk) = 1

�(1 − α)

∫ tk

0
∂ηu(x, η)

dη

(tk − η)α

= 1

�(1 − α)

⎛

⎝
k−1∑

j=1

∫ t j

t j−1

∂ηu(x, η)
dη

(tk − η)α
+

∫ tk

tk−1

∂ηu(x, η)
dη

(tk − η)α

⎞

⎠

= 1

�(1 − α)

⎛

⎝
k−1∑

j=1

∫ t j

t j−1

∂η�
j
2(η)

dη

(tk − η)α
+

∫ tk

tk−1

∂η�
k−1
2 (η)

dη

(tk − η)α

⎞

⎠

+ rk

= 1

�(3 − α)
tα

⎛

⎝
k−1∑

j=1

(
ak− j u(x, t j−1) + bk− j u(x, t j ) + ck− j u(x, t j+1)

)

+α

2
u(x, tk−2) − 2u(x, tk−1) + 4 − α

2
u(x, tk)

)

+ rk ,

(8)

where

�
j
2(η) = u(t j )− u(t j ) − u(t j−1)


t
(t j −η)− u(t j+1) − 2u(t j ) + u(t j−1)


t2
(t j − η)(η − t j−1)

2
, (9)

which interpolates the function u at the 3 points t j−1, t j , t j+1, 1 ≤ j ≤ N − 1. rk

is the truncation error of the approximation for 1 ≤ k ≤ N and it takes the form of
rk+1
τ = O(τ 3−α). We list some notations for convenience,

ai = (2 − α)

(
1

2
i1−α − 3

2
(i + 1)1−α

)

− i2−α + (i + 1)2−α,

bi = (4 − 2α)(i + 1)1−α + 2i2−α − 2(i + 1)2−α,

ci =
(
1

2
α − 1

) (
i1−α + (i + 1)1−α

)
− i2−α + (i + 1)2−α.
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Lemma 1 [27] For any α ∈ (0, 1), it holds

|r1| ≤ cα M̃(u)
t2−α, (10)

|rk | ≤ cα M(u)
t3−α,∀k = 1, 2, · · · , N . (11)

where cα depends only on α, M̃(u)=maxx,t∈�|∂2u(x, t)|, M(u)=maxx,t∈�|∂3t u(t)|.
Next, for the space derivatives we obtain

∂u(xi , tk)

∂x
= u(xi+1, tk) − u(xi−1, tk)

2h
+ O(h2), (12)

∂2u(xi , tk)

∂x2
= u(xi+1, tk) − 2u(xi , tk) + u(xi−1, tk)

h2 + O(h2). (13)

We letφ1 = �(2−α)
tα andφ2 = �(3−α)
tα . Denotinguk
i as the approximation

of u(xi , tk), then we construct the implicit discrete scheme for Eq. (3), for k = 1,

−
(

μφ1

h2 − λφ1

2h

)

u1
i−1 +

(

2
μφ1

h2 + rφ1 + 1

)

u1
i −

(
μφ1

h2 + λφ1

2h

)

u1
i+1 = u0

i ,

(14)
for k = 2,

−
(

μφ2

h2 − λφ2

2h

)

u2
i−1+

(

2
μφ2

h2 + rφ2+c1 + 4 − α

2

)

u2
i −

(
μφ2

h2 + λφ2

2h

)

u2
i+1

= (2 − b1)u
1
i −

(α

2
+ a1

)
u0

i ,

(15)
for k = 3,

−
(

μφ2

h2 − λφ2

2h

)

u3
i−1+

(

2
μφ2

h2 +rφ2+c1 + 4 − α

2

)

u3
i −

(
μφ2

h2 + λφ2

2h

)

u3
i+1

= (2 − b1 − c2)u
2
i −

(α

2
+ a1 + b2

)
u1

i − a2u0
i ,

(16)
for 4 ≤ k ≤ N ,

−
(

μφ2

h2 − λφ2

2h

)

uk
i−1+

(

2
μφ2

h2 +rφ2+c1+ 4 − α

2

)

uk
i −

(
μφ2

h2 + λφ2

2h

)

uk
i+1

= (2 − b1 − c2)u
k−1
i − α

2
uk−2

i −
k−2∑

j=2

(ak− j−1 + bk− j + ck− j+1)u
j
i

− (ak−2 + bk−1)u
1
i − ak−1u0

i .

(17)
with the initial and boundary conditions

u0
i = max{exi − K , 0}, (18)
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uk
0 = p̃(tk), uk

M = q̃(tk). (19)

Equations (14)–(19) can be written as a matrix form,

AkUk =
k−1∑

i=0

Dk
i U

i , (20)

where Ak is a tridiagonal matrix and is expressed by Ak = tr idiag(pk, qk, rk).

p1 = −μφ1

h2 + λφ1

2h
, q1 = 2

μφ1

h2 + rφ1 + 1, r1 = −μφ1

h2 − λφ1

2h
,

for 2 ≤ k ≤ N ,

pk = −μφ2

h2 + λφ2

2h
, qk = 2

μφ2

h2 + rφ2 + c1 + 4 − α

2
, rk = μφ2

h2 − λφ2

2h
,

and Dk
i is a diagonal matrix and is expressed by Dk

i = diag(dk
i ) where

d2
1 = −(b1 − 2), d2

0 =
(
−a1 − α

2

)
,

d3
2 = −(b1 + c2 − 2), d3

1 =
(
−a1 − b2 − α

2

)
, d3

0 = −a2,

and for k ≥ 4,

dk
k−1 = −(b1 + c2 − 2), dk

k−2 =
(
−a1 − b2 − c3 − α

2

)
,

dk
k−i = (−ai−1 − bi − ci+1), i = 3, 4, · · · , k − 2,

dk
1 = (−ak−2 − bk−1), dk

0 = −ak−1.

4 Theoretical analysis

In this section, we consider the solvability, stability and convergence analyses of the
proposed schemes (14)–(19). We write (·, ·) for the inner product on the space L2(�)

with the L2 norm ‖ · ‖L2(�). For convenience, we denote ‖ · ‖L2(�) as ‖ · ‖.

4.1 Solvability

Theorem 1 The difference scheme (14)–(19) has a unique solution for h sufficiently
small.

Proof We already know that μ and r are positive, so when h → 0, we obtain, for
k = 1, ∣

∣
∣
∣2

μφ1

h2 + rφ1 + 1

∣
∣
∣
∣ = 2

μφ1

h2 + rφ1 + 1
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∣
∣
∣
∣−

μφ1

h2 + λφ1

2h

∣
∣
∣
∣ +

∣
∣
∣
∣−

μφ1

h2 − λφ1

2h

∣
∣
∣
∣ = μφ1

h2 − λφ1

2h
+ μφ1

h2 + λφ1

2h
= 2μφ1

h2

for k ≥ 2
∣
∣
∣
∣2

μφ2

h2 + rφ2 + c1 + 4 − α

2

∣
∣
∣
∣ = 2

μφ2

h2 + rφ2 + c1 + 4 − α

2

∣
∣
∣
∣−

μφ2

h2 + λφ2

2h

∣
∣
∣
∣ +

∣
∣
∣
∣−

μφ2

h2 − λφ2

2h

∣
∣
∣
∣ = μφ2

h2 − λφ2

2h
+ μφ2

h2 + λφ2

2h
= 2μφ2

h2

Therefore, it is obvious thatmatrix A is strictly diagonally dominant andnonsingular
and thus invertible. The existence and uniqueness of the solution of our scheme (14)–
(19) are proved.

4.2 Stability

In this part, we consider the stability of the semidiscretised problem (14)–(19). For
convenience, we denote β := c1 + 2 − α

2 . Then the scheme (14)–(17) can be written
as, for k = 1,

u1 − φ1μ∂xx u1 − φ1λ∂x u1 + φ1ru1 = u0, (21)

for k = 2,
u2 − φ2β

−1μ∂xx u2 − φ2β
−1λ∂x u2 + φ2β

−1ru2

= β−1
(
−(b1 − 2)u1 +

(
−a1 − α

2

)
u0

)
,

(22)

for k = 3,

u3 − φ2β
−1μ∂xx u3 − φ2β

−1λ∂x u3 + φ2β
−1ru3

= β−1
(
−(b1 + c2 − 2)u2 +

(
−a1 − b2 − α

2

)
u1 − a2u0

)
,

(23)

for k ≥ 4,

uk − φ2β
−1μ∂xx uk − φ2β

−1λ∂x uk + φ2β
−1ruk

= β−1
(
−(b1 + c2 − 2)uk−1 +

(
−a1 − b2 − c3 − α

2

)
uk−2

+
k−2∑

i=3

(−ai−1 − bi − ci+1)u
k−i + (−ak−2 − bk−1)u

1 − ak−1u0

)

.

(24)

The semidiscretised scheme (21)–(24) can be summarised as a compact scheme

u1 − φ1μ∂xx u1 − φ1λ∂x u1 + φ1ru1 = u0, (25)
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uk −φ2β
−1μ∂xx uk −φ2β

−1λ∂x uk +φ2β
−1ruk =

k∑

j=1

d̃k
k− j u

k− j , 2 ≤ k ≤ K , (26)

where d̃k
k− j = dk

k− jβ
−1.

Lemma 2 [27] For any 0 < α < 1, k ≥ 4, the coefficients in the scheme (25)–(26)
satisfy

• β = (1 + α
2 )21−α > 0, 0 < φ2β

−1 < φ1,

• ∑k
j=1 d̃k

k− j = 1,

• d̃k
k− j > 0, i = 3, 4, · · · , k,

• 0 < d̃k
k−1 < 4

3 ,

• − 1
2 < d̃k

k−2 < 1
3 ,

• 1
4 (d̃

k
k−1)

2 + d̃k
k−2 > 0.

From Lemma 2, we know that the coefficient d̃k
k−2 can either be positive and nega-

tive. Then a new parameter is introduced in order to establish stability and convergence
for α ∈ (0, 1), given by

η := 1

2
d̃k

k−1. (27)

Denote

d̄k
k−i := ηi +

i∑

j=2

ηi− j d̃k
k− j , i = 2, 3, · · · , k, (28)

ūi := ui − ηui−1, i = 1, 2, · · · , k. (29)

Then the scheme (26) can be rearranged as

ūk−α0β
−1
0 μ∂xx uk−α0β

−1
0 λ∂x uk+α0β

−1
0 ruk = ηūk−1+

k−1∑

i=2

d̄k
k−i ū

k−i+d̄k
0u0. (30)

Lemma 3 [27] For 0 < α < 1, k ≥ 4, the coefficients of the transformed scheme (30)
meets

• 0 < η < 2
3 ,

• d̄k
k−i > 0, i = 2, 3, · · · , k,

• η + ∑k−1
i=2 d̄k

k−i + d̄k
0 ≤ 1,

• 1
d̄k
0

< kα

(2−α)(1−α)
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Let L2(�), H1(�), and H1
0 (�) be usual Sobolev spaces. The weak formulation

of (25)–(26) with the homogeneous boundary conditions is given by, when uk ∈
H1
0 (�), 2 ≤ k ≤ K ,

(uk, v) + φ2β
−1μ(∂x uk, ∂xv

k) − φ2β
−1λ(∂x uk, v) + φ2β

−1r(uk, v)

=
k∑

j=1

d̃k
k− j (u

k− j , v) ∀v ∈ H1
0 (�)

(31)

where (·, ·) is the usual L2-inner product.

Theorem 2 Suppose that un
i and ũn

i are solutions of the finite difference scheme (31)
with the initial values un

0 and ũn
0 . For α ∈ (0, 1), the proposed scheme is uncondition-

ally stable,
∥
∥
∥uk

∥
∥
∥
0
+

√

φ2β−1
∥
∥
∥∂x uk

∥
∥
∥
0

≤ 4
∥
∥
∥u0

∥
∥
∥
0
, 1 ≤ k ≤ N . (32)

Proof By using Lemma 2, it is easy to prove the case of k = 1. For k ≥ 2, the scheme
(31) can be rewritten as follows, for ∀v ∈ H1

0 (�):

(
ūk, v

)
+ φ2β

−1μ
(
∂x uk, ∂xv

)
− φ2β

−1λ
(
∂x uk, v

)
+ φ2β

−1r
(

uk, v
)

=
k∑

j=1

d̃k
k− j (ū

k− j , v) + d̄k
0 (u

0, v).

(33)
Letting v = 2ūk , we obtain

2
∥
∥
∥ūk

∥
∥
∥
2

0
+ 2φ2β

−1μ(∂x uk, ∂x ūx ) − 2φ2β
−1λ

(
∂x uk, ūk

)
+ 2φ2β

−1r
(

uk, ūk
)

= 2
k∑

j=1

d̃k
k− j (ū

k− j , ūk) + 2d̄k
0 (u

0, ūk).

(34)
In virtue of the identity

2
(
∂x uk, ∂x ūx

)
=

∥
∥
∥∂x ūk

∥
∥
∥
2

0
+

∥
∥
∥∂x uk

∥
∥
∥
2

0
− η2

∥
∥
∥∂x uk−1

∥
∥
∥
2

0
,

2
(

uk, ūx
)

=
∥
∥
∥ūk

∥
∥
∥
2

0
+

∥
∥
∥uk

∥
∥
∥
2

0
− η2

∥
∥
∥uk−1

∥
∥
∥
2

0
,
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Here, we assume that uk−1 is equal to uk when 
t is sufficiently small, then
2(∂x uk, ūk) = 2η(∂x uk−1, uk) = 0. Next, we use Schwarz inequality and Lemma
3 and obtain

2
∥
∥
∥ūk

∥
∥
∥
2

0
+ φ2β

−1μ‖∂x uk‖20 + φ2β
−1r‖uk‖20 + φ2β

−1r‖ūk‖20
≤ η‖ūk−1‖20 + φ2β

−1μη2‖∂x uk−1‖20 + φ2β
−1rη2‖uk−1‖20

+
k−1∑

j=2

d̄k
k− j‖ūk− j‖20 + d̄k

0‖u0‖20 +
⎛

⎝η +
k−1∑

j=2

d̄k
k− j + d̄k

0

⎞

⎠ ‖ūk‖20.
(35)

According to Lemma 3, we have

∥
∥
∥ūk

∥
∥
∥
2

0
+ φ2β

−1μ

∥
∥
∥∂x uk

∥
∥
∥
2

0
+ φ2β

−1r
∥
∥
∥uk

∥
∥
∥
2

0

≤ η

∥
∥
∥ūk−1

∥
∥
∥
2

0
+ φ2β

−1μη2
∥
∥
∥∂x uk−1

∥
∥
∥
2

0
+ φ2β

−1rη2
∥
∥
∥uk−1

∥
∥
∥
2

0

+
k−1∑

j=2

d̄k
k− j

∥
∥
∥ūk− j

∥
∥
∥
2

0
+ d̄k

0

∥
∥
∥u0

∥
∥
∥
2

0

≤ η

(∥
∥
∥ūk−1

∥
∥
∥
2

0
+ φ2β

−1μη

∥
∥
∥∂x uk−1

∥
∥
∥
2

0
+ φ2β

−1rη

∥
∥
∥uk−1

∥
∥
∥
2

0

)

+
k−1∑

j=2

d̄k
k− j

(∥
∥
∥ūk− j

∥
∥
∥
2

0
+ φ2β

−1μ

∥
∥
∥∂x uk−i

∥
∥
∥
2

0
+ φ2β

−1r
∥
∥
∥uk−i

∥
∥
∥
2

0

)

+ d̄k
0

∥
∥
∥u0

∥
∥
∥
2

0

≤ η

(∥
∥
∥ūk−1

∥
∥
∥
2

0
+ φ2β

−1μ

∥
∥
∥∂x uk−1

∥
∥
∥
2

0
+ φ2β

−1r
∥
∥
∥uk−1

∥
∥
∥
2

0

)

+
k−1∑

j=2

d̄k
k− j

(∥
∥
∥ūk− j

∥
∥
∥
2

0
+φ2β

−1μ

∥
∥
∥∂x uk−i

∥
∥
∥
2

0
+φ2β

−1r
∥
∥
∥uk−i

∥
∥
∥
2

0

)

+d̄k
0

∥
∥
∥u0

∥
∥
∥
2

0
.

(36)
Now we want to prove the following estimate by induction:

∥
∥
∥uk

∥
∥
∥
2

0
+ φ2β

−1μ

∥
∥
∥∂x uk

∥
∥
∥
2

0
+ φ2β

−1r
∥
∥
∥uk

∥
∥
∥
2

0
≤

∥
∥
∥u0

∥
∥
∥
2

0
, 2 ≤ k ≤ N . (37)

It is easy to check the above inequality when k = 2. Then assuming the inequality
(37) is valid for k = 2, · · · , j − 1, we can obtain from

∥
∥
∥uk

∥
∥
∥
2

0
+ φ2β

−1μ

∥
∥
∥∂x uk

∥
∥
∥
2

0
+ φ2β

−1r
∥
∥
∥uk

∥
∥
∥
2

0
≤

⎛

⎝η +
j−1∑

i=2

d̄ j
j−i + d̄ j

0

⎞

⎠
∥
∥
∥u0

∥
∥
∥
2

0
,

∀ j = 1, 2, · · · , K .

(38)
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Thus (37) is proven. By the triangle inequality and (37), we obtain ‖uk‖0 ≤ 3‖u0‖0.
Finally, we combine the above estimates. The proof is completed.

4.3 Convergence

Let u(xi , tk) be the exact solution of the TFBS model and ui be the semidiscrete
solution of the schemes. The error εk

i = u(xi , tk) − uk
i . Similar to the work of [27],

the first step scheme can be transformed to obtain a global (3 − α) order accuracy.

∥
∥
∥u(t1) − u1

∥
∥
∥ + √

φ1

∥
∥
∥∂x (u(t1) − u1)

∥
∥
∥ ≤ c

∥
∥
∥∂2t u

∥
∥
∥

L∞(L2)

t3−α. (39)

Theorem 3 Suppose ∂3t u ∈ L∞((0, T ]; L2(�)), then the following error estimate
holds,

∥
∥
∥u(tk)u

k
∥
∥
∥
0
+

√

φ2β−1
∥
∥
∥∂x (u(tk) − uk)

∥
∥
∥
0

≤ cα,T

∥
∥
∥∂3t u

∥
∥
∥

L∞(L2)

t3−α, 2 ≤ k ≤ N ,

(40)

Proof Let εk = u(tk) − uk . We derive

(
εk, v

)
+ φ2β

−1
(
∂xε

k, ∂xv
)

− φ2β
−1λ

(
∂xε

k, v
)

+ φ2β
−1r

(
εk, v

)

=
k∑

j=1

d̃k
k− j

(
εk− j , v

)
+ d̄k

0

(
ε0, v

)
.

(41)

Taking v = ε̄k and following the similar procedure as in Theorem 2 yields

∥
∥
∥εk

∥
∥
∥
0
+

√

α0β
−1
0

∥
∥
∥∂xε

k
∥
∥
∥
0

≤4

(∥
∥
∥ε1

∥
∥
∥
2

0
+ 4T α�(1 − α)

β0
max
2≤i≤N

‖ri‖20
) 1

2

, k = 2, · · · , N .

(42)

Finally, the proof is completed using Lemma 1 and Eq.(39).

4.4 Numerical example

In this section, we represent a numerical experiment to show the accuracy and effi-
ciency of the proposed scheme (14)–(17) for solving the TFBS model. The Thomas
algorithm is used to decrease computational time [47]. The exact solution of problem
(3) is

u = (t + 1)2
(

x3 + x2 + 1
)

.
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Here parameters are r = 0.5, μ = 1, λ = r − μ, T = 1. The source term is

f =
(

2τ 2−α

�(3 − α)
+ 2τ 1−α

�(2 − α)

)(
x3 + x2 + 1

)

− (t + 1)2
[
μ (6x + 2) + λ

(
3x2 + 2x

)
− r

(
x3 + x2 + 1

)]
.

The convergence order is calculated as

Order = log 
t1

t2

ε1

ε2
.

Table 1 describes that when the time step and space step decrease with the rate of
h2 = 
t3−α , the maximum error decreases as well. The results satisfy the theoretical
analyses and show that the convergence order of the proposed scheme is O(h2) or
O(
t3−α). In addition, we carry out a small test to compare the L1 and L2 schemes. In
this example, we explain why we choose a high-order scheme rather than the common
method for approximating the Caputo derivative. We extend the length of the domain
in order to match the requirements for real applications. For instance, the domain of
the log form of stock price is xL = −4.6 ≈ log(0.01) and xR = 8.4 ≈ log(4000). The
maximum error of the L1 scheme is 2.7230 but the error of the L2 is only 0.0519. From
the result, we can say that a high-order scheme has its advantage in the larger domain
and improve the accuracy of the numerical solution to option valuation problems.

Table 1 Errors and convergence
order for L2 formula,
h2 = 
t3−α , with
α = 0.1, 0.5, 0.9

α 
t h Max-error Order
t Orderh

0.1 1/10 1/29 2.5543e−04

1/20 1/78 3.5313e−05 2.8547 1.9999

1/40 1/211 4.8264e−06 2.8712 1.9999

1/80 1/575 6.4994e−07 2.8926 2.0000

1/160 1/1571 8.7046e−08 2.9005 2.0002

0.5 1/10 1/18 6.5066e−04

1/20 1/43 1.1428e−04 2.5093 1.9973

1/40 1/101 2.0731e−05 2.4627 1.9990

1/80 1/240 3.6723e−06 2.4970 1.9997

1/160 1/570 6.5104e−07 2.4959 2.0000

0.9 1/10 1/12 0.0015

1/20 1/24 3.6555e−04 2.0368 2.0368

1/40 1/49 8.7868e−05 2.0567 1.9972

1/80 1/100 2.1115e−05 2.0571 1.9988

1/160 1/207 4.9276e−06 2.0993 2.0000
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5 Parameter estimation

From Sections3 and 4, we have already considered the forward problem of the TFBS
model. In this section, the inverse problem will be considered in order to examine
and explore the underlying meanings of the parameters of the TFBS equation. This
section begins with introducing the rationale of the NMSS and PSO, followed by
a demonstration of how the MH-NMSS-PSO method works on the S&P 500 index
option.

The Nelder-Mead simplex search method is a traditional direct search algorithm
and is easy to implement inmany unconstrained optimization problems [40]. There are
four procedures: reflection, expansion, contraction and shrinkage, which are used for
re-scaling the simplex. However, this technique is relatively sensitive to the choice of
initial points and is possible to be trapped in local optima, and thus is hard to guarantee
to reach the global optimum.

The particle swarm optimization algorithm is an evolutionary technique and can
be applied in optimizing various continuous nonlinear functions [41]. The concept
of PSO comes from social interaction such as bird flocking. The main procedure of
PSO has two steps: generating randomly a group of potential solutions and assigning
a random velocity to each solution; updating the velocity that is adjusted dynamically
to locate the best point. The convergence rate of PSO, however, is slow and can cause
huge computational costs.

The rationale of theMH-NMSS-PSO is firstly to generate two groups of particles for
the NMSS and PSO, then apply the two algorithms to each group, and eventually rank
and evaluate all the updated particles by stopping criterion. The aim of combining
the NMSS and PSO algorithms is to utilise their advantages and avoid limitations.
Therefore, the PSO can randomly provide good particles in the domain and the NMSS
can approach the local optima quickly. The MH-NMSS-PSO algorithm is reviewed in
Algorithm 1.

Algorithm 1MH-NMSS-PSO [42]

1: Input:Generate 3m + 1 particles � = [λ(min)
1 , λ

(max)
1 ]× [λ(min)

2 , λ
(max)
2 ]× · · ·× [λ(min)

m , λ
(max)
m ] and

set the parameter’s initial velocities to search for solution within, initial velocities, given target solutions
yi (tk ), (i = 1, · · · , m; k = 1, · · · , n), the error parameter ε and the number of iterations Niter .

2: Output:The best parameter estimation values λ∗ = (λ∗
1, λ

∗
2, · · · , λ∗

m ).
3: Generate a population of size 3m + 1;
4: for IT=1:Niter do
5: (1) Evaluation and Ranking: evaluate the objective function value y(λ) of each particle;
6: (2) Nelder-Mead simplex search method: apply a NMSS operator to the best m + 1 particles and

replace the (m + 1)th particle with the update;
7: (3) Particle Swarm Optimisation: apply the PSO operator for updating 2m particles with the worst

objective function values;
8: if the stopping criterion Sc < ε then
9: break
10: end if
11: end for
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In our case, the objective function of the MH-NMSS-PSO method is

y(λ) =
√

∑N
k=0(u(tk) − uk(λ))2

N + 1
, (43)

where N is the number of prices of an option, u(tk) is the S&P 500 index option prices
and uk(λ) is the numerical solution of the TFBS equation. There are three unknown
parameters: fractional order α, volatility σ and the functional parameter ρ in Eq. (4).
As mentioned in Section2, we assume ρ = 1 for convenience. α and σ cannot be
directly calculated from the financial market, hence are to be estimated in this work.
Let � be a given search domain: � = [

α(min), α(max)
] × [

σ (min), σ (max)
]
and thus

m = 2 inAlgorithm 1. The rationale for theMH-NMSS-PSOmethod is that 7 particles
are evaluated and ranked by their objective function values y(λ) in which the first 3
particles are for the NMSS method and the last 4 particles are for the PSO method.
The terminal criterion is defined as

Sc =
√
√
√
√

3∑

i=1

(ȳ − √
yi )2

m + 1
< ε, (44)

where ȳ = ∑3
i=1

√
yi/(m + 1), fi = f (α1, ..., α7, σ1, ...σ7) and ε represents a small

error parameter.

6 Empirical studies using S&P 500 index option

In this section, we explore the underlying meanings of the fractional order α of the
TFBSmodel.Wefirst describe the data and the basic ideas about the empirical research
and then focus on the empirical results by using the S&P 500 index option. There are
four empirical studies and one discussion that presented to discuss the meanings of
the parameters α and σ of the TFBS model.

6.1 Data description

Our empirical research is carried out on a data set of the S&P 500 index option which
is obtained from the OptionMetrics. The data set includes the date of the transaction,
the bid and ask prices, the expiration date, the strike price, volume, open interest and
so on. The S&P 500 index option is the European-style option and has two formats:
SPX and SPXW, representing monthly and weekly options, respectively. The SPX
options expire only on the third Friday of each month while the SPXW options expire
on Monday, Wednesday and Friday.

The idea of filtering raw data is adopted from [43] and [44], but we adjust some
measurements to meet our study. Options whose period is less than 10 days and
more than 126 trading days are eliminated. To avoid the bid-ask bounce problems in
transaction data, we take option prices as the midpoints of bid-ask price quotations.
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The T-bill rate with a maturity closest to option expiration is used to represent the
risk-free interest rate, because the change of interest rate is relatively small on daily
basis and the prices of options are not sensitive to the interest rate. We use 252 trading
days rather than calendar days to calculate the time (T = L/253, where L is the number
of trading days of one option contract).

The procedure of estimating α for one option is as follows. We collect the bid
and ask prices for all trading days and calculate the option prices. Next, we use the
option prices, interest rate, strike price and the stock prices to conduct the parameter
estimation by Algorithm 1 to obtain the estimated α and σ . The options are divided
into different groups according to the same expiration date. In each group, we classify
options by moneyness in three types, following the work of [45]. For call options,
denote S/K ∈ (0.95, 0.98) as “Out of themoney" (OTM)options, S/K ∈ (0.98, 1.02)
as “At the money" (ATM) options and S/K ∈ (1.02, 1.05) as “In the money" (ITM)
options. Similarly,we can also define the put options.We take themean of the estimates
for each small group and use the notations αI , αA and αO to represent the ITM, ATM
and OTM options, respectively. After calculating more than 2000 option contracts, the
empirical results are summarised as tables in the Appendix. In the following cases, we
plot figures to illustrate the results of average estimates of α for the SPXW and SPX
options. Note that, for convenience, we use the format of year-month-date or month-
date in the following tables and figures to show the expiration date. For example,
20-03-04 means March 4, 2020.

6.2 Case I: SPXW between stable and unstable financial markets

In this case, we explore the estimated α of the TFBS model under different financial
markets. First, we classify the stable and unstable financial environments. Similar to
thework of [46],we plot the daily returns of the S&P500 index under twoperiods: from
January 2019 to June 2019 and from January 2020 to June 2020. Figure1 shows that
the returns of the S&P 500 index in 2019 are between -5% and 5%, which is assumed
to be a stable financial market. The daily returns on March 2020 approach -10% or
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Fig. 1 Daily returns of S&P 500 index for stable and unstable economic condition
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Fig. 2 Normal probability plots of returns of daily S&P 500 index for stable and unstable periods

10% because of the Covid-19 recession that began in most countries in February 2020
and thus we name it as an unstable financial environment.

Moreover, we would like to know how the distributions of the two periods behave.
We choose two groups of the returns of S&P 500 index data (Jan 29, 2019–April
25, 2019, and Jan 28, 2020–April 30, 2020). Figure2 contains two Quantile-Quantile
plots that compare the distribution of daily returns to the normal distribution. It is seen
that the daily returns in the stable period are close to the normal distribution while the
unstable period exhibits a heavy tail distribution. We also employ the lillietest built-in
function in Matlab to test the two groups of returns. The results show that P = 0.2229
for the stable group and we conclude that it is a normal distribution at the significance
of 95%, while for the unstable one, P = 0.0477 and the assumption that the data follow
a normal distribution is rejected at the 95% significance level.

Based on the three analyses, we define two types of stock market conditions. We
would like to study the estimated values of the fractional order α of the TFBS model
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Fig. 3 Results of estimated α for the SPXW calls and puts with the expiration date between March 6, 2019,
and April 24, 2019
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under the global stockmarket crashwhichhappenedonFebruary 20, 2020, andfinished
on April 7, 2020, caused by the Covid-19 pandemic. Several series of SPXW options
that expired in March and April 2020 are collected and analysed. The results are
summarised in Tables 2, 3, 4, and 5 in the Appendix.

We plot Fig. 3 and Fig. 4 in order to show the change of estimated α over time. From
Fig. 3, we can see that the difference among the ITM, ATM and OTM call options is
not remarkable, but for put options, the OTM puts that expired on April 10 are much
lower than the other types of options. This is because the S&P 500 index dropped
from 2854 to 2800 on March 22, 2019, and the SPXW options that expired on April
10 include this period of time. Figure3(b) demonstrates that the OTM put options are
more sensitive than the ITMandATMoptionswhen the stock index decreases. In 2020,
however, there was a huge stock market crash due to the Covid-19 pandemic. Figure4
shows that the αI , αA and αO for calls and puts are varying significantly over time but
both recover back to 1 after April 8, 2020, which is surprisingly consistent with the
end date of the sudden decline in the stock market. It is known that the recovery began
in early April 2020 and the GDP for most countries had returned to normal levels. For
put options, the estimated α approaches the smallest value on March 18 which is also
roughly consistent with the fact that the S&P 500 dropped 1300 points on the date.

The empirical results are interesting and it seems that α can reflect the performance
of the S&P 500 stock index. When the stock price jump is bigger, α is smaller. In
addition, the change in α not only occurs in the extremely unstable period but also in
the stable period with slight price jumps.

6.3 Case II: Two extreme stockmarket crashes

In this case, the SPXmonthly options are used to study themeanings of α over months.
We choose the SPX data for 2008 and 2020 in order to identify α in the two famous
stock market crashes: the Covid-19 recession in 2020 and the global financial crisis
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Fig. 4 Results of estimated α for the SPXW calls and puts with the expiration date between March 4, 2020,
and April 29, 2020
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Fig. 5 Results of estimatedα for the SPX calls and putswith expiration date from January 2020 toDecember
2020

in 2008. We choose a series of monthly options with the same expiration date. All the
empirical results are summarised in Tables 6, 7, 8, and 9 in the Appendix.

Figure5 illustrates that the results of estimated α of the TFBS model for the SPX
options that expired in each month in 2020. For call options, the data in March is
eliminated because there is no sufficient data. The reason is that buyers are less likely
to buy the very deep ITMoptionswhen the stockprice declines significantly. It is shown
in Fig. 5(a) that α has smaller values in April and May. For put options, it is clearly
seen that α reaches the minimum in March, which indicates that high fluctuations
of stock markets occurred in this month. For both calls and puts, we can see that α

slightly fluctuates in the interval (0.8, 1) after June 2020.
Unlike Fig. 5, due to the lack of sufficient data in 2008, we do not take the mean

of estimated α under each category but simply choose the most appropriate option
from March 2008 to December 2008. It is obvious in Fig. 6 that the estimated α has
the smallest value in October for both call and put options when there was an extreme
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Fig. 6 Results of estimated α for the SPX calls and puts with expiration date fromMarch 2008 to December
2008
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Fig. 7 Results of estimated α for the SPXW calls and puts under different strike prices

market crash in October 2008. For call options, α of the OTM option is the smallest,
that of ATM stays in the middle, and that of the ITM is the largest in October. For
put options, the difference among the three categories of options is not significant.
Based on the two extreme financial markets, we may conclude that α can reflect huge
fluctuations in stock markets.

6.4 Case III: Results of estimated˛with different strike price under unstable
period

In the first two cases, we analyse the estimated α over time under different financial
environments. For the third case, we focus on α over different strike prices for options
with the same expiration date. We choose the SPXW options that expired on March
18, 2020, whose strike prices are between 2700 and 2900. Two lengths of options
contracts are chosen: one is 15 trading days and the other is 26 trading days. From
Fig. 7, we may see that α behaves differently over strike prices in the two groups. α
with 26 trading days is larger than that with 15 trading days for calls but smaller for
puts. Note that we have compared a number of empirical results about the SPX and
SPXW options, and there is no strong significance in the relation of α with the length
of options contracts.

6.5 Case IV: Comparison about theMSE of the TFBSmodel and the BSmodel

We choose the call and put options with strike prices from 2980 to 3295 that expired
onMarch 4, 2020. By moneyness, we denote strike prices within (2980, 3065) as ITM
calls or OTM puts, within (3065, 3195) as ATM calls and puts, within (3195, 3295)
as OTM calls or ITM puts. Figure8(a) shows that the MSE of the TFBS model is
slightly smaller for ITM calls and is close to that of the BS model for ATM and OTM
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Fig. 8 MSE for the SPXW calls and puts that expired on March 4, 2020, under different strike prices

calls. From Fig. 8(b), it is seen that there is a significant difference inMSE between the
TFBS and BSmodels when the put options are OTM. Then the difference between two
lines tends to be small over strike price. From the empirical results, we may conclude
that the TFBSmodel has its advantages in fitting data especially for put options during
stock market downturns.

We compare the SPXW options and the numerical solution of the TFBS model.
We choose a call and a put with a strike price of 3295 which expired on March 4,
2020. Figure9 shows how the option price changes over the trading days in an option
contract. For a call option, the price decreases rapidly on the 20th trading day and
approaches 0 until the expiration date, because the stock on the 19th trading day is
below 3295 and the value of calls becomes 0. For a put option, it is the opposite and
its value rises considerably.
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Fig. 9 The comparison of numerical results and real option data with strike price of 3295 expired on March
4, 2020

123



Numerical Algorithms (2024) 95:1–30 23

6.6 Discussion: a relation between fractional order˛ and volatility� in the TFBS
equation and the BS equation

We denote by σF the volatility in the TFBS model, and by σBS the volatility in the BS
model. From empirical results, we find an interesting result, as follows:

α ≈ σF

σBS
. (45)

From the above analysis, we can take α as a big jump indicator of the stock market.
Now we find that α is approximately the ratio of the fractional volatility σF to the
traditional volatility σBS . The approximation can be rearranged as

1

σBS
≈ α

σF
. (46)

We may interpret that the ratio of the order of the derivative to its volatility in the BS
model is approximately equal to the ratio of the fractional order of the derivative and
its volatility in the TFBS models. The third expression is

σBS ≈ σF

α
. (47)

We may interpret that the ‘true’ volatility of the TFBS model should be the same as
σBS . Then we may extend the TFBS model into

C
0 Dα

t U (x, t) = α2

2
σ 2

BS
∂2U (x, t)

∂x2
+ (r − α2

2
σ 2

BS)
∂U (x, t)

∂x
− rU (x, t). (48)

If this equation holds, we can estimate the σBS in the BS model first and then estimate
α in the TFBS model, which can decrease the computation time significantly. Note
that we assumed ρ = 1 in the TFBSmodel. An estimate is that ρ may be set to be equal
to 1/α2. From the three expressions, we may find the potential underlying meaning
of the fractional order α. This discussion might provide a basis for studying similar
relationships for the coefficients from the fractional-order model and integer-order
model. This can be an open problem for further study.

7 Summary and conclusion

This work has provided an implementable framework for identifying the fractional
order α and implied volatility σ of the TFBSmodel by theMH-NMSS-PSO technique.
In this study, we proposed a high-order scheme and carried out theoretical analyses.
Then, we used parameter estimation to explore the underlying meaning of α under
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different financial environments; the results showed that α may be regarded as a jump
indicator in the option pricing problem. The smaller α is, the larger the fluctuation
in the financial market. Several empirical cases about the properties of α have been
investigated under the Covid-19 recession in 2020 and the global financial crisis in
2008. We found an interesting approximation between α and σ of both the BS model
and TFBS model based on certain assumptions. This work is the first attempt to study
the performance of α for one option contract based on empirical studies.

There are still some issues to consider. The algorithm for parameter estimation is
still slow and needs to be developed especially for long-term options (longer than 126
trading days) in the application. The function parameter ρ is introduced but assumed
to be equal to 1 for convenience. The financial meaning of (Y ear)α−1 is still to be
further investigated.
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Appendix

We list all the empirical results in Section6. The parameters αI ,αA,αO correspond to
the ITM,ATM andOTMoptions, respectively. Note that the value of estimated α is the
mean of the estimates αI ,αA,αO . As we classify the options based on the expiration
date, the number of options is different. However, we choose the most appropriate
option rather than take the mean of options under each category in Table 8 and Table
9 in the Appendix due to the lack of sufficient data in 2008.
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Table 2 Results of estimated α for SPXW call options from March 2019 to May 2019

No Expiry Date αI αA αO Num. of options

1 19-03-06 0.9987 0.9989 0.9983 43

2 19-03-13 0.9618 0.9988 0.9987 43

3 19-03-20 0.9925 0.9988 0.9988 41

4 19-03-27 0.9989 0.9582 0.9824 53

5 19-04-03 0.8910 0.9178 0.8665 42

6 19-04-10 0.9590 0.9961 0.9980 29

7 19-04-17 0.9989 0.9721 0.9615 44

8 19-04-24 0.9988 0.9989 0.9985 32

Table 3 Results of estimated α for SPXW put options from March 2019 to May 2019

No Expiry Date αI αA αO Num. of options

1 19-03-06 0.9982 0.9989 0.9999 43

2 19-03-13 0.9987 0.9988 0.9819 43

3 19-03-20 0.9984 0.9999 0.9092 44

4 19-03-27 0.9986 0.9989 0.9989 53

5 19-04-03 0.9988 0.9756 0.8718 42

6 19-04-10 0.9985 0.9854 0.7936 29

7 19-04-17 0.9986 0.9873 0.9465 44

8 19-04-24 0.9999 0.9989 0.9988 34

Table 4 Results of estimated α for SPXW call options from March 2020 to April 2020

No Expiry Date αI αA αO Num. of options

1 20-03-04 0.7952 0.8534 0.8919 55

2 20-03-11 0.9687 0.9142 0.8610 13

3 20-03-18 0.9387 0.9385 0.8168 6

4 20-03-25 0.9999 0.9604 0.8189 12

5 20-04-01 0.9987 0.9988 0.9372 10

6 20-04-08 0.9989 0.9853 0.8413 55

7 20-04-15 0.9999 0.9987 0.9987 50

8 20-04-22 0.9989 0.9999 0.9999 24

9 20-04-29 0.9989 0.9989 0.9988 7
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Table 5 Results of estimated α for SPXW put options from March 2020 to April 2020

No Expiry Date αI αA αO Num. of options

1 20-03-04 0.8592 0.6308 0.3946 59

2 20-03-11 0.5215 0.6625 0.5629 12

3 20-03-18 0.3272 0.4820 0.5096 5

4 20-03-25 0.5126 0.7745 0.7614 11

5 20-04-01 0.8405 0.9599 0.9398 10

6 20-04-08 0.7323 0.9572 0.9989 55

7 20-04-15 0.9961 0.9987 0.9999 50

8 20-04-22 0.9999 0.9999 0.9989 14

9 20-04-29 0.9985 0.9999 0.9999 8

Table 6 Results of estimated α for SPX call options from January 2020 to December 2020

No Expiry Date αI αA αO Num. of options

1 20-01-17 0.9177 0.9967 0.8617 60

2 20-02-21 0.6972 0.8344 0.9665 67

3 20-04-17 0.5465 0.5612 0.5316 41

4 20-05-15 0.5055 0.5357 0.5874 58

5 20-06-19 0.9988 0.9708 0.9419 47

6 20-07-17 0.7946 0.8964 0.7812 66

7 20-08-21 0.9764 0.9323 0.8860 64

8 20-09-18 0.8837 0.7474 0.7367 54

9 20-10-16 0.9084 0.9388 0.8993 57

10 20-11-20 0.6995 0.8323 0.8673 72

11 20-12-18 0.8844 0.9437 0.9865 73

Table 7 Results of estimated α for SPX put options from January 2020 to December 2020

No Expiry Date αI αA αO Num. of options

1 20-01-17 0.9985 0.9983 0.9987 60

2 20-02-21 0.9986 0.9919 0.8581 65

3 20-03-20 0.1403 0.1485 0.1437 19

4 20-04-17 0.4478 0.3960 0.3730 58

5 20-05-15 0.5904 0.5521 0.4749 58

6 20-06-19 0.9987 0.9987 0.9988 51

7 20-07-17 0.8524 0.9465 0.8802 66

8 20-08-21 0.9987 0.9987 0.9986 51

9 20-09-18 0.8925 0.8657 0.9211 55

10 20-10-16 0.9410 0.9983 0.9796 57

11 20-11-20 0.9988 0.9719 0.8333 58

12 20-12-18 0.9986 0.9985 0.9968 63
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Table 8 Results of estimated α

of SPX call options from
February 2008 to December
2008

No Expiry Date αI αA αO

1 08-03-22 0.9989 0.9989 0.9989

2 08-04-19 0.9989 0.9989 0.9989

3 08-05-17 0.9980 0.9989 0.9989

4 08-06-21 0.9980 0.9989 0.9989

5 08-07-19 0.998 0.9989 0.9989

6 08-08-16 0.998 0.9989 0.998

7 08-09-20 0.9900 0.9900 0.9900

8 08-10-18 0.8035 0.7241 0.5157

9 08-11-22 0.9989 0.9146 0.9989

10 08-12-20 0.9989 0.9989 0.9989

Table 9 Results of estimated α

of SPX put options from
February 2008 to December
2008

No Expiry Date αI αA αO

1 08-03-22 0.9989 0.9989 0.9989

2 08-04-19 0.9989 0.9989 0.9989

3 08-05-17 0.9989 0.9989 0.9989

4 08-06-21 0.9989 0.9989 0.9989

5 08-07-19 0.9989 0.9989 0.9989

6 08-08-16 0.9989 0.9989 0.9989

7 08-09-20 0.9630 0.9989 0.9989

8 08-10-18 0.4816 0.5543 0.5946

9 08-11-22 0.8953 0.9249 0.8769

10 08-12-20 0.9338 0.9911 0.9668
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