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A B S T R A C T 

In recent years, Gaussian Process (GP) regression has become widely used to analyse stellar and exoplanet time-series data sets. 
For spotted stars, the most popular GP covariance function is the quasi-periodic (QP) kernel, whose hyperparameters of the GP 

have a plausible interpretation in terms of physical properties of the star and spots. In this paper, we test the reliability of this 
interpretation by modelling data simulated using a spot model using a QP GP, and the recently proposed quasi-periodic plus cosine 
(QPC) GP, comparing the posterior distributions of the GP hyperparameters to the input parameters of the spot model. We find 

excellent agreement between the input stellar rotation period and the QP and QPC GP period, and very good agreement between 

the spot decay time-scale and the length scale of the squared exponential term. We also compare the hyperparameters derived 

from light and radial velocity (RV) curves for a given star, finding that the period and evolution time-scales are in good agreement. 
Ho we v er, the harmonic comple xity of the GP, while displaying no clear correlation with the spot properties in our simulations, is 
systematically higher for the RV than for the light-curve data. Finally, for the QP kernel, we investigate the impact of noise and 

time-sampling on the hyperparameters in the case of RVs. Our results indicate that good co v erage of rotation period and spot 
evolution time-scales is more important than the total number of points, and noise characteristics go v ern the harmonic complexity. 

Key words: methods: data analysis – techniques: photometric – techniques: radial velocities – stars: activity. 
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 I N T RO D U C T I O N  

aussian Process (GP) regression has become an increasingly 
opular method for analysing stellar activity signals in photometric 
nd radial velocity (RV) time-series data. In particular, GP models 
ased on quasi-periodic kernel functions are able to reproduce the 
otationally modulated signatures of evolving magnetically active 
egions remarkably well (see e.g. Aigrain, Pont & Zucker 2012 ; 
aywood et al. 2014 ; Angus et al. 2018 ). Quasi-periodic GP
odels have been applied extensively to stellar time-series data, 

oth to mitigate the impact of stellar activity on planet detection 
r characterization (see e.g. Haywood et al. 2014 ; Barclay et al.
015 ; Grunblatt, Howard & Haywood 2015 ; Rajpaul et al. 2015 , and
umerous later references), and to study stellar activity signals per 
e (see e.g. Angus et al. 2018 ; Barrag ́an et al. 2021 ). 

There are many ways to construct a quasi-periodic kernel function 
or a GP model, but one such kernel has become especially popular
or modelling stellar activity signals, to the extent that, in the exo-
lanet community, it is often referred to simply as the Quasi-Periodic 
QP) kernel. The QP kernel is constructed by multiplying a periodic 
erm, consisting of the exponential of a sine-squared function, with 
 decaying envelope, consisting of a squared exponential function. 
ith only four parameters, this kernel function can produce signals 
ith different amplitudes, periods, evolution time, and degree of 
armonic complexity. Random samples drawn from a QP GP prior 
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ear a striking resemblance to observed stellar light curves (see e.g.
ajpaul et al. 2015 ). 
A QP kernel is not always the best choice of kernel to model

tellar activity signals. For example, Gilbertson et al. ( 2020 ) show
hat simpler, a-periodic kernels can in some circumstances perform 

omewhat better in terms of activity mitigation in RV time-series. 
o we ver, the QP kernel explicitly encodes the commonly held
elief that the underlying signal should be quasi-periodic, even if its
eriodic nature is not necessarily apparent in noisy and/or sparsely 
ampled data. Furthermore, most of the parameters of the QP kernel
known as the hyperparameters, or HPs, of the GP) admit a fairly
atural interpretation in terms of the physical properties of the active
egions, such as their rotation rates and lifetimes. The primary goal
f this study is to investigate, using simulated data, the extent to
hich this ‘natural’ interpretation is robust and can be used to guide
odelling decisions. 
Observed light and RV curves of active stars often contain 

ignificant power not only at the stellar rotation period, but at its
rst few harmonics (see e.g. Aigrain et al. 2012 ), a feature which is
ot naturally reproduced by the standard QP kernel. Consequently, 
n recent years a number of other quasi-periodic kernels have been
nv estigated, which e xplicitly generate power at half the rotation
eriod, including the ‘QP plus cosine’ (hereafter QPC) kernel 
ntroduced by Perger et al. ( 2021 , hereafter P21 ), given by equa-
ion ( 2 ), and the ‘rotation term’ implemented in the CELERITE package
F oreman-Macke y et al. 2017 ). After experimenting with both of
hese, we decided to include the former in this study. Achieving
onvergence with, and robustly interpreting the parameters of, GP 
is is an Open Access article distributed under the terms of the Creative 
ch permits unrestricted reuse, distribution, and reproduction in any medium, 
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odels based on the CELERITE rotation term is somewhat more
hallenging with our model data, and we defer that to a separate paper.

While GP models using the QP and QPC kernels provide a
seful description of common observables, they are still very much
henomenological. A more physically moti v ated family of GP
odels for active star light curves was recently introduced by
uger, F oreman-Macke y & Hedges ( 2021 ). Their STARRY-PROCESS

ramework places a GP prior on the distribution of active regions
n the stellar surface, which is described using a spherical harmonic
ecomposition. Ho we ver, this relati vely ne w approach has not yet
een widely used, nor has it been extended to RV data, placing it
utside the scope of this work. 
The fact that a QP GP can be used to reco v er stellar rotation

eriods from light curves has already been demonstrated (see e.g.
ngus et al. 2018 ). Ho we ver, the behaviour of the other HPs, in
articular the parameter controlling the evolution of the signal, has
ot yet been investigated in detail. A number of recent studies
ave shown that it is possible to measure active region lifetimes
rom photometry, for example by fitting a function to the decaying
nvelope autocorrelation function (ACF) of the light curve (Giles,
ollier Cameron & Haywood 2017 ; Basri et al. 2021 ; Santos et al.
021 ). These studies have shown that, provided the light-curve
uration significantly exceeds the active region lifetime, the ACF
ecay time is roughly proportional to the active region lifetime, but
he constant of proportionality is not unity. We would expect the
esults obtained with a GP model, which ef fecti vely is a more direct
ay of modelling the covariance, to be consistent with those obtained
y fitting the ACF, but this has yet to be demonstrated. 
P21 analysed simulated RVs with four different spot distributions

ith GP models using QP, QPC, and CELERITE rotation kernels. They
ere able to reco v er the input spot evolution time, but their study

onsidered only a single value of the rotation period and evolution
ime. In this work, we extend this to a much broader parameter space,
arying the rotation period, spot lifetime, and number of spots. 

A common application of the QP GP is in filtering stellar activity
rom RV time-series. When following up planet candidates detected
n transit, it is common practice to ‘train’ the GP on the light-curve
ata first (see e.g. Haywood et al. 2014 ; Rajpaul et al. 2015 ; Fulton
t al. 2018 ). The posterior distribution o v er the HPs of the QP GP
s then used as a prior for the RV analysis. Ho we ver, this may not
l w ays be advisable, for two distinct reasons. First, the photometric
ata, if available, is rarely contemporaneous with the RVs, and can
e taken months or even years apart. Using a 70-yr compilation of
olar irradiance data, Kosiarek & Crossfield ( 2020 ) showed that all
he HPs of a QP GP fit to the light curve of a Sun-like star can
ary significantly o v er the solar c ycle. This implies that it may be
angerous to train a QP GP on light-curve data before applying it
o RV data, if the two were taken too far apart. Furthermore, their
nalysis of simultaneous SORCE photometry and HARPS-N RVs
ound consistent periods and evolution time-scales, but significant
ifferences in the length scale parameter that controls the complexity
f the signal within a period (often referred to as the harmonic
omplexity). This effect was also seen in simulated data by Barrag ́an
t al. ( 2022 ). It is related to the fact that the RV variations depend not
nly on the projected area of the active regions and their contrast, but
lso on their local line-of-sight velocity. This underpins the so-called
Fprime framework for predicting RV variations from photometry
Aigrain et al. 2012 ), as well as latent variable models where RVs
re modelled jointly with activity indicators extracted from the same
pectra, as linear combinations of an underlying GP and its time
eri v ati ve(s) (see e.g. Rajpaul et al. 2015 ; Jones et al. 2017 ; Delisle
t al. 2022 ). Ho we ver, as it is still quite common in the literature
NRAS 515, 5251–5266 (2022) 
o model RVs alone using a QP GP trained on photometry, it is
mportant to test the robustness of this approach. 

In this work, we first use a simple spot model to simulate simulate
ightly sampled, noise-less photometric and RV time-series, and then
odel each independently with a QP or QPC GP. This allows us to

est the extent to which the HPs of these models relate to the physical
arameters of the simulations, and how closely the results based
n photometry match each other. Doing this using highly idealized
ata enables us to explore the differences between these two types of
bservations at a fundamental lev el, remo ving the effects of noise and
ime-sampling. As a second step, we then degrade the time-sampling
f the RV data, and add white noise, to make the simulations more
ealistic (since RV observations are typically ground-based). This
llows us to investigate how time-sampling in particular affects the
eco v ery of the GP HPs, in the case when space-based photometry
s not available (i.e. for ‘pure RV’ surv e ys, rather than for transit
ollow-up). 

The remainder of this paper is organized as follows. In Section 2 ,
e define the QP and QPC kernels used in this work, and fit simulated

ime-series generated from the GP prior itself. This allows us to test
or degeneracies inherent to the GP models. In Section 3 , we define
he spot model used to simulate stellar light and RV curves, and
xamine the properties of the HPs obtained from the simulated light
urves. The GP fits to the idealized RV data sets are discussed in
ection 4 , and the effect of degrading the time-sampling of the RVs
re explored in Section 5 . Finally, we summarize and discuss the
ndings of this work in Section 6 . 

 QUASI -PERI ODI C  GAUSSI AN  PROCESS  

O D E L S  

P regression is a powerful and flexible method for analysing data
ontaining correlated noise. Rather than fitting a function to data,
P regression instead fits the correlation between data points. At its
eart, a GP is defined by its kernel covariance function, k , which
escribes the extent to which two observations are correlated with
ach other, usually as a function of their distance in some input
pace (for time-series, the time interval separating them). For the
urpose of modelling stellar activity signals in astronomical time-
eries, a quasi-periodic covariance function is commonly chosen. In
he most general sense, a quasi-periodic kernel is usually obtained
y multiplying a periodic term with a decaying envelope. 

.1 The quasi-periodic kernel 

n the standard QP kernel most commonly used for stellar activity
odelling, the periodic term is given by the exponential of a sine-

quared function, while the evolution is described by a squared
xponential term. Formally, the QP kernel is defined as: 

 QP ( t , t 
′ ) = A exp

[
−� sin 2

(π ( t − t ′ ) 
P 

)
− ( t − t ′ ) 2

2 l 2

]
, (1) 

here A is the variance, � is the scale factor (termed ‘harmonic
omplexity’), and P the period of the sine-squared term, and l is
he ‘evolution time-scale’ of the squared exponential term. These
erms are referred to as the ‘hyperparameters’ of the GP so as to
ifferentiate this process from fitting a parametric function to the
ata. For further information of the quasi-periodic kernel GP and on
P’s in general, we refer the reader to Rasmussen & Williams ( 2006 )

nd Roberts et al. ( 2013 ). 
The QP GP used in this work is implemented using the GEORGE

ython package (Ambikasaran et al. 2015 ) by combining the EX-
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Table 1. Priors placed on the parameters and QP GP hyperparameters for 
the MCMC fit of the sample curves drawn from sets of QP GPs. 

Input Parameter Prior a 

ln ( A ) U [ −30 , 30] 
ln ( P ) U [ −15 , 15] 
� U [0 , 15] 
ln (2 l 2 ) U [ −30 , 30] 
Mean U [ −15 , 15] 

Note. a U [ a, b] refers to uniform priors between a and b . 
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SINE2KERNEL and EXPSQUAREDKERNEL built-in kernel functions. 
he GEORGE kernels use the hyperparameters values in natural log 
s input, with the exception of the � term, and reparameterize the
enominator of the squared exponential term as m = 2 l 2 , called the
metric’. We also solve for the mean function of the data, in this
ase a constant, as this reflects the practice of fitting underlying 
unctions (such as a Keplerian orbit in the case of RVs) to the
ata. 

.2 The quasi-periodic plus cosine kernel 

21 introduced the idea of adding a cosine term to the periodic
omponent of the QP kernel, with a period equal to half that of the
ine-squared term, to better handle cases where the distribution of 
pots on the stellar surface gives rise to signal the first harmonic
f the stellar rotation period (evidenced by a secondary peak in the
utocorrelation function at half the rotation period). Mathematically, 
his ‘Quasi-Periodic plus Cosine’ (QPC) kernel is defined as: 

k QPC ( t , t 
′ ) = A exp

[
− ( t − t ′ ) 2

2 l 2

]
×

(
exp 

[
−� sin 2

(
π ( t − t ′ ) 

P 

)]
+ f cos

(
4 π ( t − t ′ ) 

P 

))
, (2) 

here A , �, P , and l retain the same definitions as in the QP
ernel, and we have introduced an additional hyperparameter f , which 
ontrols the amplitude of the cosine term relative to the sine-squared 
erm. As f tends to zero, the behaviour of k QPC tends to that of k QP . 

In this work, we define this kernel again in GEORGE by with the
ddition of a COSINEKERNEL term to our GEORGE QP kernel. 

.3 Exploring inherent degeneracies in the hyperparameters 

he first step in assessing the ability of a GP to reco v er physical
arameters of a star is to investigate the stability of the GP fit itself
nd e xplore an y inherent de generacies in fitting a QP or QPC kernel.
o test this, we generate a number of ‘light curves’ by drawing
amples from our GP prior, and fit these sample curves to see if
e reco v er the input GP hyperparameters. This step also serv es to
alidate our fitting and posterior exploration procedure. The bulk of 
his analysis was carried out using the QP kernel, but we also discuss
he QPC kernel and its extra hyperparameter towards the end of the
ection. 

Our sample curves were generated o v er a range of hyperparame-
ers, with 20 sample curves per set of hyperparameters. Each sample 
urve spans 100 d, with a sampling of three, evenly spaced points
er day, and a fixed amplitude of 1. The grid of hyperparameters
ontain period values of 2, 10, 30, and 60 d, � values of 0.5 and
 and l values of a 1, 3, and 10 times the period. These values
ere chosen as they represent the range of values typically found 

n the analysis of stellar light curves across a range of activity
evels. 

Markov Chain Monte Carlo (MCMC) was used to sample the 
osterior distribution of the hyperparameters for each sample curve, 
sing the EMCEE python package (F oreman-Macke y et al. 2013 ). The
CMC was set up with 80 walkers in a Gaussian distribution about

he sample curve input values, with a broad uniform prior used for
ach hyperparameter across all sample curves (see Table 1 ). There 
as an initial burn in of 100 steps, from which a tight Gaussian
istribution around the highest probability state was used to re- 
nitialize the w alk ers. The main MCMC w as then run until the
 alk ers had converged on a solution or a maximum of 8000 iterations
as reached. The convergence of the MCMC walkers was checked 
very 100 steps, and a sample was deemed to have converged if
he autocorrelation length of all chains was more than 60 times the
umber of elapsed iterations and had not changed by more than
 per cent in the last 100 steps. For each of the MCMC solutions
 ‘burn-in’ of twice the maximum chain autocorrelation length was 
emo v ed, and the chains were thinned by half the minimum chain
utocorrelation length to ensure an unbiased sample. The optimum 

olution for each hyperparameter was taken as the median of the
osterior distribution, and the uncertainty as difference between the 
0th and 16th percentile for the lower bound and the 84th and 50th
ercentile for the upper. 
Fig. 1 sho ws ho w closely the input values of the period (left-

and panel), l (middle), and � (right-hand panel) were reco v ered
y the GP, relative to the uncertainties calculated from the MCMC
osterior distributions. Performing a Kolmogoro v–Smirno v test on 
he distribution of (input–output)/uncertainty for each of period, l 
nd �, we find D statistic values of 0.081, 0.068, and 0.058, and
 values of 0.016, 0.071, and 0.18, respectively. The D statistic
alues are close to 0 (normal distribution), and the p values are not
ignificant enough to reject the null hypothesis that these distributions
re drawn from a standard normal distribution. In other words, 
ll three distributions are consistent with a Gaussian with a mean
round zero and a standard deviation of 1. This means that, within
he limits of statistical uncertainty, the QP GP is non-degenerate 
nd stable: the parameters that go in are the parameters that will 
ome out. 

We then tested in the same manner a set of light curves generated
rom a QPC kernel. The input values for P , �, and l were the same
s in the QP case. We tested two values of f , 0.1 and 0.9, and adopted
 uniform prior on log ( f ) between log (10 −4 ) and 0 when fitting the
amples. We find the same results for period, l and � as with the
ure QP case: the input hyperparameters are all well-reco v ered. The
raction term, f , was only reco v ered in sev en cases within 3-sigma,
ll of which had high f . Fig. 2 shows histograms of the reco v ered f
alues for the low (solid) and high (hatched) input values. For the
o w v alues of f , the QPC GP reco v er reco v ers the f values, but not as
ell as it does for the other parameters. The high- f value cases are not
ell reco v ered, despite these cases all having well reco v ered period,
and � values. As seen in 2 , the reco v ered f for these high- f cases

ange from 0.2 to 0.9, with a median value of 0.7. This indicates that
he QPC GP is only weakly sensitive to the true fraction term on the
osine component.

 M O D E L L I N G  SPOTTED  STAR  L I G H T  

U RV E S  WI TH  QUASI-PERIODIC  G P S  

n this section, we describe how we simulate light curves for rotating
tars with evolving active regions, and then fit them with quasi-
eriodic GPs using the kernels described in Section 2 . 
MNRAS 515, 5251–5266 (2022) 
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M

Figure 1. Reco v ery of input QP GP hyperparameters: each panel shows a histogram of the difference between the input and output parameter v alues di vided 
by the uncertainty of the output solution for each of the varied hyperparameters: Period ( P , left-hand panel), length scale ( l , middle), and harmonic complexity 
( �, right-hand panel). 

Figure 2. Histograms of the reco v ered cosine term fraction f from a QPC GP 
for sample curves drawn from a QPC GP with a high f value of 0.9 (hatched), 
and low f value of 0.1 (solid). 
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Table 2. Stellar model input parameter distributions. 

Parameter Parameter range (uniform distribution) 

Average spot number, N Spot 0 < log 10 ( N Spot ) < 2 
Stellar rotation period, P rot 0 < log 10 ( P rot ) < 2 
Spot decay timescale, τ 1 P rot < τ < 10 P rot 

Spot longitude, φ 0 < φ < 2 π
Spot latitude, θ 0 < sin ( θ ) < 1 
Spot maximum area, A max −3 ≤ N Spot log 10 ( A max ) < −2
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.1 Simulating spotted star light cur v es 

o test the correlation of the QP GP hyperparameters with physical
haracteristics of a star, we generate 100 simulated light curves using
 simple spot model implemented in the PySpot package 1 (Aigrain
021 ), which is a simplified version of the model used in the Kepler
otation and differential rotation blind e x ercise presented in Aigrain
t al. ( 2015 ). We first define the parameters of the star and the spots
n each simulation, then use these simulations to produce light and
V curves. 
All simulations last T = 250 d, with two equally spaced observa-

ions per day, and all the stars are seen equator on, and have the same
adius as the Sun. For each simulation, we draw the stellar rotation
eriod, P rot , the average number of spots present on the stellar surface
t any given time, N Spot , and the ratio of the characteristic lifetime
f the spots to the rotation period, τ / P rot , from random distributions
hich are listed in Table 2 . Each spot grows exponentially, peaks in

ize at a specific time and size, and then decays again exponentially.
he times at which the spot sizes peak were drawn at random times

rom −T to 2 T . This is to a v oid a situation where, particularly
or long lifetimes, the spot co v erage is systematically lower at the
NRAS 515, 5251–5266 (2022) 

 See https:// github.com/saigrain/ pyspot. 

T  

l  

d  
eginning and end of the simulation than in the middle. The spots are
ssumed to be perfectly dark (contrast of 1 with respect to the stellar
hotosphere) and their peak sizes A max range from 0.1 to 1 per cent
f the visible hemisphere. The spots are randomly distributed on the
tellar surface (uniform distribution in longitude, and in sin ( θ ) where
is spot latitude). This is not particularly realistic, but limiting the

pots to specific latitude bands (as done for example in Aigrain et al.
015 ) would not significantly alter the results of this study, because
he stars are seen equator-on. After reaching its peak size, each
pot decays according to an exponential with half-life τ . Following
igrain et al. ( 2015 ), the spots grow five times more rapidly than

hey decay (though we also performed some simulations with equal
rowth and decay time, to see if this has an effect on the reco v ery
f the spot lifetime, as discussed in Section 3.3.2 ). We then simulate
ight curves using the analytic spot model of Dorren ( 1987 ), using a
inear limb-darkening law with u = 0.5. Only idealized, noise-free
ata were considered in this study, so the simulated fluxes have no
ssociated uncertainties. 

.2 Fitting the light cur v es using a GP 

hen analysing a light curve simulated using a spot model, the GP is
o longer the ‘correct’ model. Although the QP and QPC GP kernels
escribed in Section 2 are very flexible, samples from GPs cannot
eproduce the simulated light curves exactly (to machine precision).
o account for this, we include a jitter term when modelling the

ight curves with the QP and QPC GPs. This jitter term absorbs any
eviations between the simulated observations and the GP model. In

art/stac2097_f1.eps
art/stac2097_f2.eps
https://github.com/saigrain/pyspot
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Table 3. Priors placed on the parameters and QP GP hyperparameters for 
the MCMC fit of the model time-series data. 

Input (hyper)parameter Prior a 

ln ( A ) U [ −30 , 30] 
ln ( P ) U [ log ( max [2 T min , 1]) , T max ] b 

� U [0 , 15] 
ln (2 l 2 ) U [ −30 , 30] 
Mean U [ −15 , 15] 
ln (J) U [ −20 , 20] 

Note. a U [ a, b] refers to uniform priors between a and b . b T max and T min refer 
to the maximum and minimum length of time between data points within a 
given time-series. 

Figure 3. The top panel compares the input stellar rotation period to the 
output QP GP period (both in natural log) for the model light-curve data, 
with the unity relation indicated by the grey dashed line. The bottom panel 
shows the residuals to the unity relation, with axes scaled to exclude the larger 
outliers so as to more clearly show the scatter around the zero (grey dashed 
line). 
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ractice, a jitter term is included by adding a constant value J to the
iagonal of the covariance matrix. We fit for J alongside the other
yperparameters, resulting in more robust uncertainties on the latter. 
he full set of parameters and GP hyperparameters that are solved 

or, and their associated prior distributions are given in Table 3 . 
Initial guesses for each hyperparameter were defined as follows. 

he GP period P was set to the stellar rotation period P rot , and the
P length scale l to the spot decay time-scale τ . The GP mean and
ariance A were set to the sample mean and variance of the simulated
ight curve. Since there is no single parameter of our stellar spot
odel that relates directly to �, we adopt an initial guess of � =
 across all models. This value marks the transition between high 
nd low harmonic complexity cases (Barrag ́an et al. 2022 ), and was
hosen because it allows easy exploration of parameter space in either 
irection. 
The optimum GP hyperparameters were found using Markov 

hain Monte Carlo (MCMC) with the python package EMCEE 

F oreman-Macke y et al. 2013 ). The MCMC was run with 80 walks
or to a maximum of 10 000 steps, unless the convergence was
eached sooner. MCMC analyses struggle with ‘perfect’, error-free 
ata, so to help with convergence we specify a small uncertainty 
f 10 −4 for the simulated data. The convergence of the MCMC
 alk ers w as check ed and measured using the same method outlined

n Section 2.3 . For the solutions that met this convergence criteria,
 ‘burn-in’ of twice the maximum chain autocorrelation length 
as remo v ed, and the chains were thinned by half the minimum

utocorrelation length. 
Given their greater complexity compared to the GP sample curves, 

he posterior distribution of the GP analysis of the light curves con-
ains more local minima in which w alk ers can get ‘lost’. We mitigate
his in two ways: First we set the walkers to follow a weighted
ombination of differential evolution (80 per cent probability) and 
if ferential e volution snooker (20 per cent probability) mo v es, as
his is suited for multimodal posterior distributions. Secondly, we 
mplement a three stage burn in: the MCMC was run for 300 iterations
nd then reinitialized from the highest probability solution, repeating 
wice before the main MCMC run. If by the end of the main run
here was not a converged solution for any of the reasons outlined
bo v e, a ‘burn in’ of 5000 steps was remo v ed from the start of
he chains, the same test for convergence run again. If a solution
assed, the same procedure for thinning and removing the ‘burn- 
n’ was used as for the MCMC solutions that converged normally.
f the solution still failed convergence, then no further burn-in or
hinning was applied and a flag allocated to note it as a non-converged
olution. 

.3 Results 

or all converged MCMC solutions, the final value was taken as
he median value of the posterior distribution, and we estimate an
ncertainty by calculating the difference between the 50th and 16th 
ercentile for the lower bound, and the 84th and 50th percentile
or the upper. Any non-converged solutions were excluded from the 
nalysis below. See Appendix A for further discussion on the handful
f model light curves for which the QP GP did not converge to a single
et of solutions. 

.3.1 Stellar rotation period and QP GP period 

 comparison between the stellar model rotation periods and the 
utput QP GP period is shown in Fig. 3 . As seen in the top panel,
he QP GP reco v ers the stellar rotation period for all but one of the
odel light cures. For the two outlier points, the recovered period

alues are approximately a half and a tenth of the input model stellar
otation periods, owing to the particular distribution and evolution of 
he spots creating signals at those periods. 

The bottom panel shows the residuals of the GP period from the
nput model rotation period, excluding the outlier point to better see
he scatter about zero. This scatter around zero (perfect reco v ery
f the rotation period) is evenly distributed above and below, and
ncreases for shorter rotation periods. This increased scatter is due to
he finite sampling, with the longer periods being better sampled by
he two points per day in our model light curve, and hence are better
eco v ered by the GP. 

.3.2 Stellar spot evolution time, τ , and QP GP evolution 
ime-scale, l 

ig. 4 compares spot evolution time-scale, τ , of the model stellar
ight curves with the QP GP length scale, l . The grey dashed line
ighlights the 1:1 correlation, the purple vertical dashed line shows 
he total time span, T, of the model light curves of 250 d, and the
MNRAS 515, 5251–5266 (2022) 
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Figure 4. This figure compares the input stellar model spot evolution time, τ , 
to the solutions QP GP evolution time-scale, l , for the set of model light curves 
(top panel), the residuals (middle), and the residuals with y-axis adjusted to 
highlight features at smaller τ (bottom). The grey dashed line indicates the 
unity relation, and the vertical dashed lines indicate the total (purple, T), half 
(green, T/2) and sixteenth (blue,T/16) time span of the data. 
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Figure 5. Same as Fig. 4 (direct comparison of values in the top panel, and 
residuals from the unity relation in the bottom panel), but for stellar models 
with equal spot emergence and decay times. 
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reen and blue vertical dashed lines indicate a half and sixteenth of
he time span, respectively. 

These results show a strong correlation between the spot evolution
ime-scale and the QP GP length scale hyperparameter. In the case
f the specific way we have defined the spot behaviour in our stellar
odels, this is nearly a 1:1 relation, particularly at smaller values of
. The deviation from 1:1 reco v ery increases with increasing time-
cale τ as the values of τ approach the total time-span of the data,
 . The QP GP length scale underestimates τ for values of τ between
pproximately T/16 and T/2, past which the GP o v erestimates τ with
ncreasing scatter beyond τ greater than the time span of the data. 

In the stellar models used for this work, the spots emerge on the
tellar surface five times faster than they decay, a choice moti v ated by
bservations of spot emergence and decay times on the Sun. To see
hether this has an impact on the reco v ered QP GP length scale, we
enerated another set of simulated light curves with equal emergence
nd decay times, and modelled them in the same way. The results are
hown in Fig. 5 . Comparing this to Fig. 4 , the scatter around the 1:1
ine is smaller for equal emergence and decay times. Again we see
ncreasing scatter with increasing τ , but this only becomes marked
or values of τ approximately equal to or greater than the total time
pan of the data set (purple dashed line). This result is unsurprising:
hen spot emergence is much faster than decay, the light curves are

till dominated by changes occurring on the spot decay time, but this
s occasionally perturbed by the emergence of a large spot causing
 significant change on a much more rapid time-scale. This is more
NRAS 515, 5251–5266 (2022) 
hallenging for our GP model, which has a single evolution length
cale, to reproduce. 

.3.3 Stellar model parameters and QP GP harmonic complexity, � 

here is no intuitive physical interpretation for the harmonic com-
lexity QP GP hyperparameter, so we examine how this hyperparam-
ter behaves across all the input stellar model properties. Fig. 6 shows
he solutions for the QP GP � with total spot number, stellar rotation
eriod, spot evolution time-scale, and the ratio of spot evolution time
o the stellar rotation period. We calculate Pearson product-moment
orrelation coefficients of −0.36 with total spot number, 0.66 with
tellar rotation period, 0.62 with spot evolution, and 0.12 with the
atio of spot evolution time to stellar rotation period. 

Since the � term go v erns how comple x the curve is within one
otation period, the correlation with stellar rotation period results
rom longer period light curves being better sampled within one
eriod, and so more complex behaviour can be resolved, giving a
igher value for gamma. 
The correlation with evolution time, however, is spurious, as

emonstrated by the bottom panel. By dividing through by the period,
e remo v e all correlation of the evolution time-scale with Gamma:

t any given period, there is no correlation between τ and �. 
The slight, though not significant, correlation with total spot

umber is likely due to the difference in distribution of spots (see e.g.
igrain et al. 2015 ), which occurs when there are very few compared

o many spots on the stellar disc. Given the uniform distribution
mposed on the spot latitudes across all stellar models, models with a
arge number of spots will have an equally uniform spot distribution,
ut asymmetries in spot distribution will occur when there are very
ew spots. 

Another influence in the outcome of these results are the input
alues and prior distributions used. Unlike the other hyperparameters
hat have initial values derived from the properties of the individual
ight curv es, � is giv en a starting value of 1 for all light curves. The
 alk ers thus have further to explore to find an optimum solution, and
ay become ‘stuck’ in a local preferred solution instead of finding

he global optimum solution. Ho we v er, as e xplained in Section 3.2 ,
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Figure 6. Light-curve MCMC solutions for the QP GP harmonic complexity, 
�, against the input stellar model parameters of total spot number, stellar 
rotation period, spot evolution time-scale, and the ratio of the spot evolution 
time-scale to the stellar rotation period. 
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Figure 7. This figure compares the QP and QPC solution for ln (Period). 
Figure description is same as Fig. 3 . 
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his is mitigated by the multiple burn-in stages and setting a high
aximum number of iterations to allow time for the w alk ers to find

he best solution. The clustering of points near � = 15 is a result of the
 alk ers reaching the upper bound of the uniform prior. Increasing

his bound, ho we ver , does not change this behaviour , as it results
rom the GP trying to fit every small feature of the data that are due
o the high-cadence sampling. This demonstrates the need for having 
 reasonable upper bound on � so as to prevent overfitting the data. 
.4 QPC versus QP GP analyses of light curves 

he same analysis was repeated with the QPC kernel, with the same
CMC framework and convergence criteria. There were two non- 

onverged solutions, one of which had also failed to converge in the
P case (see Appendix A for further discussion). When comparing 

he two analyses, all models that had a non-converged solution in
ither QP or QPC GP analyses were remo v ed. 

Figs 7 , 8 , and 9 show the comparison between the hyperparameters
hat are common to the QP and QPC kernels. Across all three
yperparameters the values QP and QPC values are almost identical. 

For period, the agreement between the QP and QPC solutions 
s e xcellent, ev en at shorter period where scatter between the input
otation period and output QP GP period is higher. Additionally, there
re one fewer outliers in the QPC kernel results. The QPC kernel is
xpected to better handle P/2 aliases in the data, but this is not seen
n this case. The outlier in the QP case at ∼0.5 P remains an outlier
ere, and has been underestimated ever further to ∼0.1 of the rotation
eriod. The outlier that was at ∼0.1 P in the QP case, on the other
and, has converged to the input rotation value in the QPC case. The
odels with that are the largest outliers in period are also the largest

utliers in l and �. 
The results for evolution time-scale l between the QP and QPC

nalyses are also in excellent agreement. They show increasing 
catter at longer l , though all agree within the MCMC solution
ncertainties. This scatter begins to increase at T/2, and increases 
ignificantly past T, as seen most clearly in bottom panel of Fig. 8 . 

Fig. 9 demonstrates the excellent agreement between the QP 

nd QPC solutions for �. In particular this is highlighted in the
ower panel of this figure, which has been scaled to exclude the
argest residuals and better see this scatter about zero. Abo v e � ∼
 (and ignoring the points clustered at the edge of the uniform prior
oundary values of 15), the scatter in the values is smaller than the
CMC uncertainties. Within those uncertainties, all residual points 

an be said to fall on zero, although all QPC points are systematically
lightly larger than the QP values. 

The near identical results seen between the QP and QPC kernels
resented abo v e can be e xplained by the distribution of f values. As
hown in Fig. 10 , all but a few of the converged solution have solution
MNRAS 515, 5251–5266 (2022) 
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Figure 8. This figure compares the solutions of the QP and QPC GP evolution 
time-scale, l . Figure description is same as Fig. 4 . 

Figure 9. Top panel of this figure compares the QP and QPC kernel solutions 
for the harmonic complexity, �, with grey dashed line indicating the unity 
relation. Bottom panel shows the residuals around the one-to-one relation, 
with y-axis scaled to exclude the four largest outliers. 
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Figure 10. This figure shows a histogram of the fraction of cosine compo- 
nent, f , values for the QPC GP for our model light curves. 
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or f that are very small and tend towards zero. As such, these GPs are
ehaving more like the QP kernel, and hence giving near identical
esults for period, l and �. This is surprising, as more than a third of
ur model curves have some signal at half the rotation period (seen as
 peak in their autocorrelation function at P/2), and thus are expected
o have values of f greater than zero. It is possible that the cosine
NRAS 515, 5251–5266 (2022) 
erm in the QPC kernel only requires a small amplitude to have a
ignificant effect, but our results may also indicate that QP GP alone
andles signals at P /2 almost as ef fecti vely as the QPC kernel. 

 APPLYI NG  T H E  Q P  K E R N E L  TO  M O D E L  RV  

IME-SERIES  

t is common practice to use photometric data to inform the priors
or QP GP analyses of RV data, often used to mitigate stellar activity
ignals in the search for Keplarian signals from exoplanets. To
xplore how the hyperparameters of a QP GP fit to photometric data
ill compare to that of RV data, we use the same spot models used

bo v e to compute RV time-series using the following, very simple
rocedure (Aigrain et al. 2012 ): at each time-point, we compute the
ocal RV of the stellar surface at the centre of each spot, and multiply
t by the spot’s contribution to the light curve (in relative flux units).

The resulting RV time-series have the same sampling and duration
s the light curves. While they are not representative of real RV data
ets, which are typically ground-based and have much sparser time-
ampling, we use these RV simulations to explore the differences
etween the hyperparameters of the QP GP models trained on the
hotometric and RV time-series. The impact of the difference in
ime sampling between space and ground based observations will be
xplored separately in Section 5 . 

The same MCMC procedure was used to find solutions for the
yperparameters of a QP GP applied to the RV time-series, and
he treatments of non-converged solutions was the same. The two
tellar models that gave multimodal (non-converged) solutions in the
hotometric data, had converged, single solutions in the RVs, and a
andful of the stellar models that had converged solutions for the LC
ata had non-converged solutions here. To best compare the LC and
V results, all models that non-converged solutions in either analysis
ere remo v ed. 

.1 RV versus light-curve period 

he comparison of the solution to the QP GP period from light
urv e v ersus RV data is shown in Fig. 11 . The top panel plots the
P solution for the light curve against those of the RVs, with the
rey dashed line showing the unity relation, and the bottom panel
hows the residuals from this, excluding the outlier seen in the upper
anel results from the underestimated period of one light curve QP
P solution. The period solutions for the RV QP GP shows no

uch outliers, and reco v er well the model stellar rotation periods.
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Figure 11. The top panel compares the output QP GP period (in natural 
log) for the radial velocity (RV) data with the light-curve (LC) data, with the 
unity relation indicated by the grey dashed line. The bottom panel shows the 
residuals to the unity relation, with axes scaled to exclude the larger outliers 
and more clearly show the scatter around the zero (grey dashed line). 

Figure 12. This figure compares the solutions QP GP evolution time-scale 
l for model light curves (LC) with the solutions for the radial velocity (RV)
data. The grey dashed line indicates the unity relation, and the purple vertical
dashed lines indicate the total time span of the date of 250 d.
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Figure 13. The RV reco v ered harmonic complexity term ( �) of the QP GP, 
versus that from the light-curve (LC) data. The unity relation is shown by the 
grey dashed line. 
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he lower panel show a greater scatter in the residuals for shorter
eriods, reflecting the scatter seen in the light-curve GP solutions. 
v erall, the light curv e and RV QP GP solutions for the period are

n excellent agreement, both reflecting the stellar rotation period. 

.2 RV versus light curve l 

ig. 12 compares the QP GP length scale solution from RV time-
eries versus the solution from model light-curve data, with the grey 
ashed line indicating the unity relation, and the vertical purple 
ashed line showing the total time span of the data of 250 d. The
ight curve and RV solutions are in good agreement, but differ more
t larger length scale, particularly for those length scales greater than
he time span of the data. 

.3 RV versus light-curve � 

ig. 13 compares the RV and light-curve solutions of the QP GP
armonic complexity, �, with the 1:1 relation shown as a grey dashed
ine. Unlike the period and the length scale, the RV and light-curve
P GPs hav e v ery dif ferent solutions for �. The RV solution gi ves a

onsistently larger � than the light-curve data from the same stellar
odel. Further, the moderate correlations seen in the light-curve 

olutions between � and the stellar rotation period is reduced in the
olutions for RVs, with a Pearson correlation coefficient of 0.5. There
emains a slight, but weaker anticorrelation with total spot number 
f −0.29. 
The lack of agreement between the harmonic complexity term 

etween RV and photometric data has implications for the way we
pproach activity modelling in RV data sets (see Section 6 ). 

.4 QPC versus QP GP analyses of RVs 

e repeat the GP analysis of the model RVs with the QPC kernel,
gain using the same MCMC framework, convergence criteria, and 
reatment on non-converged solutions. Only one model had non- 
onverged solutions, and this was a different model to those that
id not converge in any other GP analysis run (see Appendix A for
urther discussion). 

A comparison of results between the QP and QPC kernels for
odel RV data are shown in Figs 14 , 15 , and 16 . As was the case for

he analysis of the model light curves, the QPC solutions for period,
volution time-scale and harmonic complexity are nearly identical 
o those of the QP kernel. 

Examining the residuals of the period comparison (lower panel of 
ig. 14 ), there are three notable outliers. These models are also the

hree largest outliers in � but not in l . As in the light-curve analysis,
he scatter in the difference between the QP and QPC kernels is
maller than the uncertainty, and does not vary with period. 

Similarly with the evolution time-scale, l , aside from some outliers,
he scatter in the residuals about zero is smaller than the uncertainties,
ith the scatter and degree of uncertainty increasing for longer time-

cales. 
MNRAS 515, 5251–5266 (2022) 
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Figure 14. This figure compares the QP and QPC solution for ln (Period). 
Figure description is same as Fig. 3 . 

Figure 15. This figure compares the solutions of the QP and QPC GP 
evolution time-scale, l . Figure description is same as Fig. 4 . 
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Figure 16. This figure compares the QP and QPC GP solutions for � for 
analysis of model RV data with the unity relation shown as a grey dashed 
line (top panel), and the residuals from the 1:1 relation with the grey line 
indicating zero residuals (bottom panel). 

Figure 17. This figure shows a histogram of the fraction of cosine compo- 
nent, f , values for the QPC GP for our model light curves. 
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The harmonic complexity sho ws dif ferent behaviour here com-
ared to the LC analysis, with the QPC � values being consistently
igher than the QP solution for the same stellar model RV. This offset
n the harmonic complexity can be explained by the higher fraction of
osine component f in the QPC solutions of the model RVs. As seen
n Fig. 17 , many more models had a values of f abo v e 0.1, and thus
he cosine component was accounting for more of the intraperiod
ignal, leaving the harmonic complexity term to fit to more of the
NRAS 515, 5251–5266 (2022) 
ubtle variations from point-to-point, increasing the complexity term
 v erall – without the larger, simpler signal to fit to, the � parameter
as instead sensitive to the smaller scale changes.

 I M PAC T  O F  RV  TIME  SAMPLING  

V observations are typically ground-based, and as such their time-
ampling is generally much sparser than that of the simulated data sets
nalysed in the previous section, and have much higher uncertainties.
o test the application of QP GP regression to more realistic RV
ata, we add noise to these data representative of the uncertainties
xpected at world-leading precision radial velocity facilities with a
ean uncertainty of 20 cm s −1 , and a standard deviation of 15 cm s −1 

o approximately reflect the night-to-night variations caused by
ifferent atmospheric conditions. We then re-sample the model
V curves with the type of sampling expected from ground-based
bservatories by choosing a real star at random, and calculating its
bservability from a chosen observatory given seasonal and airmass
onstraints, as one would when planning a RV observing season. We
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Figure 18. This figure shows an example model light curve (top panel), its 
associated RV data, and the RV data sets with degraded sampling. The lines 
plotted in each are the QP GP model with hyperparameters drawn from the 
MCMC posteriors. 
hen randomly selected N observations within the observable times, 
 v er a time span of 250 d, with N = 250, 100, 50, and 30. While 30
o 50 points per season are typical of fairly intensive, present-day RV
onitoring campaigns, 100 to 250 points per season corresponds to

he planned sampling rates for future EPRV surv e ys aiming to detect
arth analogues, such as the Terra Hunting Experiment (THE; Hall
t al. 2018 ). To ensure adequate sampling of the rotation periods for
ven the most rapidly rotating simulated stars, we added a further
onstraint that the shortest gap between any two data points in a
iven time-series should not be longer than the shortest rotation
eriod in our simulations. This mimics what an observer would do
hen planning observations.
An example of this progressive degradation of the time-sampling 

nd increased errors is shown for one of the stellar models in Fig. 18 ,
ith the data points shown in grey. The re-sampled light curves we

nalysed in the same way as light curves and the original RV curves,
sing the same MCMC sampling and convergence criteria. As before, 
e exclude any non-converged solutions from our analysis. The lines 

n each panel of 18 are samples from the QP GP conditioned on
he data, with hyperparameters drawn from the MCMC posterior 
istribution. Larger scatter between the curves indicate that the GP 

odel is less well constrained. The effect of reducing the number of
bservations by a factor up to 5 (down to N = 100) appears negligible
n these plots, but it becomes noticeable when N = 50 or 30. 

We then compare the input stellar rotation period and output GP 

eriod in Fig. 19 . In the bottom, which shows the residuals from
 one-to-one correspondence, we hav e e xcluded the clear outliers
isible in the top panel, and zoomed-in to better show the behaviour
f the remaining data points. With decreased sampling, the scatter 
round the input value increases for smaller values of the stellar
otation period, as these periods are less well resolved by the data.
or d N = 50, only three cases with rotations periods below 4 d (ln ( P )
 1.38) conv erged. F or N = 30 this number went down even further

o one. This highlights the importance of sampling both the stellar
otation period and the orbital period(s) of any candidate planets 
dequately. For rapidly rotating stars, this necessarily translates into 
arge numbers of observations per season unless the planet periods 
re also short. 

In Fig. 20 we compare the input model spot evolution time to the
P GP solutions for the evolution time-scale in the re-sampled data 

ets. As seen with the rotation period solutions, there is greater scatter
t smaller values of the spot evolution time. Further, in the 30 and
0 point data sets there are no converged solutions for evolutionary 
ime-scales below 8 and 10 d, respectively. While the full sample 
 v erestimates the e v aluation time-scale for mid-range values of spot
volution time, this o v erestimation impro v es at the lower sampling
ate of 250 and 100 d, but then underestimates the evolution time in
he 50 and 30 data point sets.

These differences between the time samples can be understood 
rom the fact that the GP model is merely an approximation to the
hotometric and RV curves, a fact that becomes more noticeable with 
he greater sampling of the data. 

The spot model used to generate the data leads to some modest
ut noticeable high-frequency features (sharp changes in the data 
ue to the emergence or disappearance of individual spots) that are 
pparent in the LC and RV curves, and that the QP GP struggles to
eproduce. At the highest (500) time-sampling this actually leads to 
on-convergence in the cases of the shortest spot evolution times. 
At N = 250 and 100, the MCMC converges, but the derived l values

re significantly lower than the injected spot lifetimes τ . This is
ecause the GP needs as much freedom as possible to reproduce these
igh frequency features, and it achieves this by having a shorter l . 
MNRAS 515, 5251–5266 (2022) 
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Figure 19. The top panel compares the input stellar rotation period to 
the output QP GP period (both in natural log) for different different time 
samplings of the model RV data, with the unity relation indicated by the grey 
dashed line. The bottom panel shows the residuals to the unity relation, with 
axes scaled to exclude the larger outliers and more clearly show the scatter 
around the zero (grey dashed line). 

Figure 20. This figure compares the solutions QP GP evolution time-scale l 
for different re-samplings of the RV data. The grey dashed line indicates the 
unity relation, and the grey vertical dashed lines indicate the total time span 
of the date of 250 d. 
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Figure 21. This figure compares the solutions QP GP harmonic complexity 
� for ‘perfectly’ sampled RV data with and without noise. The grey dashed 
line indicates the unity relation. 

Figure 22. This figure compares the solutions QP GP harmonic complexity 
� for ‘perfectly’ sampled noisy RV data that with degraded time sampling. 
The grey dashed line indicates the unity relation. 
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As the time-sampling decrease further ( N = 50 and 30), this
o longer happens, as these high frequency features are no longer
esolved, but we also lose the ability to recover short evolution time-
cales due to them being undersample. These cases do not converge
nd are not shown on the plot. For intermediate values of τ , we
bserve that the values of l are systematically larger than tau for low
NRAS 515, 5251–5266 (2022) 
 . This is because with limited time sampling we can only place
n upper limit on the rate at which the signal evolves. Once tau is
ong compared to the sampling it then becomes measurable by the
P GP. Note that all these considerations would apply to light-curve
ata as well, but our light curves were not simulated with reduced
ime-sampling because typically light curve with sufficient precision
re measured from space with the high cadence sampling that allows.

Fig. 21 compares the � values obtained for the noisy versus noise-
ree RV time-series, with the full 500-point sampling. The cluster of
amma values at the upper end of the prior range ( � = 15), which
as present in the noise-free case, disappears in the noisy case. We

peculate that, in the noise free cases, the GP model attempts to
eproduce the small, sharp changes caused by the rapid emergence
f individual spots, by adopting a short intraperiodic length scale (i.e.
 large value of �). As soon as even small amounts of white noise
re added in the data, these small changes are no longer discernible.
here is no apparent correlation between the individual � values
btained in the noisy and noise-free cases. This implies that, more
han any physical property of the active regions, the noise properties
f the data are the key factor driving the measured � values. 
To assess the impact of sampling on �, Fig. 22 compares solutions

o the noise-included full data set to the degraded data. Solutions
elow � ∼ 2.5 across all sampling levels roughly agree with the full
ample solutions. Beyond this value, the scatter in � values increases
ramatically, regardless of the sampling. This again confirms that the
 parameter is predominately driven by noise, which is on the same

cale across all samplings of data. 
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 DISCUSSION  A N D  C O N C L U S I O N S  

his work seeks to find what physical meaning, if any, can be
ttributed to the QP GP hyperparameters derived from photometric 
ime-series. In the context of the use of photometric data to inform
tellar activity jitter models in RV data, we investigate the similarities
nd differences between the QP GP hyperparameters of photometric 
nd RV data. Finally, we look at the impact of time sampling on
V data on the solution to a QP GP, and the impact this has on the

nferred stellar properties. 

.1 The relation between QP GP hyperparameters and stellar 
roperties 

o investigate the physical meaning of QP GP hyperparameters, 
e solve for them for a set of model light curves with varying

otation periods and spot evolution times with MCMC, and compare 
he output hyperparameters to the input stellar properties. The 
esults from this showed almost perfect reco v ery of the input
tellar rotation period, with increasing scatter for shorter periods 
ue to the finite sampling of the data. This result is expected,
nd has been indicated previously. Angus et al. ( 2018 ) conducted
 similar study to the work presented here focusing on the reco v ery
f rotation periods from Kepler light curves by a QP GP, using
 similar spot model to validate their results. The results in this
ork form a much tighter correlations with period, and fewer 

ases of the QP GP finding an alias of the true stellar rotation
eriod due to the lack of noise included in our stellar model light
urves. 

We also find a correlation between the spot evolution time and 
he QP GP length scale, consistent with behaviour demonstrated by 
antos et al. ( 2021 ) between spot evolution time and light-curve
utocorrelation decay time-scales. Toward longer spot evolution 
imes the GP o v erestimates the evolution length scale, with increasing 
eviation and scatter when the spot evolution time-scales approach 
he time span of the data. This correlation is tighter when the
pot emergence and decay times are equal. This behaviour is a 
atural consequence of the fact that the GP kernel has only one
arameter to describe the evolution of the periodic signal o v er time.
f the spot emergence times are considerably shorter than the spot
ecay times, the simulated light and RV curves contain both shorter
erm changes due to spot emergence, and slower changes due to 
pot decay. The best-fitting GP evolutionary time-scale is then a 
ompromise between those values, and less tightly correlated to 
ither. The longer period single is the one that is preferentially found,
s it is better sampled by the data. This indicates that the QP GP
ength scale can be used as an indicator of spot decay time and
volution. 

The harmonic complexity term, � does not have an intuitive 
hysical interpretation, but does display some correlation with 
hysical stellar properties. The � parameter is weakly correlated with 
otal spot number, though not at all with the average spot number.

e also find � to correlate moderately with rotation period and 
pot evolution time, although the latter is shown to be a spurious
orrelation. The simplicity of our spot model does not allow for a
eeper exploration of the possible influences on �. Results from P21 
ndicate some influence of spot distribution on this hyperparameter. 
uture studies involving more complex stellar models with vary- 

ng spot emergence patterns and differential rotation may reveal 
ore about the usefulness on the � hyperparameter in probing 

he physical properties of stars from their photometric and RV 

ime-series. 
.2 QP GP r egr ession on photometry versus RVs 

e perform the same analysis on time-series of RV data points to
nvestigate if the same QP GP hyperparameters can be applied to
oth types of data. We show in this work that, although the period
nd the length scale hyperparameters match for both photometric and 
V data, the harmonic complexity term does not: it is systematically
igher in RV than photometric time-series. This can be explained as
he RV time-series will behave as a combination of the photometric
ime-series and its first deri v ati ve, creating a more complex change
n the RV with time compared to the photometry. It is important to
ote, ho we ver, that the model curves used in this analysis can be
onsidered in the ‘high complexity’ regime for the QP GP harmonic
omplexity. Barrag ́an et al. ( 2021a ) show that this behaviour of the
armonic complexity between a time-series and its deri v ati ve is
ependent on the complexity of the time-series. A high harmonic 
omplexity time-series will have a deri v ati ve with a higher harmonic
omple xity. F or time-series data with low harmonic complexity, 
o we v er, the harmonic comple xity of the time-series will be almost
qually low. This explains the discrepancy between the findings here 
nd those of Kosiarek & Crossfield ( 2020 ), who compare QP GP
yperparameters between Solar photometric and RV observations, 
nd find a marginally lower harmonic complexity (their η4 ‘length 
cale’ is equi v alent to 1/ �) in three of their RV data compared to the
hotometry, and the opposite in another, though in none of the sets
re these values as drastically different as we observe in some of our
odels. We conclude from this that it is not appropriate to blindly

se the harmonic complexity derived from photometry for analysis 
f RV time-series. 
One common scenario not investigated in this work is the use of

hotometric data to constrain a GP on RVs taken months or years after 
he photometric observations, as happens in the case of RV follow-
p of planet candidates from transit surv e ys. This inv estigation is
eft to future work, as it requires a more sophisticated stellar model
han the one used here. Such an investigation would require activity-
ycle-like variations in addition to individual spot evolution and 
otational modulation to best estimate the efficacy of using non- 
ontemporaneous photometry. 

.3 Comparati v e performance of the QP and QPC kernels 

he QP and QPC kernels behave almost identically for the recovery
f stellar rotation period and spot evolution times in both photometric
nd RV data. In particular for photometric data, the QPC tended
o have very small values of cosine fraction f , and so was largely
ehaving as a QP kernel. Since we allowed the harmonic complexity
 of the QPC kernel to vary in our analysis, it is possible that any
ariability present at half the rotation period was explained by higher
, rather than higher f . P21 explored this potential degeneracy by
xing the harmonic complexity and varying f only. We did the same

est, repeating our QPC analysis of the model light curves with
 set to 5.2 (corresponding to the value of ω = 0.31 adopted by
21 , where � = 1/2 ω 

2 ). Ho we ver, we found that this had almost no
mpact on the resulting distribution of f values, which were almost
dentical to those obtained when � was allowed to vary. In fact, the
umber of light curves with f < 0.1 increased slightly. On the other
and, fixing � significantly increased the scatter in the values of l
or τ > T /2, and led to poorly constrained solution for the mean in
round 10 per cent of our simulations. 

In RV data, the fraction f of the cosine component was higher on
verage, as was the harmonic complexity of the sine-squared term. 
MNRAS 515, 5251–5266 (2022) 
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ven so, the ability to recover periods and evolution time-scales from
V data is largely the same with either kernel. 
Both kernels gave rise to at least one significant outlier in our

ample of 100 simulated stars, where the stellar period and evolution
ime-scale τ were very different from the GP period and length
cale l . The QPC kernel gave rise to e ven fe wer of these outliers
han the QP kernel, but the total numbers are very small in either
ase. 

We can also compare the QP and QPC kernels in terms of MCMC
onvergence. Both kernels led to non-converged solutions for some
odels: 2 and 10 in total for the QP kernel on light curves and radial
 elocities, respectiv ely, compared with 2 and 1 for the QPC case.
n real-world scenarios, though, the MCMC set up can be tuned to
chiev e conv ergence for each individual case. 

Overall, the QP and QPC kernels are comparable in performance,
oth having advantages and drawbacks. The QP kernel is simpler,
ith fewer parameters, and in most cases we do not find sufficient

vidence of superior performance with the QPC kernel to justify the
dditional cost. The only advantage conferred by the QPC kernel
n our sample appears to be impro v ed MCMC conv ergence in
round 10 per cent of the RV curves, though we were unable to
dentify an y ob vious reason why conv ergence was more difficult
o reach in those particular cases. Future work with more realistic
pot models and spot distribution patterns may shed more light on
his. 

.4 The impact of ‘realistic’ noise and time sampling on QP GP
nalysis of RVs 

o reflect the scenario where there is only RV data for the QP GP
nalysis, we degrade the time sampling of our RV data set to better
eflect the observations from ground-based observatories. When it
omes to the correlation of these degraded QP GP, the results show
hat the reco v ery in evolution time and period is limited to both the
otal time span of the data and the minimum separation of the data,
he former limiting the ability to reproduce long evolution times,
nd the latter impacting the ability to sample the shorter period and
volution’s times the larger this minimum separation becomes with
ecreasing amounts of data. It is also apparent from the insets in
ig. 18 that the fewer data points give fewer constraints on the GP
olution, making it increasingly more flexible. This means that there
s more and more de generac y between a GP-based activity model
or the RVs and any potential planetary signal. This highlights the
mportance of adequate time sampling in RVs, both in total time
pan, and in sampling frequency. 
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PPENDI X  A :  T H E  N O N - C O N V E R G E D  

O L U T I O N S  

cross all of the studies in this work, there was always at least
ne model for which the MCMC did not converge to a single set of
olutions for the QP or QPC GP hyperparameters. Further, the models
hat did not converge were not al w ays the same. This section explores
ome of the non-convergence scenarios. 

Most of the non-conv erged MCMC solutions gav e multimodal
osterior distributions, an example of which is given in Fig. A1 . This
gure e x emplifies what occurs in a majority of these multimodal
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Figure A1. An example of bimodal posterior distribution of a QP GP fit to a model light curve. 
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ases of the QPC non-converges cases, and most of the QP non-
onverged cases: there are two equally probable solutions for the 
jitter’ white noise term and the harmonic complexity term. Given 
heir equal likelihood, the MCMC is unable to prefer one solution 
 v er the other. Looking at the jitter versus � panel in this figure we
an see that they are correlated: the lower jitter v alues gi ve solutions
ith higher harmonic complexity, and vice versa. Bimodality is seen

n other hyperparameters as well, such as between l and period, or in
eriod alone. The cases with bimodal posteriors have no similarities
n their stellar parameters, and in the jitter- � bimodal cases the
olutions to the period and evolution time-scale l still match the
nput model period and spot evolution time, respectively, so can
e considered reliable solutions despite not strictly meeting our
onvergence criteria due to the bimodality in the posteriors of the
ther parameters. Such a bimodality in posteriors is possible in real
ata too, and in such circumstances, so long as the likelihood are
qual for both sets of parameters, they must be considered as equally
ikely given the data. In this work, ho we ver, gi ven the lack of a single
olution across all parameters these cases, for consistency across the 
esults they are excluded from our analysis. 

Some of the non-converged solutions for the QP analysis of the
odel RV data had unconstrained, poorly constrained posteriors, or 

omplex posterior distributions, which meant that the convergence 
riteria were not met in the 10 000 step limit of our MCMC. As
ith the bimodal solutions, there is nothing particularly remarkable 

bout the input stellar parameters of these models. The worst of the
nconstrained solutions shown in Fig. A2 . While this model did have
 relative short rotation period with a short evolution time-scale, this
as not an extreme case, and the QP GP was able to find converged

olutions for even shorter rotations periods, and smaller ratios of 
otation period to evolution time-scale. Trying an MCMC with a 
ifferent ‘mo v e’ setup did not alter the conv ergence of these cases. 
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Figure A2. An example of the posterior distribution of an unconstrained MCMC solution. 
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