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Abstract: Millions of people died in the COVID-19 pandemic, which pressured hospitals and health-
care workers into keeping up with the speed and intensity of the outbreak, resulting in a scarcity
of ICU beds for COVID-19 patients. Therefore, researchers have developed machine learning (ML)
algorithms to assist in identifying patients at increased risk of requiring an ICU bed. However, many
of these studies used state-of-the-art ML algorithms with arbitrary or default hyperparameters to
control the learning process. Hyperparameter optimization is essential in enhancing the classification
effectiveness and ensuring the optimal use of ML algorithms. Therefore, this study utilized an
improved Hunger Games Search Optimization (HGSO) algorithm coupled with a robust extreme
gradient boosting (XGB) classifier to predict a COVID-19 patient’s need for ICU transfer. To further
mitigate the random initialization inherent in HGSO and facilitate an efficient convergence toward
optimal solutions, the Metropolis–Hastings (MH) method is proposed for integration with HGSO. In
addition, population diversity was reintroduced to effectively escape local optima. To evaluate the
efficacy of the MH-based HGSO algorithm, the proposed method was compared with the original
HGSO algorithm using the Congress on Evolutionary Computation benchmark function. The anal-
ysis revealed that the proposed algorithm converges better than the original method and exhibits
statistical significance. Consequently, the proposed algorithm optimizes the XGB hyperparameters
to further predict the need for ICU transfer for COVID-19 patients. Various evaluation metrics,
including the receiver operating curve (ROC), precision–recall curve, bootstrap ROC, and recall vs.
decision boundary, were used to estimate the effectiveness of the proposed HGSOXGB model. The
model achieves the highest accuracy of 97.39% and an area under the ROC curve of 99.10% compared
with other classifiers. Additionally, the important features that significantly affect the prediction of
ICU transfer need using XGB were calculated.

Keywords: COVID-19; ICU prediction; eXtreme gradient boosting; hunger games search optimiza-
tion; Metropolis–Hastings
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1. Introduction

The recent coronavirus outbreak caused a global pandemic. SARS-CoV-2, a novel
coronavirus, was first detected in Wuhan, China, in 2019. Recognizing its potential to
trigger a worldwide public health crisis, the World Health Organization (WHO) declared
this coronavirus disease (COVID-19) a global epidemic on 11 March 2020 [1]. The rise
of COVID-19 led to a global health and financial catastrophe. As of 16 August 2023, the
number of COVID-19 patients identified worldwide has crossed 760 million, with nearly
seven million fatalities [2]; however, the real numbers are assumed to be considerably
higher because of testing limitations. The first coronavirus case was detected in Bangladesh
on 7 March 2020. According to the country’s Ministry of Health, the total number of
COVID-19-infected patients in Bangladesh has increased by more than two million, with
the total death toll surpassing twenty-nine thousand as of 16 August 2023 [3]. Although
the COVID-19 pandemic has officially ended, novel variants of the virus still threaten
public health.

The infection rates are rapidly increasing in Bangladesh and the world. Temperature
and humidity have been identified as important factors in modeling COVID-19 mortality
rates [4]. Common symptoms experienced by most COVID-19-infected patients include
cold-like symptoms, continuous coughing, sore throats, a loss or alteration of taste and/or
smell, fatigue, headaches, aches and pains, diarrhea, and sometimes other respiratory
infections, as well as fever [5]. Note that the virus seems to be transmitted through droplets,
direct contact, aerosols, blood, fecal–oral contact, from animals to humans, and even from
mothers to children. Although COVID-19 has been recorded in patients of almost all
ages, a higher death rate has been observed in older individuals who already suffer from
cardiovascular disease, hypertension, chronic lung and kidney disease, diabetes, and other
disorders. The initial step in effectively managing the allocation of critical care resources
is identifying patients who are unlikely to require critical care and encouraging them to
self-quarantine at home. Patients with severe conditions, such as respiratory failure and
pneumonia, must be admitted to the ICU as soon as possible. However, 10–20% of total
cases require ICU admission, whereas 3–10% require intubation and 2–5% die [6]. The
remaining 80–90% of COVID-19 cases are mild or asymptomatic [7].

During a pandemic, the effective management of limited critical care resources and ICU
beds is crucial [8]. Concerns have been raised worldwide regarding the scarcity of intensive
care unit (ICU) beds for COVID-19 patients, particularly in developing countries. For
instance, in Bangladesh, only 1200 ICU beds are available (including in public and private
hospitals), indicating a significant shortage of critical healthcare resources. Nevertheless,
prioritizing COVID-19 patients for specialized care with emergency medical support,
particularly in an ICU, can significantly reduce fatality rates. Hence, frontline healthcare
workers are forced to care for the “sickest of the sick” patients because of the immense
pressure on the ICU admission queue. Owing to limited medical and human resources,
healthcare professionals may rely on cutting-edge technologies and machine learning (ML)
models to monitor and assess high-risk patients.

Several studies have addressed the issue of predicting patient outcomes in the con-
text of COVID-19. For instance, Cheng et al. [9] employed a random forest (RF) model
trained on time-series data, including major signs and patient laboratory reports as the
input variables, and achieved an accuracy of 76.2% in predicting actual ICU admissions.
Wollenstein-Betech et al. [10] took a comprehensive approach, employing four different
classification methods, an RF, sparse support vector machine (SVM), logistic regression,
and extreme gradient boosting (XGB) in each model to predict hospitalization, death, and
the need for ICU care. Agieb [11] focused on predicting ICU necessity for COVID-19
patients using ML models—naive Bayes, K-nearest neighbor (K-NN), and SVM—trained
on the features extracted from patients’ X-ray images. In a different vein, Weikert et al. [12]
applied a deep-learning-based, fully automated extraction method for cardiothoracic CT
metrics to predict the management of COVID-19 patients, including their ICU needs.
Heo et al. [13] proposed an integer-based scoring method to identify COVID-19 patients
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requiring intensive care support. Age, dyspnea, sex, initial body temperature, history of
kidney disease, hemoptysis, and the ADL scale were criteria for the scoring system. A
study by Palomo et al. [14] adopted a slightly different approach and emphasized the bed
demand for COVID-19 patients utilizing queuing models to show occupancy scenarios
based on various patient arrival patterns.

The aforementioned studies demonstrated moderate accuracies in predicting ICU
admission requirements using contemporary ML algorithms equipped with default hyper-
parameters. However, the classification and prediction performance can be significantly
accelerated by optimizing the hyperparameters of ML algorithms using state-of-the-art
optimization techniques [15–18]. Motivated by the need for hyperparameter optimization,
this study adopts a novel HGSO algorithm [19], a recently introduced performance-based
swarm optimization technique that demonstrates remarkable performance even when
compared with an extensive collection of 23 reputable optimization functions and inno-
vative algorithms, including the IEEE CEC 2014 benchmark test suite [20,21]. In addition,
the Metropolis–Hastings (MH) algorithm was used instead of random initialization to
adaptively initialize the hyperparameters [22,23]. Moreover, adaptive variational control
(VC2) was required for robust optimization and to balance exploration and exploitation
and thus converge to optimal solutions. Additionally, to escape the local optima effectively,
the reintroduction of diversity is required to facilitate a broader explanation of the solution
space. Considering these requirements, this study proposes an MH-based HGSO technique
that introduces several novel contributions, which are summarized as follows.

• A novel HGSO algorithm, combined with a new fitness function, is adapted for the
first time to predict the need for ICU transfer for COVID-19 patients using an XGB
classifier (see Algorithm 1).

• Unlike the random initialization used in traditional HGSO, this study uses the MH
algorithm to adaptively initialize the hyperparameter values (see Algorithm 2).

• This study employs an adaptive VC2 operator and reintroduces diversity to find the
optimal solution and prevent premature convergence, respectively (see Section 2.4).

• This study identifies the most significant predictors for ICU transfer using XGB,
providing valuable information for national policymakers (see Section 3.8).

• Comparing the proposed HGSOXGB model with cutting-edge classifiers reveals that
the HGSOXGB obtains the highest accuracy (see Sections 3.4 and 3.9).

Algorithm 1 XGB classifier implementation algorithm

Input: D-dimensional feature X ∈ RN×d and target y ∈ RN×1 with N samples
Output: The probability of outcome P ∈ [0, 1] of unknown test dataset x, where

∑cl
i=1 Pi = 1 for all i ∈ cl = 2, cl is the number of classes

1: Initialize model Fo(x) = argminγ

N

∑
i=1

L(y, γ), where L(y, F(x)) is the loss function

2: for k = 1 ∼ K do
3: Compute the gradient of the loss function,

rik = −α[ δL(y, F(Xi))
δF(Xi)

], where i = 1, 2, ..., N and α is the learning rate.
4: Fit a base tree hk on the gradient at each step using training set (Xi, rik)
5: Compute multiplicative factor γk using

γk = argminγ

N

∑
i=1

L(yi, Fk−1(Xi) + γhk(Xi))

6: Update the boosted model using
Fk(x) = Fk−1(x) + γkhk(x)

7: end for
8: return Fk(x) is the desired probability of outcome P ∈ [0, 1]
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Algorithm 2 Proposed population initialization algorithm using the MH method

Input: The number of XGB hyperparameter in the population (N), the number of
XGB hyperparameter (H), and the lower (lb) and upper (ub) limits of each XGB
hyperparameter.

Output: Initial population, Pinit
1: Initialize Pinit = zeros(N, H) to allocate memory
2: Initialize the first individual randomly as

population(1, :) = lb + (ub− lb) · rand(1, H)
3: for i = 2 : N do
4: Generate a candidate (C) individual as

C = lb + (ub− lb) · rand(1, H),
5: Calculate the acceptance probability (α) as

α = min
(

1, J(C)
J(population(i−1,:))

)
,

6: Accept or reject C with probability
7: if (rand() ≤ α) then
8: population(i, :) = C;
9: else

10: population(i, :) = population(i− 1, :);
11: end if
12: end for
13: Pinit = population;
14: return Initial population, Pinit

2. Materials and Methods

Figure 1 shows the workflow of the proposed model. As illustrated, the columns
containing 60% of missing values and unnecessary outliers were eliminated, and the
remainder of the dataset underwent min–max normalization to convert all values to the
same scale. Subsequently, the normalized dataset was divided into training and testing
sets. To mitigate class imbalance, a large quantity of synthetic data was generated for
the minority class inside the training set using the Synthetic Minority Oversampling
Technique (SMOTE). Subsequently, the resulting balanced dataset was employed to train
the ML models. The hyperparameters of the ML classifiers were finetuned using the HGSO
algorithm. However, when comparing the performance of the original HGSO model with
that of the CEC benchmark function (briefly discussed in Appendix A), we observed that
the convergence of the HGSO algorithm requires further improvement. Another issue with
the original HGSO is the random initialization of the hyperparameter values. Therefore,
the MH algorithm was utilized to adaptively initialize the hyperparameter values, thereby
accelerating the convergence speed of the HGSO algorithm. The model performance was
evaluated using previously separated test data in the following steps. Various statistical
analyses were performed in addition to feature importance calculations. Finally, the
necessity of ICU care for COVID-19 patients was efficiently predicted and presented.

2.1. Data Source

A large COVID-19 dataset was collected from a publicly available repository of SARS-
CoV-2 patient information in Mexico [24]. It contains 7233257 individual observations
in 40 columns. The data contain demographic information, including age, nationality,
location, origin, ethnicity, prior medical conditions, diabetes, asthma, hypertension, obesity,
chronic obstructive pulmonary disease (COPD), chronic renal failure, immunosuppression,
pregnancy, other prior diseases, and smoking information. In addition, they contained the
dates of the first symptoms observed by the patient, the patient’s arrival in the ICU, and the
patient’s death, and include columns that show whether the patient was hospitalized, had
pneumonia, or required ICU care, as well as the results of the antigen test for SARS-CoV-2.
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Figure 1. Workflow diagram of the proposed system.

2.2. Data Preprocessing

Data preprocessing plays a pivotal role in machine learning classification. However,
the raw dataset used in the proposed approach was impossible to work with because
its column names were in Spanish and the data were considerably noisy, with nearly
60% missing values. Moreover, many columns in the dataset were irrelevant and did not
influence the classification outcomes. In addition, the numerical values of the dataset
were obtained at different scales. Given these challenges, achieving optimal results using
raw datasets was impractical. Hence, data preprocessing was crucial for converting the
data into a meaningful format and improving the ML performance. The steps taken to
preprocess the dataset are outlined below.

1. Column translation: initially, the Spanish names of each column were translated
into English.

2. Missing value removal: the columns containing almost 60% missing values were
eliminated from the dataset because the interpretation and quality of the proposed ap-
proach can degrade if this large amount of missing values remains in the input dataset.

3. Removal of unnecessary columns: because the proposed approach aims to anticipate
ICU necessity for COVID-19 patients, the unnecessary columns—origin, sector, date
of admission to the ICU, etc.—were removed from the dataset, as they are unrelated
to ICU prediction. The columns (features) containing outliers were also eliminated
from the dataset.

4. Removing demographic variables: the columns of the demographic variables, such as
ethnicity, region, nationality, location, and origin, were eliminated from the dataset
such that the dataset can be utilized in all other countries.

Upon completing these steps, 18 fields were retained: intubated (identifying whether
the patient required intubation), pneumonia, otras_com (identifying if the patient had
other diseases), COPD, cardiovascular, inmusupr (indicating if the patient was immuno-
suppressed), another case (noting patient contact with other SARS CoV-2 cases), smoking,
asthma, renal_cornica, age, pregnancy, obesity, diabetes, hypertension, sex, antigen_result
(identifying the result of the antigen sample analysis), and ICU (determining if the patient
required admission to an ICU). Following all previous steps, min–max normalization was
performed to convert all data values to a scale ranging from 0 to 1, as the features may not
be near the normal distribution. Furthermore, after successfully completing data prepro-
cessing and before applying the ML algorithm, a sufficient amount of synthetic data was
generated for the minority class of the training set (obtained through the train–test split) as
part of data balancing.

2.3. Selection of Machine Learning Classifier

Owing to their remarkable success and effectiveness, ML and deep learning algorithms
have gained substantial attention in various domains, including in the prediction of ICU
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needs for COVID-19 patients. Although deep learning has attained significant prominence
in certain tasks, ML algorithms offer robust results owing to their superior generalization
capabilities and the transparency of their outcomes. Researchers globally employ diverse
ML algorithms to predict COVID-19 patients; however, XGB, a powerful, supervised ML
algorithm, has exhibited robustness across a wide range of real-world applications [25].
For instance, Yan et al. [26] employed XGB to predict the mortality attributed to COVID-19.
In addition, XGB was utilized in another study conducted by Awal et al. [27] to predict
COVID-19 patients using inpatient facility data, leveraging its recursive tree-based decision
system. Notably, XGB can assess the significance of each feature based on its cumulative
usage in the decision-making process, thereby providing valuable insights into the feature
importance. This information aids in identifying discriminative features, particularly those
associated with clinically relevant parameters. Considering these factors, the proposed
approach employed XGB, with its hyperparameters optimized using the HGSO technique.
Equation (1) expresses the XGB objective function used to measure the model performance:

M(θ) = L(θ) + Ω(θ), (1)

where θ denotes the parameters trained using the given data, Ω is the regularization term,
and L is the training loss. The objective function defines the regularization term Ω( fk) for a
decision tree, as outlined in Equation (2):

Ω( fk) = γT +
1
2

λ
TL

∑
j=1

ω2
j , (2)

where TL denotes the number of leaves in a decision tree, γ denotes the complexity of
each leaf, λ is a regularization parameter, and ω is the score of the leaves. Optimizing the
objective function of XGB enables the change in model performance after a certain node
split to be evaluated. If the performance of the decision tree in the XGB improves, the
change is approved. Algorithm 1 shows the steps followed for XGB implementation.

To enhance the model performance, several hyperparameters must be optimized. The
hyperparameters used in the proposed system are as follows:

• learning_rate: represents the shrinkage of each tree’s contribution.
• max_depth: specifies the maximum depth of the tree.
• Gamma: sets the minimum loss reduction required for further leaf node splitting.
• min_child_weight: defines the minimum instance load for a child node.
• colsample_by_tree: denotes the subsample of columns used to train each tree.
• subsample: determines the column ratio for tree building.
• alpha: represents the L1 regularization weight term.
• eval_metric: specifies the validation metric for validation data.

Tuning these hyperparameters in the COVID-19 dataset can enhance the performance
of the ICU prediction models. In this study, various popular ML algorithms—Gaussian
naïve Bayes (GNB), linear discriminant analysis (LDA), RF, KNN, light gradient boosting
machine (LGBM), gradient boosting classifier (GBC), and linear regression (LR)—were
utilized for comparison. Subsequently, their performances were evaluated and compared.
Additional mathematical details about these classifiers can be found in standard textbooks
and the literature [27,28].

2.4. Need for Hyperparameter Optimization and Proposed HGSO

The necessity for optimizing the specific hyperparameters used by the XGB classifier
in this study arises from the fact that classification metrics, such as accuracy, sensitivity,
and specificity, rely extensively on selecting appropriate hyperparameters. This require-
ment promotes the framing of this study as an optimization problem, as demonstrated in
Equation (3):

min
h∈H

J(XGB(h); H), (3)
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where h = {h1, h2, · · · hn} ∈ H denotes the hyperparameters listed in Table 1. The optimiza-
tion problem is defined as follows: “select the optimal hyperparameters of XGB (H) for
which J(·) is the minimum”. In this study, the kappa score loss obtained from a k = 5-fold
cross-validation of the training dataset was recommended as the fitness function J(·), as
expressed in Equation (4):

J = 1− 1
5

5

∑
k=1

[
2(TP× TN − FP× FN)

(TP + FP)(FP + TN) + (TP + FN)(FN + TN)

]
k

(4)

Table 1. The architecture of the HGSOXGB model with optimized hyperparameters.

Hyperparameters Symbol (hεH) Hyperparameters Name Range Optimal Value

h1 learning_rate [0.001, 1] 0.312896226
h2 colsample_bytree [0.5, 1] 0.5
h3 gamma [0, 1] 0.0622628129
h4 max_depth [1, 15] 14
h5 subsample [0.5, 1] 0.975913151
h6 n_estimator [1, 1000] 343
h7 min_child_weight [1, 30] 1
h8 eval_metric “logloss”

Hyperparameter optimization is required [29]. The HGSO technique, a metaheuristic
algorithm, was employed to optimize the hyperparameters to precisely determine the
necessity for ICU admission based on some preconditions of COVID-19 patients. This
study adapted HGSO, a recent optimization technique that outperforms state-of-the-art
optimization techniques; however, the original HGSO suffers from a random initialization
issue, which often prolongs the convergence time and does not ensure that the highest
global optimum is found. The existing problem with the traditional HGSO algorithm was
addressed using the MH algorithm [23] to mitigate the population initialization problem
of the traditional HGSO algorithm. The improved HGSO approach yields an enhanced
convergence, requires fewer iterations, and achieves optimal values. Algorithm 2 illustrates
the initialization process of the MH method. In this algorithm, the input parameters include
the number of XGB hyperparameters in the population N, the number of XGB hyperparam-
eters H, and the upper (ub) and lower (lb) bounds of each hyperparameter. The algorithm
proceeded by allocating memory (line 1), initializing the first individuals randomly (line 2),
generating an individual candidate, calculating the acceptance probability (lines 4 and 5),
and accepting or rejecting the candidate based on a random number (lines 7–11). Finally,
the MH-method-based initial parameters were adapted and returned (line 14).

The HGSO is an evolutionary and population-based competitive optimization algo-
rithm that enhances exploratory and exploitative behaviors, and its tractability is chal-
lenging. Moreover, it addresses challenges posed by multimodal and local optima [19].
This draws inspiration from the cooperative behavior observed in animals; the search
process is analogous to an animal’s response to hunger levels. In this context, evolutionary
approaches are employed to modify and adapt processes to achieve high-quality outcomes
and expedite convergence. The algorithm exhibits two characteristics during the search
steps: exploration and exploitation. During the exploration stage, the randomness of the
search space must be ensured to explore it comprehensively [19]. During the subsequent
exploitation stage, the algorithm narrows its focus to a specific region in the feature space
identified during the prior exploitation stage [19]. In the lives of animals, hunger is re-
sponsible for motivation and motivates behavior and decisions. Equation (5) expresses the
proposed HGSO algorithm:

−−−−−→
X(t + 1) =


G1 :
−−→
X(t) · (1 + randn(1)), rl < 1

G2 :
−→
W1 ·
−→
Xb +

−→
R · −→W2 · |

−→
Xb −

−→
Xt |, rl > l, r2 > E

G3 :
−→
W1 ·
−→
Xb −

−→
R · −→W2 · |

−→
Xb −

−→
Xt |, rl > l, r2 > E

, (5)
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where t represents the current iterations,
−→
Xb denotes the position of the XGB hyperparame-

ter for the top individual in this iteration,
−→
W1 and

−→
W2 denote the weights associated with

hunger,
−→
Xt indicates the position of the hyperparameter of each individual, and l describes

the experimental parameter for algorithm development.
−→
Xt · (1 + randn(t)) indicates how

an individual performs a random search for food around its current position. The quan-
tity |−→Xb −

−→
Xt | denotes the range of movement of the current individual hyperparameters

during the current iteration. The parameter E controls the degree of variation across all
hyperparameter positions, and

−→
R serves as a range control parameter. Algorithm 3 outlines

the steps followed in the proposed HGSOXGB framework. The HGSOXGB algorithm uses
random numbers r1, r2, r3, r4, r5, r6 which belong to [0, 1].

Algorithm 3 Proposed HGSOXGB algorithm

Input: The H-dimensional hyperparameters of XGB applied on training data, maximum
iteration (T), number of search agents or individuals (N), upper (ub) and lower (lb)
bounds of H, sum of hungry of all individuals (SHungry), l.

Output: HGSOXGB model and best-fit value
1: Initialize the HGSO hyperparameters using Algorithm 2.
2: while (t ≤ T) do
3: Calculate fitness function J(·) using Equation (4)
4: Update the Best Fit (BF), Worst Fit (WF), and H-dimensional hyperparameters

positions of XGB
5: Calculate the hungry using

hungry(t) =

 0, AllFitness(t) = BF
hungry(t) + newHungry(NH),
AllFitness(t) 6= BF

6: Calculate the weight
−−−→
W1(t) =

{
hungry(t) · N

SHungry × r4, r3 < l
1, r3 > l

7: Calculate the weight
−−−→
W2(t) =

(
1− e−|hungry(t)−SHungry|

)
× r5 × 2,

8: for k = 1 ∼ N do
9: Calculate E, where E = sech(|J(k)− BF)|)

10: Update
−→
R , where

−→
R = 2(1− t

T )(2× r6 − 1)
11: Update the H-dimensional XGB hyperparameter position using Equation (5)
12: end for
13: t = t + 1
14: Reintroduce the diversity by reinitializing 20% of the population every

⌊
T
3

⌋
iteration

using Algorithm 2.
15: Check for NaN values in the population space and if any, reinitialize using

Algorithm 2
16: end while
17: return BF and H-dimensional HGSOXGB optimized hyperparameters.

Unlike the original HGSO algorithm, the current approach integrates the VC2 operator
to achieve a balanced exploration of the entire solution space and exploitation to refine
the optimal solutions. This algorithm can better switch between diverse and concentrated
searching, thereby enhancing the probability of obtaining optimal solutions. Additionally,
the optimization process may occasionally lead search agents to converge to local optima. To
effectively counter this, diversity in the population space was reintroduced by reinitializing
20% of the population every

⌊
T
3

⌋
iteration using the proposed MH-based population

initialization method (Line 14). The diversity outlined here helps the algorithm escape the
local optima and converge towards a global solution. Furthermore, in some situations, the
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agent positions can turn into non-number (NaN) values owing to numerical instability
and extreme values, rendering them unproductive for the ongoing search process. To
ensure the contribution of each agent to the optimization, agents with NaN values in their
positions are identified and subsequently reinitialized using Algorithm 2 (Line 15). For
the convenience of the research community, a Python implementation of the algorithm is
available at https://github.com/awalece04ku/HGSO_ICU, accessed on 5 September 2023.

2.5. Model Performance Analysis

To evaluate the effectiveness of the proposed ML scheme, various performance evalua-
tion metrics—the accuracy (ACC), F1-score, Matthew’s correlation coefficient (MCC), kappa
score, sensitivity (recall), and area under the curve (AUC)—were determines, along with an
assessment of the confusion matrix. In addition, novel statistical parameters—Cramer’s V,
phi-squared, classification success index (CSI), Pearson’s C, and Scott’s Pi—obtained from
Pycm, a Python library for multiclass confusion matrices [30], were used for evaluation.
Equations (6) and (10) summarize these evaluation measures.

Cramer’s V: it expresses the relationship between two nominal variables and ranges
from 0 to 1:

V =
φ√

min(r− 1, c− 1)
, (6)

where φ is the phi coefficient and r and c are the numbers of rows and columns, respectively.
Phi-squared: it shows the relationship between two binary variables:

φ2 =
χ2

n
, (7)

where χ2 is the chi-squared statistic and n is the total number of samples in the dataset.
CSI: it is an overall measure defined by averaging the individual classification success

index (ICSI), ranging from −1 to 1, over all classes:

CSI =
1
|C|

|C|

∑
i=1

ICSI, (8)

where ICSI is 1 minus the sum of the positive predictive value and true positive rate, and
|C| is the number of classes.

Pearson’s C: it is known as the Pearson coefficient, ranging from−1 to 1, and represents
whether two variables are dependent on each other.

C =

√
χ2

χ2 + n
(9)

Scott’s Pi: it explains how two nominal data points are internally reliable:

π =
pr(a)− pr(e)

1− pr(e)
, (10)

where pr(a) is the observed agreement and pr(e) is the expected agreement.
Moreover, an ROC curve, a precision–recall curve, a bootstrap ROC curve, and the

recall rate vs. decision boundary were created to assess the classifier’s performance.

2.6. Feature Importance Using XGB

An analysis of the feature set revealed that certain features were less important or
even irrelevant in predicting the need for ICU admission. The dominant features were
sorted using XGB, and a graph was generated to display the feature importance values
in descending order. The graph lists the features on the Yaxis, and the corresponding
importance values are shown on the Xaxis. The XGB algorithm utilizes the “gain” metric
to assess the relative significance of each feature. Furthermore, “gain” plays a crucial role

https://github.com/awalece04ku/HGSO_ICU
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in determining the optimal node split during tree construction in the training phase. The
average gain was subsequently used to derive the final importance score for each feature.
Equation (11) gives the mathematical formulation for calculating the gain:

Gain =
1
2

[
G2

L
HL + λ

+
G2

R
HR + λ

+
(GL + GR)

2

HL + HR + λ

]
− γ, (11)

where GL, GR, HL, HR are the first-, first-, second-, and second-order gradient of the left,
right, left, and right nodes, respectively. λ and γ represent penalty and regularization
parameters, respectively.

3. Results and Discussion

Having developed the proposed MH-based HGSO algorithm, a preliminary bench-
mark analysis was conducted to assess its performance before analyzing its viability for
ICU prediction.

3.1. Initial Benchmark Analysis

The effectiveness of the proposed HGSO algorithm was tested on four benchmark
functions: Sphere, Ackley, Levy, and Schaffer. Subsequently, it was compared with the
original HGSO algorithm using the same number of generations and iterations, resulting in
the proposed HGSO algorithm outperforming the original algorithm. Appendix B provides
the complete analysis of the benchmark functions from the Congress on Evolutionary
Computation (CEC) benchmark and their graphical illustrations.

3.2. ICU Prediction Results

The preceding section demonstrated the superior performance of the HGSO algorithm
on the CEC benchmark dataset. Therefore, the optimal values of the XGB hyperparameter,
which significantly influences ICU prediction, were determined using HGSO, as presented
in Table 1. Note that the same training and testing datasets were employed across all
classifiers to ensure the consistency of the analysis.

3.3. Confusion Matrix

The principal diagonal cells of each confusion matrix, visualized in Figure 2, represent
the percentage of correct classifications achieved by the proposed approach compared
with state-of-the-art classification algorithms, i.e., GNB, LDA, KNN, RF, LGBM, GBC,
and LR. In particular, as depicted in Figure 2a, out of 6758 ICU-no instances, 6527 were
accurately classified, with only 231 misclassifications; in contrast, among 6768 ICU-yes
instances, 6646 were correctly classified, with 122 incorrect classifications, achieving an
impressive accuracy of 97.39%. Figure 2b–h shows the accuracy scores of the other leading
classification algorithms. For instance, LGBM secured the second position in correctly
classifying the need for ICU beds for COVID-19 patients, and GNB exhibited the lowest
accuracy among the algorithms. Consequently, the proposed HGSOXGB was concluded to
outperform traditional classifiers.
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Figure 2. Confusion matrices generated for the (a) HGSOXGB, (b) GNB, (c) LDA, (d) KNN, (e) RF, (f)
LGBM, (g) GBC, and (h) LR methods. Note that in each confusion matrix, rows correspond to the
target classes, columns denote the actual classes, diagonal cells highlight correct classifications, and
off-diagonal cells indicate errors. Each cell displays both a count and percentage value. The rightmost
column of the confusion matrix presents precision and false discovery rate metrics, providing insight
into the accuracy of the predictions for each class. Furthermore, the bottom row of each matrix reflects
the recall and false negative rates, indicating the accuracy for actual class instances. Ultimately, the
bottom-right cell of each matrix encapsulates the overall accuracy of the model.

3.4. Comparative Performance Analysis of Different Classifiers

This study rigorously evaluated the performance of the proposed model against a
set of cutting-edge classifiers, including GNB, LDA, KNN, RF, LGBM, GBC, and LR. A
comprehensive evaluation was conducted using multiple robust metrics (the ACC, F_score,
kappa score, MCC score, sensitivity, and AUC) to evaluate the effectiveness of each classifier
(as detailed in Table 2). The tabulated data clearly show that the proposed HGSOXGB
exhibits the best results in terms of all the classification metrics. For example, the accuracy
score and AUC value of HGSOXGB were significantly higher than 97%, surpassing those
of all other classifiers, whereas GNB remained at the bottom position with respect to
the performance evaluation metrics. Table 3 compares the performance of HGSOXGB in
terms of additional overall statistical parameters, illustrating that the proposed framework
outperforms the original XGB algorithm.
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Table 2. Performance comparison with different classifiers.

Classifiers Accuracy F1-Score Kappa Score MCC Sensitivity AUC

GNB 66.42% 70.75% 32.86% 34.42% 81.30% 78.30%
LDA 75.44% 71.99% 50.87% 52.47% 63.15% 82.80%
KNN 87.59% 87.21% 75.17% 75.30% 84.70% 94.10%

RF 92.90% 92.67% 85.80% 85.97% 89.78% 97.00%
LGBM 93.66% 93.63% 87.33% 87.33% 93.19% 98.10%
GBC 82.46% 81.03% 64.92% 65.66% 74.96% 89.80%
LR 75.59% 73.71% 51.17% 51.69% 68.48% 82.80%

HGSOXGB 97.39% 97.37% 94.78% 94.79% 96.58% 99.10%

Table 3. Performance comparison with other models.

Classifiers Cramer’s V Phi-Squared CSI Pearson’s C Scott’s Pi

GNB 34.42% 11.85% 34.45% 32.54% 31.33%
LDA 52.47% 27.53% 52.50% 46.46% 50.12%
KNN 75.30% 56.70% 75.30% 60.15% 75.15%

RF 85.96% 73.89% 85.96% 65.18% 85.77%
LGBM 87.33% 76.27% 87.33% 65.78% 87.33%
GBC 65.66% 43.11% 65.67% 54.89% 64.73%
LR 51.69% 26.72% 51.69% 45.92% 50.92%

HGSOXGB 94.79% 89.86% 94.79% 68.80% 94.78%

3.5. ROC, Precision–Recall, and Bootstrap ROC Curves

The ROC curve illustrated in Figure 3 clearly shows the superiority of the proposed
HGSOXGB model compared with the other classifiers. Figure 3b presents the precision–
recall curve, summarizing the relationship between the true positive rate and positive
predictive value along the y- and x-axes, respectively, to predict the need for ICU admission
for patients with COVID-19 using the proposed HGSOXGB model at varying probability
thresholds. The bootstrapped ROC curve displayed in Figure 3c shows whether the bias in
the training dataset is prevalent during the training phase. Employing N_boot = 100 for
the bootstrapping, the estimation of a mean AUC exceeding 99% provided insights into the
model’s robustness against potential training dataset skewness. Furthermore, calculating
a 90% confidence interval for the bootstrap ROC curve provides an additional layer of
statistical validity.

Figure 3. The (a) ROC, (b) precision–recall, and (c) bootstrap ROC curves for HGSOXGB.
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3.6. Recall vs. Decision Boundary

The recall rate represents the number of ICU cases that must be predicted from a
complete dataset. For this investigation, the classification task has been accomplished,
given that “ICU-no” and “ICU-yes” were equally important with a decision boundary
threshold of 0.5, as visualized in Figure 4a,b. The graphical illustration exhibits that the
HGSOXGB approach had the highest recall rate, at approximately 96.58% (also displayed in
Table 2), implying that over 96% of the time, the proposed approach can accurately classify
the necessity for ICU admission for COVID-19 patients.
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Figure 4. Recall rate vs. decision boundary for (a) ICU-no class and (b) ICU-yes class.

3.7. Ten-Fold Cross-Validation Performance of the Proposed Model

This study includes the violin plot presented in Figure 5, which illustrates the cross-
validation accuracy of the various models. The plot clearly shows that the proposed
HGSOXGB outperforms the other models in terms of cross-validation accuracy. The white
dots represent the median value, the thick gray bars in the center denote the interquartile
range, and the upper and lower thin gray lines indicate the values 1.5 times the interquartile
range. A wider section of the violin plot indicates a higher likelihood, whereas narrower
sections indicate a lower probability. Furthermore, the analysis of variance (ANOVA) test
indicated that the HGSOXGB results are statistically significant (p < 0.05).

HGSOXGB GNB LDA KNN RF LGBM GBC LR
Classifiers
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Figure 5. Violin plot of 10-fold cross-validation score of different models.
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3.8. Feature Importance Using XGB

The dominant features that significantly affect the necessity for ICU care for COVID-19
patients were categorized using XGB. The feature importance plot of this study in Figure 6
reveals that “intubated” is the most important feature in predicting ICU requirement,
followed by “pneumonia”. Note that features such as “otras_com”, “smoking”, “COPD”,
and “asthma” substantially influence the prediction for ICU requirement for COVID-19
patients [13,31].
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Figure 6. Feature importance using XGB.

In addition to influencing ICU prediction, the XGB-based feature importance technique
can assist national policymakers. For instance, when individuals exhibit symptoms such
as colds, continuous coughing, sore throats, the loss or alteration of one’s sense of taste
or smell, fatigue, headaches, aches and pains, diarrhea, and other respiratory infections,
including fever, a coronavirus infection is suspected. In such cases, policymakers should
encourage workers to engage in remote work to mitigate the potential spread of the virus
within their workplaces and broader communities. Notably, novel variants remain a threat,
although the pandemic is officially over. Therefore, the feature importance technique may
contribute to broader public health endeavors to mitigate the impact of the virus.

3.9. Performance Comparison with Other Studies

The effectiveness of the proposed HGSOXGB model was compared with that of other
contemporary studies using various performance indices. Some methods utilized the same
dataset as in this study, whereas others were employed using their original dataset, and we
attempted to replicate their approach and compare the proposed model accordingly. Table 4
presents the comparison results, which indicate that the proposed model outperforms
existing methods.

Table 4. Performance comparison with other studies.

Studies Dataset Classifier Accuracy Sensitivity Specificity AUC

Cheng et al. [9] Mount Sinai Hospital Data Random Forest 76.2% 72.8% 76.2% 79.9%
Zhao et al. [32] New York Hospital Data Logistic Regression - - - 74%

Decision Tree - 76% 73% 86%
Logistic Regression - 83% 70% 83%Famiglini et al. [33]

San Raffaele Hospital
(OSR), Milan (Italy) Data

Ensemble - 85% 74% 88%

Heo et al. [13] South Korean Data Logistic Regression - - - 88%
Wollenstein-Betech et al. [10] Mexican Data XGB 89% - - 55%
Proposed Method Mexican Data HGSOXGB 97.39% 98.17% 98.20% 99.10%
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3.10. Limitations and Future Works

The proposed framework was evaluated using a benchmark and one of the largest
single-center datasets; thus, a multicenter dataset was required to achieve a broader gen-
eralization, although acquiring such a dataset is time-consuming. Another noteworthy
aspect of using multicenter datasets is the opportunity to test across various datasets,
facilitating valuable generalization. Additionally, although the proposed framework relies
solely on clinical data, additional data sources such as genetic data or data containing social
determinants of health (SDH)—non-medical factors that influence health outcomes—will
be incorporated in the future to improve prediction accuracy. Another limitation of the
proposed technique is its reliance on ML models. In the future, deep learning models will
be implemented to evaluate the proposed technique and converge to the optimal solution
for predicting ICU admissions. Note that the source code of the proposed framework has
been released, and researchers are encouraged to contribute in this important area.

4. Conclusions

This study proposes an ML framework for predicting the need for ICU admission for
COVID-19 patients based on clinical data using an XGB classifier with HGSO-optimized
hyperparameters. Instead of randomly initializing the population, the MH method was
adopted to enhance the performance of the proposed HGSO algorithm. The SMOTE al-
gorithm was applied to the COVID-19 clinical data to balance the dataset. The proposed
HGSOXGB achieved the highest accuracy and AUC values of 97.39% and 99.10%, respec-
tively. Furthermore, XGB was used to identify pneumonia as the most crucial feature
for predicting ICU requirements. Therefore, the dominant features categorized using the
proposed XGB-based feature importance technique can significantly aid policymakers in
imposing necessary rules during critical situations. This feature importance technique can
then help safeguard communities from infections or pandemics caused by deadly viruses.
Therefore, the findings of this study have the potential to predict individual ICU needs for
COVID-19 patients and may be extended to other classification problems, such as asthma
and diabetes.
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Appendix A. Benchmark Functions

Benchmark functions demonstrate how well an optimization algorithm reaches the
optimal solution within a defined search space. The effectiveness of the proposed HGSO
algorithm depends on the CEC benchmark function. The mathematical abstraction of
widely used functions is as follows:

https://github.com/awalece04ku/HGSO_ICU
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• Sphere function: The Sphere function—a simple convex function with a single mini-
mum at the origin—is widely used to test the optimization algorithm by serving as a
starting point in evaluating the performance. Equation (A1) outlines the mathematics
behind the Sphere function in n-dimensional space:

f (x) =
n

∑
i=1

x2
i , (A1)

where xi describes the ith dimension of the input vector. The mean value of the sphere
function is zero, and the variance is one.

• Ackley function: The Ackley function, a two-dimensional function with multiple local
optima and a global minimum, is widely used for testing optimization algorithms.
Equation (A2) presents the mathematical formulation of the Ackley function:

f (x) = −20 exp

−0.2

√√√√0.5
d

∑
i=1

x2
i

− exp

(
0.5

d

∑
i=1

cos(cxi)

)
+ e + 20, (A2)

• Levy function: The Levy function is a continuous probability distribution for a nonneg-
ative random variable. It is used in the optimization technique to search for all local
minima. Equation (A3) outlines the mathematical background of the levy function:

F(x) = sin2(πω1) +
d−1

∑
i=1

(ωi − 1)2
[
1 + 10 sin2(πωi + 1)

]
+ (ωd − 1)2

[
1 + 10 sin2(πωd + 1)

]
, (A3)

where ωi = 1 + xi−1
4 for all i ∈ [1, d]; xi ∈ [−10, 10].

• Schaffer function: The Schaffer function is a pair of multimodal functions commonly
used as benchmark problems for testing optimization algorithms. Equation (A4)
provides mathematical insights into the Schaffer function:

f (x) = 0.5 +
cos2(sin

(∣∣x2
ub − x2

lb

∣∣))− 0.5[
1 + 0.001

(
x2

ub + x2
lb
)]2 , (A4)

where the upper and lower bounds of the hyperparameters are defined as xub, xlb ∈
[−100, 100].

Appendix B. Benchmark Analysis

In total, 300 generations and 30 populations were employed, and the proposed algo-
rithm was benchmarked against the original HGSO algorithm. The results clearly show
that the proposed algorithm exhibits a superior convergence for each function compared to
the original algorithm (as shown in Figure A1). Notably, the same number of generations
and population sizes was used to ensure fair comparisons in each case.
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(a) (b)

(c) (d)

Figure A1. Comparing the effectiveness of the proposed and original HGSO in the context of
a convergence analysis for the CEC benchmark functions: (a) Sphere, (b) Ackley, (c) Levy, and
(d) Schaffer.

In addition, only the performance of the proposed method was compared with
that of the original HGSO. The study compared the original HGSO with many other
optimization algorithms.

To further demonstrate the effectiveness of the optimization algorithm, the code was
run 100 times for both the proposed and original methods. Subsequently, a Mann–Whitney
U statistical significance test was conducted. In each case, the median value of the box
plot was statistically different, as indicated by a p-value of less than 0.005 (Figure A2). The
benchmark functions, along with their convergence plot and statistical significance codes,
are available at https://github.com/awalece04ku/HGSO_ICU (accessed on 5 September
2023) for further justification.

https://github.com/awalece04ku/HGSO_ICU
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(a) (b)

(c) (d)

Figure A2. Comparing the effectiveness of the proposed and original HGSO using box plots (with
different p-values) for different CEC benchmark functions: the (a) Sphere function for 2.56× 10−34,
(b) Ackley function for 5.64× 10−39, (c) Levy function for 1.01× 10−31, and (d) Schaffer function for
4.36× 10−32.
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