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Abstract

Semistructured databases require tailor-made concurrency control mech-
anisms since traditional solutions for the relational model have been shown
to be inadequate. Such mechanisms need to take full advantage of the
hierarchical structure of semistructured data, for instance allowing con-
current updates of subtrees of, or even individual elements in, XML
documents. We present an approach for concurrency control which is
document-independent in the sense that two schedules of semistructured
transactions are considered equivalent if they are equivalent on all possi-
ble documents. We prove that it is decidable in polynomial time whether
two given schedules in this framework are equivalent. This also solves the
view serializability for semistructured schedules polynomially in the size
of the schedule and exponentially in the number of transactions.

1 Introduction

In previous work [5, 6, 7] we have shown that traditional concurrency control [21]
mechanisms for the relational model [2, 11, 19, 20] are inadequate to capture
the complicated update behavior that is possible for semistructured databases.
Indeed, when XML documents are stored in relational databases, their hierar-
chical structure becomes invisible to the locking strategy used by the database
management system.

∗Roel Vercammen is supported by IWT – Institute for the Encouragement of Innovation
by Science and Technology Flanders, grant number 31581.
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In general two actions, on two different nodes of a document tree, that are
completely ‘independent’ from each other, cannot cause a conflict, even if they
are updates. Changing the spelling of the name of one of the authors of a
book and adding a chapter to the book cannot cause a conflict for instance.
Most classical concurrency control mechanisms, when applied in a naive way to
semistructured data, will not allow such concurrent updates. This consideration
is the main reason why the classical approaches seem to be inadequate as a
concurrency control mechanism for semistructured data.

Most of the work on concurrency control for XML and semistructured data
is based on the observation that the data is usually accessed by means of XPath
expressions. Therefore it is suggested in [5] to use a simplified form of XPath ex-
pressions as locks on the document such that precisely all operations that change
the result of the expression are no longer allowed. Two alternatives for conflict-
checking are proposed, one where path locks are propagated down the XML
tree and one where updates are propagated up the tree, which both have their
specific benefits. This approach is extended in [7] where a commit-scheduler is
defined and it is proved that the schedules it generates are serializable. Finally
in [9] an alternative conflict-scheduler is introduced that allows more schedules
than the previously introduced commit-scheduler.

A similar approach is taken in [4] where conflicts with path locks are detected
by accumulating updates in the XML tree and intelligently recomputing the
results of the path expressions. As a result they can allow more complex path
expressions, but conflict checking becomes more expensive. Another related
approach is presented in [17] where locks are derived from the path expressions
and a protocol for these locks is introduced that guarantees serializability.

Several locking protocols that are not based on path expressions but on DOM
operations are introduced in [14, 15]. Here, there are locks that lock the whole
document, locks that lock all the children of a certain node and locks that lock
individual nodes or pointers between them. An interesting new aspect is here
the possibility to use the DTD for conflict reduction and thus allowing more
parallelism. Although these locking protocols seem very suitable in the case of
DOM operations, it is not clear whether they will also perform well if most of
the access is done by path expressions. A similar approach, but extended with
the aspect of multi-granularity locking, is presented in [12, 13]. This approach
seems more suitable for hierarchical data like semistructured data and XML.
However, such mechanisms will often allow less concurrency than a path based
locking protocol would.

A potential problem with many of the previously mentioned protocols is that
locks are associated with document nodes and so for large documents we may
have large numbers of locks. A possible solution for this is presented in [10]
where the locks are associated with the nodes in a DataGuide, which is usually
much smaller than the document. However, this protocol does not guarantee
serializability and allows phantoms.

For all the approaches above it holds that the concurrency control mecha-
nisms are somehow dependent upon the document. In most cases this means
that if the document gets very large then the overhead may also become very
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large. This paper investigates the possibilities of a document-independent con-
currency control mechanism. It extends the preliminary results on this subject
that were presented in [8].

The total behavior of the processes that we consider in this paper is straight-
forward: each cooperating process produces a transaction of atomic actions that
are queries or updates on the actual document. The transactions are interleaved
by the scheduler and the resulting schedule has to be equivalent with a serial
schedule. Two schedules on the same set of transactions are called equivalent iff
for each possible input document they represent the same transformation
and each query gives the same result in both schedules. This is a special defini-
tion of view equivalency, which we will use to decide view serializability [3] for
a schedule.

Note that we consider view serializability, as opposed to conflict serializ-
ability. As we will show later on, conflict serializability, which might be more
interesting from a computational point of view, will allow less schedules to be
serialized and hence can be too restrictive.

The updates that we consider are very primitive: the addition of an edge
of the document tree and the deletion of an edge. Semantically the addition
is only defined if the added edge does not already exist in the document tree.
Analogously the deletion is only defined if the deleted edge exists. A more
general semantics, that does not include this constraint, can be easily simulated
by adding first some queries.

There are some schedules for which the result is undefined for all document
trees (e.g., a schedule consisting of two consecutive deletions of the same edge).
These schedules are meaningless and are called inconsistent. Hence a schedule
is consistent if there exists at least one document tree on which its application
is defined. We prove that the consistenty of schedules is polynomially decidable.

In order to tackle the equivalence of schedules and transactions we first
consider schedules without queries, and as such we have only to focus on the
transformational behavior of the schedules. We will see that, contrary to the
relational model, the swapping of the actions cannot help us in detecting the
equivalence of two schedules. We prove that the equivalence of queryless sched-
ules is also polynomially decidable, and that view serializability is exponentially
decidable in the number of transactions and polynomially in the number of op-
erations. Finally we generalize the results above for general schedules over the
same set of transactions.

The paper contains a number of theoretical results on which the algorithms
are based. The algorithms are a straightforward consequence of the given proofs
or sketches. The complete proofs are given in [16].

The paper is structured as follows: Section 2 defines the data model, the
operations and the semistructured schedules. Section 3 studies the consistency
of schedules without queries. In Section 4 we study the equivalence and the view
serializability problem for these queryless schedules. In Section 5 we generalize
these results for consistent schedules.
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2 Data Model and Operations

The data model we use is derived from the classical data model for semistruc-
tured data [1]. We consider directed, unordered trees in which the edges are
labelled.

Consider a fixed universal set of nodes N and a fixed universal set of edge
labels L not containing the symbol /.

Definition 1. A graph is a tuple (N, E) with N ⊆ N and E ⊆ N × L × N .
A document tree (dt) T is a tuple (N, E, r) such that (N, E) is a graph that
represents a tree with root r. The edges are directed from the parent to the child.

<document id="0">
<person id="1",age="55",
spouse=   >
<name>Peter</name>
<addr>Parklane 7</addr>
<child>
<person id="3", age="22">

<name>John</name>
<addr>Unistreet 1</addr>
<hobby>swimming</hobby>
<hobby>cycling</hobby>

</person>
</child>

</person>
<person id="2", age="43">

<name>Mary</name>
<addr>Parklane 7</addr>
<hobby>painting</hobby>

</person>
</document>

"2"
document

r

personperson @id
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name

name

nameaddr @id
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Figure 1: A fragment of an XML document and its dt representation.

Example 1. Figure 1 shows a fragment of an XML document and its dt rep-
resentation.

This data model closely mimics the XML data model as illustrated in the
next example. We remark, however, the following differences:

• order: Siblings are not ordered. This is not crucial, as an ordering can
be simulated by using a skewed binary dt.

• attributes: Attributes, like elements, are represented by edges labeled
by the name of the attributes (started with a @). The difference is that
in this data model an element may contain several attributes of the same
name.

• labels: Labels represent not only tag names and attribute names, but
also values and text.

• text: Unlike in XML, it is possible for several text edges to be adjacent
to each other.
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A label path is a string of the form l1/ . . . /lm with m ≥ 0 and every li an
edge label in L. Given a path p = ((n1, l1, n2), . . . , (nm, lm, nm+1)) in a graph
G, the label path of p, denoted λ̄T (p) (or λ̄(p) when T is subsumed) is the string
l1/ . . . /lm.

Processes working on document trees do so in the context of a general pro-
gramming language that includes an interface to a document server which man-
ages transactions on documents. The process generates a list of operations that
will access the document. In general there are three types of operations: the
query, the addition and the deletion. The input to a query operation will be a
node and a simple type of path expression, while the result of the invocation of a
query operation will be a set of nodes. The programming language includes the
concepts of sets, and has constructs to iterate over their entire contents. The
input to an addition or a deletion will be an edge. The result of an addition or
a deletion will be a simple transformation of the original tree into a new tree.
If the result would not be a tree anymore it is not defined.

We now define the path expressions and the query operations, subsuming a
given dt T .

The syntax of path expressions1 is given by P :

P ::= peǫ | P+

P+ ::= F | P+/F | P+//F

F ::= ∗ | L

The set L(pe) of label paths represented by a path expression pe is defined
as follows:

L(peǫ) = {ǫ}

L(∗) = L

L(l) = {l}

L(pe/f) = L(pe) · {/} · L(f)

L(pe//f) = L(pe) · {/} · (L · {/})∗ · L(f)

Let n be an arbitrary node of T and pe a path expression. We now define the
three kinds of operations: the query, the addition and the deletion.

Definition 2. The query operation query(n, pe) returns a set of nodes, and is
defined as follows:

• query(n, pe) with n ∈ N and pe ∈ P. The result of a query on a dt T is
defined as query(n, pe)[T ] = {n′ ∈ N | ∃p a path in T from n to n′ with λ̄(p) ∈
L(pe)}.

The update operations add(n, l, n′) and del(n, l, n′) return no value but trans-
form a dt T = (N, E, r) into a new dt T ′ = (N ′, E′, r):

1Remark that path expressions form a subset of XPath expressions.
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• add(n, l, n′) with n, n′ ∈ N and l ∈ L. The resulting T ′ = add(n, l, n′)[T ]
is defined by E′ = E ∪ {(n, l, n′)} and N ′ = N ∪ {n′}. If the resulting T ′

is not a document tree anymore or (n, l, n′) was already in the document
tree then the operation is undefined.

• del(n, l, n′) with n, n′ ∈ N and l ∈ L. The resulting T ′ = del(n, l, n′)[T ]
is defined by E′ = E − {(n, l, n′)} and N ′ = N − {n′}. If the resulting T ′

is not a document tree anymore or (n, l, n′) was not in the document tree
then the operation is undefined.

Note that the operations explicitly contain the nodes upon which they work.
As we will explain in Section 4 this is justified by the fact that the scheduler
decides at run time whether an operation is accepted or not.

We now give some straightforward definitions of schedules and their seman-
tics.

Definition 3. An action is a pair (o, t), where o is one of the three operations
query(n, pe), add(n, l, n′) and del(n, l, n′) and t is a transaction identifier. A
transaction is a sequence of actions with the same transaction identifier. A
schedule over a set of transactions is an interleaving of these transactions. The
size nS of a schedule S is the length of its straightforward encoding on a Turing
tape2.

We can apply a schedule S on a dt T . The result of such an application is

• for each query in S, the result of this query.

• the dt that results from the sequential application of the actions of S; this
dt is denoted by S[T ]

If some of these actions are undefined the application is undefined. Two sched-
ules are equivalent iff they are defined on the same non-empty set of dts and on
each of these dts both schedules have the same result. The definition of serial
and serializable schedules is straightforward.

Since a transaction is a special case of a schedule all the definitions on
schedules also apply on transactions.

Note that the equivalence of schedules and transactions is a document-
independent definition. Let
T1 = ({n1, n2}, {(n1, l2, n2)}, n1),
T2 = ({n1, n2}, {(n1, l1, n2)}, n1),
T3 = ({n1}, ∅, n1) be three dts and let
S1 = (add(n2, l2, n3), t1), (query(n1, l1/l2), t2),
S2 = (query(n1, l1/l2), t2), (add(n2, l2, n3), t1) be two schedules.
S1 and S2 are equivalent on T1, they are not equivalent on T2 and their appli-
cation is undefined on T3.
Let S3 be the empty schedule and

2We assume that nodes can be encoded in O(1)-space
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S4 = (add(n1, l1, n2), t1), (del(n1, l1, n2), t2).
S3 and S4 are not equivalent although they are equivalent on many dts.

We will later on use the definition of equivalence to define serializability. In
this paper we study view serializability, which is less restrictive than conflict
serializability. We illustrate this claim by introducing informally a scheduling
mechanism for generating conflict serializable schedules. A possible approach
for this is to have a locking mechanism where operations can get locks, and in
which a new operation of a certain process will only be allowed if it does not
require locks that conflict with locks required by earlier operations. Because
operations with non-conflicting locks can be commuted, any schedule that is
allowed by such a scheduler can be serialized. The following example shows,
however, that the reverse does not hold: Indeed, the next schedule

S = (add(r, l1, n1), t1), (del(r, l1, n1), t2),
(add(r, l2, n2), t2), (del(r, l2, n2), t2),
(add(r, l2, n2), t1), (del(r, l2, n2), t1).

is consistent since it is defined on T = ({r}, ∅, r). Furthermore it is serializ-
able, and the equivalent serial schedules are

S1 = (add(r, l1, n1), t1), (add(r, l2, n2), t1),
(del(r, l2, n2), t1), (del(r, l1, n1), t2),
(add(r, l2, n2), t2), (del(r, l2, n2), t2)

S2 = (del(r, l1, n1), t2),(add(r, l2, n2), t2),
(del(r, l2, n2), t2), (add(r, l1, n1), t1),
(add(r, l2, n2), t1), (del(r, l2, n2), t1).

but we cannot go from S to S1 nor to S2 only by swapping with consistent
intermediate schedules. This illustrated that an approach based on conflict
serializability can be too strict.

3 Consistency of Queryless Schedules

A schedule is called queryless (QL) iff it contains no queries. Because of the way
that operations can fail it is possible that the application of a certain transaction
is not defined for any document tree. We are not interested in such transactions.
We call a transaction t consistent iff there is at least one dt T with t[T ] defined.

Example 2. The next transaction is consistent:
(add(r, l1, n1), t1), (del(r, l1, n1), t1), (add(r, l2, n2), t1),
(del(r, l2, n2), t1), (add(r, l2, n2), t1), (del(r, l2, n2), t1).

Note, however, that there are dts on which this transaction is undefined. For
example, if T contains an edge (r, l3, n1), then t1[T ] is undefined, since the
application of the first action of t1 is undefined.
The next transaction is inconsistent:

(add(n1, l1, n), t1), (add(n2, l2, n), t1).
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We call a schedule S consistent iff there is at least one dt T with S[T ]
defined. Remark that there are consistent schedules that cannot be serializable
because they contain an inconsistent transaction. For instance, the consistent
schedule S = (add(r, l1, n1), t1), (del(r, l1, n1), t2), (add(r, l1, n1), t1) is defined
on T = ({r}, ∅, r), and hence is not serializable, because every equivalent serial
QL schedule would be undefined (since the transaction t1 is not consistent).
Transaction t1 has the property that all QL schedules over a set of transactions
that contain t1 are non-serializable.

Note that the definition of consistent QL schedule is document-independent.
It is clear that we are only interested in consistent transactions and schedules.
Remark also that if two QL schedules are equivalent then they are both consis-
tent. This equivalence relation is defined on the set of consistent QL schedules.

We will characterize the consistent QL schedules and prove that this prop-
erty is decidable. For this purpose we will first attempt to characterize for which
document trees a given consistent QL schedule S is defined, and what the prop-
erties are of the document trees that result from a QL schedule. We do this by
defining the sets Nmin

I (S), Nmax
I (S), Emin

I (S) and Emax
I (S), whose informal

meaning is respectively the set of nodes that are required in the input dts on
which S is defined, the set of nodes that are allowed, the set of edges that are
required and the set of edges that are allowed. In the same way we define the
sets Nmin

O (S), Nmax
O (S), Emin

O (S) and Emax
O (S) taking into account the output

dts.

Definition 4. Let S be a QL schedule. φS(n, o) (φS((m, l, n), o)) indicates
that the first occurrence of the node n (the edge (m, l, n)) in the schedule S has
the form of the operator o. 3 λS(n, o) (λS((m, l, n), o)) indicates that the last
occurrence of the node n (the edge (m, l, n)) in the QL schedule S has the form of
the operation o. We define the sets Nmin

I (S), Nmax
I (S), Emin

I (S) and Emax
I (S),

and the sets Nmin
O (S), Nmax

O (S), Emin
O (S) and Emax

O (S) as in Figure 2.
A dt T is called a basic input tree (basic output tree) of S iff it contains all the
nodes of Nmin

I (S) (Nmin
O (S)), only nodes of Nmax

I (S) (Nmax
O (S)), all the edges

of Emin
I (S) (Emin

O (S)) and only edges of Emax
I (S) (Emax

O (S)).

Consider S = (add(n1, l1, n2), t1), (del(n4, l2, n3), t2), (del(n1, l1, n4), t3) then

Nmin
I (S) = {n1, n3, n4}

Nmax
I (S) = N − {n2}

Emin
I (S) = {(n4, l2, n3), (n1, l1, n4)}

Emax
I (S) = Emin

I (S) ∪ {(m, l, n) ∈
N × L ×N | m, n 6= n2, n3, n4}

Nmin
O (S) = {n1, n2}

Nmax
O (S) = N − {n3, n4}

Emin
O (S) = {(n1, l1, n2)}

Emax
O (S) = Emin

O (S) ∪ {(m, l, n) ∈
N × L ×N | m, n 6= n2, n3, n4}

3For example, φS(n2, add(r, l2, n2)) holds in the consistent QL schedule in Example 2
above.
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Nmin
I (S) = {m | φS(m, add(m, l, n))} ∪ {m | φS(m, del(m, l, n))} ∪ {n | φS(n, del(m, l, n))}

Nmax
I (S) = N − {n | φS(n, add(m, l, n))}

Emin
I (S) = {(m, l, n) | φS((m, l, n), del(m, l, n))}

Emax
I (S) = Emin

I (S) ∪ {(m, l, n) | no (m1, l1, m) nor (m1, l1, n) occurs in S}
Nmin

O (S) = {m | λS(m, del(m, l, n))} ∪ {m | λS(m, add(m, l, n))} ∪ {n | λS(n, add(m, l, n))}
Nmax

O (S) = N − {n | λS(n, del(m, l, n))}
Emin

O (S) = {(m, l, n) | λS((m, l, n), add(m, l, n))}
Emax

O (S) = Emin
O (S) ∪ {(m, l, n) | no (m1, l1, m) nor (m1, l1, n) occurs in S}

Figure 2: The Definition of the basic input and output sets.

We will prove in Theorem 1 that the application of a consistent schedule S
is defined on each basic input tree of S.

Although Nmax
I (S), Emax

I (S), Nmax
O (S) and Emax

O (S) are in general infinite,
they can be represented in a finite way: Nmax

I (S) by {n | φS(n, add(m, l, n))},
Emax

I (S) by Emin
I (S)∪{n | there is a (m1, l1, n) that occurs in S}, Nmax

O (S) by
{n | λS(n, del(m, l, n))}, Emax

O (S) by Emin
O (S)∪{n | there is a (m1, l1, n) that occurs in S}.

Lemma 1. Let S be a schedule with size nS. Nmin
I (S), Nmax

I (S), Emin
I (S), Emax

I (S),
Nmin

O (S), Nmax
O (S), Emin

O (S) and Emax
O (S) can be calculated in O(nS .log(nS))-

time and in O(nS)-space. For each of these sets and for any node or edge it is
decidable in O(nS)-time and O(log(nS))-space whether the node or edge is in
the set.

Proof. (Sketch) We can decide whether a node or an edge is in one of the basic
input or output sets by examining the actions of the schedule S.

When a QL schedule is inconsistent this is always because two operations in
the QL schedule interfere, as for example the two operations in the inconsistent
transaction of Example 2: (add(n1, l1, n), t1) and (add(n2, l2, n), t1). If these
two operations immediately follow each other then at least one of them will
always fail. However, if between them we find the action del(n1, l1, n) then this
does no longer hold. The following definition attempts to identify such pairs of
interfering operations and states which operations we should find between them
to remove the interference.

Definition 5. A QL schedule fulfills the C-condition iff

1. If add(n, l1, n1) and add(n2, l2, n) appear in that order in S then del(n, l1, n1)
appears between them.

2. If add(n1, l1, n) and add(n2, l2, n) appear in that order in S then del(n1, l1, n)
appears between them.

3. If add(n, l1, n1) and del(n2, l2, n) appear in that order in S then del(n, l1, n1)
appears between them.
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4. If add(n1, l1, n) and del(n, l2, n2) appear in that order in S then add(n, l2, n2)
appears between them.

5. If add(n1, l1, n) and del(n2, l2, n) appear in that order in S and (n1, l1) 6=
(n2, l2) then del(n1, l1, n) appears between them.

6. If del(n, l1, n1) and add(n2, l2, n) appear in that order in S then some
del(n3, l3, n) appears between them.

7. If del(n1, l1, n) and add(n, l2, n2) appear in that order in S then some
add(n3, l3, n) appears between them.

8. If del(n1, l1, n) and del(n, l2, n2) appear in that order in S then some
add(n3, l3, n) appears between them.

9. If del(n1, l1, n) and del(n2, l2, n) appear in that order in S then add(n2, l2, n)
appears between them.

The following theorem establishes the relationship between consistency, basic
input trees and the C-condition.

Theorem 1. The following conditions are equivalent for a QL schedule S:

1. there is a basic input tree of S and the application of S is defined on each
basic input tree of S.

2. there is a basic input tree of S on which the application of S is defined;

3. S is consistent;

4. S fulfills the C-condition;

5. there is a tree on which the application of S is defined and all trees on
which the application of S is defined are basic input trees of S.

Proof. (Sketch) Clearly 1 → 2 → 3 → 4 and 5 → 3. We prove that 4 implies
1. First we prove that there is a basic input tree for which S is defined. Then
we prove that the application of S is defined on each basic input tree of S by
induction on the length of S. Finally 3 implies 5. Indeed, let S be defined on
T , where T is not a basic input tree of S. T does not satisfy one of the four
conditions of Definition 4. In each case this yields a contradiction.

Corollary 1. It is decidable whether a QL schedule or a transaction is consis-
tent in O(n3

S)-time and O(nS)-space.

Proof. (Sketch) This follows from the decidability of the C-condition and The-
orem 1.

For the basic input and output sets we can derive the following property:

Property 1. If S is a consistent QL schedule then Emin
I (S) and Emin

O (S) are
forests.
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By ADD(S) we denote the set of edges that are added by the QL schedule
S, i.e., they are added without being removed again afterwards, and by DEL(S)
we denote the set of edges that are deleted by the QL schedule S, i.e., they are
deleted without being added again afterwards.

Definition 6. Let S be a consistent QL schedule. We denote

ADD(S) = {(m, l, n) | λS((m, l, n), add(m, l, n))}
DEL(S) = {(m, l, n) | λS((m, l, n), del(m, l, n))}

We call ADD(S) the addition set of S and DEL(S) its deletion set.

Remark that two consistent QL schedules with the same ADD and DEL are
not necessarily equivalent. Indeed S1 = (del(n1, l1, n2), t2) and S2 = (add(n1, l1, n2), t1),
(del(n1, l1, n2), t2) are not equivalent although ADD(S1) = ADD(S2) and DEL(S1) =
DEL(S2).

Lemma 2. Let S be a consistent QL schedule and T be a basic input tree of S.
S[T ] = T ∪ ADD(S) − DEL(S) is a basic output tree4.

Proof. (Sketch) Clearly T ∪ ADD(S) − DEL(S) is the result of the application
of S on T . We verify that T ∪ ADD(S) − DEL(S) is a basic output tree.

The following lemma establishes the relationships between the addition and
deletion sets, and the basic input and output sets.

Lemma 3. Let S be a consistent QL schedule.

Nmin
O =(Nmin

I − {n | ∃(m, l, n) ∈ DEL(S)}) ∪
{n | ∃(m, l, n) ∈ ADD(S)}

Nmax
O =(Nmax

I − {n | ∃(m, l, n) ∈ DEL(S)}) ∪
{n | ∃(m, l, n) ∈ ADD(S)}

Emin
O = (Emin

I − DEL(S)) ∪ ADD(S)
Emax

O = (Emax
I − DEL(S)) ∪ ADD(S)

Proof. (Sketch) Results from Lemma 2.

4 Equivalence and Serializability of QL Sched-

ules

The purpose of a scheduler is to interleave requests by processes such that the
resulting schedule is serializable. This can be done by deciding for each request
whether the schedule extended with the requested operation is still serializable,
without looking at the instance. In this section we discuss the problem of
deciding whether two consistent QL schedules are equivalent, and whether a
consistent QL schedule is serializable.

To begin with, it can be shown that the application two QL schedules over
the same set of transactions on the same dt T result in the same dt, if they
are both defined.

4We consider a graph as the set of its edges and vice versa.
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Lemma 4. Let S and S′ be two QL schedules over the same set of transactions.
S[T ] = S′[T ] if S[T ] and S′[T ] are both defined.

Proof. (Sketch) Considering a given edge, this edge is alternatively added and
deleted in each of the applications. Since the two QL schedules are over the
same set of transactions, the edge belongs to no result or to both results

As a consequence the problem of deciding whether two consistent schedules
over two given transactions are equivalent reduces to the problem of deciding
whether their result is defined for the same dts, which can be decided with the
help of the basic input and output sets.

Theorem 2. Two consistent QL schedules S1, S2 over the same set of trans-
actions are equivalent iff they have the same set of basic input trees, ie. iff
Nmin

I (S1) = Nmin
I (S2), Nmax

I (S1) = Nmax
I (S2), Emin

I (S1) = Emin
I (S2) and

Emax
I (S1) = Emax

I (S2). Hence their equivalence is decidable in O(nS .log(nS))-
time and O(nS)-space.

Proof. From Lemma 1 and Lemma 4.

Note that this theorem does not hold for two arbitrary QL schedules. Indeed
S1 = (add(m, l, n), t) and S2 = (add(m, l, n), t), (del(m, l, n), t) have the same
basic input trees and are not equivalent.

We can use the basic input and output sets to decide whether one consistent
schedule can directly follow another consistent schedule without resulting in an
inconsistent schedule.

Lemma 5. Let S1 and S2 be two consistent QL schedules. Let nS be the size of
S1.S2. S1.S2 is consistent iff Nmin

I (S2) ⊆ Nmax
O (S1), Emin

I (S2) ⊆ Emax
O (S1),

Nmin
O (S1) ⊆ Nmax

I (S2), Emin
O (S1) ⊆ Emax

I (S2). The consistency of S1.S2 is
decidable in O(nS .log(nS))-time and O(nS)-space.

Proof. (Sketch) A result of the C-conditions, Lemma 1 and Theorem 1.

The following lemma shows how the basic input and output sets can be com-
puted for a concatenation of schedules if we know these sets for the concatenated
schedules.

Lemma 6. Let S1, S2, ..., Sn and S1.S2...Sn be (n+1) consistent QL schedules.
Then

Nmin
I (S1...Sn) =

⋃n
i=1(N

min
I (Si) ∩

⋂
k<i Nmax

I (Sk))
Nmax

I (S1...Sn) =
⋂n

i=1(N
max
I (Si) ∪

⋃
k<i Nmin

I (Sk))
Emin

I (S1...Sn) =
⋃n

i=1(E
min
I (Si) ∩

⋂
k<i Emax

I (Sk))
Emax

I (S1...Sn) =
⋂n

i=1(E
max
I (Si) ∪

⋃
k<i Emin

I (Sk))
If nS is the size of S1.S2...Sn then these equalities can be verified in O(n3

S)-
time and O(nS)-space.

Proof. By induction using Definition 4.
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Finally, the previous theorems can be used to show that serializability is
decidable.

Theorem 3. Given a QL schedule S of nt transactions. It is decidable whether
S is serializable in O(nnt

t .n3
S)-time, and in O(n2

S)-space.

Proof. (Sketch) Indeed,

1. we verify whether each transaction is consistent, which is done in O(n3
S .nt)-

time and in O(nS)-space (Corollary 1);

2. we draw a graph that indicates which transactions can follow directly
which other transactions (i.e. Ti.Tj is defined), which is done in O(n2

t .nS .log(nS))-
time and in O(n2

t + nS)-space (Lemma 5);

3. S is serializable iff there is a Hamilton path that is equivalent with S; to
verify this:

(a) we calculate the ordered Nmin
I , Nmax

I ,Emin
I and Emax

I of the trans-
actions, which is done in O(nt.nS .log(nS))-time and O(nt.nS)-space
(Lemma 1);

(b) there are O(nnt

t ) Hamilton paths, for each of them:

i. we verify its consistency, which is done in O(n3
S)-time and O(nS)-

space (Corollary 1);

ii. we calculate the ordered Nmin
I , Nmax

I , Emin
I and Emax

I of the
Hamilton path, which is done in O(nS .log(nS))-time and O(nS)-
space (Lemma 1);

iii. Lemma 6 and Theorem 2 are verified in O(n3
S)-time and in

O(nS)-space.

5 Equivalence and Serializability of Schedules

In the previous section we only considered QL schedules, but in this section
we consider all schedules. We start with generalizing the notions that were
introduced for QL schedules.

Definition 7. A schedule S is called consistent iff its corresponding QL sched-
ule S′ is consistent. ADD(S) = ADD(S′) where S′ is the QL schedule of S.
Analogously for DEL, Emin

I , Emax
I , Emin

O , Emax
O , Nmin

I , Nmax
I , Nmin

O , Nmax
O .

To verify whether two consistent schedules over the same set of transactions
are equivalent, we first eliminate the queries and verify whether the resulting
QL schedules are equivalent. (Cfr. Theorem 2). In this section we investigate
the equivalence of two consistent schedules over the same set of transactions
and whose QL schedules are equivalent. In the following examples it is shown
that such schedules can be equivalent on all the DTs they are defined on, on
only some of them or on none.
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Example 3. Let l1 6= l3. Consider the following schedules:

S1 = (add(n2, l2, n3), t1), (query(n1, l1/l2), t2),
(del(n2, l2, n3), t1), (del(n1, l3, n2), t1)

S2 = (query(n1, l1/l2), t2), (add(n2, l2, n3), t1),
(del(n2, l2, n3), t1), (del(n1, l3, n2), t1)

S1 and S2 are correct and their corresponding QL schedules are equal. They
are equivalent on all dts on which they are defined, hence they are equivalent.

Consider the following schedules S3 and S4:

S3 = (add(n2, l2, n3), t1), (query(n1, l1/l2), t2),
(del(n2, l2, n3), t1)

S4 = (query(n1, l1/l2), t2), (add(n2, l2, n3), t1),
(del(n2, l2, n3), t1)

S3 and S4 are consistent and their corresponding QL schedules are equal. They
are equivalent on some dts on which they are defined and not equivalent on
others.

Finally, let S5 and S6 be the following schedules:

S5 = (add(n2, l2, n3), t1), (query(n1, l1/l2), t2),
(del(n2, l2, n3), t1), (del(n1, l1, n2), t1)

S6 = (query(n1, l1/l2), t2), (add(n2, l2, n3), t1),
(del(n2, l2, n3), t1), (del(n1, l1, n2), t1)

S5 and S6 are consistent and their corresponding QL schedules are equal. They
are, however, equivalent on no dt on which they are defined.

In order to prove the decidability of the equivalence of two schedules over
the same set of transactions we first define the notion of SOP, Set Of Prefixes
in Subsection 5.1, and some additional notation in Subsection 5.2.

5.1 SOP - Set Of Prefixes

Informally, the notion “Set Of Prefixes” (SOP) of a path expression pe for a
label path lp, will allow us to find a set of path expressions pe′, such that all
path expressions pe′/lp together represent exactly these label paths of pe that
end on lp. For example, consider the path expression pe = b//∗ and the label
path lp = a. Then b/a and b// ∗ /a represent the label paths of pe that end
with label path a. Hence b and b//∗ are a-prefixes of b//∗.

We will now define the set of non-empty lp-prefixes in pe, denoted as SOP(pe)lp

as a set of path expressions that together represent the set of label paths pe′

such that pe′/lp ∈ L(pe)5. For instance SOP(b//∗)a = {b, b//∗}.

Definition 8. Let pe be a path expression, lp be a label path and l ∈ L. The
set of non-empty lp-prefixes in pe, denoted as SOP(pe)lp is defined by

5We consider pe/ǫ to be equal to pe.
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SOP(pe)ǫ = {pe}
SOP(pe/∗)l = SOP(pe/l)l = {pe}
SOP(pe//∗)l = SOP(pe//l)l = {pe, pe//∗}
SOP(pe/∗)lp/l = SOP(pe/l)lp/l = SOP(pe)lp

SOP(pe//∗)lp/l = SOP(pe//l)lp/l

= SOP(pe)lp ∪ SOP(pe//∗)lp

Otherwise SOP(pe)lp = ∅.
Furthermore we define L(SOP(pe)lp) =

⋃
pei∈SOP(pe)lp

L(pei).

Lemma 7. L(SOP(pe)lp) = {lp′ | lp′/lp ∈ L(pe)}.

Example 4.

• SOP(a/ ∗ / ∗ /b)a/b = SOP(a/ ∗ /∗)a = {a/∗}

• SOP(a//∗/c)a/b/c = SOP(a//∗)a/b = SOP(a)a∪SOP(a//∗)a = {a, a//∗}

• SOP(∗//∗)a/b/c = SOP(∗)a/b∪SOP(∗//∗)a/b = ∅∪SOP(∗)a∪SOP(∗//∗)a =
∅ ∪ ∅ ∪ {∗, ∗//∗} = {∗, ∗//∗}

• SOP(a//b//d)b/c/d = {a, a//∗, a//b, a//b//∗}

Lemma 8. Let pe be a path expression and lp be a label path. SOP(pe)lp =
{pe′ | pe′ a prefix of pe and L(pe′/lp) ⊆ L(pe)} ∪ {pe′// ∗ | pe′ a prefix of pe
and L(pe′// ∗ /lp) ⊆ L(pe)}.

Lemma 9. Let pe be a path expression of length npe and lp be a label path.
SOP(pe)lp is uniquely defined, finite and is computable in O(n2

pe.(npe + nlp))-
time and O(log(npe + nlp))-space.

Proof. From Lemma 8 we know that we have to calculate the two sets: {pe′ | pe′

a prefix of pe and L(pe′/lp) ⊆ L(pe)} and {pe′// ∗ | pe′ a prefix of pe and
L(pe′// ∗ /lp) ⊆ L(pe)}. Hence SOP(pe)lp can be calculated in O(n4

pe)-time
[18], and in O(n2

pe)-space.

Lemma 10. Let pe be a path expression and lp1 and lp2 be two label paths.
L(SOP(pe)lp1

) ⊆ L(SOP(pe)lp2
) iff ∀pei ∈ SOP(pe)lp1

(L(pei/lp2) ⊆ L(pe)).

Proof. From Definition 8 and Lemma 7.

Theorem 4. Let pe be a path expression and lp1 and lp2 be two label paths.
It is decidable in O(n2

pe.(npe + nlp))-time and in O(npe + log(npe + nlp))-space
whether L(SOP(pe)lp1

) = L(SOP(pe)lp2
).

Proof. From Lemmas 9 and 10.
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5.2 PQRN - Potential Query Result Nodes

The main concept that is introduced in this subsection is the set of Potential
Query Result Nodes (PQRN) for a query Q in a schedule S. This set will
contain all nodes n, that are added or deleted in S, and for which there exists a
document tree T , such that n is in the result of the query Q when S is applied
to T . 6. For this puprose, we need to introduce some additional notations to
characterize the trees on which a query Q in a schedule S will be executed. We
will use these notations later on, and we also give some complexity results for
calculating the value of these concepts.

Let S be a consistent schedule that contains the query Q = query(n, pe).

• We denote by SQ the actions of S that occur before Q; SQ is called a
subschedule of S;

• Let T be a basic input tree of S. We define T Q = SQ[T ] as the dt on
which Q in S is evaluated; hence the result of the application of the query
Q in S is Q[T Q];

• We denote by Emin(SQ) as the set that contains exactly those edges
that are required in T Q; This set is equal to (Emin

I (S) − DEL(SQ)) ∪
ADD(SQ) (Lemma 3);

• We denote by Emax(SQ) as the set that contains exactly those edges that
are allowed in T Q; This set is equal to (Emax

I (S)−DEL(SQ))∪ADD(SQ)
(Lemma 3).

Emin(SQ) is a forest (Property 1). As such every node m of Emin(SQ) has a
unique ancestor without a parent in Emin(SQ); it is denoted by ARoot(SQ, m).
The label of the path from ARoot(SQ, m) to m in Emin(SQ) is denoted by
ALabel(SQ, m).

Lemma 11. Alabel(SQ, m) and ARoot(SQ, m) can be computed in O(n2
S)-time

and O(nS)-space.

Proof. A consequence of Lemma 1.

If add(m, l, n) or del(m, l, n) are operations of S we say that n is a non-
building-node of S. Otherwise n is called a building-node of S. Note that
Emax(SQ) = Emin(SQ) ∪ {edges that contain only building nodes} since
Emin(SQ) = (Emin

I (S) − DEL(SQ)) ∪ ADD(SQ),
Emax(SQ) = (Emax

I (S) − DEL(SQ)) ∪ ADD(SQ) and
Emax

I (S) = Emin
I (S) ∪ {edges that contain only building nodes}.

We will now define the set of nodes PQRN(S, Q). This set will contain all
non-building-nodes that can be in the result of a query that starts with a node
n that is not in Emin(SQ). After the formal definition we will show that this
definition corresponds to this informal description. Finally we will show that
this set is computable in polynomial time and space.

6This notion is only defined for a subset of queries, which will be specified later on.
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Definition 9. Let S be a consistent schedule that contains a query Q = query(n, pe).
We define the set PQRN(S, Q) as:

PQRN(S, Q) = {m|

• m a node in the graph Emin(SQ);

• m a non-building-node;

• ARoot(SQ, m) a building-node;

• ARoot(SQ, m) 6= n;

• L(SOP(pe)ALabel(SQ,m)) 6= ∅

}.

Lemma 12. Let S be a consistent schedule, Q = query(n, pe) a query that ap-
pears in S, and n a node that is not in the graph Emin(SQ). Then PQRN(S, Q)
is the set of non-building-nodes m, such that there exists a basic input tree T of
S for which m is in the result of the query Q on the document tree SQ[T ].

Lemma 13. PQRN(S, Q) can be computed in O(n5
S)-time and O(nS)-space.

Proof. From Theorem 4 and Lemma 11.

5.3 Decidability of Equivalence

We will now establish the main result of this paper by proving that the equiva-
lence of two schedules is decidable in our framework.

Lemma 14. Given two consistent schedules S1 and S2 over the same set of
transactions and whose QL schedules are equivalent. Let Q = query(n, pe) be
a query in these schedules and let na be the total number of actions in S1 and
S2. It is decidable in O(n6

S)-time and O(nS)-space whether Q gives the same
answer in S1 as in S2 for every possible basic input tree of S1 and S2.

Proof. The next condition CND(S1, S2, Q) detects when Q gives the same an-
swer in S1 as in S2 for every possible basic input tree of S1 and S2 :
Definition of CND(S1, S2, Q)

1. {m | there is a path of L(pe) from n to m in Emin(SQ
1 )} = {m | there

is a path of L(pe) from n to m in Emin(SQ
2 )}; this can be done in O(n3

S)
time; this is a consequence of a result in [18]

2. furthermore, if n is a building-node of Si:

(a) PQRN(S1, Q) = PQRN(S2, Q)

(b) for the nodes m ∈ PQRN(S1, Q) hold that

i. ARoot(SQ
1 , m) = ARoot(SQ

2 , m)

ii. L(SOP(pe)ALabel(SQ
1

,m)) = L(SOP(pe)ALabel(SQ
2

,m))
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All this can be computed in O(n6
S)-time and in O(nS)-space.

The definition of the CND condition is illustrated in the following example.

Example 5. In Example 3 we have

• Emin(SQ
1 ) = {(n1, l3, n2), (n2, l2, n3)} and Emin(SQ

2 ) = {(n1, l3, n2)}; 1.
is fulfilled; n1 is a building-node; n2 and n3 are non-building-nodes; PQRN(S1, Q) =
PQRN(S2, Q) = ∅; hence CND(S1, S2, Q) is fulfilled and Q gives the same
answer in S1 as in S2 for every possible basic input tree of S1 and S2.

• Emin(SQ
3 ) = {(n2, l2, n3)} and Emin(SQ

4 ) = ∅; 1. is fulfilled; n2 is a
building-node; n3 is a non-building-node; PQRN(S3, Q) = {n3} and PQRN(S4, Q) =
∅; hence 2.(a) is not fulfilled and Q does not give the same answer in S3

as in S4 for every possible basic input tree of S3 and S4.

• Emin(SQ
5 ) = {(n1, l1, n2), (n2, l2, n3)} and Emin(SQ

6 ) = {(n1, l1, n2)}; hence
S5 and S6 are not equivalent, since 1. is not fulfilled and Q does not give
the same answer in S5 as in S6 for every possible basic input tree of S5

and S6.

Theorem 5. Given two consistent schedules S1 and S2 over the same set of
transactions and whose QL schedules are equivalent. It is decidable in O(n6

S)-
time and O(nS)-space whether they are equivalent.

Proof. Consequence of Lemma 14.

Finally, we can now combine the previous theorems to show that serializ-
ability is decidable in our framework.

Theorem 6. Given a consistent schedule S. It is decidable in O(nnt

t .n6
S)-time

and O(n2
S)-space whether S is serializable.

Proof. From Theorem 3 and Theorem 5.

6 Conclusion and Future Work

In this paper we have presented a concurrency control mechanism for semistruc-
tured databases. This mechanism is document-independent in the sense that
two schedules of semistructured transactions are equivalent iff they are equiva-
lent on all possible documents. This notion of equivalence is a special form of
view equivalence. The transactions that we consider, consist of simple updates
(inserting and deleting edges at the bottom of a tree) and queries (simple path
expressions containing child and descendant steps). We have shown that equiv-
alence of schedules can be decided efficiently (i.e., in polynomial time in the size
of the schedule), and that the serializability can be decided in time polynomial
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in the size of the schedule and exponential in the number of transactions. Im-
proving this complexity result is expected to be difficult, since it is generally
known that deciding view serializability is NP -complete [21].

In future work, we will extend the results of this paper by defining the
behaviour of currently undefined actions, and hence allowing more schedules to
be serialized. For example, the addition of an edge which is already in the input
tree is undefined in our current work, and hence the operation fails. However,
we could also say that as a result of this addition, we obtain an output tree
which is equal to the input tree, and a message which indicates that the edge
was already present. In this approach the result of a schedule applied on a
document tree would be an annotated version of the schedule and an output
document tree. A schedule would then be serializable iff there exists a serial
schedule with the same operations, which has, for each document, the same
output document tree and the same message for each operation.
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