COMPRESSIVE. TENSILE AND THERMAL PROPERTIES OF EPOXY GROUTS SUBJECTED TO UNDERWATER CONDITIONING AT ELEVATED TEMPERATURE

M. Shamsuddoha

Centre of Excellence in Engineered Fibre Composites (CEEFC), Faculty of Health, Engineering and Sciences, University of Southern Oueensland. Toowoomba, Queensland 4350, Australia. Md.Shamsuddoha@usq.edu.au

M.M. Islam*

Centre of Excellence in Engineered Fibre Composites (CEEFC), Faculty of Health, Engineering and Sciences, University of Southern Queensland, Toowoomba, Queensland 4350, Australia. Mainul Islam@usq.edu.au (Corresponding Author)

T. Aravinthan

Centre of Excellence in Engineered Fibre Composites (CEEFC), Faculty of Health, Engineering and Sciences, University of Southern Oueensland. Toowoomba, Queensland 4350, Australia. Thiru. Aravinthan@usq.edu.au

A. Manalo

Centre of Excellence in Engineered Fibre Composites (CEEFC), Faculty of Health, Engineering and Sciences, University of Southern Queensland. Toowoomba, Queensland 4350, Australia, allan, manalo@usq.edu.au

L.P. Djukic

Advanced Composite Structures Australia Pty Ltd (ACS-A), & Cooperative Research Centre for Advanced Composite Structures (CRC-ACS), 1/320 Lorimer Street, Port Melbourne, Victoria 3207, Australia. 1.djukic@crc-acs.com.au

ABSTRACT

Oil and gas pipes are susceptible to failure initiated by corrosion due to their operating pressure under adverse atmospheric conditions. Repairs, comprising a composite shell assembled around the pipe with a small gap, which is then infilled with grout, are considered a suitable option for corroded pipelines. This paper presents the investigation on the mechanical (compression, tension) properties and glass transition temperatures of two infill grouts, after 1000 hour of hot/wet conditioning. An extended investigation on the moisture absorption behaviour was also carried out, revealing the highest absorption to be about 6% after 2520 hours of immersion. The glass transition temperatures of grouts are reduced by approximately 20°C. The results suggest that the grouts underwent are reduced by approximately 20°C. The results suggest that the global sufficient reduction of strength and stiffness due to hot/wet conditioning when tested at an elevated at the result of the reduction of strength and stiffness due to hot/wet conditioning when tested it in the perature, compared to room temperature. This reduced strength and stiffness is the result of the being tested in close proximity to their glass transition temperatures.

KEYWORDS

repair, infill, hot/wet conditioning, properties.

INTRODUCTION.

Oil and gas pipes are susceptible to corrosion due to harsh atmospheric conditions. Fibre-reinforced polymer composites have been recognised as suitable materials for repairing tubular metallic pipes (Shamsuddoha et al. 2013a), and providing infill to the composite repair is considered a suitable option for pipeline with metal loss (Palmer-Jones et al. 2011). In such a repair system, the properties of an infill are critical for its overall performance. The structural grouts derived from epoxy thermoset resins, hardeners and fillers serve as a protective layer and effectively transfer load in a repair system, Elevated temperatures found to affect the physical properties of epoxy polymers (Carbas et al. 2013). The effect of hot/wet conditioning on infill epoxy grout for composite repair of a pipeline should be

In this paper, two commercially available grouts were selected for mechanical and thermal property characterisation. These properties were determined for as-manufactured grouts specimens tested at 23°C in a previous study (Shamsuddoha et al. 2013b). The work was extended to observe the effect of hot/wet conditioning on the mechanical and thermal properties of grout materials that can be used in grouted repairs, resembling elevated temperature in underwater conditions. The compressive, tensile, and thermal properties of these grouts were determined. The results of the study also provide justification of serviceability criteria according to ISO/TS 24817 (2006), which is a standard used for qualification of polymer matrix composite repair materials.

METHODOLOGY

Materials and Preparation

Two epoxy grouts with different compositions of neat resin, hardener and aggregate were selected based on their mechanical and thermal properties at ambient temperature as presented in Shamsuddoha et al. (2013b). Table 1 shows the proportions of various ingredients of the grouts. The first grout had two parts: high viscosity resin with fine filler particles already included, and low viscosity hardener, whereas the second grout was a modification of the first grout, with added coarse filler. Due to confidentiality, the grouts were investigated in this article are named as grouts C and E. For ease of comparison, these names are kept similar to the previous study (Shamsuddoha et al. 2013b).

Table 1. Composition of the grouts

	Table 1. Composition of the	e grouts	ngredients (% Weight)
2525	Components	Part A ³	Hardener	Aggregate filler
ID		90.48	9.52	50.00
C	Resin with fine filler ¹ and Hardener	45.24	4.76	and fine filler
E	Resin with fine filler ¹ , Hardener and Coarse filler ³ Resin with fine filler ¹ , Hardener and Coarse filler ³	and/or F	epoxy resin a	and the ra
	Resin with fine filler ¹ , Hardener and Coarse filler ³ Resin with fine filler ¹ , Hardener and Coarse filler ³ 10.05 – 300.0 µm, ² 45 µm – 2.36 mm, ³ Bisphenol A	u cresse	, in or	Freshly mixed grouts

A hand held electric drill mixer was used to mix the batch in a plastic container. Freshly mixed grouts were poured into moulds at 23°C. The specimens were cut and polished to the required dimensions.

Table 2 shows details of the approximate the required dimensions. Table 2 shows details of the specimen size. The specimens were removed from the moulds after 24 hours and cured in a controlled anxious at 23 C. hours and cured in a controlled environment at 23°C for 7 days prior to hot-wet conditioning.

1000 hours of hot/wet conditioning was selected to conform to long-term durability test criteral suggested by ISO/TS 24817 (2006). ASTM E1640 provides suggested by ISO/TS 24817 (2006). ASTM E1640 provides a number of methods to determine glass transition temperature. According to ISO/TS 24817 transition temperature. According to ISO/TS 24817, the service temperature of a repair component for non-leaking (Type A) and leaking pipes (Type B) should not a service temperature of a repair component for non-leaking (Type A) and leaking pipes (Type B) should not a service temperature of a repair component for non-leaking (Type A) and leaking pipes (Type B) should not no service temperature of a repair component for non-leaking (Type A) and leaking pipes (Type B) should not no service temperature of a repair component for non-leaking (Type A) and leaking pipes (Type B) should not non-leaking (Type A) and leaking pipes (Type B) should not no service temperature of a repair component for non-leaking (Type A) and leaking pipes (Type B) should not non-leaking (Type A) and leaking pipes (Type B) should not non-leaking (T non-leaking (Type A) and leaking pipes (Type B) should not be 20°C and 30°C less respectively the glass transition temperature (T_a). An investigation and the glass transition temperature (T_g). An investigation on the thermal properties of these uncondinged grouts suggested T_g values of 53°C and 60°C. and T_g of 23°C at 1,000 for the grouts. grouts suggested T_g values of 53°C and 60°C, and T_t of 83°C and 90°C for the grouts respectively (Shamsuddoha et al. 2013b). It is to be noted that it respectively (Shamsuddoha et al. 2013b). It is to be noted that the mentioned article presents values as glass transition temperature. The T_o values are retrieved to the ground in that study values are glass transition temperature. values as glass transition temperature. The T_g values are retrieved from the grouts used in that study

reference. In this study, Tt is taken as the glass transition temperature ceiling for leaking and nonleaking conditions to determine whether this less conservative measure of the glass transition temperature is acceptable, in comparison to the conservative T_g measure prescribed in ASTM D1640. Therefore, 70°C is considered for hot-wet conditioning and 65°C is considered for mechanical testing, which is around the range of 20 – 30°C less than the T₁ of the unconditioned grouts.

Table 2. Summary of specimen and test details

Tests	Standards/Methods	N	Dimensions	Geometry	Loading rate
Compressive	ASTM C579 (2001)	5	25 x 25 mm	Cylinder	1.3 mm/min
Tensile	ASTM D638 (2010)	5	10 x 10 mm	Dog bone	1.0 mm/min
DMA	ASTM E1640 (2009)	3	60 x 12 x 5 mm	Prismatic	1°C/min

The compressive, tensile, and thermal properties of the grouts were determined after 1000 hours of hot/wet conditioning. Table 2 provides details of the tests. Relevant standards and practices are also shown in the table. All mechanical tests were carried out using a 100 kN MTS hydraulic testing machine, with the exception of the 50 mm diameter cylindrical compressive specimens, which were tested using a 2000 kN SANS servo-hydraulic compression testing machine. Figure 1 shows a typical test at elevated temperature. The specimens were preheated at 65°C inside a water-bath for at least 30 minutes prior to being placed into the temperature chamber.

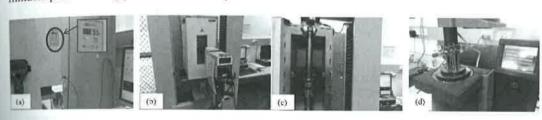


Figure 1. Testing of the grouts; (a) elevated temperature, (b) tensile, (c) compressive, and (d) DMA

RESULTS

The mechanical and thermal properties of the grouts are given in Table 3. The details of the results are discussed later in this section.

Compressive Properties

The strengths are found to be 93 MPa and 45 MPa for grouts C and E, respectively. Compressive moduli are found to be 0.42 GPa and 0.56 GPa for grouts C and E, respectively. From the plots, the yield strain of the specimens of grouts C and E are about 32% and 11% respectively. The compressive and moduli of these two epoxy grouts at room temperature without condition were found to and 106 MPa, and 5.6 and 11.0 GPa, respectively for the grouts C and E, respectively (Shamsuddoha et al. 2013b).

Figure 2 shows the typical compressive stress-strain curve and failure pattern of the tested specimens. shows the typical compressive stress-strain curve and range pattern of the compressive specimens of the grouts show an elastic behaviour followed by yield stresses. The strain behaviour of the compression specimens of the grouts shows that subsequent to yield, the drops. Under compression, grout C exhibits circumferential bulging after the initial elastic drops. Under compression, grout C exhibits circumferential buiging and the drops. The bulging continues until failure which is initiated by vertical cracks. The bulging starts the linear lateral expansion in grout E. For the bulging continues until failure which is initiated by vertical clacks. The bulging reduction in grout E. For the linear elastic zone of the stress-strain curve. There is minor lateral expansion in grout E. For the linear elastic zone of the stress-strain curve. mm grout C specimen, following yield and the accompanying reduction in stress, there is an accompanying reduction in stress. mm grout C specimen, following yield and the accompanying reduction in success, the specimental increase in stress, but not beyond the peak stress seen at yield. This is due to the meeting the failure wedges. the failure wedges causing prolonged strain. The cracks in the specimens of grout E are randomly with no visible to the control of the contro

Table 3. Summary of mechanical and thermal properties of grouts after hot/wet conditioning

3 Summary of	mechanical and thermal properties	C	E
e J. Dummey	Domostias	25 mm	25 mm
	Properties	93.10 (2.47)	45.23 (1.85)
	Compressive strength (MPa)	0.418 (0.030)	0.559 (0.024)
Compressive	Compressive modulus (Gra)	0.318 (0.004)	0.111 (0.004)
Comprossive	Strain at peak stress (IIIII)	12.22 (1.26)	1.29 (0.111)
	Tensile strength (MPa)	0.381 (0.075)	0.029 (0.004)
Tensile	Tensile modulus (GPa)	3.05 (0.71)	6.44 (0.62)
1 CHSHO	Strain at peak stress (%)	39	42
	Glass transition, T _g (°C)	67	69
Glass transition	Tan δ peak, T _t (°C)	- 07	
	- dard deviations.		

Values in the parenthesis are standard deviations.

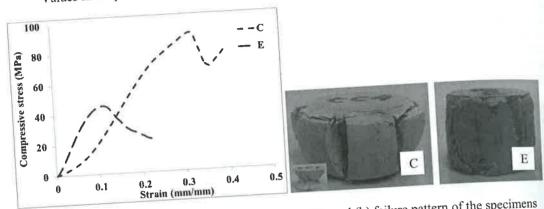


Figure 2. Typical compressive behavior; (a) stress-strain, and (b) failure pattern of the specimens

Tensile Properties

Table 3 provides a summary of the tensile strengths and elastic moduli of the investigated grouts. From the table it can be seen the highest tensile strength and stiffness of the investigated grouts for grout C are 12 MPa and 0.38 GPa, respectively. The lowest tensile strength and modulus for grout E are 1.29 MPa and 0.03 GPa, respectively. For a comparison, the tensile strengths and moduli at room temperature without conditioning were 32 and 19 MPa, and 4.9 and 16.5 GPa, respectively for the grouts C and E, respectively (Shamsuddoha et al. 2013b).

The comparison of the typical stress-strain behaviour for each type of grout is shown in Figure 3. Two distinct stress-strain relations are observed. Grout C exhibited a linear stress-strain relation and the highest strength. Grouts E transition to non-linear behaviour almost immediately upon loading, and exhibit very low yield strengths compared to grout C. The highest failure strain is observed in grout E. The formation of crack in grout C is sudden and a splitting sound is heard. Failures in grout E progress slowly compared to grout C and are not perfectly perpendicular to the length or straight along the thickness. The failure surfaces of grout C to the length of straight along the thickness. thickness. The failure surfaces of grout C have a smooth appearance. The failure surfaces of grout E specimens appear jarged and the coordinates of the coordinates of the coordinates appear jarged and the coordinates of th specimens appear jagged and the coarse aggregate fillers are visible.

Table 3 provides a summary of the glass transition temperatures of the grouts. The T_g and T_t are found to be 39°C and 42°C for grout C and 50°C and 60°C for to be 39°C and 42°C for grout C and 59°C and 69°C for grout E, respectively. The onset of a rapid decline in the storage modulus provides a lower place transition. decline in the storage modulus provides a lower glass transition temperature measure than the peak. Separate plots of the storage modulus and Ton S peak. Separate plots of the storage modulus and Tan δ vs. temperature are shown in Figure 4. The highest value of Tan δ peak was observed in group E with highest value of Tan δ peak was observed in grout E with a value of 69°C which is about 2°C higher than that of grout C.

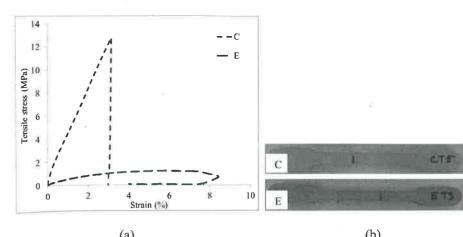


Figure 3. Typical tensile behavior; (a) stress-strain, and (b) failure pattern of the specimens

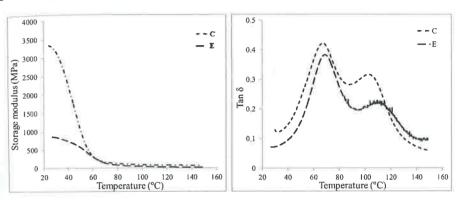


Figure 4. Thermal plots; (a) storage modulus vs temperature, and (b) Tan δ vs temperature

DISCUSSIONS

The comparison between the as-manufactured and hot/wet conditioned states suggests a considerable reduction of properties among the hot-wet conditioned specimens. The comparison is drawn by considering the mechanical and thermal properties for the grouts cured at 23°C for 7 days, and tested at foom temperature, in a previous publication (Shamsuddoha et al. 2013b), where tensile moduli were found to be 4.9 GPa and 16.5 GPa for grouts C and E, respectively. The dominant reduction occurs in the stiffness of the grouts. Tensile moduli of the hot-wet conditioned grout decrease by more than 90% compared to unconditioned grouts. The tensile strength of grouts is also reduced by more than 90%. The reduction in compressive strength is higher in the coarse aggregate filled grout E than that of the fine filled system. Hence, a coarse filled system is more susceptible to degradation under hot-wet conditioning. It can also be seen that debonding of aggregate and matrix is smooth, indicating that merface bonding between aggregate and matrix is weaker than the particle strength of the aggregate. Again, since the matrix itself splits, the resin matrix is weaker than the aggregate particle strength. This implies that hot-wet conditioning reduced the strength of the matrix-grout interface in each of the

The Trof the conditioned grouts C and E is found to be about 39°C and 42°C, respectively. In contrast, the conditioned grouts C and E is found to be about 39°C and 42°C, respectively. The investigation by the authors the thermal at 67°C, and 69°C, for grouts C and E, respectively. The investigation by the authors the thermal at 67°C, and 69°C, for grouts C and E, respectively. thermal properties of these grouts without conditioning suggested that the T_g of these grouts from 50 conditioning reduced the transition to 60°C (Shamsuddoha et al. 2013b), indicating that hot-wet conditioning reduced the transition temperatures. According to ISO/TS 24817 (2006), the service temperature of a repair transition temperatures. According to ISO/TS 24817 (2006), the service temperature of a reponent for non-leaking (Type A) and leaking (Type B) pipes should not be 20°C and 30°C less than the as manufactured glass transition temperature, respectively. It is evident that the conservative glass transition assignment approach used here, taking the onset of decline in the storage modulus, is a more appropriate approach than taking the peak of the Tan δ curve (T_i). Hence, for the purposes of pipeline repair and rehabilitation, it is wiser to consider the conservative approach for taking the onset of decline in the storage modulus for glass transition temperature.

CONCLUSIONS

Two grouts (C and E) were tested for mechanical and thermal properties. Grout E was added with additional filler to grout C. The grouts were hot-wet conditioned for 1000 hours at 70°C. Compressive, tensile, and glass transition properties were determined.

Aggregate filled grout experiences higher reduction in compressive properties than that of fine filled grout due to hot-wet conditioning. More than 90% of the compressive modulus is found to be reduced when tested elevated temperature after hot/wet conditioning, compared to the unconditioned specimens tested at room temperature. Tensile strength and stiffness decrease by more than 90% compared to the unconditioned specimens, except the strength of grout C which reduced by 62%.

The T_g values provide a conservative, however appropriate, measure of the glass transition temperature the investigated grouts. The large reduction of strength and stiffness is due in part to the tests being performed in close proximity to the glass transition temperatures. Hence, for the purposes of pipeline repair and rehabilitation, it is more appropriate to consider the conservative approach for taking the onset of decline in the storage modulus for glass transition temperature.

ACKNOWLEDGMENTS

This study was undertaken within P1.3 Deepwater Composites, part of the Cooperative Research Centre for Advanced Composite Structures (CRC- ACS) research program, established and supported under the Australian Government's Cooperative Research Centres Program.

REFERENCES

- ASTM C579 (2001). "Standard test method for compressive strength of chemical-resistant mortars, grouts, monolithic surfacings, and polymer concretes". West Conshohocken, PA, USA: American Society for Testing and Materials.
- ASTM D638 (2010). "Standard test method for tensile properties of plastics". West Conshohocken, PA, USA: American Society for Testing and Materials.
- ASTM E1640 (2009). "Standard test method for assinment of the glass transition temperature by dynamic mechanical analysis". West Conshohocken, PA, USA: American Society for Testing and Materials.
- Carbas, R.J.C., da Silva, L.F.M., Marques, E.A.S. & Lopes, A.M. (2013), "Effect of post-cure on the glass transition temperature and mechanical properties of epoxy adhesives", Journal of Adhesion Science and Technology, vol. 27, no. 23, pp. 2542-57.
- ISO 24817 (2006). "Petroleum, petrochemical and natural gas industries composite repairs of pipework qualification and design, installation, testing and inspection". London: International Organization for Standardization (ISO).
- Palmer-Jones, R., Paterson, G. & Nespeca, G.A. (2011), "The flexible grouted clamp-a novel approach to emergency pipeline repair", paper presented to Rio Pipeline Conference & Exposition, Rio de Janeiro Brazil 20-22 September 2011
- Shamsuddoha, M., Islam, M.M., Aravinthan, T., Manalo, A. & Lau, K.T. 2013a, "Effectiveness of using fibre-reinforced polymer composites for underwater steel pipeline repairs", Composite Structures, vol. 100, no. June, pp. 40-54.
- Shamsuddoha, M., Islam, M.M., Aravinthan, T., Manalo, A. & Lau, K.T. 2013b, "Characterisation mechanical and thermal properties of epoxy grouts for composite repair of steel pipelines Materials & Design, vol. 52, no. 0, pp. 315-27.