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Abstract

Recurring floods have devastating consequences on the East Rapti Watershed

(ERW), but effective mitigation/adaptation measures are lacking. This article

aims at establishing a rainfall-runoff (RR) relationship; estimating depth and

extent of inundation under climate change scenarios; assessing impacts on the

socio-economy; and identifying and evaluating adaptation strategies in the

ERW. Artificial Neural Network (ANN) was used to generate peak flows which

were then entered into a hydraulic model to simulate inundation. Results were

validated with field survey. The calibrated and validated RR and hydraulic

models were fed with projected future climate (2021–2050) derived from multi-

ple regional-climate-models to assess the changes in inundation. Results

showed the peak discharge likely exceeds 10,500 m3/s at the ERW outlet in the

extreme future flood scenario with corresponding inundation of 80 km2 and

up to a depth of 11 m sweeping away over 1000 houses and 19 km2 of agricul-

tural land in the critical areas. Constructing a 17 km long embankment in the

critical areas along the right bank of the East Rapti River could reduce the

flood spread by 35%, safeguarding 78% of the houses and saving 51% agricul-

tural land compared with the scenarios without the embankment.
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adaptation strategies, ANN, climate change, East Rapti Watershed, flood modelling,
HEC-RAS

1 | INTRODUCTION

Flood, a major natural disaster across the globe,
accounted for 44% of all disaster events during 2000–2019
worldwide (UNDRR, 2020). About 41% of the total flood
events during the period was observed in Asia alone
impacting 1.5 billion people. Climate change (CC) is

further exacerbating extreme events such as floods and
exposing more population and property at risk (Fahad &
Wang, 2019). Nepal ranks 30th in terms of vulnerability
to flood risk, the problem being more prominent in the
flat southern plains (UNDP, 2021).

Flood modelling and hazard mapping are well-
established methods for effectively assessing associated
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damages. Moreover, they provide evidence-based infor-
mation for decision-making on flood risk reduction and
devising adaptation strategies (Schwarz et al., 2018). One-
dimensional (1D) and/or two-dimensional (2D) models
are used to simulate flood propagation depending upon
the requirement, data availability and site conditions. 1D
models are generally used for longer simulation periods
in rivers where the flow is concentrated along the main
river whereas 2D models find their application in areas
where flow is likely to change direction and spread across
a large area (Hutanu et al., 2020). Additionally, if only
peak flow data is available, 1D steady flow modeling is
preferred while 2D unsteady modelling is performed if
continuous flood flow hydrographs are available as input
to the model (HEC-RAS, 2020). Some popular hydrody-
namic modelling software are HEC-RAS (Song et al.,
2019), MIKE 11 (Chowdhury et al., 2020), FLO-2D (Mitra
et al., 2021), LISFLOOD-FP (Rajib et al., 2020), etc.
Among the many available models, HEC-RAS developed
by U.S. Army Corps of Engineers has been widely used
for flood hazard studies due to its flow modelling capabil-
ity in 1D, 2D, and combined 1D-2D domain (Aryal et al.,
2020; Song et al., 2019). In Nepal, several flood studies
have applied 1D HEC-RAS in rivers such as Babai
(Bhattarai et al., 2019), Kankai (Khadka & Bhaukajee,
2018), Daraudi (Banstola & Sapkota, 2019) and West
Rapti (Devkota et al., 2020), to list a few.

Hydrodynamic models require flood hydrographs as
the basic input. Hydrological models are generally used
to generate these flood hydrographs at points of interest
along the stream. Physically based distributed and con-
ceptual models can predict the rainfall-runoff
(RR) process at the catchment scale fairly accurately.
However, they are not applicable to basins where detailed
data and parameters are unavailable (Lin et al., 2019). In
such cases, data driven models like Artificial Neural Net-
work (ANN) can be used to optimally model the RR pro-
cess in catchments even with insufficient input data.
Such models have been found to be handy where runoff
is the only output needed by developing empirical rela-
tions between the input (for example, precipitation and
temperature) and output (water level and discharge) vari-
ables without considering the physics behind the RR pro-
cess (Lin et al., 2019; Wu et al., 2021). Due to such an
ability, application of ANNs have increased over the
years for RR modeling (Wu et al., 2021).

Climate change is expected to impact the hydrology
by increasing the intensity of extreme precipitation
events, leading to higher risk of flooding (Tabari, 2020).
A study by MoFE (2019) projected increase in mean tem-
perature of Nepal by 0.9 to 1.1�C and 1.3 to 1.8�C in the
2030s and 2050s, respectively, as a result of
CC. Additionally, precipitation is projected to increase by

11% to 23% by 2100. Various studies have modeled RR
responses to CC (Hakala et al., 2018; Skoulikaris et al.,
2019). Outputs from Global Climate Models (GCMs) or
Regional Climate Models (RCMs) are corrected for biases
while projecting future climate of an area. Among the
various methods available for bias correction, Quantile
Mapping (QM) is considered as a relatively better tech-
nique for improving the performance of climate models
(Tegegne et al., 2017). Studies like Dhaubanjar
et al. (2019) and Marahatta et al. (2021) have applied this
technique in CC studies in different basins of Nepal.
However, climate projections are approximations which
vary considerably with location and physiographic
regions, thus, warranting careful interpretation of their
results.

Climate-induced flood risks can be minimized by
suitable adaptation strategies that are cost-effective and
environment-friendly. Adaptation options can be struc-
tural and nonstructural (Martinez et al., 2021). Struc-
tural adaptation measures include flood embankments,
culverts and improved drainage, among others;
embankments are the most popular (Ward et al., 2017).
Nonstructural measures like national adaptation plans,
awareness raising, hazard and vulnerability mapping
and zoning, community-based adaptation plans and
land use planning have been used in different studies
(Devkota et al., 2016; Devkota & Bhattarai, 2015;
Gonzalez et al., 2016; Martinez et al., 2021; Thapa-
Parajuli et al., 2018). In Bangladesh and Nepal, aware-
ness raising, early warning systems and community-
based flood management have been seen to be quite
successful (Dewan, 2015). Though there are various
potential adaptation strategies documented in litera-
ture, suitability to a particular area is largely governed
by its cost-effectiveness and preferences of the local
community (Nofal & Lindt, 2020).

Despite abundant recent studies on future hydro-
climatic projections due to CC (e.g., Bhattarai et al.,
2022; Dhaubanjar et al., 2019; Marahatta et al., 2021),
their impacts on flood inundation at the watershed
scale are still limited in Nepal. Consequently, very few
studies (Dewan, 2015) have quantified the flood
impacts on the socio-economic sectors. Studies testing
and recommending both structural and nonstructural
flood adaptation strategies are scarce in Nepal. Fur-
thermore, sparse meteorological stations pose an addi-
tional challenge in flood modelling. Majority of the
past flood studies have used conventional hydrological
models (e.g., HEC-HMS, SWAT, etc.) to simulate the
RR process in ungauged river basins of Nepal despite
difficulties in validation because of lack of sufficient
observed data. However, recent global trend of RR
modeling is the application of data-driven techniques
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such as ANN as a convenient alternate compared to
the conventional approach (Meresa, 2019; Saez et al.,
2018). Thus, this study tries to fill this research gap in
Nepal by utilizing data-driven technique for RR model-
ing of ungauged/sparsely gauged watershed under
changing climate, assessing socio-economic impacts of
inundation, and proposing both structural and non-
structural measures for the flood-impacted communi-
ties. Therefore, the overarching objective of this study
is to assess the impact of CC on inundation and its
implication on the socio-economy of one of the data
scarce watersheds—East Rapti Watershed (ERW)—
located in south-central Nepal. This study aims to
answer the following research questions: (i) What will
be the extent and depth of inundation in ERW under
current and future climatic scenarios? (ii) What are the
potential impacts of inundation on the socio-economic
system of ERW?, and (iii) What are the possible adapta-
tion strategies to minimize such impacts? The results
will definitely be beneficial to the ERW in particular
while the applied methodological framework consist-
ing of the ANN-hydrodynamic modeling will find its
applicability in other partly gauged flood-prone basins
of the region.

2 | MATERIALS AND METHODS

2.1 | Study watershed

The ERW has a drainage area of 3202 km2 (Figure 1a). In
a study of 25 river basins of Nepal, out of the 41 extreme
flood events that have occurred in those basins in
between 1991 and 2015, 40% were in ERW (ADPC, 2016).
ERW has reported 143 flood events that affected 3460
people and 139 died in these events during the same
period. Among these, the most devastating 10 events
reported during 1991–2015 caused damage of over one
million Nepalese Rupees (NRs.) in 2015 prices. These evi-
dences indicate that the ERW is a flood-prone basin
which requires appropriate flood management and adap-
tation strategies for risk minimization.

The elevation of the watershed varies from 136 to
2579 m above the mean sea level. Although the ERW lies
immediately below the Nepal Himalayas, it is not a snow-
fed watershed. There are seven meteorological and three
hydrological stations administered by the Department of
Hydrology and Meteorology (DHM), Government of Nepal
within the ERW. The average annual rainfall of the basin is
about 2008 mm. Similarly, the average maximum and

FIGURE 1 Location map of East Rapti Watershed (ERW) (top); land use/cover map of ERW (bottom) (ICIMOD, 2013). DHM:

Department of Hydrology and Meteorology
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minimum temperatures are 30�C and 17�C, respectively.
Out of the three gauging stations, Rajaiya (DHM Index
no. 460) is located in the uppermost part of the basin
(Figure 1a). The observed instantaneous maximum dis-
charge at this station is 1010 m3/s in the baseline period
(1979–2010). The most dominant land use/cover (LULC) of
ERW is forest (66%) while agricultural land covers about
28% of the catchment area (Figure 1b).

2.2 | Methodology

The methodological framework used in this study is
shown in Figure 2. The study started by developing a
rainfall-runoff (RR) model applying ANN to estimate
daily monsoon (June–September) discharge using precip-
itation and temperature as the input variables. The daily
discharge was converted into instantaneous maximum
discharge by using regression equation developed from
the plot of yearly 24-h maximum discharge versus yearly
instantaneous discharge available at Rajaiya for the base-
line period. The next step included flood modeling using
HEC-RAS to calculate the flood extent and depths along
the river for the baseline period followed by inundation
mapping. The study watershed was divided into four sec-
tions (Figure 3a). Then, future climate data was derived
from climate models and fed into the flood model consid-
ering five flood scenarios (Figure 3b) to assess the impact
of CC on the ERW.

Details of the data used in this study are shown in
Table 1. The historical hydro-meteorological data was

obtained from DHM. Future climate data was derived
from CORDEX-SA. The Land-use/cover (LULC) map
was obtained from ICIMOD (2013) and the SRTM 90 m
digital elevation model (DEM) was obtained from USGS.

2.2.1 | Rainfall-Runoff (RR) modelling

Unavailability of a gauging station at the basin outlet
made the application of conventional hydrological
models such as HEC-HMS and SWAT, among others, dif-
ficult. Hence, data driven ANN model was used to estab-
lish the RR process of the study basin. ANN model was
trained, tested and validated using daily rainfall and tem-
perature as input data and discharge as the output for the
monsoon period. The same model was used to estimate
the flows at downstream confluences of the East Rapti
River with the other smaller tributaries assuming a simi-
lar RR pattern throughout the study watershed.

Mathematical representation of the ANN is given in
Equation 1.

Q¼ f Rt,Rt�1,Rt�2,Tmax ,Tminð Þ ð1Þ

where Q, discharge; t, t � 1, t � 2 = day considered as t,
the day before t as t � 1, the day before t � 1 as t � 2. Rt,
Rt�1, Rt�2 = Weighted average rainfall (calculated using
Thiessen polygon method) from seven meteorological
stations at day t, t � 1, and t – 2, respectively.
Tmax = Average of maximum temperature of meteorolog-
ical stations 902 and 906 (Figure 1a for location).

FIGURE 2 Methodological

framework of the study. ANN:

Artificial Neural Network; GIS:

Geographical Information System;

HEC-RAS: Hydrologic Engineering

Centre-River Analysis System;

MLP: Multi-layer Perceptron; RCP:

Representative Concentration

Pathway
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Tmin = Average of minimum temperature of meteorologi-
cal stations 902 and 906 (Figure 1a for location).

Multi-Layer Perceptron (MLP) with feed forward back
propagation is a popular architecture in RR modelling for
simulating base flow, dynamic RR process and river flow
simulation (Dastjerdi et al., 2019). Among the many
available learning rules for the neutral network, delta
learning rule is faster and accurate in deep learning and
therefore has been used in many recent studies (Shaikh,
2020). To introduce nonlinearity into the output of a neu-
ral, variants of activation function can be used. In recent
literatures, Rectified Linear Unit (ReLU) are used as acti-
vation fuctions for a neuron in MLP (Hawamdeh &
Kuisi, 2021).

MLP usually consists of three layers: the input layers,
where data are introduced to the network; hidden layer,
where the data are processed (can be one or multiple)
and the output layer, where the results for given inputs
are produced (Saez et al., 2018). Selection of appropriate
number of hidden layers depends on the complexity of
both input and output parameters and has significant
role in the quality of learning. Previous studies have
shown that two hidden layers is sufficient to model com-
plex rainfall-runoff process (Saez et al., 2018). Therefore,
in this study, MLP architecture (Figure 4) with one input
layer, two hidden layers, and an output layer trained with
a back-propagation algorithm is used to predict the

FIGURE 3 (a) Watershed division and (b) description of flood conditions

TABLE 1 Description of the data used

S. No. Data Description Resolution Source

1. Rainfall Daily observed rainfall 7 stations (1979–2014; daily) DHM, Nepal

2. Discharge Daily observed streamflow 1 station (1979–2014; daily) DHM, Nepal

3. Max and min
temperature

Daily observed maximum and
minimum temperatures

2 stations (1979–2014; daily) DHM, Nepal

4. Land use Land use/cover map 30 m � 30 m grids (for 2010) ICIMOD (2013)

5. Future rainfall and
temperature

Daily projected values in grids variable (1979–2014; daily) 9 RCMs from CORDEX-SA

6. DEM Digital elevation model 90 m � 90 m grids USGS (earthexplorer.usgs.gov)
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discharge. The hidden layers were trained using delta
learning rule and ReLU as transfer function in python.

The ANN model was trained using monsoon data
(June to September; calibration from 2004 to 2009) at
daily resolution and then validated for the monsoon sea-
son of 2010 to 2013. Six indicators, namely, Nash-Sutcliffe
Efficiency (NSE), coefficient of determination (R2), index
of agreement (d), standard deviation ratio (RSR), percent
error in peak flow (PEPF), and percent bias (PBIAS) have
been used to access the performance of the ANN model
which is shown in Table 2 (Moriasi et al., 2007). The cali-
brated ANN model was used to generate daily discharges

at the points of interest along the river reach for flood
modelling.

2.2.2 | Flood frequency analysis

A regression analysis between the 24-h mean discharge
and the yearly instantaneous maximum discharge avail-
able at Rajaiya for the baseline period (1979–2010) was
carried out. The same equation was used to estimate the
instantaneous maximum discharge for the future period
(2021–2050) assuming that flood characteristics of the
basin remains constant in the future too. Furthermore,
flood frequency analysis was performed assuming Gum-
bel distribution to determine the flood magnitudes of
2, 5, 10, 25, 50, and 100 years return periods.

2.2.3 | Hydraulic modelling

One dimensional steady flow simulation was performed
to calculate the surface profile under a mixed flow regime
in HEC-RAS (HEC-RAS, 2020) and flood extent maps
were prepared using HEC-GeoRAS. During model cali-
bration in HEC-RAS, the values of Manning's n (0.05,

FIGURE 4 Structure of multilayer feed forward network of the

ANN used in this study (adapted from Saez et al., 2018)

TABLE 2 Performance ratings adopted for the ANN model in this

Indicators Equation

Performance rating*

Very good Good Satisfactory Unsatisfactory

Nash-Sutcliffe efficiency (NSE) Pn

i¼1

Oi�Oð Þ2�P
n

i¼1

Oi�Sið Þ2

Pn

i¼1

Oi�Oð Þ2
0.75–1 0.65–0.75 0.50–0.65 <0.50

Coefficient of determination (R2) Pn

i¼1

Oi�Oð Þ� Si�Sð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1

Oi�Oð Þ2�P
n

i¼1

Si�Sð Þ2
r

2

6
6
4

3

7
7
5

2 0.75–1 0.65–0.75 0.50–0.65 <0.50

Index of agreement (d)

1�
Pn

i¼1

Oi�Sið Þ2

Pn

i¼1

Si�Sj jþ Oi�Oj jð Þ2
0.90–1 0.75–0.90 0.50–0.75 <0.5

Standard deviation ratio (RSR)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1

Oi�Sið Þ2
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1

Oi�Oð Þ2
r

0.00–0.50 0.50–0.60 0.60–0.70 >0.70

Percent error in peak flow (PEPF) Q0 peakð Þ�Qs peakð Þ
Qs peakð Þ

�
�
�

�
�
��100% <15 15–30 30–40 >40

Percent bias (PBIAS) Pn

i¼1

Oi�Sið Þ
Pn

i¼1

Oið Þ

<±10 ±10 to ±15 ±15 to ±25 >±25

Note: *Performance rating criteria adopted from (Moriasi et al., 2007); Oi = observed discharge at the ith time; O = mean observed discharge of the total

simulation time period; Si = simulated discharge at the ith time; S = mean simulated discharge of the total simulation time period; n = number of timesteps in
the total simulation period; Q0 peakð Þ = observed peak during the total simulation period; Qs peakð Þ = simulated peak during the total simulation period;

V 0 = Total observed flood water volume; Vs = total simulated flood water volume.
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0.04, and 0.035 for left over bank, main channel and right
over bank, respectively) were assigned based on the rec-
ommendations of Gautam and Dulal (2013) for the study
basin. In most steady 1D flow computations, downstream
boundary condition is set as normal depth (i.e., uniform
depth) because it allows the user to provide an energy
slope and automatically calculate the depth using Man-
ning's equation (Banstola & Sapkota, 2019; Bhattarai
et al., 2019). Thus, downstream boundary condition was
provided as normal depth in this study. Generally, 5- and
100-year return period floods are considered as frequent
and rarer events, respectively in flood studies (Hawker
et al., 2020). In this study, simulation was carried out in
HEC-RAS for 5- and 100-year return period flood scenar-
ios in both the baseline and future periods for compari-
sion. As the ERW is only partly gauged and continuous
instantaneous maximum discharge for past years were
unavailable, recent available instantaneous maximum
flood discharge data of the 12th July, 2019 flood was con-
sidered for validation. Initially, an attempt was made to
validate the model by making pixel-to-pixel comparisons
of the flood maps with LANSAT 8 (250 m resolution,
scene ID = “LC81410412019195LGN00”, accessed date:
August 15, 2021) and MODIS (500 m resolution,
MOD13Q1, accessed date: August 14, 2021) satellite data
(Enea et al., 2018). But it could not be done because of
lack of error-free satellite data for this region for the
selected flood event. Also, Sentinel satellite imagery was
explored but no data were available for download for the
selected region and the flood event. Hence, a field survey
method of validation was adopted in which the inunda-
tion map as a result of the July 12, 2019 flood (i.e., 2350
m3/s) in the East Rapti River was generated by the model
and verified by visual inspection of the watermarks and
based on consultation with the local communities. A sim-
ilar validation approach has been used satisfactorily in
other parts of Nepal especially when observed data are
not available or very scarce (Devkota et al., 2020;
Sarchani et al., 2020). Field survey was conducted by vis-
iting accessible sites (outside of the national park area
which is under high security) during the COVID 19 lock-
down period in September 2020 by the study team led by
the first author.

2.2.4 | Future climate projection

Bias corrected nine RCMs using QM under two RCP sce-
narios (8.5 and 4.5) recommended by (Ray et al., 2022)
were used to project future climate for the study basin.
The projected data was input to the RR model to generate
future daily discharge which was used in the hydraulic
model simulation to generate inundation maps. Two

RCMs (out of the shortlisted nine) for which the flood
peaks of RCP8.5 were larger than RCP4.5, were selected.
From the prepared inundation maps, the flood value cor-
responding to the maximum flood extent was considered
as the extreme flood condition.

2.2.5 | Impacts of floods on socio-economy

To assess the potential flood impacts of CC in the future,
inundation depth was divided into four classes (low:
<1 m depth; medium: between 1 and 2 m; high: between
2 and 3 m; danger: >3 m) based on the severity. Usually
inundation of depth <1 m would be easy for adults to
wade through, and thus there would not be any life-
threatening damage potential. Flood depths of more than
1 m pose a significant risk to human life and property.
While, single-storied houses get inundated and could be
washed away (which is the case for most rural houses) if
flood depth exceeds 3 m. Therefore, it was found rational
to consider these classes of inundation depth for our
study. Similar values have been taken in several other
studies of Nepal and also recommended by the Rainfall-
Runoff manual of Australia (Ball et al., 2019; Bhattarai
et al., 2019).

Additionally, impact of floods on the livelihood of the
community was assessed by estimating the number of
households submerged, inundated land and agricultural
production of the study basin. These were derived for the
baseline and future from the inundation map of ERW in
the extreme flood conditions. Consequently, the direct
economic loss due to inundation of summer crops (June–
September) in the baseline and future periods were deter-
mined by multiplying the market rate of the crops per
hectare and total agricultural land inundated. Critical
areas were then marked based upon the maximum num-
ber of houses and largest agricultural land inundated in
the extreme flood condition. The economic loss in those
critical areas as a result of historical and future inunda-
tion scenarios were compared.

2.2.6 | Evaluation of adaptation strategies

To deal with the potential flood damages, various struc-
tural and nonstructural adaptation strategies were
reviewed (please refer to Section 1: Introduction). The most
commonly used structural measure for disaster risk reduc-
tion is embankment due to its cost-effectiveness in areas
with high population and asset concentrations (Ward et al.,
2017). Therefore, the effect of addition of embankments in
the critical areas on the right bank of the mainstream was
simulated for extreme flood condition in future using the

BHATTARAI ET AL. 7 of 19
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HEC-RAS model. The total number of houses that can be
safeguarded, agricultural land reclaimed and the corre-
sponding economic value of the assets due to the construc-
tion of embankments in critical areas in the projected
future climatic conditions were determined. Flood forecast-
ing and warning, flood risk management, public participa-
tion, and other nonstructural approaches are frequently
employed to mitigate flood risk across the world (Gonzalez
et al., 2016; Martinez et al., 2021). Some viable nonstruc-
tural adaptation measures which might be suitable for the
study area are recommended at the end derived from litera-
ture review.

3 | RESULTS

3.1 | ANN model performance

Details of the ANN model calibration, simulation results
and model performance are shown in Table 3. The statis-
tical evaluation for calibration and validation phases
showed satisfactory performance of the model for all the
indicators (Table 2) as recommended by Moriasi et al.

(2007). It can be seen that Nash-Sutcliffe Efficiency
(NSE) ranges from 0.55 (0.7) to 0.75 (0.9) in calibration
(validation) phase. Similarly, the variation of coefficient
of determination (R2) in calibration (validation) is from
0.56 (0.74) to 0.79 (0.91). In addition, index of agreement
(d) in calibration (validation) ranges from 0.84 (0.93) to
0.92 (0.98). Similarly, standard deviation ratio (RSR) in
calibration (validation) varies from 0.5 (0.31) to 0.67
(0.55). Likewise, the range of percentage error in peak
flow (PEPF) in calibration (validation) is from �23.95%
(6.31%) to +25.47% (+29.79%). Correspondingly, percent-
age bias (PBIAS) in calibration (validation) phase ranges
from 0.36 (0.29) to 13.48 (8.15). Interestingly, the valida-
tion results were found to be better because of the good
correlation between rainfall and runoff than for calibra-
tion (Figure 5).

3.2 | Regression analysis of flood peaks

The regression equation derived from the plot of maxi-
mum of the yearly 24-h mean discharge versus instanta-
neous maximum discharge available at Rajaiya for the

TABLE 3 ANN R-R model performance evaluation

Phase Year Statistics* PEPF% R2 d NSE RSR PBIAS

Calibration June–September 2004 Value 3.3 0.56 0.84 0.55 0.67 5.83

Rating Very good Satisfactory Good Satisfactory Satisfactory Very good

June–September 2005 Value 10.61 0.63 0.88 0.62 0.61 2.22

Rating Very good Satisfactory Good Satisfactory Satisfactory Very good

June–September 2006 Value �17.61 0.72 0.92 0.71 0.54 3.67

Rating Good Good Very Good Good Satisfactory Very good

June–September 2007 Value �23.95 0.71 0.91 0.67 0.57 2.65

Rating Good Good Very good Good Good Very good

June–September 2008 Value 25.47 0.79 0.91 0.75 0.5 0.36

Rating Good Very good Very good Very good Very good Very good

June–September 2009 Value �22.73 0.63 0.88 0.60 0.63 13.48

Rating Good Satisfactory Good Satisfactory Satisfactory Good

Validation June–September 2010 Value 6.31 0.91 0.98 0.90 0.31 �8.15

Rating Very Good Very Good Very Good Very Good Very Good Very Good

June–September 2011 Value 29.79 0.74 0.93 0.70 0.55 �7.81

Rating Good Very Good Very Good Very Good Good Very Good

June–September 2012 Value 14.82 0.86 0.96 0.82 0.43 �4.99

Rating Very Good Very Good Very Good Very Good Very Good Very Good

June–September 2013 Value 13.64 0.79 0.94 0.79 0.46 �0.29

Rating Very Good Very Good Very Good Very Good Very Good Very Good

Note: *Performance criteria adapted from Moriasi et al. (2007).
Abbreviations- d: index of agreement; NSE: Nash-Sutcliffe efficiency; PBIAS: percentage bias; PEPF: percentage error in peak flow; R2: coefficient of

determination; RSR: standard deviation ratio.
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baseline period is shown in Figure 6. The logarithmic
regression equation with R2 of 0.88 shows a good predic-
tion capability. Thus, the same equation was used to pre-
dict the instantaneous maximum flow in the future
period as well.

3.3 | Validation of hydraulic model

During the field survey, high water marks of the July
12, 2019 flood event was observed and their depths were
measured at six locations, this flood being the most

FIGURE 5 ANN model performance at

Rajaiya hydrological station for monsoon flood

during calibration (a) 2004; (b) 2005; (c) 2006;

(d) 2007; (e) 2008; (f) 2009; and validation

(g) 2010; (h) 2011; (i) 2012; (j) 2013

y = 454.7ln(x) - 2063.2
R2 = 0.8816
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FIGURE 6 Yearly instantaneous maximum versus yearly

maximum 24-h mean discharge
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recent in the ERW. In addition, local people were con-
sulted for cross-verification of this information. The
observed and simulated water depths were compared
with the model simulated inundation map (Figure 7).
The problem of inundation is significant in the down-
stream part of the ERW where major portion of the Chit-
wan National Park is located. Due to high security in this
protected area and unavailability of access road in down-
stream part of the river, the observation points were lim-
ited to six locations. In the uppermost validation point
(Rajaiya gauging station), it is seen that the simulated
depth (4.39 m) and observed depth (4.3 m) are very close.
As flood spreads in the downstream sections, the differ-
ence between the observed and simulated flood depth
becomes significant with the maximum deviation of
0.24 m at Kumroj (immediate upstream location of river-
side Sauraha). Thus, a good agreement is seen between
the observed and simulated values at the considered loca-
tions indicating the model is well validated.

3.4 | Future climate and discharge

It can be seen from Table 4 that the future maximum
temperature for RCP4.5 (RCP8.5) is projected to increase

by 6.3% (7.5%) as compared with the baseline period.
Also, the future minimum monsoon temperature is pro-
jected to decrease by 0.6% in both RCP scenarios. Like-
wise, maximum monsoon rainfall is projected to increase
for RCP4.5 (RCP8.5) by 25.4% (29.7%). Two RCMs
(MPI_REMO and NOAA_RegCM4) show increase in
RCP8.5 flood peaks compared with the RCP4.5 case for
most of the return period floods. Generally, high emis-
sion scenarios lead to higher values of mean daily (and
corresponding instantaneous maximum) discharge and
therefore, MPI_REMO and NOAA_RegCM4 were
selected for hydraulic modelling. The peak discharge in
RCP8.5 is likely to double from the RCP4.5 value in the
case of RCMs MPI_REMO and increase by 60% for
NOAA_RegCM4 for a 100-year return period flood.

3.5 | Climate change impacts on
inundation

The change in inundation extents in the future due to CC
corresponding to the two selected RCMs with respect to
the baseline period for the considered five flood condi-
tions are summarized in Table 5. Flood condition I indi-
cates flood in East Rapti mainstream only while flood

FIGURE 7 Flood inundation map of East Rapti River due to July 12, 2019 flood for validating the hydraulic model
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condition V indicates simultaneous floods in the main-
stream as well as all its tributaries. It is evident that a
5-years (100-years) return period flood is expected to
cause a decrease (decrease) in the inundation extent by
1% (1%) for flood condition IV of NOAA_RegCM4 under
RCP4.5 and increase by 17% (13%) for flood condition V
of MPI_REMO under RCP8.5. The maximum inundation
extent (79.85 km2) is expected to occur in the future for a
100-years flood, RCP8.5, flood condition V of MPI_R-
EMO. Considering the 100-years flood in RCP8.5 for con-
dition V of MPI_REMO, the inundation extent is
expected to increase by 17% for the “high” inundation
level (depth <3 m) and by 3% for the “danger” inunda-
tion level (depth >3 m) compared with the baseline
period (Table 6). Additionally, Figure 8a shows that inun-
dation level for the “>3 m” depth class is mostly confined
within the channel boundary in the upstream
section and spreads towards the banks in the down-
stream section. From the inundation map prepared for
baseline and future extreme flood conditions, the total
number of inundated houses were estimated to be
679 and 1173 and agricultural land covering 29 and
34 km2, respectively, with the maximum inundation
depth of over 11 m in the river channel.

3.6 | Socio-economic implications of
inundation

Based on the number of inundated houses and the extent
of agricultural land, four impacted areas were marked and
classified as uppermost, upper, lower and lowermost criti-
cal areas. In the baseline and future periods, 677 and 1073
houses while 17 and 13 km2 of agricultural land respec-
tively fall under critical areas. Considering the average
number of people per household to be 4.5 (CBS, 2016), total
number people affected by inundation in the baseline and
future periods are respectively 3056 and 5278. Similarly, if
the economic gain from agricultural land is considered as
NRs. 55,000/ha (MoALD, 2014), direct economic loss of
NRs.145 million and NRs. 170 million can be expected,
respectively, under extreme flood conditions. This is a huge
loss for a developing country like Nepal.

3.7 | Evaluation of structural adaptation
strategies

To simulate how potential flood damage in the future
could be minimized, embankments were added to the
right bank of the East Rapti River in the hydraulic model
in critical areas where settlements are dense (Figure 8).
As the length and height of embankments varied in each
critical area, maximum and minimum heights ofT
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embankments were noted (Table 7). Thus, about 17 km
long embankment with maximum height ranging from
4 to 11 m were provided in different critical areas. The
hydraulic model was then run for the extreme flood con-
dition scenario. The flood inundation maps focused on
the critical areas are presented in Figure 8. Addition of
embankments resulted in reduction of flood extent with
increased flood depths as shown in Figure 9. The future
flood extent reduced by 35% because of the embankment.
To estimate the average cost of the embankment, average
of maximum heights of embankment, that is, 7 m (aver-
age of 4 and 11 m) in all critical areas were considered.
The average cost of an Reinforced Cement Concrete
(RCC) embankment is Nepalese Rupees (NRs1) 20,000
per cubic meter in the study basin (DOR, 2018). If a can-
tilever RCC embankment 17 km long having top width
0.5 m and base width 3.6 m (0.5 x average height of
embankment) is considered, then the total cost of con-
struction will be about NRs. 5 billion. The addition of
embankment can reclaim a total of 1579 ha land, which
is worth about NRs 9.3 billion (DOLMA, 2021). In addi-
tion, 832 houses with 3744 affected people and 6 km2 of
agricultural land equivalent to NRs. 33 million worth of
direct agricultural produce can be saved in the future
with the construction of embankments. Details of the
flood extent, numbers of houses and agricultural land
inundated in the baseline period and that can be saved
due to the construction of embankment in the critical
areas in the future are shown in Table 8.

Compared with the baseline, flood extent, number of
houses likely to be inundated and agricultural land are
expected to increase in the critical areas by 28% 58%, and
44%, respectively, in the future due to CC. If embankment is
constructed during the baseline period as well, significant
cultivable land and houses can be saved as in the future.

4 | DISCUSSION

In this study, the ANN model configuration is based on
five inputs (Rt, Rt�1, Rt�2, Tmax, Tmin) for a single output

(Q) which showed satisfactory results in calibration and
validation phases. Due to limited hydro-meteorological
data within the study area, variation in the input
(e.g., with the addition of humidity, wind, sunshine) were
not possible. However, the ANN model could be set for
multiple set of inputs to enhance the performance of the
model. Rajurkar et al. (2002) compared the ANN configu-
rations for three cases (single input, two inputs and three
inputs) and concluded that the performance capacity of
ANN model increases as the number of inputs increases.
Also, ANN model performance in this study shows that it
can be used in watershed with no gauging stations at the
outlet when the hydrological response does not change
much throughout the watershed. This is comparable to
the studies by Meresa (2019) and Kassem et al. (2020)
which revealed that ANN approach is suitable to predict
runoff in ungauged catchment with a reasonable accu-
racy. We have assumed that the value of peak discharge
at any day t is a function of the maximum rainfall for
consecutive 3 days (Rt, Rt�1, Rt�2) and temperature (Tmax

and Tmin) of the flood day t. As a result, high total mon-
soon rainfall and high average monsoon temperature for
any RCM may not always necessarily result in higher
peak discharge.

Validation of the hydraulic model in ungauged river
basins is quite challenging. When water level and/or dis-
charge gauging stations are available at the basin outlet
or confluence with another river downstream, direct vali-
dation of the model is done using the observed data.
However, in the case of ungauged or partly gauged
basins, the model is indirectly validated by either satellite
image or field survey. A recent study by Tamiru and
Dinka (2021) evaluated HEC-RAS model by comparing
inundation map generated in HEC-RAS and water body
delineated from remotely sensed LANDSAT 8 imagery in
lower Baro Akobo River basin in Ethiopia. Similarly, sev-
eral other studies evaluated flood inundation maps from
MODIS and ALOS satellite images in flood affected areas
in Myanmar and Pakistan (Amarnath & Rajah, 2016;
Khaing et al., 2019). In our case, while an attempt was
made to perform satellite image validation by comparing

TABLE 6 Change in inundation extent of different inundation depths for future period

Flood
condition RCP Time period

Return period
(years)

Flood extent in depth class (km2)

<1 m 1–2 m 2–3 m >3 m Total

Baseline 5 10.9 12.7 12.4 25.1 61.1

100 8.8 12.4 13.4 36.0 70.6

V 4.5 % Change in future
(MPI_REMO)

5 34.2 28.4 14.7 4.4 16.8

100 39.8 25.7 17.1 �2.8 11.3

8.5 5 33.5 28.5 15.3 5.5 17.2

100 35.8 22.2 17.1 3.0 13.1
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LANDSAT 8 and MODIS data with the model simulated
results, due to high cloud cover (above 80%) validation
was not possible. As a result, this study resorted to field-

based indirect validation. Similar postflood field
measurement-based validation have been previously
applied in poorly gauged river basins in Greece (Sarchani

FIGURE 8 Flood inundation map of East Rapti Watershed under extreme flood condition showing (a) all critical areas; (b) lowermost

critical area (C1); (c) lowermost critical area with embankment; (d) lower critical area (C2); (e) lower critical area with embankment; (f)

upper critical area (C3); (g) upper critical area with embankment; (h) uppermost critical area (C4); and (i) uppermost critical area with

embankment
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et al., 2020), and in Nepal (Devkota et al., 2020) with sat-
isfactory results.

Results of our study show that the future monsoon
climate is projected to be warmer and wetter due to
increased average monsoon temperature and rainfall. On
the other hand, the maximum monsoon rainfall is pro-
jected to decrease. Additionally, the frequency of occur-
rence of rainfall is expected to increase in the monsoon.
These can be attributed to the increase in number of
rainy days with rainfall of low intensity. Such results are
highly dependent on the choice of the RCMs and their
underlying uncertainties. Similar findings have been
reported by recent flood studies in Thuli Bheri (Aryal
et al., 2022), and Karnali basins of Nepal (Dhaubanjar
et al., 2019) underscoring the high uncertainties related

to the choice of climate data, hydrological model and the
time horizon of analysis.

The instantaneous maximum peak flood is projected
to increase in future resulting in increased flood extent in
different climate scenarios compared with the baseline.
Also, flood extent of low inundation depth decreases and
high depth increases as flood magnitude increases in the
future. Similar results are depicted in southern Italy
(Apollonio et al., 2020), South China (Li et al., 2019),
West Rapti (Devkota et al., 2020) and Karnali River
basins (Aryal et al., 2020) in western Nepal. Moreover,
we can infer from the results that plain areas with higher
flow velocity despite low flood depths can be severely
damaged due to possible scouring, bank cutting and
washing away of physical infrastructure and belongings.

TABLE 7 Description of

embankment provided
Critical zone

Embankment at right bank

Max. height (m) Min. height (m) Length (km)

Uppermost 4 1 4

Upper 8 2 5

Lower 11 4 4

Lowermost 5 2 4

FIGURE 9 Water surface elevation before and after addition of embankment in extreme flood condition at five typical cross-sections

(a) X1; (b) X2; (c) X3; (d) X4; and (e) X5. Refer to Figure 8 for the spatial locations of the cross-sections in the basin.
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Our results show that settlements at high elevation
(upper part of ERW) were not affected by floods as much
as the lower reach settlements. The narrow gorges
through which the river flows in the upstream area are
generally bounded by cliffs on the sides and the settle-
ments are usually located on highlands. As flood emerge
into low plains from these high elevations, they spread
out with abrupt gradient decrease resulting in altered
river courses and sweeping of settlements and agricul-
tural land in the floodplains. Because of this very reason,
most of the critical areas are in lower reach of ERW. This
study is confined to three aspects of socio-economic
impact of flooding: impacted population, number of
houses and agricultural land considering the direct eco-
nomic losses. However, there are various other impacted
sectors as well such as infrastructure, type of houses
(public and private), roads, electricity, among others that
could be areas of future research for the ERW as in the
study of River Benue of Nigeria by Abubakar
et al. (2020).

The effectiveness of addition of embankment on right
bank of the East Rapti River as a structural adaptation
measure was analyzed based upon the current data.
However, population growth, rate of urbanization,
change in agricultural practices, crop production rates
and their economic values, among many other socio-
economic and biophysical dimensions are highly
dynamic in nature which evolve continuously over time.
Assumption of constant landuse for the future is a limita-
tion of this study. Modelling all these aforementioned
aspects to analyze their impacts on the flood induced
damage either in silo or comprehensively could be future
research arenas.

Community Based Disaster Management Project
piloted by United Nations Development Program in dur-
ing 2006–2008 implementing nonstructural flood adapta-
tion measures in the Chitwan and Makwanpur districts
of ERW has been considered a successful project (UNDP,
2008). More recently, ERW was one of the core areas
where Flood Risk Management Project was implemented
by the Asian Development Bank (ADB, 2020). The pro-
ject recommended construction/improvement of flood
shelters be designed and implemented through
community-based consultation. Moreover, based on liter-
ature review (Devkota et al., 2016; Devkota et al., 2020;
Devkota & Bhattarai, 2015; Thapa-Parajuli et al., 2018)
nonstructural adaptation strategies such as communicat-
ing, community-based flood management planning tak-
ing care of affected people, exchanging help, and
coordinating with government, among others are pre-
dicted to be suitable for the ERW.

Overall, we can infer that the aggregation of a data-
driven models like ANN and hydrodynamic flood modelsT
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is conveniently applicable for flood studies with fair accu-
racy in data-scarce watersheds. Similar modelling
approach including analysis of output of various climate
models, modelling of structural adaptation measures, and
socio-economic analysis can be helpful for CC impact
assessments due to inundation in other ungauged water-
sheds of Nepal and other regions with similar RR
characteristics.

5 | CONCLUSION

This study carried out flood modeling in the ERW to
assess the socio-economic impacts under current and
future climate scenarios. Rainfall-runoff modelling was
done using ANN while the hydraulic modelling was per-
formed using HEC-RAS 1D. Further, suitable adaptation
strategies were identified and evaluated to minimize the
potential flood induced loss. Based on our findings, we
conclude the following:

• The mean monsoon temperature and rainfall of the
ERW were 10�C and 1263 mm, respectively, for the
baseline period. However, an increase of 0.4�C in the
temperature and 98 mm in the precipitation is pro-
jected in the future under RCP 8.5 based on MPI_R-
EMO data. Additionally, maximum rainfall is
projected to increase by 40.5% and the magnitude of a
100-year return period flood is expected to increase to
3134 m3/s with flood extent to 80 km2 and a maximum
inundation depth of over 11 m corresponding to the
RCP 8.5 scenario.

• The extreme flood in baseline (future) period is likely
to inundate a total of 712 (1173) houses with 3056
(5278) inhabitants and 29 km2 (34 km2) agricultural
land, among which 9 km2 (13 km2) and 679 (1073)
houses were seen to fall under critical areas. The eco-
nomic loss in baseline (future) period due to inunda-
tion of agricultural land in ERW and the critical areas
were estimated to be NRs 145 million (170 million)
and NRs 45 million (65 million), respectively.

• The use of embankments as structural adaptation mea-
sure on the right bank of critical zones of the East
Rapti River could be effective in saving 3744 people liv-
ing in the floodplain areas and NRs 33 million equiva-
lent of agricultural land in the future by decreasing the
flood extent by 35%. In addition, effectiveness of the
structural measures can be increased by implementing
community-based nonstructural adaptation measures.

This study assessed CC impacts using an ANN-RR
model and two forcing variables (rainfall and tempera-
ture), neglecting other near-surface atmospheric factors,

which might affect runoff generation. Evaluating impacts
of using multiple variables on the results could be an area
of future research. This study assesses inundation impact
on limited socio-economic sectors. Incorporating other
multidisciplinary dimensions may be an extension of this
study. Overall findings of this study suggest that a combi-
nation of data-driven hydrological and hydrodynamic
models can be a promising approach for flood impact
assessments under changing climate in data-scarce water-
sheds of Nepal and beyond.
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