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Two dimensional particle solution of the
extended Hamilton–Jacobi equation
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Abstract

In classical mechanics the Hamilton–Jacobi equation for a free par-
ticle has the property of reducing a perturbation of spatially uniform
solution into a point. In the late 1970s Sivashinsky proposed an ex-
tension of the equation so that it takes the form of the Kuramoto–
Sivashinsky equation under which a smooth soliton is formed instead
of the point. The soliton was proposed as a model for spatially ex-
tended elementary particle. However, this solution is unstable. De-
veloping Sivashinsky’s idea further, we propose a different extension
which ensures stability. We performed two dimensional computational
experiments demonstrating the soliton formation and stability.
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1 Introduction

Describing elementary particles as localised structures of continuous fields
is a challenging problem since the work of de-Broglie [1]. Sivashinsky [2,
3] noticed mathematical similarity between the relativistic Hamilton–Jacobi
(hj) equation for a free particle in classical mechanics,

(1/c2)S2
t = (∇S)2 +m2c2 , (1)

and the equation describing hydrodynamic instability of laminar flames [4],

(1/v2)H2
t = (∇H)2 + 1 . (2)

In the hj equation, (1), S = S(x, y, z, t) is the action function, c is the speed
of light andm is the mass of the particle. The gradient of S has the dimension
of momentum and time derivative of S has the dimension of energy. In the
flame front equation, (2), H = H(x, y, t) is the distance travelled by the front
along a tube as a function of the transversal coordinates x and y and time,
and v is the constant having the dimension of velocity.

Clearly equation (2) admits the solution describing a flat front moving
with the speed v:

H∗ = vt . (3)
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Consider weak perturbations h of (3), defined by H(x, y, t) = vt−h(x, y, t).
Characterized by small gradients they evolve according to

1− (1/v)ht =
√
1+ (∇h)2 ≈ 1+ (1/2)(∇h)2 ;

that is, approximately as

ht = −
v

2
(∇h)2 . (4)

Similarly, small perturbations s of the flat solution of (1),

S∗ = −mc2 t , (5)

obey the equation

st = −
1

2m
(∇s)2 (6)

referred to as the non-relativistic hj equation. The similarity of the equations
underpins similarity of solutions. Under (4) and (6) the perturbation shrinks
into a point that is an object with zero spatial extension.

Sivashinsky extended the flame equation (4) by including linear terms:

ht = −
1

2
(∇h)2 −∇2h−∇4h (7)

well known as the Kuramoto–Sivashinsky equation [4]. The balance be-
tween the source, −∇2h, and dissipation, −∇4h, bridged by the nonlin-
earity, −(1/2)(∇h)2, results in a smooth dissipative structure instead of a
point.

By analogy, Sivashinsky extended the hj equation (1) [2, 3] making sure
that Lorentz invariance is preserved so that the extended version is suitable
for the relativistic case:

1

c2
S2

t = (∇S)2 +m2c2 + αh̄2S+ β
h̄3

m2c2
22S , (8)
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where α and β are positive non-dimensional constants, 2 = ∇2 − (1/c2)∂2
t .

Equation (8) admits a smooth soliton-type solution, which could be used to
represent the particle ‘smeared’ in space over some characteristic distance ∆r.
The ratio of the amplitude of the soliton, ∆s, to the width, ∆r, would then
define the characteristic momentum of ‘self-vibrations’ of the particle. The
amplitude, ∆s, must satisfy the uncertainty principle, ∆s ∼ ∆p∆r ∼ h̄ ,
where h̄ is Plank’s constant.

However, such a soliton is unstable with respect to small perturbations.
Because of the linear nature of the source, long wave perturbations of the
platform on which the soliton rests are amplified and the whole structure is
destroyed. In an attempt to overcome instability we modified the equation (8)
further [5, 6]:

1

c2
S2

t = (∇S)2 +m2c2 −αh̄2S+β
h̄3

m2c2
22S− λ

h̄2

m2c2
(2S)2 −µ

h̄3

m4c4
(2S)3 .

(9)
Here λ and µ are positive non-dimensional constants. See that the sign in
front of αh̄2S is opposite to the respective sign in (8); this converts the term
from source into dissipation. The new quadratic nonlinear term is introduced
to restore the source. It is counterbalanced by the cubic nonlinearity.

For certain range of the coefficients and under the periodic boundary con-
ditions, we numerically obtained solutions in the form of train of solitons [5].
By stretching the period an isolated stationary soliton is obtained.

2 Has stability been achieved?

Sivashinsky brought to my attention [7] that this soliton is still unstable to
certain perturbations. Indeed, the linearised equation (9) has the form

2st − αsxx + αstt + βsxxxx + βstttt − 2βsttxx = 0 .
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Substituting s ∼ exp(ikx+ωt) leads to the dispersion relation

2ω+ αω2 + βω4 + 2βω2k2 = −αk2 − βk4 . (10)

Consider flat perturbations, k = 0 . Then (10) becomes

2ω+ αω2 + βω4 = 0 . (11)

Obviously (11) has a neutral root, ω = 0 , but also there is a pair of complex-
conjugate roots with real parts proportional to

−3β

(
−
1

β
+
1

3β

√
α3

3β
+ 9

)2/3

+ α .

It can be shown that this expression is always positive, which implies insta-
bility. The arguments [5] in favour of stability of the soliton generated by (9)
are only applicable to long wave perturbations with ω ≈ −(α/2)k2 which
is a root of (10). This root transforms into the neutral root ω = 0 of (11)
if the terms of order k2 and k4 in (10) are neglected and (11) is used as an
approximation of (10).

3 Stable model

To overcome instability we abandon the Lorentz invariance, thus restricting
attention to slow motions:

St = −
1

2m
(∇S)2 −mc2 + αh̄∇2S−

βh̄3

m3c2
∇4S

+
λh̄2

m3c2
(∇2S)2 +

µh̄3

m5c4
(∇2S)3 . (12)

While the Lorentz invariance is sacrificed in (12), Galilean invariance is pre-
served due to the Galilean invariance of the classical part of (12) and chosen
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form of the added terms. Indeed, suppose that S obeys the classical law (6),
then, in the moving coordinates t∗ = t , x∗ = x−Vt , y∗ = y (Galilean trans-
formation), the action S∗ = S − mVx∗ − 1

2
mV2t∗ obeys the same classical

law. The additional momentum, mV , and energy, 1
2
mV2, emerge because

of the moving coordinates. Likewise, when we postulate the extended hj
equation (12) for S, then the action S∗ obeys the same extended equation in
the moving system. Since the shift of S∗ relative to S is linear in x∗ and t∗,
the terms with the operators ∇2 and ∇4 do not destroy the invariance.

4 A simpler model

The linearised version of (12) is

2St = αSxx − βSxxxx . (13)

Observe that both the second and fourth derivatives represent dissipation
(this ensures stability of the plateau on which the soliton stands). However,
there is no apparent reason why the model needs both terms. Yet, in our
previous 1D numerical experiments, we never observed stationary solitons
when only one dissipative term is used, that is, when either α = 0 or β = 0 .

In this article we ask ourselves whether in the 2D case, which is arguably
more realistic than 1D case, one of the two dissipations can be spared? this
would make the model simpler. Numerical results presented in the next
section give a positive answer to this question. Thus, we remove the second
spatial derivative from the model (12). Performing the shift S = Ŝ −mc2t

and transforming to the non-dimensional quantities,

S1 = Ŝ/h̄ , t1 = tmc2/h̄ , x1 = xmc/h̄ , y1 = ymc/h̄ ,

we arrive at the non-dimensional equation (hereafter the subscript 1 is omit-
ted),

St = −
1

2
(∇S)2 − β∇4S+ λ(∇2S)2 + µ(∇2S)3 . (14)
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5 Numerical experiments

We solved equation (14) numerically in a square domain (x, y). The equation
was discretized in space using finite differences on a uniform grid with 60×60
grid points and step size 10/3. The system of odes was resolved in time using
the matlab solver dae2.m [8] under the boundary conditions of zero normal
derivatives on the edges of the domain. As the initial condition we seeded
a small peak in the centre of the domain. For convenience of computations
the time was rescaled, t → tτ , involving the non-dimensional coefficient τ.
This allowed us to transform the right-hand side of (14) to a form where the
coefficients at all terms were available for variation:

St = −(τ/2)(∇S)2 − βτ∇4S+ λτ(∇2S)2 + µτ(∇2S)3 .

A sufficiently small peak decays under the linear dissipation. However,
when large enough, the peak grows pumped up by the source ∼ (∇2S)2.
Gradually the growth halts under the stabilizing effect of the cubic term
∼ (∇2S)3 (see Figure 1) and a stationary soliton is formed. This scenario
realises for some range of the equation’s coefficients. We do not aim to
determine the range exactly at this stage; more important is that this range
exists.

Compare contributions of different terms into the balance. Figure 2 shows
that the peak is largely maintained by the balance between the nonlinear
source and nonlinear stabilizer. A small gap between them is compensated
by the quadratic term, ∼ −(∇S)2. Inside the peak area, the linear dissipation
is negligible compared to the nonlinear terms. In contrast, outside the peak
the dissipation dominates. This property ensures stability of the platform on
which the peak rests.

Outside the range of the coefficients leading to the stationary soliton,
we observed various nonstationary regimes. For example, for fixed βτ, λτ
and µτ but different τ we found that, for larger τ, the peak moves downward.
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Figure 1: The formation of the stationary soliton. t = 0.425 , 0.45, 1.5,
and 5. βτ = 10 , λτ = 0.3 , µτ = 25 , τ/2 = 0.3 .
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Figure 2: Contribution of different terms.

The platform follows the peak and assumes a convoluted shape. After some
transitional period the solution settles as a global structure moving down-
ward with constant velocity. Because of its unsteady character and global
extension, such a structure cannot represent the particle at rest.

6 Conclusions

We overcame instability in an extended Hamilton–Jacobi equation for a free
particle. Under the proposed extension (12), a stationary smooth soliton
is formed representing the particle. The soliton directly addresses the de
Broglie’s idea of an elementary particle as a result of a continuous nonlinear
field theory. Computational experiments demonstrating the formation of the
soliton and its stability are presented.
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