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Abstract: An understanding of the trend and relationship between rainfall patterns and water qual-
ity dynamics can provide valuable guidelines for the effective management of water resources. The
aim of this study was to reveal the synchronous trends in rainfall and water quality and to explore
the potential connection between seasonal variation in rainfall volume and the water quality index.
This study scrutinised the seasonal temporal trends of rainfall and water quality parameters of three
water supply reservoirs in the Toowoomba region of Australia by applying the modified Mann—
Kendall (MMK) test and innovative trend analysis (ITA) methods from data collected over 22 years
(2002-2022). The models showed a significant increasing trend of rainfall in two rainfall stations
during autumn season. The water quality parameters, such as POs+ %, exhibited a significant decreas-
ing trend in all seasons in three reservoirs. On the other hand, the water quality index (WQI) showed
a decreasing trend in the Cooby and Cressbrook reservoirs, excepting the Perseverance reservoir,
which exhibited an increasing trend. In addition to the detection of trends, this study investigated
the potential correlation between seasonal variation of rainfall volume and the water quality index
using the wavelet transform coherence (WTC) method. The data of twelve rainfall stations were
brought into this analysis. The WTC analysis displayed an apparent correlation between the water
quality index and rainfall pattern for 70% of the rainfall stations across 8-16 periods. The highest
coherency was noticed in 8-16 periods from 20022022, as observed at both the Cooby Creek rainfall
station and in the WQI of the Cooby reservoir. This evaluation revealed the intertwined dynamics
of rainfall patterns and water quality, providing a deeper understanding of their interdependence
and implications, which might be useful for environmental and hydrological management prac-
tices.

Keywords: rainfall; water quality; modified Mann-Kendall test; innovative trend analysis; wavelet
transform coherence

1. Introduction

Rainfall plays a crucial role in hydrological processes, and its spatial and temporal
distribution, along with evolving characteristics, can significantly affect agriculture, eco-
systems, and the management of water resources [1]. The understanding of monthly, sea-
sonal, and annual variability of rainfall and as well as the severity of extreme rainfall and
how it affects agriculture, ecosystem and water resources is crucial to ensure proper water
resource management practices [2]. Rainfall patterns have changed significantly over re-
cent years due to climate change leading to frequent flooding and drought. These events,
in turn, have disrupted the ecosystem of water bodies and impacted the water quality [3].
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With growing awareness about the escalating impact of climate change, it is important to
grasp the characteristics and variations of rainfall, as well as how these patterns shift
across various spatial and temporal scales. Previous studies [4,5] have reported that there
is global as well as regional scale change in rainfall patterns caused by global climate
change.

Inland waters, such as rivers, lakes, reservoirs, and streams, provide diverse ecosys-
tem services, from food sources to transportation channels and recreational sites. The de-
terioration of water quality due to the impact of extreme rainfall and rapid socio-economic
development poses a significant environmental concern for inland water bodies [6]. In-
creases in extreme hydrological events and circulating (air) temperature are the dominant
factors affecting water quality. Prolonged and heavy precipitation after drought periods
then causes runoff and erosion that together consequently increase the pollutant release
into surface water bodies [7]. Efforts to explore the efficacy of previous initiatives and the
primary factors influencing the quality of inland water must continue to be thoroughly
examined across different temporal and spatial dimensions. Among various nutrients pre-
sent in water bodies, Nitrogen (N) and phosphorus (P) are two crucial elements that may
disrupt the balance of aquatic ecosystems, thereby influencing diverse services such as
navigation, water sports, fisheries and, most importantly, drinking water supply [8].

Time series data analysis is crucial for understanding the dynamics of events, which
can play a key role in strategic infrastructure planning and early warning systems [9].
Hydroclimatic time series can display trends, whether upward or downward, and can
locate change points that may relate to climate change influences, like increasing green-
house gas levels, and alterations in land use and management practices [10-12]. To con-
sider adaptation and mitigation strategies to counteract the effects of climate change and
making informed decisions, it is essential to gain better understanding of trends and var-
iability of hydroclimatic variables [13]. Precipitation concentration index (PCI), seasonal-
ity index (SI) and coefficient variation (CV) were extensively applied to examine the vari-
ability of rainfall, temperature and streamflow and to analyse the spatial and temporal
distribution [14-16].

Over the past few years, there has been a growing need to periodically measure var-
ious water quality variables to monitor the status of surface water [17]. The steady collec-
tion of water quality records can provide a reliable synopsis of water quality status, iden-
tifying existing or potential water quality issues, understanding their causes, and evaluat-
ing the effectiveness of any implemented measures [17,18]. To date, numerous studies
[19,20] have been conducted to explore the influences impacting changes in water quality
such as pollution from agriculture, sewage discharge, socio-economic advancements, wa-
ter consumption, and forest and climate extremes. Among all other variables, climate ex-
tremes are expected to significantly influence future hydrological patterns, affecting vari-
ous sectors that depend on surface water. Delpla et al. [21] showed that the amount of
organic matter was likely to increase in streams that experienced an increased volume of
rainfall and alterations in drought-rewetting cycles. Consequently, Ponting et al. [22] dis-
covered that inorganic and organic matter were carried into rivers by flood water, whereas
Ockenden et al. [23] showed a positive trend and correlation between annual rainfall and
total phosphorus load. Moreover, Mortazavi-Naeini et al. [24] have demonstrated a posi-
tive relationship between extreme winter rainfall and suspended sediment concentration
and an elevated level of phosphorus during the low flow period. Additionally, Watts and
Anderson [25] observed that a reduction in summer flow is expected to decrease the dis-
solved oxygen level and conversely, high summer floods to enhance the concentration of
nutrients and pollutants in the river system. Nevertheless, despite the above studies offer-
ing basic theoretical frameworks and empirical illustrations of the source of water quality
change, there are still notable shortcomings. Because of inadequate data sources and di-
verse research objectives, the systematic formation of the correlation between water qual-
ity parameters and key driving factors has not yet been undertaken. This limitation
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hinders support for the prevention of water quality deterioration in areas facing signifi-
cant water quality issues [26,27].

In recent decades, various methods have been developed and used for analysing
trends in time series such as the Mann—Kendall (MK) test, seasonal Kendall methods, the
modified Mann-Kendall (MMK) test, linear regression analysis, Spearman’s rho (SR) test,
the Theil-Sen approach (TSA), Sen’s slope, innovative trend analysis (ITA) and the moving
trend method (MTM) [28-36]. The climate variability and its trends can be assessed
through parametric (t-test, F-test, linear regression) and non-parametric (Mann-Kendall
test, Sen’s slope estimator) methods. The application of parametric methods is constrained
to time series that follow a normal distribution. The climate time series, specifically pre-
cipitation, do not meet the normality requirement and thus the non-parametric method is
applied for trend analysis [37], which has been followed in this study. In the case of data
with outliers, non-parametric methods are deemed more robust than parametric methods
[38]. Although a traditional method, the Mann—-Kendall (MK) test, is the most widely uti-
lised approach, the use of this method is constrained by assumptions such as the serial
independence of time series data [39] and the inability to analyse trend behaviours across
different categories (low, medium and high) of time series [40,41]. The MMK test is an
enhancement of the traditional Mann-Kendall test, which offers a statistically rigorous
approach to trend the detection of data with autocorrelation [42]. ITA provides visual in-
spection and allows for the categorisation of trends and is suitable for comprehensive
trend analysis [40].

In Australia, the frequency and volume of rainfall are the primary constraining fac-
tors in water security levels [43]. There are limitations in the monitoring and reporting of
water quality in regional towns. Wyrwoll et al. [44] have reported that there is limited
water quality parameter testing and reporting in 24 local councils. The data and reports
are inconsistent and do not comply with the Australian Water Quality Guidelines. Fur-
thermore, Queensland government regulations do not require water utilities to furnish
thorough quantitative data analysis and reporting for each parameter [7]. Thus, there is a
necessity to gain a deep understanding of both the quantitative and qualitative aspects of
rainfall and water quality variations, offering a detailed understanding for water quality
management. Moreover, the study covering small scale catchments can minimise natural
and anthropogenic variability that may evade the impacts of averaging across larger areas
[45]. There is a lack of research on the observation of combined trends and correlation of
rainfall and water quality. Therefore, a multi method approach of trend and correlation
analysis can provide a holistic understanding of the shifts of hydrological and environ-
mental variables.

The aim of this study is to examine the trends of rainfall and water quality parameters
and to explore the correlation between the signals of precipitation and water quality pa-
rameters. This analysis was carried out for three water supply reservoirs (Cooby, Cress-
brook and Perseverance) in the Toowoomba region of Australia. In this study, two trend
analysis methods, namely the modified Mann-Kendall (MMK) test and innovative trend
analysis (ITA), were applied for rainfall and water quality trend analyses, respectively.
Previously, the water quality index (WQI) was calculated based on five water quality pa-
rameters—pH, turbidity, phosphate (PO+*), ammonia nitrogen (NHs-N) and total dis-
solved solids (TDS) [7]—which have been correlated in this study with rainfall patterns
through investigation using the wavelet transform coherence (WTC) method. The expla-
nation and reasons behind the selection of five parameters are elaborated on in our previ-
ous study [7]. In summary, the specific objectives are as follows:

e Toidentify the seasonal trend of rainfall and water quality parameters using a mod-
ified Mann—Kendall test (MMK) and innovative trend analysis (ITA), respectively,
and to show the spatial distribution of rainfall trend parameters.

e  To detect the temporal patterns and correlation between rainfall and water quality
index (WQI) using wavelet transform coherence (WTC) spanning a period of 22
years.
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2. Materials and Methods
2.1. Study Area

The Toowoomba region is situated in the Darling Downs, Queensland, Australia [46],
at an elevation ranging from 125 m to 740 m with an average of approximately 450 m
above mean sea level (MSL) [47]. The study area is located in part of the mountain chain
that forms the Great Dividing Range of eastern Australia [48]. The average annual rainfall
of this region is 735 mm, which peaks in the warm season [49]. The average annual tem-
perature is 19°, while the average summer temperature is 25 °C, and the average winter
temperature is 12 °C. Average temperatures across the region are currently 1 °C higher
than they were 100 years ago [50]. Three water supply reservoirs, namely Cooby (27.3825°
S, 151.9244° E), Cressbrook (27.2641° S, 152.1959° E) and Perseverance (27.2883° S,
152.1239° E), serve as the main source of water supply in this region. The water supply
capacity of the three reservoirs is 19.7 megalitres (ML), 78.8 megalitres (ML) and 26.9 meg-
alitres (ML), respectively, and the storage area is 306 ha, 517 ha and 250 ha, respectively.
The total catchment area of Cressbrook, including Perseverance reservoir, is 320 km? and
that of the Cooby catchment is 159 km? [51]. The catchments are situated in a warm/humid
climatic zone of subtropical Australia, featuring distinctly cool, dry winters and warmer,
wetter summers [7]. The topography of the catchments features gentle slopes at lower el-
evations and hills at higher elevations [48]. Twelve rainfall stations surrounding the three
dam reservoir catchments were considered in order to observe the trends of rainfall within
this region. The selected rainfall stations and water supply reservoirs are illustrated in
Figure 1.
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Figure 1. Study area map. The left map shows the area of rainfall stations, including the location of
Cooby, Cressbrook and Perseverance reservoirs. The right map is the map of Australia, in which the
blue highlighted area is the state of Queensland and the red marks indicate the approximate location
of reservoirs.

2.2. Data Collection and Compilation

The water quality data of three dam reservoirs were collected from the Toowoomba
Regional Council (TRC), which is responsible for the management of the dam reservoirs
and potable water supply in the Toowoomba region. Twenty-two years (2001-2022) of
weekly water quality data were collected from TRC. Five water quality parameters af-
fected by rainfall runoff, such as pH, turbidity, total dissolved solids (TDS), ammonia ni-
trogen (NHs-N) and phosphate (PO4*), were considered for computing the Water Quality
Index (WQI) [7]. In conjunction with the water quality data collection, daily rainfall data
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were collected over the same time span from the Bureau of Meteorology (BOM), Australia
(http://www.bom.gov.au/, accessed on 7 March 2024).

There are four seasons in Australia (summer, autumn, winter, and spring) [52]. The
summer season includes the three hottest months December, January and February and
the winter season includes the three coldest months June, July and August. The trends of
water quality parameters and rainfall were scrutinised across four seasons throughout the
timeframe (2001-2022) using the modified Mann-Kendall (MMK) test and the innovative
trend analysis (ITA) method. The combined use of these two methods provided a compre-
hensive understanding of seasonal trends (both monotonic and nonmonotonic) of rainfall
and water quality. The dataset was checked, and missing values were handled appropri-
ately. Additionally, wavelet transform coherence (WTC) was utilised to examine the cor-
relation between rainfall and WQI. The trend analysis and wavelet transform were con-
ducted using R 4.3.2 software, and the spatial distribution of rainfall was analysed in
ArcGIS Pro software v3.03. The applied techniques are described in the following sections,
with the flow diagram showing the research method (Figure 2).

Wavelet Transform Coherence
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Rainfall Data (2001 - 2022) Spatial Distribution of

Water Quality Data (2001 - 2022)
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Figure 2. The schematic framework of the research method.

2.3. Precipitation Concentration Index (PCI)

The term precipitation concentration index (PCI) was proposed by Oliver [53] to enu-
merate the temporal variability of rainfall, also used in soil erosion studies [54]. This index,
generally applied on annual scales, represents the monthly precipitation and precipitation
heterogeneity within a year. A value between 8.3 and 10 indicates uniform distribution,
with a moderate level of uniformity in the distribution of precipitation falling in the range
from 10 to 15, and values from 15 to 20 indicating an irregular distribution of precipitation.
A value greater than 20 characterises a strong concentration of irregular precipitation over
a limited period [53]. In this study, the PCI values were calculated using Equation (1) in
Table 1 to examine the spatial and temporal variability of precipitation applied to monthly
precipitation [1] data from 2001 to 2022.

2.4. Coefficient of Variance (CV)

The coefficient of variance (CV) or normalised root mean square deviation is a rela-
tive measurement of deviation of frequency distribution. It is calculated by dividing the
standard deviation of a series by the mean of the series [55]. The formula to calculate CV
(Equation (2)) is provided in Table 1. The degree of variability of rainfall is classified by
the coefficient of variation (CV) [56]. The rainfall events’ variability is classified as high
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(CV > 30), moderate (20 < CV < 30) or low (CV <20) [56]. CV was computed in this study
to assess the relative annual variability of rainfall in the region.

2.5. Mann—Kendall (MK) and Modified Mann—Kendall (MMK) Tests

The Mann-Kendall (MK) test is a non-parametric statistical test applied to determine
the monotonic upward and downward trend in time series data [57]. This test exhibits
upward and downward trends with statistical significance [58]. The MK statistics increase
by one if the data point of a year is greater than the preceding year and, if the converse
occurs, it decreases by one. This test performs well if there is no autocorrelation in the
data. This test provides a test variable (S) and a variance (Equations (3) and (4)) in Table
1).

The monotonic trend in the time series can be determined by the Z value. The positive
value indicates an increasing trend, whereas the negative value suggests a decreasing
trend. The statistical significance of the trend is determined by the specific p-value, with a
value less than 0.05 indicating statistical significance [59].

The use of the MK method is constrained by autocorrelation effects in data. If there
is autocorrelation in the time series, the MK method may indicate a trend if no actual trend
exists [42]. A sequential Mann—Kendall test is used to define the starting time of a signifi-
cant trend in time series [60]. Whereas, in the MMK test, the modified VAR(S) is applied
to detect the trend, as shown in Equation (5) (Table 1). In this study, the MMK test was
applied to assess the seasonal trends of both rainfall and water quality parameters. The
significance of a trend was determined based on a p-value. The trend with a p-value less
than 0.05, which corresponds 5 percent uncertainties or less, was considered to be a sig-
nificant trend.

2.6. Sen’s Slope Estimator

The magnitude of the trend slope is estimated by a non-parametric procedure known
as Sen’s slope estimator [61]. The equation of Sen’s slope (Equation (6)) is provided in
Table 1. In this study, Sen’s slope estimator was used to quantify the amount of change in
a season per year.

2.7. Innovative Trend Analysis (ITA)

The innovative trend analysis (ITA) is a non-parametric graphical method first intro-
duced by Sen [62]. This method is capable of handling autocorrelation and outliers within
time series data, detecting both monotonic trends and sub-trends, and identifying combi-
nations of trends across different periods [63]. In the ITA method, firstly the times series
is divided into two sub-series each containing an equal number of observations. Subse-
quently, both series are sorted in ascending order and plotted against each other in a Car-
tesian coordinate system. In the plot, the first half is plotted on the X axis while the second
half is plotted on the Y axis. In the later phase, a straight line is fitted in the scatter plot,
which displays either a monotonic trend or no trend. If most scattered points lie above the
1:1 (45°) line, there is an increasing trend in the time series; conversely, if the points cluster
below the 1:1 line, this indicates a decreasing trend. Similarly, no trend is signified in the
data series, if the points clustered along the trend line [62]. A trend detector was used to
examine whether the trend was increasing or decreasing (Equation (7) in Table 1). The ITA
method calculations were performed on both rainfall and water quality data series. The
innovative trend detection (ITD) was shown as increasing or decreasing using up arrows
or down arrows, respectively. Another approach, innovative polygon trend analysis
(IPTA) has also been proposed by Sen et al. [64]. This can identify the trend in a particular
sequence by providing a trend polygon for the linguistic and numerical interpretation of
trends. However, we applied the ITA method in this study to easily identify straightfor-
ward trends and shifts rather than using complex visualisation techniques.
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2.8. Wavelet Analysis

Wavelet analysis is a dominant analytical tool for analysing processes exhibiting a
time—frequency representation of signal in the time domain [65]. Wavelet transform pro-
vides localised frequency decomposition, offering insights into frequency components,
and, as a consequence, wavelets have a notable dominance over Fourier analysis [66]. In
this study, continuous wavelet tools, particularly wavelet coherence, were applied to
measure and examine the degree of local correlation between two time series of rainfall
and water quality indices in the time-frequency domain, along with wavelet coherence
phase differences. The fundamental concepts of wavelet and wavelet transform coherence
are explained in the following sections.

2.8.1. Wavelet

A wavelet can be defined as per [66]. It is a true valued square integrable function
and can be interpreted as illustrated in Equation (8) (Table 1). A wavelet consists of two
control parameters, location, and scale parameter. The location parameter (u) determines
the precise position of the wavelet, whereas the scale parameter(s) defines the extent of
the expansion of the wavelet. Scale is inversely related to frequency; therefore, a lower
scale means a more compressed wavelet, and a higher scale means a less compressed
wavelet. A more compressed wavelet can detect higher frequencies of a time series [66].

2.8.2. Wavelet Transform Coherence (WTC)

A bivariate framework known as wavelet coherence explores the interaction between
two time series. Wavelet transform coherence (WTC) locates the sections in the time—fre-
quency space where two distinct time series are certainly not powerful. The wavelet co-
herence of the time series is calculated by using Equation (9) in Table 1. The value of the
squared wavelet coherence coefficient (Rn in Equation (9)) represents the correlation [66].
Values close to 1 indicate a strong correlation whereas values close to 0 exhibit a weak
correlation. Thus, the squared wavelet coherence estimates the local linear correlation be-
tween two time series that is homogeneous to the squared correlation coefficient in linear
regression [66]. The equations of the proper smoothing operator (S) for Morlet wavelet
coherence are provided in Table 1 (Equations (10)—(12)). For the Morlet wavelet, a factor
of 0.6 is experimentally designated as the scale decorrelation length [67-69].

In wavelet coherence plots, the thick black contour represents the 5% significance
level. The cone of influence (COI) is the region in the plot where the edge affects the wave-
let power (lighter shading in the plot) and the phase is indicated by arrows. Zero phase
difference means the analysed time series move together. Arrows pointing to the right
indicate in-phase, while those pointing to the left indicate anti-phase. Arrows pointing up
indicate that the first time series leads the second one by 90° and arrows pointing down
indicate that the second one is leading the first time series. The stronger correlation is
displayed as red and yellow colours in the plot and the blue colour specifies a weak cor-
relation. In the present study, a combination of arrows pointing in different directions was
observed in the plot

Table 1. List of equations used in the analysis.

Equation SN. Descriptions References
_ Y2 Ri? PCI = Precipitation concentration index
PClannual = {2 Ri)? x 100 @ Ri = Rainfall in month i. [54]
cv = E 2 o = Standard deviat'ion [55]
t = Mean of the series
_ . n = Number of data; Xi, Xj = data points of time
S = TI5! Tlisign(X) —X) () eeep [58]

series i and j
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VAR(S) = % {(n(n —-1)(2n+5)

n 4)
- Z te (6 — 128, + 5))}

k=1

N = Number of data points
m = Number of tied groups
tk = Number of ties in k" group

[58]

VAR(S) = (M-t (1) ()

18 ny

= = Correction factor to adjust the auto corre-

Ne

lated data

X]' —Xk

Qi = g (6)

xj, xk = Values of data at time j and k (j > k)
i=1,2,3..N

1 10 (Xj—Xg)
B= XLi—— @)

X

B = Trend detector

n = Size of individual sub series

xj, Xk = The values of sub series X = Average of
first sub series xx.

1 t—u

Yus =T 0 (%) ®

S

1s = A normalisation factor ensuring the unit
variance of the wavelet, with | [{u,s |12 =1

u = Location parameter

s = Scale parameter

[66]

IS (WX (u,5)|?
S (572 (W (u,9)1) S (S [WY(u,9)|°)

Ri(us) = )

Rn =Squared wavelet coherence coefficient rang-
ing from 0 to 1

n = Time index

S = Smoothing operator

[65,66]

S(W) = Sscale (Stime(wn(s))) (10)

Sscale = Smoothing along wavelet scale
Stime = Time parameter

[65,66]

Stime (W) S (1 1)

S = (wn ) s%)

Stime = Time parameter

[65,66]

Stime W)| S = (W, (5).C, 1 (0.65)))| (12)

C2 = Normalisation factor, and IT = rectangle
function

[65,66]

In this study, the MMK and ITA tests were applied to rigorously detect trends in
rainfall and water quality. The MMK test was chosen for its robustness in identifying sta-
tistically significant trends while accounting for serial correlation and seasonality, making
it ideal for environmental data with autocorrelation. Meanwhile, the ITA was utilised for
its visual and intuitive approach. Additionally, WTC was employed to examine the corre-
lation between rainfall and water quality, capturing the time and frequency dimensions

of their relationship.

3. Results and Discussion

3.1. Rainfall Distribution

The basic annual rainfall statistics, such as mean, standard deviation (SD), coefficient
of variation (CV) and precipitation concentration index (PCI), of 12 rainfall stations
around the three dam catchments were analysed from 2001 to 2022. The mean of the long-
term annual rainfall varied from 575 mm to 890 mm. The range of SD and CV was 171 mm
to 350 mm and 28% to 39%, respectively. The highest mean rainfall was found at Mount
Kynoch station, where SD and CV values were also at the highest levels. As discussed in
Section 2.4, CV (%) greater than 30 was classified as high variability and between 20 to 30
was classified as moderate variability of rainfall. We found that the value of CV (%) was
greater than 30 in 8 rainfall stations, which indicated high variability of rainfall, and the
data from the rest four stations could be classified as moderate to highly variable. The PCI
value ranged from 15-20, except for Pechey Forestry, which was 14.2 indicating an irreg-
ular distribution of precipitation in the region. The findings are presented in Table 2.
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Table 2. Summary statistics of annual rainfall of 12 rainfall stations (2001-2022).

Location Annual Rainfall
Stations Latitude () Longitude ©) "0 ™ Mean (mm) (:31) CV (%) PCI
Cooby Creek -27.3825 151.9244 497 648 193 29.8 15.9
Cressbrook Dam -27.2641 152.1959 295 765 247 32.3 15.8
Doctors Creek -27.2067 151.8467 612 665 196 29.5 152
Glenaven -27.1882 151.9634 612 709 226 31.9 15.7
Goombungee PO -27.3072 151.8506 497 600 192 32.0 16.1
Haden PO -27.2242 151.8833 640 597 198 33.2 17.7
Moyola -27.5233 151.8819 559 645 222 34.4 16.0
Mount Kynoch -27.5094 151.9547 739 890 350 39.3 16.2
Oakey Aero -27.4034 151.7413 406 575 171 29.7 15.9
Pechey Forestry —-27.3042 152.0542 667 763 261 34.2 14.2
Perseverance Dam -27.2883 152.1239 470 776 221 28.5 155
Tamba -27.4722 151.9481 642 878 314 35.8 15.1

The inverse distance weighting (IDW) method was applied to show the spatial dis-
tribution of rainfall in this study. The spatial distribution of mean, CV and PCI is illus-
trated in Figure 3. The mean rainfall varied from 813 to 890 mm in the stations near the
dam catchment area. The value of CV was high (39%) in Mount Kynoch and low (28-30%)
in Oakey Aero, Perseverance Dam and Cooby Creek. The PCI value was in the range of
14-15 (moderate) in the northeast side of the study area and from 15.1-18 (irregular) on
the other side.

Mean (RF| o (%) pal
- 575-650 mm I:l - - 14.1- 150 (Moderate)
- 651725 mm l:| R |:| 15.1- 18 lrregular)
[ ] re-momm e

[ ] sm-swmm

Figure 3. Spatial distribution of rainfall: (a) mean (RF), (b) coefficient of variation (CV) (%), and (c)
precipitation concentration index (PCI).

3.2. Auto Correlation Function (ACF)

Table 3 presents the values and plot of lag 1 autocorrelation in seasonal rainfall data
for 22 years (2000-2022). In detecting the trend in time series data, the calculation of auto-
correlation is a primary step, the magnitude of sequential correlation increases with the
variance of the MK test statistic. If there is a positive sequential correlation in the time
series data, this amplifies the likelihood of type I errors (false positives) and identifies a
noteworthy trend even if there is no genuine trend [70]. In this study, a lag 1 autocorrela-
tion coefficient was calculated at a 95% significance level which was 0.4. It is found that
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the autumn season rainfall data of Doctors Creek shows autocorrelation at a 95% signifi-
cance level (highlighted in Table 3). Because autocorrelation exists in the data series in one
station, the modified Mann-Kendall (MMK) test was applied to detect the trend of sea-
sonal rainfall.

Table 3. Lag 1 autocorrelation of seasonal rainfall over the years (2001-2022) (yellow highlight indi-
cates that an autocorrelation exists in the data series).

Lag1 ACF Lag1 ACF Lagl1ACF LaglACF

Station Autumn Winter Spring Summer
Cooby Creek 0.04 -0.06 -0.21 -0.14
Cressbrook Dam 0.34 0.04 -0.29 -0.18
Doctors Creek 0.40 -0.02 -0.25 -0.02
Glenaven 0.23 -0.04 -0.24 0.14
Goombungee PO 0.26 -0.18 -0.30 0.09
Haden PO 0.21 0.16 -0.06 0.11
Moyola -0.02 -0.01 -0.01 0.05
Mount Kynoch 0.18 0.04 -0.01 0.13
Oakey Aero 0.25 0.08 -0.32 0.28
Pechey Forestry 0.33 -0.05 -0.11 0.23
Perseverance Dam 0.23 0.08 -0.22 -0.35
Tamba 0.28 0.01 -0.10 0.11

3.3. Seasonal Rainfall Trends
3.3.1. Autumn Trend

In scrutinising the trend of rainfall in the autumn season for the entire period of 2001-
2022, distinct patterns and fluctuations in precipitation are revealed (Table 4). The Z values
showed increasing rainfall trends in all stations, varying between 0.75 to 2.26 and the max-
imum is at Cooby Creek station. The trend was significant in Cooby Creek and Moyola
stations (p < 0.05).

Similarly, the ITA method showed an increasing trend. The indicator values of ITA
varied from 1.55-7.38, with the highest at Perseverance Dam (7.38). The detection of the
trend is shown by using upward or downward arrows (ITD column) for simplicity.

All other coefficients, such as MK tau Sen’s slope and ITA indicator, showed increas-
ing trend (Table 4). According to the value of Sen’s slope, the highest change of rainfall in
this season was 7.86 mm/yr in Mount Kynoch station whereas according to ITA, Persever-
ance Dam showed the highest significant trend.

Figure 4 shows the spatial distribution of autumn rainfall trend parameters. Similar
and consistent patterns were observed across the parameters, with higher values concen-
trated in the lower region and lower values in the upper region, which suggests that lower
areas were more affected in the region.

Table 4. Rainfall trend (autumn).

Station Z Statistics MK Tau p Value >"°S1%P€ 11 g (1)
(mm/yr)

Cooby Creek 2.26 0.30 0.02 4.89 4+ 3.39
Cressbrook Dam 1.00 0.21 0.72 477 1t 1.55
Doctors Creek 1.40 0.30 0.16 5.57 1t 3.81
Glenaven 1.50 0.27 0.13 4.29 4 2.43
Goombungee PO 1.88 0.31 0.07 5.84 * 451
Haden PO 0.75 0.15 0.45 3.56 1t 3.63
Moyola 2.20 0.30 0.03 5.61 t 4.90
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Mount Kynoch 1.79 0.28 0.07 7.86 1t 524
Oakey Aero 1.11 0.21 0.27 4.10 * 3.69
Pechey Forestry 1.31 0.26 0.19 5.32 1t 4.12
Perseverance Dam 1.36 0.25 0.17 6.34 1+ 7.38
Tamba 1.69 0.30 0.09 7.03 * 6.36

N.B: ITD = Innovative trend detection. The red arrow indicates an increasing trend. A significant
trend is highlighted by the yellow colour, (p value < 0.05).

s'* \ 5” \

L

(b)

Z statistic Sen’s Slope B (ITA)

Bl o713 B 356526 B ss-40

Bl 3615 B sz 4.02-4.46
1.52-1.66 g 847492
1.67-2.26 B e 493-7.38

Figure 4. Spatial distribution of autumn rainfall trend parameters. Map (a) Z statistics, map (b) Sen’s
Slope, and map (c) B (ITA).

3.3.2. Winter Trend

The MMK and ITA methods revealed the same scenarios regarding the winter rainfall
trend in the region. Of 12 stations, a non-significant increasing trend was observed in 8
whereas a decreasing trend was found in the remaining 4 stations. The value of Z statistics
and ITA indicator were higher at Pechey Forestry, at 0.75 and 0.77 respectively. In Haden
PO, the value of Z statistics was minimum (-1.10) indicating a decreasing trend. The av-
erage change of rainfall was 0.16 mm/yr. Table 5 illustrates rainfall trends in winter and
Figure 5 shows the spatial distribution of winter rainfall trend parameters

Table 5. Rainfall trend (winter).

Station ZStatistics MKTau pValue “o"°°°P® 1rp  BraA)
(mm/yr)

Cooby Creek 0.50 0.62 0.08 0.75 * 0.22
Cressbrook Dam 0.36 0.06 0.72 0.53 4t 0.18
Doctors Creek 0.43 0.07 0.67 0.75 f 0.23
Glenaven -0.11 -0.02 0.91 -0.24 3 -0.48
Goombungee PO 0.62 0.08 0.53 0.58 * 0.20
Haden PO -1.10 -0.21 0.27 -2.04 3 -1.82
Moyola -0.16 -0.03 0.87 -0.42 ¥ -0.76
Mount Kynoch -0.05 -0.01 0.96 -0.27 4 -0.51
Oakey Aero 0.17 0.03 0.86 0.37 t* 0.23
Pechey Forestry 0.75 0.11 0.45 0.53 * 0.77
Perseverance Dam 0.39 0.07 0.70 0.52 * 0.31
Tamba 0.57 0.09 0.57 0.90 t* 0.53

N.B: ITD = Innovative trend detection. The red arrow indicates an increasing trend, and the blue
arrow shows a decreasing trend.
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Z statistic Sen’s Slope B (ITA)

Bl -110--007 B -204--016 B -182--038

I -o006-028 B 015 - 031 -0.37- 0.1
0.29-0.39 Bl o32-o043 0.12- 0.28
0:40:-0.78 Bl o22- 090 Bl o29-077

Figure 5. Spatial distribution of Winter rainfall trend parameters. Map (a) is Z statistics, Map (b) is
Sen’s Slope, and Map (c) is B (ITA).

3.3.3. Spring Trend

The rainfall trend in the spring season was characterised by low rainfall trends.
Cooby Creek and Glenaven exhibited negligible trends, with Z statistics close to zero, sug-
gesting stable conditions. Cressbrook Dam, Doctors Creek, Goombungee PO, Moyola,
Mount Kynoch, Oakey Aero, and Pechey Forestry implied increasing trends according to
the value of Z statistics and ITA indicators. Based on the value of Sen’s slope, the average
change of rainfall was 0.57 mm/yr. Conversely, Haden PO and Tamba demonstrated neg-
ative trends. Additionally, ITA indicator values indicated low-to-moderate variability in
precipitation trends. Table 6 illustrates the rainfall trend in the spring season and Figure 6
shows the spatial distribution of spring rainfall trend parameters.

Table 6. Rainfall trend (spring).

Station Z Statistics MK Tau p Value o0 °9°P® [rp B (iTA)
(mm/yr)

Cooby Creek 0.02 0.03 1.00 -0.02 4 -0.86
Cressbrook Dam 0.28 0.04 0.78 0.47 L 4 0.59
Doctors Creek 0.88 0.11 0.38 1.69 * 0.41
Glenaven -0.07 -0.01 0.95 -0.20 L 4 -0.28
Goombungee PO 0.72 0.08 0.47 2.33 1t 1.45
Haden PO -0.24 -0.04 0.81 -0.76 t -0.99
Moyola 0.32 0.05 0.75 1.51 * 0.65
Mount Kynoch 0.29 0.05 0.77 1.13 4 0.56
Oakey Aero 0.22 0.03 0.83 0.57 * 0.60
Pechey Forestry 0.18 0.03 0.86 0.74 1t 0.75
Perseverance Dam 0.07 0.01 0.95 0.36 * 0.92
Tamba -0.06 -0.01 0.95 -0.91 . -0.82

N.B: ITD = Innovative trend detection. The red arrow indicates an increasing trend, and the blue
arrow shows a decreasing trend.
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"'\.
f
Z statistic Sen’s Slope B (ITA)
Bl 024002 Bl -091-043 -0.99--0.05
[ o0o03-0186 0.42-0.70 [ -004-023
0.17-0.41 [ o07-o09s Bl o024-051
0.42-0.88 0.99-2.33 0.52-1.45

Figure 6. Spatial distribution of spring rainfall trend parameters. Map (a) Z statistics, map (b) Sen’s
slope, and map (c) B (ITA).

3.3.4. Summer Trend

In examining the summer season’s rainfall trend, MMK analysis shows a non-signif-
icant increasing trend in seven stations and a decreasing trend in the remaining five sta-
tions, as illustrated in Table 7. Notably, Haden PO stood out, with a negative Sen’s slope
and Z statistics, indicating a substantial decrease in precipitation (Figure 7). The average
change of rainfall in this was 0.13 mm/yr. The value of the ITA indicator varied from —2.11
to 2.25.

Table 7. Rainfall trend (summer).

Station Z Statistics MK Tau p Value Sen’s Slope ITD B{ITA)
(mm/yr)

Cooby Creek -0.24 -0.04 0.81 -0.89 2 4 -0.64
Cressbrook Dam 0.62 0.08 0.53 2.80 * 0.20
Doctors Creek 0.43 0.07 0.67 2.00 * 1.48
Glenaven 0.23 0.04 0.82 0.48 * 0.77
Goombungee PO -0.10 -0.02 0.92 -0.26 L 4 -0.53
Haden PO -1.46 -0.21 0.14 -5.48 4 -2.11
Moyola 0.10 0.02 0.92 0.14 * 0.49
Mount Kynoch 0.47 0.08 0.64 3.31 t* 2.25
Oakey Aero -0.42 -0.05 0.68 -1.40 3 4 -0.77
Pechey Forestry -0.30 -0.06 0.77 -1.71 4 -0.75
Perseverance Dam 0.53 0.06 0.60 0.87 * 0.24
Tamba 0.52 0.09 0.60 1.73 * 0.10

N.B: ITD = Innovative trend detection. The red arrow indicates an increasing trend, and the blue
arrow shows a decreasing trend.
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(b)

Z statistic

Sen’s Slope B (ITA)
= 10,;2-125192 T E— B -211--020
TR Bl 227--018 [ -oa2s-o007
-0.11-0.15 —— Bl oo0s-043
0.16:--0.62 Bl 122-33 0.44-2.25

Figure 7. Spatial distribution of summer rainfall trend parameters. Map (a) Z statistics, map (b) Sen’s
slope, and map (c) B (ITA).

3.4. Trend of Seasonal Water Quality

The aim of this analysis was to elucidate temporal variations in water quality across
four distinct seasons spanning 22 years (2001-2022). This comprehensive study examined
trends in five water quality parameters—ammonia nitrogen (NHs-N), pH, phosphate
(POs¥), total dissolved solids (TDS), and turbidity along—with the water quality index
(WQI), which was determined based on these five parameters. The selection of parame-
ters, computation of WQJ, and its analysis are discussed in detail in a previous study [7].
The WQI trends detected by the ITA method (where the blue dots represent the seasonal
WQI values) and the trends in water quality parameters are compared and presented here.

3.4.1. Cooby Reservoir

The trend results of both MMK and ITA provided a combination of both increasing
and decreasing trend of water quality parameters (Figure 8). Out of five water quality
parameters, only PO+~ exhibited a significant decreasing trend in all four seasons. There
was no change in the concentration based on the value of Sen’s slope. The trend of NHs-
N was non-significantly increasing, pH showed an increasing trend in winter and spring
and a decreasing trend in autumn and summer. The TDS showed almost no trend in win-
ter but an increasing trend in the other seasons. The turbidity of water exhibited a non-
significant increasing trend in all four seasons.

As shown in Table 8, the WQI of this reservoir exhibited a decreasing trend in all four
seasons. The average change was —1.74 according to the value of the ITA indicator. In WQI
calculation [7], the maximum weightage (5 on a scale of 1-5) was assigned to NHs-N and
PO#*, and the minimum weightage 3 was assigned to turbidity. Both TDS and pH had a
weightage of 4. The relative effects were observed with WQI trend, with an increasing
trend of NHs-N, TDS and pH in autumn and summer, resulting in an overall decreasing
trend of WQI. Hence, the effects of the decreasing trend of PO4+*- might not have much
impact on the WQI trend.
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Figure 8. Plot of the innovative trend of WQI time series of Cooby reservoir (2001-2022). The blue
dots represent the WQI in different seasons.

Table 8. Details of water quality parameters trend (Cooby reservoir).

Parameter Season Z Statistic MK Tau p Value Sen’s Slope ITD B (ITA)
Autumn 0.33 0.12 0.74 0.01 1t 0.07
Winter 0.35 0.13 0.73 0.01 1t 2.37
NHs-N ,
Spring 0.50 0.11 0.62 0.01 1t 0.27
Summer 0.08 0.03 0.94 0.01 4 0.30
Autumn -0.25 -0.04 0.81 0.00 4 -0.06
H Winter 0.84 0.11 0.40 0.01 1t 0.00
P Spring 0.61 0.09 0.54 0.00 %t 0.08
Summer -1.33 -0.19 0.18 -0.01 4 -0.10
Autumn -3.19 -0.39 0.00 0.00 4 -4.10
POS Winter —-2.09 -0.38 0.04 0.00 4 -3.83
Spring -4.55 -0.64 0.00 0.00 4 -3.95
Summer -4.22 -0.63 0.00 0.00 4 -4.30
Autumn 0.06 0.03 0.95 2.64 1t 1.89
DS Winter 0.00 0.00 1.00 0.73 1t 1.93
Spring 0.04 0.02 0.97 2.55 1t 1.81
Summer 0.13 0.05 0.90 2.49 1t 1.81
Autumn 1.24 0.18 0.21 0.04 1t 0.09
L Winter 0.87 0.15 0.38 0.03 1t 0.03
Turbidity .
Spring 0.42 0.14 0.68 0.02 4+ 0.95
Summer 0.20 0.04 0.84 0.01 4 0.09
WQI Autumn -0.06 -0.03 0.95 -0.15 3 -1.83
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Winter -0.04 -0.02 0.97 -0.05 % -1.82
Spring -0.06 -0.03 0.95 -0.05 2 -1.60
Summer -0.04 -0.02 0.97 -0.03 3 -1.73

N.B: ITD = Innovative trend detection. The red arrow indicates the increasing trend, and the blue
arrow shows the decreasing trend. A significant trend is highlighted with the yellow colour (p value
<0.05).

3.4.2. Cressbrook Reservoir

For Cressbrook reservoir, it was observed from MMK and ITA outcomes that NHs-N
had an increasing trend in all seasons (Table 9). pH and turbidity demonstrated a non-
significant increasing trend in autumn, winter and summer and a decreasing trend in
spring. However, PO+*- exhibited a significant declining trend entirely in all four seasons,
where the minimum Z statistics value was noted in autumn (-4.88). In the case of Cooby,
turbidity showed an increasing trend in all seasons, but in Cressbrook, the trend was de-
creasing in spring season. Like Cooby, TDS showed no trend in winter. Furthermore, WQI
showed a non-significant declining trend across all four seasons. There was a slight in-
crease in spring in the second half of the data (2012-2022) (Figure 9). In relation to the
WQI of Cooby reservoir, the increasing trend of NHs-N, turbidity and pH also affected
the overall trend of WQI of this reservoir. Based on the value of Sen’s slope, the WQI is
decreasing by -0.01 on average per year (Table 9).
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Figure 9. Plot of the innovative trend of the WQI time series of Cressbrook reservoir (2001-2022).
The blue dots represent the WQI in different seasons.



Geosciences 2024, 14, 225 17 of 27
Table 9. Details of water quality parameters trend (Cressbrook reservoir).
Parameter Season Z Statistic MK Tau p Value Sen’s Slope ITD B (ITA)
Autumn 0.95 0.16 0.34 0.01 1t 0.06
Winter 1.73 0.27 0.08 0.01 1t 0.05
NHs-N )
Spring 0.58 0.95 0.56 0.01 % 0.62
Summer 0.40 0.11 0.69 0.01 * 0.06
Autumn 0.22 0.04 0.82 0.00 1t 0.01
I Winter 0.87 0.19 0.38 0.01 1t 0.03
P Spring -0.25 -0.04 0.81 0.00 4 -0.09
Summer 0.19 0.04 0.85 0.00 t* 0.03
Autumn -4.88 -0.51 0.00 0.00 4 -1.06
POS Winter -4.59 -0.52 0.00 0.00 $ -1.52
Spring -3.90 -0.58 0.00 0.00 4 -1.22
Summer =355 -0.61 0.00 0.00 4 -1.31
Autumn -0.24 -0.08 0.81 -0.88 4 -0.98
DS Winter 0.00 0.00 1.00 -0.02 4 -0.08
Spring -0.09 -0.04 0.93 -0.46 $ -0.84
Summer -0.16 -0.06 0.88 -0.48 $ -0.59
Autumn 2.08 0.33 0.04 0.05 % 0.69
L Winter 1.29 0.19 0.20 0.03 1t 0.33
Turbidity .
Spring -0.30 -0.08 0.76 -0.01 4 -0.08
Summer 0.88 0.20 0.38 0.02 4 -0.68
Autumn -0.05 -0.02 0.96 -0.01 4 -0.01
wal Winter -0.13 -0.05 0.89 -0.01 4 -0.71
Spring -0.10 -0.04 0.92 -0.01 $ -0.56
Summer -0.12 -0.04 0.91 -0.02 ¥ -0.72

N.B: ITD = Innovative trend detection. The red arrow indicates the increasing trend and the blue
arrow shows the decreasing trend. A significant trend is highlighted with the yellow colour (p value
<0.05).

3.4.3. Perseverance Reservoir

A noticeable difference in trend was observed in Perseverance reservoir compared
with the other two reservoirs. Most significantly, WQI showed a significant increasing
trend in three seasons, except for spring, while the other two exhibited a declining trend.
This matched with the pH trend as non-significantly decreasing in summer while increas-
ing in the other three seasons. Similarly, PO+~ revealed a significant decreasing trend,
while TDS showed a significant increasing trend in winter and spring and turbidity was
significantly increasing in spring. In comparison with the WQI of the other two reservoirs,
the WQI was very poor (<10) in this reservoir [7]. The slight increasing trend was positive
for this reservoir water quality and the average increase was 0.06, based on the value of
Sen’s slope (Table 10). The WQI trends detected by the ITA method is shown in Figure 10
where the blue dots represent the seasonal WQI values.
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Figure 10. Plot of the innovative trend of WQI time series of Perseverance reservoir (2001-2022).

The blue dots represent the WQI in different seasons.

Table 10. Details of water quality parameters trend (Perseverance reservoir).

Parameter Season Z Statistic = MK Tau p Value Sen’s Slope ITD B (ITA)

Autumn 0.87 0.22 0.39 0.01 4+ 0.53

Winter 0.38 0.16 0.71 0.00 1t 0.99

NHs-N .

Spring 0.40 0.14 0.69 0.00 4+ 0.05

Summer 0.17 0.08 0.86 0.01 % 0.05

Autumn 0.10 0.03 0.92 0.00 1t 0.01

Winter 0.41 0.11 0.68 0.01 %t 0.06

PH Spring 0.27 0.05 0.79 0.01 2 0.08
Summer -0.06 -0.02 0.95 0.00 ¥ -0.01

Autumn -3.76 -0.54 0.00 -0.01 $ -1.00

PO Winter -2.33 -0.40 0.02 0.00 $ -1.25
Spring -2.35 -0.51 0.02 0.00 $ -0.04

Summer -2.72 -0.63 0.01 0.00 4 -0.52

Autumn 1.61 0.38 0.11 1.43 %t 1.11

DS Winter 1.97 0.38 0.05 1.34 t 1.65
Spring 2.05 0.44 0.04 1.47 @ 2.01

Summer 1.77 0.49 0.08 1.60 4+ 1.63

L Autumn 1.82 0.40 0.07 0.16 1t 0.63

Turbidity .

Winter 2.18 0.33 0.29 0.14 1t 0.89
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Spring 2.14 0.42 0.03 0.16 ) 0.99

Summer 1.64 0.42 0.10 0.17 4+ 0.93

Autumn 2.05 0.45 0.04 0.06 4+ 0.40

war Winter 1.87 0.46 0.06 0.05 % 0.41
Spring 1.69 0.42 0.09 0.05 1t 0.33

Summer 2.13 0.57 0.03 0.07 4 0.44

N.B: ITD = Innovative trend detection. The red arrow indicates the increasing trend, and the blue
arrow shows the decreasing trend. A significant trend is highlighted with the yellow colour (p value
<0.05).

Z statistics plot of three reservoirs is presented in Figure 11.
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Figure 11. Modified Mann—Kendall test Z statistic plot, (top) Cooby, (middle) Cressbrook, (bot-
tom) Perseverance.

3.5. Comparative Analysis of MMK and ITA Trend Methods

In this study, the observation of the rainfall and water quality data revealed distinct
and significant insights into trends through the application of both traditional and statis-
tical method MMLK, and the more recent and graphical ITA method.

In terms of identifying the trend of rainfall, the trend detection from both MMK and
ITA was mostly consistent. Both methods had identified notable trends where these were
present, complementing each other’s findings and providing a comprehensive under-
standing of seasonal rainfall variations. For example, in the autumn season, Cooby Creek
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and Moyola rainfall stations showed a significant increasing trend in rainfall, with ITA
indicators of 3.39 and 4.90 values respectively.

Similarly, in the analysis of water quality trends across the Cooby, Cressbrook and
Perseverance reservoirs, both methods demonstrated the same alignment. In all reser-
voirs, POs4 3~ showed a significant decreasing trend in all seasons and the average ITA in-
dicator values were —4.40 in Cooby —1.27 in Cressbrook and —0.70 in Perseverance reser-
voir. The WQI showed a significant increasing trend in the Perseverance reservoir, which
was also matched with the ITA indicator.

Compared with the MMK method, the ITA method offers several distinct advantages.
It is more effective in identifying trends, particularly those subtle variations in data that
conventional methods such as MMK may overlook. ITA’s visual and graphical represen-
tation of trends make it easier to identify extreme events such as significant rainfall lead-
ing to flooding or minimal rainfall resulting in drought [39]. In this study, the ITA graphs
were generated for WQI only, in order to examine how WQI has changed over various
seasons during the period of 22 years. These plots clearly show that WQI was on a de-
creasing trend in the first half (2001-2011) of the time series in Cooby and Cressbrook
reservoirs. In this period, Toowoomba region experienced drought from 2000-2006 and
extreme flooding from December 2010 to January 2011 [71]. Although the WQI showed a
slight increasing trend in Perseverance reservoir, this was noticed in the second half of the
data (2012-2022). ITA graphs allowed easy recognition of recurring patterns or periodic
fluctuations of WQI. This visual approach can be particularly useful when identifying
changes that might be masked by the MMK test.

Therefore, the MMK test’s statistical findings of decreasing or increasing trends in
specific seasons were mathematically and visually confirmed by the ITA, which displayed
corresponding shifts in the data. This dual approach not only validated the results, but
also enhanced the interpretability of the data, making the observations accessible and un-
derstandable for broader audiences.

3.6. Wavelet Transform Coherence (WTC) Analysis

Following the trend analysis of rainfall and water quality parameters, the WTC
method was applied in this study to identify the significant temporal relationship and co-
movement of rainfall and WQI data series and to determine the prevailing frequencies or
periods. The WTC plots of rainfall of twelve rainfall stations and WQI are presented in
Figures 12-14.

3.6.1. WTC of Rainfall and WQI (Cooby Reservoir)

The temporal relationship between rainfall and the WQI of Cooby reservoir is repre-
sented in Figure 12. The very high coherency (dark red) was visible in 8-16 periods from
2002-2022 between rainfall and WQI in the Cooby Creek rainfall stations and the Haden
Post Office rainfall station (Figure 12a,f). This revealed notably strong coherence at ex-
tended frequencies, corresponding to cycles with periodicity in 8 to 16 and exceeding 16
within the time frame spanning from 2005 to 2018 in most of the stations. High correlation
was significant in all stations during 4 to 8 periods from 2014 to 2020. On the other hand,
low coherence is depicted in the Pechey Forestry Rainfall and WQI plot (Figure 12k), here
only 2—4 periods from 2014-2018 exhibited high coherence. In the Doctor’s Creek WTC
plot, a significant region from 2001 to 2008 with 16 periods was apparent, which showed
the rainfall anomaly leading to WQI (straight down arrows in 5% significance level in
Figure 12¢,d). Based on Figure 12i, a significant region from 2004 to 2014 with an 8 to 16
period is evident. Most of the regions with a 5% significance level were scattered in all
plots and are relatively small in Figures 12j k.
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Figure 12. WTC plot of Rainfall and WQI (Cooby). The coherency is shown by colour code, ranging
from red (high coherency, value close to 1) to blue (low coherency, value close to 0). Statistically
significant periodicity is displayed with black contours indicating a 5% significance level. The time
scale “Year’ is shown in x axis and vertical axis (y axis) presents ‘Period” across seasons in a year. The
twelve rainfall stations are marked with lettering ranging (a-1).

3.6.2. WTC of Rainfall and WQI (Cressbrook Reservoir)

WTC plots of rainfall and WQI of Cressbrook reservoir revealed a mid-term overall
behaviour of two variables exhibiting a mixed combination of coherency. In all plots of
Figure 13, high coherency was displayed from 2015 to 2022 with the period 4 to 16. The
arrows are pointing upward and in phase (right). The largest significant region was ob-
served at the Oakey Aero rainfall station (Figure 13i) during the period from 4 to 16, ex-
hibiting a phase status from 2018 to 2022 with a 5% significance level. However, from 2007
to 2012, a significant 8 to 16 period showed an anti-phase status and from 2019 to 2022,
with the 8 to 16 period exhibiting a phase status (Figure 13a). Regions with a 5% significant
level were scattered across all plots.
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Figure 13. WTC plot of Rainfall and WQI (Cressbrook). The coherency is shown by colour code
ranging from red (high coherency, value close to 1) to blue (low coherency, value close to 0). Statis-
tically significant periodicity is displayed with black contours indicating a 5% significance level. The
time scale “Year’ is shown in x axis and vertical axis (y axis) presents ‘Period” across seasons in a
year. The twelve rainfall stations are marked with lettering ranging from (a-1).

3.6.3. WTC of Rainfall and WQI (Perseverance Reservoir)

In Figure 14, the WTC is specified for rainfall of twelve stations (a to 1) and the WQI
for Perseverance reservoir. There was a large and significant area in the Haden Post Office
plot (Figure 14f) from 2001 to 2016, with 8 to 16 periods that had combinations of upward
and downward arrows and other regions with 4 to 8 periods from 2017 to 2020. The 5%
significant zones are mostly visible in Oakey Aero (i), Glenaven (d), Tamba (1) and Cooby
Creek (a). In the Oakey aero plot, significant coherence was visible in the periods from 2
to 16 between 2018 to 2022 and from 8 to 16 between 2001 to 2012. When comparing the
overall coherency of rainfall and WQI across all three reservoirs, relatively low coherence
was observed in the case of Perseverance reservoir.
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Figure 14. WTC plot of Rainfall and WQI (Perseverance). The coherency is shown by colour code
ranging from red (high coherency, value close to 1) to blue (low coherency, value close to 0). Statis-
tically significant periodicity is displayed with black contours indicating a 5% significance level. The
time scale “Year’ is shown in x axis and vertical axis (y axis) presents ‘Period” across seasons in a
year. The twelve rainfall stations are marked with lettering ranging from (a-1).

4. Conclusions and Future Works

This study investigated the trend and correlations of rainfall and water quality pa-
rameters using statistical, graphical and mathematical methods. Previously, we estimated
WQI based on five water quality parameters and this study used statistical trend analysis
and applied wavelet transform techniques to demonstrate the pronounced seasonal vari-
ation of those parameters and their associated WQI along with rainfall patterns, with the
intention of illuminating the complex interactions between climatic factors and water
quality dynamics. A thorough exploration of spatial and temporal trends of rainfall and
the potential time—frequency relationship between precipitation and water quality varia-
tions has been presented. The trends of rainfall across four seasons for the period of 22
years (2001-2022) were investigated using MMK and ITA methods. The MMK test was
applied to check if the trend was significant, though the magnitude of the trend was cal-
culated with Sen’s slope estimator. The ITA indicator was calculated to observe whether
the trend was increasing or decreasing. Both methods (MMK and ITA) were also applied
to examine the trend of water quality parameters. In the span of data of 22 years, the MMK
test and ITA provided almost the same results in trend analysis. Moreover, wavelet trans-
formation was used to see the correlation between seasonal rainfall and seasonal WQI.
The major findings of the study can be summarised as follows:

e Asignificant increasing trend of rainfall was observed in two rainfall stations (Cooby

Creek and Moyola) in autumn and the combination of non-significant increasing and

decreasing trends in the other three seasons. The rainfall during autumn increased



Geosciences 2024, 14, 225

24 of 27

by 5.43 mm/yr. The highest value of Sen’s slope was also observed in the autumn,
(7.86 mm/yr) at Mount Kynoch.

e In water quality trends, NHs-N showed increasing trends across four seasons in all
three reservoirs. PO+~ showed a significant decreasing trend in all three reservoirs in
four seasons and was not affecting the trend of WQI. The declining trend of PO4*
levels was a positive indicator of improved water quality in the reservoir. It indicated
improved agricultural practice reducing phosphate runoff and better environmental
regulations aimed at controlling phosphate discharge. The increasing trend of NHs-
N, pH and turbidity affected the overall trend of WQI in Cooby and Cressbrook res-
ervoirs. A slight increasing trend of WQI was observed in the Perseverance reservoir.

e The MMK test provided statistical robustness and identified significant trends in
rainfall and water quality data and ITA offered a detailed graphical representation
highlighting subtle and nonlinear trends that MMK might have overlooked. In the
case of water quality, WQI showed a decreasing trend in the first half of the data
(2001-2012) in Cooby and Cressbrook reservoirs and slight increasing trend in the
second half of the data in Perseverance reservoir. ITA’s visual output was particularly
valuable in illustrating gradual changes and potential breakpoints, complementing
the statistical validation provided by MMK.

o In wavelet transform coherence (WTC) results, a notable correlation was found be-
tween seasonal rainfall and WQI. At Cooby Creek station, a very high coherence was
noticed between rainfall and WQI in 8 to 16 periods ranging from 2002 to 2022. The
regions with a 5% significance level were scattered in all plots. Among the twelve
stations, the higher coherency was visible in Cooby Creek and at the Haden Post Of-
fice rainfall station with WQI of all reservoirs. However, comparatively low coher-
ency was observed amidst rainfall and WQI of Perseverance reservoir. In terms of
water quality trends and correlation analysis, Perseverance reservoir showed a
slightly different scenario. The causes of this difference may include land use prac-
tices, catchment size, different outflow and inflow patterns and the variation in dis-
tribution and intensity of rainfall. This can be thoroughly investigated in future stud-
ies.

A few limitations of this study are worthwhile to mention, MMK relies on more than
30 years of data for optimal outcomes; however, this study utilised 22 years of temporal
data, which may affect the overall results. Yang et al. [72] used 20 years of data to observe
the changes in water quality and to find the effectiveness of water treatment. The previous
studies [32,44] have suggested that both MMK and ITA methods provided reliable results;
however, we only considered the rainfall effects due to the availability of data. Future
research should explore the impact of runoff on water quality fluctuations.

Overall, this study provided a deeper understanding of the impacts of rainfall varia-
bility on water quality fluctuations, capturing both statistically significant changes and
visually apparent patterns that provide a clear picture of environmental dynamics, thus
informing decision making in water resource management and environmental conserva-
tion. Proactive conservation measures and community engagement can be collectively
committed towards long-term sustainability and can ensure equitable access to water re-
sources for present and future generations.
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