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Abstract: This paper suggests a new algorithm for automatic building point cloud filtering based
on the Z coordinate histogram. This operation aims to select the roof class points from the building
point cloud, and the suggested algorithm considers the general case where high trees are associated
with the building roof. The Z coordinate histogram is analyzed in order to divide the building point
cloud into three zones: the surrounding terrain and low vegetation, the facades, and the tree crowns
and/or the roof points. This operation allows the elimination of the first two classes which represent
an obstacle toward distinguishing between the roof and the tree points. The analysis of the normal
vectors, in addition to the change of curvature factor of the roof class leads to recognizing the high tree
crown points. The suggested approach was tested on five datasets with different point densities and
urban typology. Regarding the results’ accuracy quantification, the average values of the correctness,
the completeness, and the quality indices are used. Their values are, respectively, equal to 97.9%,
97.6%, and 95.6%. These results confirm the high efficacy of the suggested approach.

Keywords: LiDAR; classification; modelling; filtering; segmentation

1. Introduction

Light Detection and Ranging (LiDAR) data provide considerable advantages over
other photogrammetric and remote sensing data sources. The data can be acquired at high
speed and density during the day or night, and have automated processing potential and
the possibility of simultaneous georeferenced detection of other supplementary data: laser
intensity, RGB, and infrared images [1]. In addition, the laser scanning technique differs
from other 3D data acquisition sensors such as optical cameras. The heavy demand for
LiDAR data necessitates an increased need for automatic processing tools. Of these tools,
the two main operations are the automatic classification and the automatic modelling of
LiDAR data. In urban areas, a point cloud consists of several classes such as terrain, roads,
buildings, vegetation, and other manmade objects. As each class has its own modelling
demands, it is necessary to separate the city classes before starting the modelling step. In
urban zones, the building class is of particular importance. Once this class is extracted,
two families of modelling approaches are available: model-driven and data-driven [2]. In
this context, the input data of any selected modelling algorithm is a building point cloud
consisting of a set of points mainly covering the roof surfaces, as the scanning is usually
achieved using an airborne vehicle. The building facades will be partially covered with low
point density depending on the building location in comparison to the scanning trajectory
and the orientation of the facade’s planes. In any case, the roof points will be distributed
into scanning lines formed according to the quality of the employed scanning system [3].
Moreover, the building point cloud may contain points covering the surrounded terrain
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in addition to the low and high vegetation that is associated with the building. Other
inconsequential points may be present in the building point cloud such as those that are
due to the objects located near the building and the decoration of the facade. However, the
modelling approaches used for constructing the building model use the hypothesis that the
building point cloud consists of only the roof surfaces (except for the vertical surfaces) [4],
which is why the building cloud points need to be classified into two classes: the roof points
and the nonroof (undesirable) points. In fact, the undesirable points sometimes represent
an obstacle in the modelling algorithms, especially when their percentage exceeds certain
limits. Sometimes they are considered as the main reason for automatic modelling failure
or the source for some deformations in the obtained building model [5].

Automatic filtering of LiDAR building point cloud has become a very hot research
topic. Shao et al. [6] develop a top-down strategy that starts by seed point sets’ detection
with semantic information. Then, the region-growing algorithm is applied to detect the
building roof point cloud. Moreover, for filtering the LiDAR data and extracting the
building class, Wen et al. [7] use Graph Attention Convolution Neural Network (GACNN).
This technique is directly applied to the city point cloud. In another way, Varlik and
Uray [8] prefer to project the LiDAR point cloud firstly onto a 2D plane before employing a
U-net architecture deep-learning network. Alternatively, after detecting the building class,
Hui et al. [9] apply multiscale progressive growth to optimize the obtained result.

Tarsha Kurdi et al. [10] suggested an algorithm for automatic extraction of the roof
point cloud from the building point cloud by analysis of the Z histogram of the building
point cloud. Unfortunately, this algorithm did not consider an important case, which is
the case of high trees associated with the building roof. The importance of this case arises
when the building mask is automatically extracted from the city point cloud by automatic
classification. In this case, a considerable number of buildings will be extracted with their
attached trees [11]. This paper suggests an extension of the filtering approach suggested
by Tarsha Kurdi et al. [10] for considering the case of high trees that occlude the building
roof. The suggested approach starts with the application of the algorithm suggested by
Tarsha Kurdi et al. [10] that detects the combined roof and tree crown point cloud. To
extract the building roof, three criteria are calculated and analyzed: the normal vector,
the standard deviation, and the change of curvature factor. At this stage, the employed
threshold values are automatically determined for each building point cloud independently
(smart thresholds). This procedure increases the filtering success percentage because it
considers the particularity of the point cloud of each building. Finally, the misclassified
points are correctly reclassified by using an image-processing operation.

This paper consists of eight sections. The first section introduces the problem of
the presence of high trees associated with the building roof which may be considered
as a real obstacle in the automatic building-modelling algorithm. Second, similar and
related approaches in the literature are discussed. Third, the approach suggested by
Tarsha Kurdi et al. [10] is summarized. Fourth, the limitation of the previous approach is
highlighted in the case of high trees associated with building roofs. Fifth, the suggested
approach is detailed step by step. Sections 6 and 7 discuss the accuracy and the limitations
of the suggested algorithm. Finally, the conclusion draws a panoramic budget and exposes
future work.

2. Related Work

In LiDAR data, the aim of the building-extraction algorithm is the extraction of
building class from the city point cloud [12]. Unfortunately, the majority of the classification
approaches suggested in the literature cannot perfectly achieve the classification task
because some misclassified points will be present in the classification result, e.g., the
recognition of trees associated with building roofs still represents a challenge, as it is
possible to detect a misclassified vegetation segment within the building class when the
distribution of the vegetation segment points is similar to that of the building roof. That is
why the detected building point cloud needs to be filtered before starting the modelling step.
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In the case of building extraction by separating the off-terrain from the terrain classes,
Demir [13] studied the case of low terrain slopes and detected the off-terrain objects via an
elevation threshold. Thereafter, the nonbuilding objects were cancelled because they have
no planar features. In the same context, modern approaches can use the machine-learning
paradigm as suggested by Maltezos et al. [11]. This algorithm employed a deep-learning
paradigm based on a convolutional neural network model for building detection from
the city point cloud. The successful extraction percentage was about 80%. Moreover, the
classification approach developed by Liu et al. [12] combined the Point Cloud Library (PCL)
region growth segmentation and the histogram. For this purpose, they employed a PCL
region growth algorithm to segment the point cloud and then calculated the normal vector
for each cluster. The histograms of normal vector components were calculated to separate
the building point cloud from the nonbuilding. Despite the classification result in this
approach being better than the former ones, the obtained results still need improvement
and filtering before starting the modelling step.

It is now understood why most of the modelling algorithms include a point cloud
filtering step. Tarsha Kurdi et al. [14] calculated the building Digital Surface Model (DSM)
by eliminating the undesirable points associated with vertical elements such as the building
facade. In fact, DSM is a 2D matrix where the pixel value is equal to the interpolated Z
coordinate of LiDAR points located in this pixel. This procedure cannot always eliminate
all these points, which is why Park et al. [15] eliminate the unnecessary objects by realizing
the cube operator to segment the building point cloud into roof surface patches, including
superstructures, removing the unnecessary objects, detecting the boundaries of buildings
and defining the model key points for building modelling. Zhang et al. [16] and Li et al. [17]
used a region-growing algorithm based on the Triangulated Irregular Network (TIN) or
grid data structures to detect the building roof point clouds.

In order to identify the roof points, some authors used additional data such as the
ground plan [18] or the aerial images [19–21], while many others (Jung and Sohn [22] and
Awrangjeb et al. [23]) considered only the extracted roof point cloud instead of the whole
building point cloud to construct 3D building roof models.

Hu et al. [19] filter the building point cloud through projecting back the building
points on imagery using the Normalized Difference Vegetation Index (NDVI). Then, the
Euclidean clustering is applied to remove vegetation clusters with small areas. In another
approach, the building point cloud is divided into two classes by using machine-learning
techniques [24]. These classes are the roof and the façade classes. For achieving this goal,
the TensorFlow neural network for deep learning is employed. Unfortunately, the result is
not so promising where the classification percentages of the semantic classes are less than
85%. In the context of façade point class recognition, another technique is suggested by
Martin-Jimenez et al. [25]. It suggests the calculation of the normal vector of the building
point cloud. For this purpose, the covariance matrix is calculated for each point and its
eight neighboring points. Then, the calculated normal vector is assigned to the tested point.
This method does not consider the presence of decorative elements in the building facades
in addition to the surrounding terrain point and small vegetation.

At this stage, it is important to note that the building point cloud may be divided into
two main classes, which are roof and nonroof classes. The roof class involves a point set
that is employed by the building construction algorithms, whereas the nonroof class is
a point set of undesirable and useless points for the building modelling algorithms. The
undesirable points represent the surrounding terrain, façade, vegetation, and noise. For
the purposes of this paper, we will use the term undesirable points to describe the nonroof
class, and the procedure of roof points extraction from the building point cloud will be
referred to as filtering.

3. Filtering of Building Point Cloud Which Does Not Contain High Trees

This section summarizes the filtering approach suggested by Tarsha Kurdi et al. [10]
because the suggested algorithm in this paper represents an extension of the previous one.
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Building point clouds can be extracted through the manual or automatic classification of
the city LiDAR point cloud. The approach suggested by Tarsha Kurdi et al. [10] detects
the roof points from the building point cloud based on the analysis of the Z coordinate
histogram. This algorithm supposes that the input building point cloud does not contain
high trees (the same height or higher than the roof). The basic hypothesis adopted is that
the point density of the roof surfaces is considerably greater than the building’s facades.
This algorithm starts by calculating the histogram of the Z coordinate of the building
point cloud (see Figures 1b,e and 2b,e). This histogram consists of a set of consecutive 1m
bins, each bar value representing the number of points within an altitude interval. The
ideal histogram step value is dependent on the altimetry accuracy of the point cloud, the
roof-texture thickness and the inclination of roof surfaces. For more details about the step
value assignment in addition to all technical characteristics and analysis please see Tarsha
Kurdi et al. [10].

Figure 1. (a,d) Building point clouds in Vaihingen and Hermanni datasets; (b,e) histograms of Z
coordinate of building point clouds consecutively of the last two buildings; (c,f) final results of
building point clouds’ filtering; The red dot in (b,e) is the PSTF; “1,2,3” in circles in (b,e) are building
section numbers.

From Figures 1 and 2, the histogram of the Z coordinate of the building point cloud
consists of three sections. Section 1 represents the terrain surrounding the building, low
vegetation, noise, and the lower parts of the façade. Section 2 represents the points spread
on the building façades, and Section 3 represents the roof point cloud. In order to determine
the limits between these three sections, eight rules are adopted as follows:

Rule 1: The leftmost bar of the histogram belongs to the terrain section.
Rule 2: The rightmost bar of the histogram belongs to the building roof section.
Rule 3: Location of PSTF (point separating terrain and façade) (the red dot in Figure 1b).

This point must be located within the four leftmost bars in the histogram. If the number
of terrain points is not negligible (case of a flat terrain), the PSTF will be located after the
bin with a significant population within the first four bars. If there is not a substantial
number of terrain points within the building point cloud (case of significant terrain slope),
the PSTF will be situated beside the fourth bar. In this case, the number of terrain bins
will increase but their populations will drop down. Moreover, the first four bins will be
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considered as terrain bins whereas the other terrain bins will appear in the façade section.
This misclassification is tolerated because it will not affect the final result, which is the
detection of the roof point cloud.

Rule 4: Each bin with a considerable population (given the threshold) after the PSTF
belongs to the roof surface section.

Rule 5: The roof points are presented in the histogram by one- or multi-bins situated
after the PSTF. All bins to the right of the previous roof surface bin belong to the roof.

Rule 6: The bar of the façade section that is immediately located before the roof surface
section may represent roof and façade points together. Therefore, the points belonging to
the upper half of this bar must be added to the roof section.

Rule 7: All undesirable point bars situated after the PSTF have small values (given the
threshold) in comparison to the values of roof surface bars.

Rule 8: In the histogram and after the PSTF, there are some bars with smaller values
than the roof surface bars and greater values than the undesirable point bars (red arrows in
Figure 1b). As these bars do not belong to the undesirable point or to the roof class, they
are described as fuzzy bars. This is why it is necessary to check the presence of small roof
planes amongst the points represented in the fuzzy bars.

Figure 2. (a,d) Building point clouds, respectively, in Toronto and Strasbourg datasets; (b,e) his-
tograms of Z coordinate of building point clouds consecutively of the last two buildings; (c,f) final
results of building point clouds’ filtering; The red dots in (b,e) are the PSTF; “1,2,3” in circles in (b,e)
are building section numbers.

In fact, the idea of fuzzy bars solves the problem of the sensitivity of threshold value
selection. Indeed, the point sets represented by fuzzy bars will be checked for the presence
of roof planes within them. This approach is well-known in remote sensing as applying
fuzzy logic [26]. For more details about this algorithm and the employed threshold values,
see Tarsha Kurdi et al. [10].

This rule list could be written as a pseudocode which clarifies all employed equations,
as follows:
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hi:1 to n = histogram
(

Zpoint cloud

)
hmax = max(hi); PSTF = 0
For i = 1 To 3

If hi − hi+1 > 0.5× hmax Or hi − hi+2 > 0.6× hmaxThen PSTF = i EndIf
Next i
If PSTF = 0 Then PSTF = 4 EndIf
hmrb = max(hi); i = From PSTF To length(hi)
hrb = zeros(n); S = 0; S1 = 0 (S1 is the first roof bar, S is the last roof bar)
For i = PSTF To n

If hi ≥ 1
3 × hmrb Then hrb(i) = hi; s = i

If S1 = 0 Then S1 = i EndIf
ElseIf hi ≤ 0.1× hmrbThen h f bi = hi Else h f uz = hi EndIf

Next i
If S < n Then For i = S To n hrbi = hi Next i EndIf
IfhS1−1 ≤ hmrb

10 Then ZS1−0.5 To S1−1 ∈ hrb EndIf

Where n is the number of bars in the histogram; PSTF: point separating terrain and
façade; hrb: roof bars; hfb: façade bars; hfuz: fuzzy bars.

4. Results of Filtering Algorithm Application

The experiments illustrated in this section not only prove the necessity of improving
the previous filtering algorithm but also underline the differences between the extended
and nonextended filtering algorithms. The algorithm described in the last section was
tested with two sorts of building point cloud samples. The first ones represent building
clouds that do not contain high trees that occlude the roof, whereas the second samples
represent building clouds that contain high trees that occlude the roof. Figures 1 and 2
present the results of the last algorithm application on building clouds without associated
trees and Figure 3 shows the results with attached trees adjacent to the roofs.

In Figures 1 and 2 where the building clouds do not contain trees that occlude the roof,
the algorithm successfully eliminated all undesirable points and saved only the roof points
(see Figures 1c,e and 2c,e). By contrast, in Figure 3 where the building clouds contain trees
that occlude the roof, the algorithm eliminated all undesirable points except for the tree
crowns, and saved the tree crowns in addition to the roof points (see Figure 3c,e,f).

Although the tree crowns are not excluded in the filtering results, the façade points
which represent an obstacle in the building cloud filtering procedure are eliminated. This
shows, in the case of the presence of trees that occlude the roof, a path towards cancelling
the tree points based on the elimination of the vertical element points. At this stage, before
improving the filtering algorithm, two remarks have to be considered:

• The analysis of fuzzy bars in the building point cloud histogram has to be postponed to
the end of the tree point elimination. This choice is supported by the fact that the roof
planes, perhaps presented by fuzzy bars, are low in comparison to the building roof
level and have smaller areas. If these planes were to be extracted before eliminating
the tree points, they may be eliminated during the tree point recognition step.

• The application of the first seven rules on the building point cloud creates a new point
cloud that represents the building roof (without the planes of fuzzy bars) in addition
to the tree crown. This cloud will be named the noisy roof cloud.

At this stage, it is useful to state that the results of extended filtering approach of the
same samples mentioned in Figure 3 will be later illustrated in Figure 10, where the tree
crowns are successfully distinguished thanks to the extended algorithm. The next section
explains the suggested extension of the filtering algorithm.
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Figure 3. Results of filtering algorithm application in case of buildings which contain high trees
that occlude the roof. (a,d,g) The original building point clouds; (b,e,h) histograms of building
point clouds; (c,f,i) noisy roof point clouds; (a–c) building number 4; (d–f) building number 5; (g–i)
building number 6; The red dots in (b,e,h) are the PSTF; “1,2,3” in circles in (b,e,h) are building
section numbers.

5. Extended Filtering Algorithm

This paper suggests an extension of the filtering approach suggested by
Tarsha Kurdi et al. [10] to consider the case of building point cloud containing high trees
that occlude the roof. Figure 4 shows the workflow of the extended algorithm.

The extended algorithm starts by applying the first seven rules of histogram interpre-
tation to the building point cloud (see Section 3). This operation allows the elimination
of the majority of noisy points under the roof level except for the roof planes linked to
the fuzzy bars. The eliminated noisy points represent the façade points, the surrounding
terrain points, the low vegetation points, the high tree stem, and low branch points, and
all other noisy points such as objects located near the building. The obtained point cloud
represents the roof in addition to the associated tree crowns, which is why it is named
the noisy roof point cloud. The next section exposes the calculation of the Neighborhood
Matrix (Nm) of the noisy roof point cloud.
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Figure 4. Workflow of the extended filtering algorithm where σ is the standard deviation of the fitted
plane, ϕ◦ is the angle of the normal vector with the horizontal plane, Ccf is the change of curvature
factor, and Thσ, Thϕ and Thccf are their respective thresholds.

5.1. Selection of Neighbouring Points

To calculate the normal vectors and roof features of the noisy point cloud, the approach
suggested by Dey et al. [27] was adopted. This selection used the dynamic method for
selecting the neighborhood of each point. Consequently, only the necessary minimum
number of neighboring points were considered for each roof point. This leads to minimizing
the error during the estimation of the normal vectors and the roof features values.

The approach suggested by Dey et al. [27] starts by selecting the initial minimum
number of neighboring points by considering the case of a regular distribution of points
where each point has eight neighboring points. To reliably calculate a normal vector to a
plane, the point selection needs an evenly distributed sample of points from the plane. To
ensure the neighborhood is not limited to a single scanning line, the considered point and
its neighborhood are fitted to a 3D line where the standard deviation value represents an
indicator factor reflecting the number of scanning lines that are included in the neighboring
points. If the considered point and its neighborhood belong to more than one scanning
line, the estimated values of the normal vector and the roof features will correctly describe
the point’s geometric position regarding the roof facets. Alternatively, if the considered
point and its neighborhood belong to only one scanning line, the estimated values of the



Remote Sens. 2022, 14, 430 9 of 23

normal vector and the roof features may be inaccurate. In this context, an iteration loop is
employed to increase the number of neighboring points in each iteration until the selected
neighboring points are located on more than one scanning line. For more details about this
algorithm, please see Kumar Dey et al. [27].

The neighborhood is selected using only X and Y coordinates instead of X, Y and
Z. This choice is adopted because the 3D neighborhood selection leads to the detection
of all points situated within a sphere around the considered point, whereas in 2D, the
neighborhood selection allows the detection of all points situated within a vertical cylinder
around the considered point. In the case of a point located on a roof plane, the two selection
options provide almost the same result, but in the case of a point located on a tree, where
the LiDAR points are distributed on the branches and leaves, the neighborhoods differ.
Consequently, this choice helps to increase the difference between the roof and the tree
points when the normal vector and roof features are calculated, as shown in the next section.

The operation described in this section allows us to define a new matrix named the
Neighborhood Matrix (Nm). This matrix is determined from the neighboring points for each
cloud point. This matrix consists of n rows (n is the number of points of noisy roof cloud)
and N columns. The number N represents the maximum possible number of neighboring
points (please see Dey et al. [27]). Furthermore, In the point cloud list, the order of each
point is the point number, e.g., if the point number i has 45 neighboring points, then the
first 45 entries of the row number i will contain the neighboring point numbers, and the
rest of cells of this row will contain zeros. This matrix will be employed for calculating the
normal vector in addition to the roof feature values. Moreover, it will be used later (see
Section 5.4) to recognize the roof points.

Once the Nm is calculated, the normal vectors of the noisy roof cloud can be calculated.

5.2. Calculation of Normal Vectors and Change of Curvature Factor

Once the neighboring points are determined for each LiDAR point through the matrix
Nm, the best plane passing through each point can be fitted and the normal vector then
can be calculated. To achieve this objective, the plane equation will be fitted using the
eigenvectors of the covariance matrix which was employed by Sanchez et al. [28]. In this
paper, three criteria are employed for distinguishing the roof points from the tree ones.
These criteria are the standard deviation (σ) of the fitted plane (in meters), the angle (ϕ◦)
of the normal vector with the horizontal plane and the change of curvature factor (Ccf)
(unitless) which is calculated based on the eigenvalues according to Equation (1) [29].

Cc f =
λ3

λ1 + λ2 + λ3
(1)

where λ1, λ2, λ3 are the eigenvalues in descending order.
Once the target criteria are calculated for all cloud points, the next step is the filtering

of the noisy roof points from the tree ones.

5.3. Filtering of Noisy Roof Point Cloud

In order to recognize the roof points in the noisy roof cloud, the three criteria calculated
in the last section will be implemented. In this context, all points conforming to Equation (2)
are selected.

σi ≤ Thσ and ϕi ≥ Thϕ and Cc f i ≤ Thcc f (2)

where σi, ϕi and Ccf i are, respectively, the standard deviation, the angle (ϕ◦) and the
change of curvature factor of the point number i. Furthermore, Thσ, Thϕ and Thccf are the
assigned thresholds that are used for detecting the roof points. In this context, the employed
threshold values change from one building to other, and a stochastic method is adopted
for calculating the smart threshold values. This method relies on the histogram analysis as
shown in the next section.
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5.4. Calculation of Smart Threshold Values

For noisy roof cloud, Figure 5a,b and Figure 6 represent examples of the histograms of
σ, ϕ◦ and Ccf, respectively. The step values in these histograms are, respectively, equal to
0.2 m, 10◦ and 0.01 (unitless). These values are selected empirically depending on the range
of each parameter and the sensitivity of the parameter variation to the filtering results,
e.g., in Figures 5 and 6, the variation of ϕ◦ values has less influence on the filtering result
than the variation of Ccf parameter, which is why the number of bins of ϕ◦ histogram is
fewer than the number of bins of Ccf histogram. Though the high-quality results shown in
Section 6 demonstrate that the selected values of the three histogram steps are successful,
more investigations are needed to prove their optimal values, which can be applied to
different point densities and urban typologies.

Figure 5. (a,b) Histograms of standard deviation (σ) and the angle (ϕ◦) of normal vector with
horizontal plane of noisy point cloud.

Figure 6. Histogram of change of curvature factor (Ccf) of noisy point cloud.
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In Figure 5a, the longest bar, which is the leftmost bar, represents most of the points
that belong to the roof. Indeed, the majority of roof point neighborhoods (except for the roof
plane boundary points) have similar standard deviations. Moreover, seen in Figure 5a, the
value of roof standard deviation is at a minimum in comparison to the plane boundaries,
tree, and noisy points. In fact, the typical roof points’ neighborhood standard deviation
value is dependent on factors such as cloud altimetry accuracy and roof-texture thickness.
At this stage, it is important to note that some of the points represented by the roof section
of the histogram do not belong to the roof. This is because among the tree points it is
possible to find some points that fit a plane with their neighborhood with minimal standard
deviation. Moreover, some of the roof points such as the roof plane boundary points,
the points of roof details such as chimneys and windows, and roof noise points, may be
present in the other histogram bins. Despite the majority of roof points being represented
by the roof section bins in the histogram, the percentage in these bins differs from one
building to another. Indeed, the variation in texture thickness, the point density, and the
roof complexity play an essential role in determining this percentage. Notwithstanding
this, in all buildings, the majority of roof points will be represented by the roof section of
the standard deviation histogram. Nevertheless, the use of only the standard deviation
criterion is not enough to detect the roof points. Finally, the same analysis can be applied
to the histogram of Ccf presented in Figure 6.

In Figure 5b, knowing that the histogram is oriented from the left to the right, all bars
starting from the longest one to the right end of the histogram represent the majority of
roof points. All remarks in the last paragraph can also be applied to this histogram.

At this stage, there are three remarks that must be made. First, each one of the three
histograms illustrated in Figures 5 and 6 can be divided into two sections: a roof point
section that represents the majority of roof points and a noise section that represents the
majority of noise points. Second, in the roof point sections of the three histograms, the
percentage of roof points is different from one histogram to another. Third, the number of
points presented in the roof sections in the three histograms is not the same.

In order to smartly (automatically) determine the three threshold values employed in
Equation (2), four rules are empirically adopted. Figure 7 illustrates the used algorithm
for automatic calculation of the employed thresholds. The applied rule list could be
summarized as follows:

Rule 1: In the case of the building represented by Figure 5, the most frequent value
of the angle (ϕ◦) according to Figure 5b is 70◦. This value is very big with respect to the
other values in the interval of angle value [−60◦, 90◦]. This is why a tolerance value has to
be added in order to consider the small uncertainties of fitted plane orientations. These
uncertainties normally occur due to the use of a minimum number of neighboring points
for fitting the best plane. Consequently, the threshold Thϕ is shifted to two bins to the left
of the most frequent angle bin.

Rule 2: Rule 1 is applied for the Thσ threshold, except the threshold Thσ is shifted to
only one bar to the right of the most frequent standard deviation bar.

Rule 3: The threshold Thccf is considered to be the most frequent value in the histogram
(Figure 6) without shifting.

Rule 4: The threshold (among the last three) that allows the selection of the maximum
number of points is chosen, and the other two threshold values, are shifted so as to select a
similar number of points using each threshold individually.

The application of this strategy allows the value of thresholds to change from one
building to other (Table 1).

From Table 1, it can be noted that the threshold Thσ value is constant in eight buildings
(Thσ = 0.8 m). In fact, the nine buildings belong to the same point cloud (Vaihingen city)
and have the same urban typology and similar texture. On the other hand, the values
of the thresholds Thϕ and Thccf are related to the architecture complexity level of the roof,
e.g., Building 2 has the most architecturally complex roof. This is why the Thϕ value is the
smallest (30◦) and Thccf value is the largest (0.04).
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Figure 7. Algorithm flowchart for smart calculation of employed thresholds; Thi (Th_Fy, Th_Sd,
Th_Cf) are the used thresholds; εi are last shifts applied on thresholds; ei: are difference of number of
points detected by thresholds before applying the shifts εi.

Table 1. Values of calculated thresholds for the three buildings represented in Figure 3 in addition to
five other buildings from Vaihingen point cloud.

Thϕ (Degree) Thσ (m) Thccf (Unitless)

Building 1 40 0.8 0.01

Building 2 30 0.8 0.04

Building 3 50 0.8 0.02

Building 4 30 0.9 0.03

Building 5 30 0.8 0.02

Building 6 40 0.8 0.02

Building 7 30 0.8 0.01

Building 8 45 0.8 0.02

Building 9 30 0.8 0.02

Once the thresholds values are assigned, Equation (2) is applied for detecting the roof
points. Figure 8a shows the results of the application of this procedure. It may be observed
that all roof points are detected, except for the boundary points and the roof detail points.
To complete the recognition of roof points, the Nm matrix is employed. For each detected
point in Figure 8a, all its neighboring points have to be added to the roof class according to
the matrix Nm. Figure 8b illustrates the result of adding the neighboring points. At this
stage, all remaining points in the noisy point cloud will represent the tree class (red color in
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Figure 8c). Inside the black circles in Figure 8c, some roof points that were misclassified
as vegetation points can be seen. The process for improving this result is detailed in the
next section.

Figure 8. Separation roof points from high tree points. (a) Employment threshold result; (b) adding
neighboring points to the result; (c) building points are in blue and tree points are in red; black circles
refer to misclassified points.

5.5. Improvement of Filtering Results

The filtering algorithm presented previously separates the noisy roof cloud into two
classes, which are the roof class and the noise or vegetation class. In the obtained result
(see Figure 8c), there are some building points classified as noise and vice versa. In this
section, an additional operation will be added to the filtering algorithm for improving the
result. In this context, two normalized Digital Surface Models (nDSM) are calculated [30].
The first one is of the roof class (Figure 9b), whereas the second one is of the noise class
(Figure 9a). The two nDSM models have the same dimensions which correspond to the
dimensions of the whole noisy point cloud nDSM. At this stage, a new matrix is defined that
is named Noisy Cloud 2D Matrix (NC2DM). To calculate this matrix, the noisy point cloud
is superimposed over an empty matrix with the same dimensions as the last nDSM. Each
cell in this matrix will contain a set of points that are located within the cell borders [30].
In fact, NC2DM has special importance because it serves as a link between the nDSM
and the noisy point cloud, e.g., one nonzero pixel in nDSM corresponds to a list of points
(belonging to the noisy point cloud) that are located in this pixel. Consequently, if any pixel
of the roof nDSM is reassigned to the noise class, the list of points located in this pixel will
be extracted from the roof cloud and reassigned to the noise cloud. In this context, the



Remote Sens. 2022, 14, 430 14 of 23

matrix NC2DM offers the possibility of directly recognizing the set of points that is moved
from one class to another.

Figure 9. Visualization of normalized Digital Surface Models (nDSM) before improvement; (a)
vegetation class; (b) roof class.

Starting with the noise nDSM, a region-growing algorithm is applied for segmenting
the noise nDSM. For each segment, if it is entirely located within the roof perimeter then
it is considered as part of the roof, e.g., the segment situated within the white circle in
Figure 9a is located inside the roof perimeter, so it is reassigned to the roof class. Moreover,
a segment with an area smaller than 5 pixels and tangent to the roof is considered as part of
the roof, e.g., the segment within the red circle in Figure 9a is tangent to the roof perimeter
and its area is equal to 1 pixel, so it is reassigned to the roof class. The last two types of
pixels are cancelled from the noise class and reassigned to the roof class. Inversely, the
same operation is applied to the roof class.

Once the improved filtering algorithm is completed, rule 8 (Section 3) is applied to
add the result of fuzzy bars analysis. Figure 10 shows the final results of filtering the three
building point clouds illustrated in Figure 3. In this figure, all trees (in green color) are
recognized, and the building roof (in red color) is detected accurately.

Figure 10. Final filtering results of three building point clouds illustrated in Figure 3; (a) Building 1;
(b) Building 2; (c) Building 3. Green color represents vegetation and red color represents roof.

At this stage, it is important to note that the extended filtering algorithm can be
applied in the case of existing high trees associated with the building as well as in the
case of nonexistent high trees in the building point cloud. The difference between the two
cases is the processing time. Of course, if there are no high trees occluding the roof, the
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application of the original filtering algorithm will be faster because the processing time
consumed by the extended algorithm is greater than the original algorithm. In the next
section, the accuracy of the suggested filtering algorithm will be estimated using the five
point clouds exposed in Section 6.1.

6. Results

Before presenting the results of the suggested approach, it is unavoidable to detail the
used dataset samples. The next section introduces the employed point clouds.

6.1. Datasets

To evaluate the efficiency of the suggested approach, five datasets were used (Her-
manni, Strasbourg, Toronto, Vaihingen and Aitkenvale) (See Figure 11 and Table 2). These
five test sites contain 12, 56, 72, 68 and 28 buildings, respectively. The selected sites repre-
sent different urban typologies, and their point clouds have different point densities. While
some of them contain high trees associated with the building, others are vegetation-free.
This choice is adopted for estimating the reliability of the filtering approach in these two
cases. Table 2 shows the characteristics of the selected point cloud samples such as their
acquisition dates and height, the employed sensor and the point density.

Figure 11. Locations of the study areas: (a) Hermanni; (b) Toronto; (c) Aitkenvale; (d) Vaihingen;
(e) Strasbourg.
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Table 2. Tested datasets.

Hermanni Strasbourg Toronto Vaihingen Aitkenvale
Acquisition June 2002 September 2004 February 2009 August 2008 –

Sensor TopoEye TopScan (Optech
ALTM 1225)

Optech
ALTM-ORION M

Leica Geosystems
(Leica ALS50) –

Point density
(point/m2) 7–9 1.3 6 4–6.7 29–40

Flight height
(m) 200 1440 650 500 >100

The Hermanni dataset represents a housing area in Helsinki city, where multistorey
buildings are enclosed by trees. This data belongs to the building extraction project of
EuroSDR [31].

The Strasbourg point cloud in France represents Victory boulevard. This sample
has special importance because it has a low point density and it represents several urban
typologies. Toronto point cloud [32] in Canada, contains both low and high-storey buildings
with significant architectural variety.

The fourth dataset is selected in Germany, in Vaihingen city [32]. The scanned area
covers small detached houses within a zone rich in vegetation. The trees associated with
buildings represent a high variation of quality and volume. The last dataset is of Aitkenvale
in Queensland, Australia [33]. It contains 28 buildings with a high point density (29–40
point/m2). It covers an area of 214 m × 159 m and it contains residential buildings and tree
coverage that partially covers buildings. In terms of topography, it is a flat area.

6.2. Accuracy Estimation

To estimate the accuracy of the extended filtering algorithm, the roof point clouds of the
chosen building samples were manually extracted (point per point), since manual extraction
is supposed to be more accurate than automatic extraction [1], and then considered as
the reference.

Figure 12 compares the number of points between the building point clouds, the refer-
ence roof clouds, and the filtered roof clouds of the Vaihingen dataset. The first 51 buildings
have trees associated with the roofs and the last 17 buildings are high-vegetation-free. It can
be seen that the filtering algorithm performs the task of recognizing high trees associated
with the roofs well. Consequently, the results in the case of high-tree-occluded buildings
are comparable to the case of high-tree-free buildings. Indeed, the number of points of the
filtered roof clouds is similar to that of the reference models.

Figure 12. Comparison between number of points of building point clouds, reference roof clouds
and filtered roof clouds of Vaihingen dataset; the first 51 buildings have trees associated with roofs
and the last 17 buildings have no trees associated with roofs.



Remote Sens. 2022, 14, 430 17 of 23

In the context of error estimation, the confusion matrix is used for calculating the cor-
rectness (Corr), the completeness (Comp), and the quality indices (Q) (Equations (3)–(5) [1]):

Comp =
TP

TP + FN
(3)

Corr =
TP

TP + FP
(4)

Q = Corr × Comp (5)

where TP (true positive) means the common points of both reference and detected roof, FN
(false negative) means the points of the reference not found in the detected roof and FP
(false positive) means the points of the detected roof not found in the reference.

Table 3 shows the correctness, completeness and quality indices for the five datasets
used. It can be noted that the undesirable point proportion in the building point cloud is
considerable (average = 26.7%). The high accuracy of the suggested filtering algorithm can
be observed from the values of the correctness and completeness indices that were almost
always greater than 95%.

Table 3. Average values of three datasets’ filtering accuracy elements.

Dataset Number of
Buildings

Number of
Points

Undesirable
Points

(%)

Corr
(%) Comp (%) Q

(%)

Average Values

Hermanni 12 7380 13.37 99.69 99.76 99.45

Strasbourg 56 1433 18.05 98.44 95.63 94.24

Toronto 72 14,700 23.25 98.56 95.57 94.23

Vaihingen 68 2542 41.65 94.85 98.39 93.37

Aitkenvale 28 9822 37.1 98.1 98.75 96.93

Average 7175 26.7 97.9 97.6 95.6
Corr: Correctness; Comp: Completeness; Q: Quality.

The quality value for the Toronto data (94.23%) is smaller in comparison to the Her-
manni data (99.45%). In fact, as mentioned in Section 6.1, the Toronto data represents tall
buildings with a wide variety of rooftop and façade structures and textures, e.g., in the
building illustrated in Figure 13a–c, a set of high-density points are detected inside the
building (see the red arrow in Figure 13a). These points are perhaps due to the quality of
the façade texture on that level. On one hand, as these points fit a plane and have a high
density, they are detected by the filtering algorithm. On the other hand, these points were
confusing for the operator who achieved the filtering manually because it is unusual to find
this quantity of points inside a building. To summarize, the cascading flat roof property
and texture variety in the data for Toronto play a major role in this result, and it is possible
that the quality value may be underestimated in this case.

From another viewpoint, the quality evaluation of Vaihingen, Toronto, Strasbourg,
and Aitkenvale filtering results are all smaller also than that of Hermanni dataset. Indeed,
the developed algorithm suffers from three limitations that decrease the accuracy of the
final filtering results. These limitations are:

• In the case of high buildings with a high point density, the small roof planes that are
not located in the main roof level may not be detected.

• In the case of buildings that consist of several masses with different heights, the
portions of façade points with the same altitudes of the low roof planes will not be
cancelled.

• Some of high tree points will not be eliminated.
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Figure 13. (a) Building point cloud in Toronto dataset; (b) histogram of Z coordinate of building
point cloud; (c) final result of building point cloud filtering; the red dot in (b) is PSTF; the blue arrow
in (c) façade points that are saved; the red arrow in (c) the missed small and low plane; “1,2,3” in
circles in (b) are building section numbers.

On one hand, these limitations may adequately explain why the FN values are slightly
greater than zero. On the other hand, the higher FN values may be due to the accuracy of
the manual extraction of the reference roof clouds. Indeed, in the manual extraction, the
presence of confusing points attached to the transparent surfaces of buildings sometimes
makes the operator unsure of the proper classification. Regarding the importance of the
last three points, they will be detailed in Section 7.

However, despite the difference in the typology, the point density and the undesirable
point percentage in these five point-clouds, the excellent results show the capacity of the
suggested filtering algorithm to process the majority of building and point cloud qualities.

7. Discussion

In this section, four ideas are discussed which are the accuracy discussion, accu-
racy comparison between the suggested approach and similar ones, comparison with
deep-learning-based methods and the ablation study applied on a building point cloud
containing high trees.

7.1. Filtering Accuracy Discussion

Concerning the algorithm limitations, if the roof area is large and the point density
is high, the threshold of the number of the façade points according to Rule 6 (Section 3)
will have a considerable relative size (10% of the greatest roof bar), e.g., if a flat roof
area = 500 m2 and the mean point density = 6 points/m2, the threshold of the number of
the façade points according to Rule 6 =300 points. Consequently, the detection probability
of a small and low roof plane (for example: area = 5 m2 and the number of points = 30
points) will be low because the number of the plane points in addition to the façade points
belonging to the same bar may be smaller than the selected threshold. In the same context,
when the building is high, this probability will decrease more because the point density of
the roof surface will be greater than the mean point density. Figure 13c shows that one low
and small roof plane is missed by the filtering algorithm (the red arrow points to a missed
roof plane).

The second case of probable filtering error is when the building consists of several
masses of differing heights. The portions of façade points that have the same altitudes of
the lower roof planes will not be cancelled (blue arrows in Figure 13c). Indeed, the saved
façade points in this case may belong to the same bins of the lower roof planes.

In the case of trees associated with roofs, despite the suggested algorithm’s ability
to recognize the majority of tree points, some tree points with the same characteristics of
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roof points (σ, ϕ and Ccf) may not be eliminated (see blue arrow in Figure 10b). In fact, the
percentage of these points in all tested buildings, in comparison to the number of the tree
points, was negligible (less than 1%), which is why their influence on the modelling step
was neglected.

Another limitation of the suggested algorithm is that it was tested only on the Lidar
point clouds. Therefore, more tests are required in the future for other point cloud types
such as the photogrammetric point clouds from oblique areal imaging, oblique scanners or
from Unmanned Aerial Vehicle (UAV) imagery.

In conclusion, despite the last limitations not being common, the algorithm could
be improved by considering them. Although the suggested filtering algorithm has the
previous limitations, it always conserves the main roof planes and eliminates the majority
of undesirable points (Q = 95.6%). The testing results on a great number of buildings,
illustrated in Figure 12, shows the proficiency of the suggested approach, where the
successful filtering rate is equal to 98% despite the variation in typology and point density
of selected samples.

7.2. Accuracy Comparison

In the literature, the building point cloud filtering procedure is applied in two contexts.
First, in the context of automatic classification of a point cloud when the classification
approach aims to detect the building point clouds, the filtering operation is applied on
the building mask to improve its quality [9,11]. Second, in the building modelling algo-
rithm, the filtering operation is applied to the building point cloud before starting the
construction of the building model. Hence, the filtering algorithm aims to eliminate the
undesirable points before starting the modelling step [34–36]. In the two last cases, the
filtering algorithm is merged with the classification or modelling approaches. This is why
it is rare to find independent accuracy estimations of a filtering algorithm in the literature.
Despite this, the influence of the employed filtering operation will appear in the quality
of the final product (building mask or building model). This is why the accuracy of the
suggested approach is compared with the accuracy of the approaches [7,9,11,34–36] in the
context of comparing the efficacity of the suggested approach with other similar approaches
suggested in the literature

To clarify how this comparison can be achieved, let us take this example. First, the
result of an urban point cloud classification is a building mask named m1. According to
the classification accuracy, a certain amount of nonbuilding points and noisy points may
be present in this mask. Second, a region-growing algorithm is applied to this mask to
detect each building independently and is then filtered by the suggested algorithm in this
paper. This procedure allows for generating a filtered building mask named m2. Third, a
2D outlines modelling algorithm is applied to m1, which produces a new model named m3.
Finally, the three calculated masks can be compared with a reference model to estimate their
accuracy through the confusion matrix. If the deformations generated by the modelling
algorithm in m3 are neglected, a comparison between the last three models’ accuracies can
be achieved, to judge which model is more faithful to the reference model.

According to Griffiths and Boehm [37], the high trees associated with the building roof
are considered the main source of incorrect results among the several LiDAR data proce-
dures such as automatic building extraction using convolutional neural networks [7,11] and
building outlines’ modelling [34–36]. In this context, it is useful to compare the accuracy of
the suggested approach with the accuracy of six previous studies (Table 4).

At this stage, it is more appropriate to compare algorithms as they perform on com-
mon datasets. This is why all selected approaches in Table 4 employ the Vaihingen
dataset (Table 2) provided by the ISPRS (International Society for Photogrammetry and
Remote Sensing).

From Table 4, it can be noticed that correctness and the quality factors in the suggested
approach (97.9% and 95.6%) are considerably greater than the other six approaches, where
the maximum values are equal to 96.8% and 93.2% in Zhao et al. [36]. These two measures
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consider the FP value (the points of the detected roof not found in the reference) which
represent, in this case, the high trees occluding to the roofs. The completeness factor
does not consider the FP value, which is why the values of completeness of the previous
approaches (99.4% in Widyaningrum et al. [35]) are sometimes greater than the same
measure in the suggested approach (97.6%). From this comparison, the importance of
elimination of the high trees associated with the roofs can be deduced.

Table 4. Accuracy comparison of suggested approach with previous studies.

Corr (%) Comp (%) Q (%)

Maltezos et al. [11] 85.3 93.8 80.8

Widyaningrum et al. [35] 90.1 99.4 89.6

Huang et al. [34] 96.8 96.2 93.2

Zhao et al. [36] 91.0 95.0 86.8

Hui et al. [9] 91.61 93.61 85.74

Wen et al. [7] 95.1 91.2 86.7

Suggested approach 97.9 97.6 95.6

It is important to note that the accuracy of the classification approaches which use the
convolutional neural networks [7,11] is lower than the accuracy of the suggested approach
(Table 4) when applied to the same Vaihingen dataset. This fact emphasizes the necessity
of recognition and elimination of the high trees associated with building roofs which
sometimes play the main role of accuracy dropping in the classification algorithms.

Finally, it is important to remember that the approach suggested by Tarsha Kurdi et al. [10]
did not consider the case of tree presence that is associated with the building roof, which is
why it gives the erroneous result shown in Figure 3, when there are trees attached to the
building roof.

7.3. Comparison with Deep-Learning-Based Methods

At this stage, a specific comparison with deep-learning-based methods can clarify the
importance of the suggested approach, which is a rule-based approach. One deep-learning-
based approach consists of three main steps: training, validation, and testing [11]. The
training operation permits calculating the architecture deep-learning network parameters
that allow for classifying the labelled input point cloud. For this purpose, the employed
labelled point cloud is divided into training and validation data. The same network with
the calculated parameters will be applied to the validation point cloud. Once the learn-
ing parameters are validated, they can be used for testing other datasets. Otherwise, the
rule-based filtering method is based on the physical behavior of the point cloud [38], and
consists of a list of operations connected through a suggested workflow network. On one
hand, the application of the deep-learning-based approach to LiDAR data envisages three
issues, which are the input feature selection, the training- and validation-data labelling,
and overfitting. On the other hand, its advantages regarding rule-based approaches are the
possibility of simultaneous application in different types of land, no need for parameter ad-
justment, and fast performance for high-volume data [38]. In fact, the suggested rule-based
approach does not suffer from the issues presented in deep-learning-based approaches.
Furthermore, the parameter adjustment problem is minimized by using the idea of fuzzy
bars among the Z-coordinate histogram analysis (see Section 3) and the employment of
smart thresholds (see Section 5.4). Finally, in order to be fair, the deep-learning-based
approaches for LiDAR data filtering nowadays represent a hot research topic that can profit
from all available rule-based approaches to recognize the efficient input features.
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7.4. Ablation Study

To show the contributions of the improved modules, an ablation study is applied to
the building point cloud shown in Figure 10a. As shown in Table 5, the total building
point cloud contains 2936 points and consists of three classes: roof, tree and undesirable
points. The filtering algorithm before the extension eliminates only the undesirable points
(433 points). Thereafter, for removing the high tree crown points, the employment of three
features together (ϕ◦, σ and ccf ) with the smart thresholds enable recognizing the roof
points accurately. Consequently, the results illustrated in Figure 5 underline the necessity
of the extension achieved on the original filtering algorithm.

Table 5. Number of points detected in each step of suggested algorithm.

Total
Build Z_His ϕ◦ σ ccf ϕ◦+ σ + ccf Nm Imp Fuz Roof Tree Und

2936 2503 1456 1329 1368 1065 597 14 55 1727 776 433

Total Build: Building point cloud; Z_his: Z histogram analysis; Nm: neighborhood matrix; Imp: improvement of
filtering algorithm; Fuz: fuzzy bars analysis; Und: undesirable points; +: and.

8. Conclusions and Perspective

This paper suggested a new approach to automatic building point cloud filtering for
detecting the roof point cloud. This algorithm is important as the majority of building-
modelling algorithms try to construct the building models by focusing on the building roof
point cloud. Indeed, eliminating the undesirable points from the building point cloud helps
to improve the quality of the constructed building model and increases the probability of
success of the modelling algorithm, especially when the quantity of the undesirable points
is considerable. In this context, the suggested approach considers the general case when
there are trees occluding the building roof. Although the suggested algorithm suffers from
some limitations that may slightly reduce the accuracy of some results, the expounded
filtering algorithm conserves the building’s main roof cloud and eliminates most of the
undesirable points. Nevertheless, more investigations are envisaged in the future to make
allowance for the limitation cases. Although this algorithm was tested using five datasets
with different typologies and point densities, it still needs to be tested and extended in
future research to include other point cloud types, such as photogrammetric point clouds
from oblique areal imaging or from Unmanned Aerial Vehicle (UAV) imagery.
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