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Abstract
Binary double stars are those whose binding energies are less than zero. Obtain-
ing binary star orbits from short arcs has been a long-standing problem in astro-
physics. A method is presented and tested here, which addresses the problem by
using space-based astrometry, photometry, and astrophysical data, together with
historic measures, to generate and constrain a range of possible first-order Grade
5 orbits. After testing the method on an established binary star, we apply the
method to eight double stars from the first published catalog of southern double
stars, that of Dunlop (1829) and generate orbits for five. The mean orbital period
is ∼81,000 years, and the mean semi-major axis is ∼76′′ with a typical uncer-
tainty of the Orbital Elements of ∼37%. Their Orbital Elements and associated
plots are also presented.
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1 INTRODUCTION

The uniqueness of two stars in abnormal astrometric prox-
imity has been the subject of study for over 200 years
and was a major area of astrophysical study from the late
18th to the early 20th centuries. The earliest measure of a
double star in the United States Naval Observatory’s The
Washington Double Star Catalog (WDS, Mason et al. 2001)
is 𝜇Draconis (STFA 35), which was first measured in 1690.
Now over 154,000 double stars are cataloged in the WDS.
Of these, computed orbits are available for just over 3300 in
the Sixth Catalog of Orbits of Visual Binary Stars (Matson
et al. 2020). The study of orbits of binary star systems
incorporating the physical laws of Newton and Kepler is

the fundamental method of determining the mass of stars.
The accuracy of the Orbital Elements, and subsequent
physical properties of the stars, depends on the preci-
sion of the astrometric measures and the computational
methodology.

Increasingly precise astrometry is now available from
space-based missions such as HIPPARCOS (Perryman
et al. 1997) and Gaia DR2 (Gaia Collaboration et al. 2018),
not withstanding that observational constraints in the
Gaia instrument have resulted in a scarcity of double star
measures (position angle [PA] 𝜃, and separation 𝜌) for
close pairs separated by less than ∼2′′. The Epochs of the
HIPPARCOS and Gaia DR2 missions are similar (1991.25
and 2015.5 respectively) and therefore, for pairs that have
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T A B L E 1 Statistics of the Sixth Catalog of Orbits of Visual
Binary Stars

Grade Number Pyears
mean Pyears

median
a′′mean a′′

median

1 89 17.3 11.4 18.72 0.33

2 374 48.0 27.7 8.52 0.25

3 697 106.7 69.4 6.62 0.26

4 988 483.5 218.2 4.57 0.55

5 660 18,244 484.2 813.41 1.57

long periods, it is still imperative that historic measures
of lower precision, and which may extend over 200 years,
are used to better define the orbit (White et al. 2018). Ulti-
mately this work will advance through future missions
with micro-arcsecond precision.

The Sixth Catalog of Orbits of Visual Binary Stars is
divided into five Grades based on the accuracy of the orbits,
where Grade 1 orbits are those with “well-distributed
coverage exceeding one revolution” and Grade 5 orbits
are those where “the [orbital] elements may not even
be approximately correct” and the observed arc is short
with little curvature (Hartkopf et al. 2001). Grades 6–9
are reserved for pairs with incomplete elements or lacking
measures of relative astrometry. Therefore, they cannot be
evaluated with conventional residual analysis.

Table 1 gives a statistical breakdown of the Sixth Cata-
log of Orbits of Visual Binary Stars. A superficial examina-
tion of the orbits in Grades 1–5 shows clearly the selection
effects resulting from the observational precision and com-
putational techniques. For example, the Grade 1 orbits
are for pairs that have short periods (mean and median
orbital period of 17.3 and 11.4 years, respectively, where
the longest Grade 1 orbit is ∼88.4 years) and the orbit is
observed over one or more complete orbits. Such pairs
have statistically smaller physical separation (mean and
median semi-major axis of 18.72′′ and 0.33′′, respectively).
These close binary star orbits are characteristically the
physical size of a planetary system. Even Grade 5 orbits
have a median semi-major axis of only ∼1.57′′. Hence
all physical parameters determined from the Orbital Ele-
ments in the Sixth Catalog of Orbits of Visual Binary Stars
are statistically biased to binaries in close orbits.

Distinguishing between optical and binary doubles
has important ramifications for many aspects of astro-
physics. This is especially the case for stellar formation
models by contributing to multiplicity statistics (Guinan
et al. 2007), the potential to distinguish between the
mainstream-accepted Weakly Interacting Massive Parti-
cles based hypothesis of dark matter, and in Modified
Newtonian Dynamics (Chanamé & Gould 2004; Longhi-
tano & Binggeli 2010; Németh et al. 2016). The first
successful estimation of the Orbital Elements of an

assumed binary star was carried out by Félix Savary
(Savary 1827a, 1827b). Since then numerous methods have
been devised (Aitken 1964; Heintz 1978; See 1896).

The problem of estimating the Orbital Elements of
wide binaries (with angular separation 𝜌 > 2′′) with few
measures has resulted in numerous computational meth-
ods (see Docobo et al. 2018). For example, there is the
so-called “Kovole” method (Ćatović & Olević 1992, 1995;
Olević & Cvetković 2004, 2005), which is a modified form
of the analytical Kowalski method. The Kowalski method
derives five of the seven Orbital Elements from the con-
stants of the Cartesian form of the general equation for the
apparent relative ellipse (Belorizky 1949; Glasenapp 1889;
Kowalski 1873; Smart 1930), and forms a part of the
method presented in this paper (Section 3.2). Another is a
modified form of the “Thiele-Innes-Van-den-Bos” method
(Docobo 1985, 2012; Docobo et al. 2018; van den Bos 1926).
However, to our knowledge, no method to date has suc-
cessfully addressed the particular case of a very short arc.

This paper proposes a computational method utiliz-
ing the convergence of randomized fits (not a once off
analytical method), which is now possible because of the
availability of computing power for the determination of
orbits of binary pairs in longer orbits: those that display
short arcs in orbital plots.

Such work has been suggested to be of little value by
van den Bos 1962, Worley 1990 and Dommanget 1995,
who each published articles with the provocative title “Is
this orbit really necessary?” The three authors criticized
the publication of orbits that were unreliable because they
were based on too few observations over too short an arc,
or deemed useless because the quality of such recalculated
orbits rarely increases with successive attempts. This paper
is to show that improved first-order estimates of orbits
can be now obtained using the new method coupled with
space-based astrometry and photometry.

The aim of this paper is fourfold. (a) To offer an
objective method of detecting binary double stars using
space-based astrometric and astrophysical data from Gaia
DR2; (b) to dispense with the traditional intellectual driver
associated with orbits, which is to determine stellar mass;
(c) to present a technique of determining first-order orbits
of binary stars with short arcs using data from Gaia DR2
and HIPPARCOS (via All-sky Compiled Catalog of 2.5 mil-
lion stars; ASCC, Kharchenko 2001); and (d) to apply these
aims to a subset of wide double stars.

The subset chosen for illustration of the technique is
taken from the first published catalog of southern dou-
ble stars by Dunlop (1829), this is referred to here and
elsewhere as the Dunlop Catalog. A previous paper by
the authors (Letchford et al. 2022) describes and analy-
ses the Dunlop Catalog and gives ASCC and Gaia DR2
source identifiers where available. For our subset used
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here, all pairs from the Dunlop Catalog must have an entry
(and therefore historic measures) in the WDS (Mason
et al. 2001), and the primary and secondary must both have
ASCC and Gaia DR2 source identifiers. In total, 182 wide
doubles from the original Dunlop Catalog satisfy this crite-
rion. We define this subset of the original Dunlop Catalog
as the Working Dunlop Catalog.

Previous work (Letchford et al. 2018, 2019) has pre-
sented material on the orbital motion of binary double
stars. Here, we refine that work, and in Section 2 we select
a sample of eight pairs from the Working Dunlop Catalog
that satisfy the definition of a binary system. Section 3 gives
a proposed new technique for determining the Orbital Ele-
ments of binary double stars, and tests the method against
a set of Orbital Elements from the Sixth Catalog of Orbits
of Visual Binary Stars. Section 4 presents and discusses the
results of applying the technique to the eight double stars
from Section 2.

2 METHOD: DETECTING VISUAL
BINARY DOUBLE STARS

By definition, binary double stars are pairs of stars
whose binding energy (Ebinding) is less than zero (Aarseth
et al. 2008; Benacquista 2012; Kouwenhoven et al. 2010;
Wiley & Rica 2015). Conversely, any double star with a
binding energy greater than zero is an optical double star.
The binding energy of two stars is represented by the
following equation:

Ebinding =
1
2

mAmB

mA +mB
v2 − Gm1m2

D
(1)

where Ebinding is in m⊙

(
km s−1)2; mA and mB are the

masses of the primary and secondary in solar masses (m⊙);
v is the galactic space speed difference between the two
stars in km s−1; D is their physical separation, in parsec
(pc); and G is the gravitational constant (4.30091× 10−3

pc
(
km s−1)2∕M⊙).
Reasonable estimates of the stellar masses can be

obtained via luminosity data from Gaia DR2 and using
the following relationship between individual luminosity
(L in solar units) and individual mass (m in solar masses)
as given by Duric (2004):

m =

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

(
L

0.23

)1∕2.3
, if m < 0.43

L1∕4
, if 0.43 < m < 2

(
L

1.4

)1∕3.5
, if 2 < m < 55

L
32,000

, if m > 55

(2)

To calculate D, the physical separation of the components
in pc, the cosine rule is invoked:

D =
√

D2
A + D2

B − 2DADB cos(𝜌∕3,600) (3)

where D is the separation distance of the two stars in pc; DA
is the distance from the Sun to the primary in pc, obtained
from parallax measures; DB is the distance from the Sun
to the secondary in pc, and 𝜌 is the apparent separation in
arcseconds (′′).

To calculate the speed of each component (v1 and
v2), the method of Johnson & Soderblom (1987) will be
followed, except that the J2000 transformation matrix
(T, Equation (5)) to galactic coordinates is taken from the
introduction to the HIPPARCOS catalog (Perryman 1997),
and the method tested by first applying it to the pair 𝛼 Cen
AB,C, making sure that the results obtained were the same
as those in Kervella et al. (2017), in their Table B.1. The
galactic space velocity components (U,V ,W) are then:

⎡
⎢
⎢
⎢
⎣

U
V
W

⎤
⎥
⎥
⎥
⎦

= (T.A).
⎡
⎢
⎢
⎢
⎣

RV
k.pmRA∕Plx
k.pmDE∕Plx

⎤
⎥
⎥
⎥
⎦

(4)

where:

T =
⎡
⎢
⎢
⎢
⎣

−0.0548755604 +0.4941094279 −0.8676661490
−0.8734370902 −0.4448296300 −0.1980763734
−0.4838350155 +0.7469822445 +0.4559837762

⎤
⎥
⎥
⎥
⎦

(5)

A =
⎡
⎢
⎢
⎢
⎣

+cosRA.cosDE −sinRA −cosRA.sinDE
+sinRA.cosDE +cosRA −sinRA.sinDE

+sinDE 0 +cosDE

⎤
⎥
⎥
⎥
⎦

(6)

and RV is the radial velocity of the star in km s−1; pmRA
is the proper motion in RA in mas year−1; pmDE is the
proper motion in DE in mas year−1; Plx is the paral-
lax in mas; and the constant k = 4.74057 km s−1 is the
speed in km s−1 required to travel 1 AU in one tropical
year.

So the difference in the velocity magnitude (v, speed)
between the primary and secondary is:

v =
√(

U2
1 − U2

2
)2 +

(
V 2

1 − V 2
2
)2 +

(
W2

1 −W2
2
)2 (7)

Of the 182 double stars in the Working Dunlop Cat-
alog only 40 had sufficient Gaia DR2 data to allow the
calculation of binding energies (Table 2).
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T A B L E 2 Catalog numbers from the Dunlop Catalog for
the 40 double stars for which binding energies Ebinding could be
calculated

Nos. Ebinding < 0 Nos. Ebinding > 0

2 in total 38 in total

38, 55 2, 4, 5, 23, 26, 27, 28, 29, 40, 41, 52,

57, 73, 77, 79, 80, 114, 116, 118, 146,

155, 175, 176, 178, 184, 186, 200, 215,

225, 232, 236, 238, 241, 242, 245, 246,

248, 250

The formal uncertainties in Ebinding will be large due to
the compounding uncertainties in the observable param-
eters, especially from the uncertainties in stellar masses
from Equation (2). Here we are assured that numbers 38
and 55 are binary systems as they have Ebinding < 0. We
include in our list of probable binaries numbers 5, 80, 116,
232, 242, and 245, which have binding energies <1 (thus
allowing for some uncertainties in Ebinding), and observ-
ables consistent with a binary system (see next paragraph).
Number 5 (DUN 5) has a Grade 5 orbit in the Sixth Catalog
of Orbits of Visual Binary Stars and clearly shows orbital
motion (see Appendix).

The approximate binding energies (Ebinding), physical
separations (D, column 4) in pc, and the proper motions
of the eight double stars (columns 5 and 6, where pmRAA
and pmDEA are the proper motions in right ascension and
declination for the primary, respectively, and similarly for
the secondary, B), are presented in Table 3. Column 1 (No.)
is the catalog number of the double star from the Dun-
lop Catalog. Column 2 contains the WDS system identifier,
underneath which is the Discoverer code of the particu-
lar double star (from the WDS). All physical separations
are less than 1 pc (Dommanget 1967 and Sinachopou-
los 1991 had a separation limit of 0.01 pc, recently others
have demonstrated a limit approaching 1 pc, Longhitano
& Binggeli 2010, others to the galactic tidal limit of ∼1.7
pc for solar type stars, Halbwachs et al. 2012; Moeckel &
Bate 2010), and each of the eight also exhibit a common
proper motion (following Hartkopf et al. 2013), justifying
their inclusion as possible binary double stars.

3 METHOD: ORBITAL MOTION

We present here a computationally-based method of deter-
mining orbits that are defined by short arcs. High preci-
sion astrometric measures are utilized as historic measures
of less accuracy. Stellar mass data are incorporated and
physical constraints are applied. Multiple random orbits

are generated and compared with modern and historic
measures, and the fit to the measures is optimized to define
the orbit and its uncertainties.

The problem with dealing with short arcs is that the
range of possible ellipses can be considerable with large
associated uncertainties. This difficulty is overcome by
introducing as many constraints on the solutions as possi-
ble.

If the double star is a binary star (the primary and
secondary are gravitationally bound), the following corol-
laries must hold true:

1. The primary position must always be within any appar-
ent orbit of the secondary.

2. The orbit of the secondary must cross the meridian line
through the primary twice: only once to the north of
the primary, and only once to the south of the primary.

3. Similarly, the orbit of the secondary must cross a line
parallel to the equator and passing through the primary
twice: only once to the east of the primary, and only
once to the west of the primary.

By convention, binary orbit calculations are conducted
in Cartesian coordinates, where the primary is fixed at
the origin. Our method incorporates the Kowalski method
(Section 1), which uses the Cartesian form of the apparent
relative ellipse, that is, the ellipse formed on the celes-
tial sphere of a secondary orbiting a fixed primary. The
apparent relative orbit of a binary star will fit the following
general form of the Cartesian equation of an ellipse:

Ax2
i + 2Hxiyi + By2

i + 2Gxi + 2Fyi + 1 = 0 (8)

where A,H,B,G, and F are constants, and xi and yi are the
Cartesian coordinates of the secondary at times ti, given
that the primary is fixed at the origin.

At least five positions on the Cartesian plane (i ≥ 5) are
needed to fit an ellipse to Equation (1). The normal proce-
dure, where at least half of the orbit has been measured,
is to convert the historic polar measures to Cartesian coor-
dinates and fit a first ellipse to them using either ordinary
least squares (OLS), or better, total least squares (TLS). The
historic measures can be weighted before fitting (Mason
et al. 1999). In the present case, a least squares approach
to the historic data will not yield a suitable first ellipse
because we consider the cases where much less than half
an orbit has been measured. The five or more fitting points
must initially be found by another method.

Four of those points can be supplied by positions
described in corollaries 2 and 3, above. Two more posi-
tions can be supplied by HIPPARCOS (via ASCC) and Gaia
DR2 (Gaia Collaboration et al. 2018) at t = 1991.25 and
2015.5 (both at Equinox 2000.0), respectively. In this paper,
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LETCHFORD et al. 5 of 13

T A B L E 3 Table of the approximate binding energies (Ebinding), physical separations (D) in parsec (pc), and the proper motions of the
eight double stars, whose binding energies <1, physical separation <1+ 1σ, and whose common proper motions (CPM) are consistent with
binarity

CPM, mas year−1

pmRAA pmRAB

Nos. WDS discoverer code Ebinding M⊙

(
km s−1)2 D, pc pmDEA pmDEB

5 01398-5612 ∼ +0.55 0.005 ± 0.005 +262.378 ± 0.081 +309.102 ± 0.080

DUN 5 +15.333 ± 0.072 +10.686 ± 0.065

38 07040-4337 ∼ −2.2 0.002 ± 0.023 −105.060 ± 0.146 −101.764 ± 0.043

DUN 38AB +389.550 ± 0.162 +382.276 ± 0.047

55 07442-5027 ∼ −0.43 0.009 ± 0.035 −114.435 ± 0.047 −111.783 ± 0.060

DUN 55AB +143.459 ± 0.042 +142.603 ± 0.053

80 09450-4929 ∼ +0.14 0.39 ± 0.18 −21.344 ± 0.071 −23.581 ± 0.066

DUN 80AB +98.409 ± 0.062 +97.158 ± 0.066

116 11567-3216 ∼ +0.26 0.016 ± 0.077 −171.610 ± 0.072 −178.910 ± 0.073

DUN 116AB −8.250 ± 0.042 −6.668 ± 0.039

232 20417-7521 ∼ +0.47 0.059 ± 0.071 +156.596 ± 0.039 +163.555 ± 0.048

DUN 232 −162.079 ± 0.045 −171.231 ± 0.050

242 22397-2820 ∼ +0.17 0.36 ± 0.84 +96.822 ± 0.109 +96.340 ± 0.106

H 6 119AB −40.596 ± 0.083 −36.578 ± 0.079

245 23086-5944 ∼ +0.12 0.40 ± 0.19 +60.074 ± 0.043 +62.034 ± 0.041

DUN 245 −63.923 ± 0.046 −67.227 ± 0.047

Note: Column 1 (Nos.) refers to the catalog numbers from the Dunlop Catalog.

we chose to obtain HIPPARCOS data from the ASCC
(Kharchenko 2001).

Four random points are generated along the north,
south, east, and west axes centering on the primary, and
added to them are the two points obtained from the ASCC
and Gaia DR2. Random iterative searches in increments
of ∼30′′ out to 4′ locate the coordinates of these cross-
ing points. For each increment, we generated ∼107 sets of
points. The search along the primary star axes is limited to
a maximum of 4′, determined by the fact that all but two
orbits in the Sixth Catalog of Orbits of Visual Binary Stars
have semi-major axes less than 240′′.

The algorithm of Halir & Flusser (1998) is used to find
the coefficients A,H,B,G, and F for each generated ellipse,
rather than an OLS or TLS fit. The Halir and Flusser
algorithm has the advantage of generating an ellipse every
time, whereas the random alignment of fitting points may
not always generate an ellipse using the OLS or TLS
methods.

This random search domain is reduced by noting
that because the secondary is slow moving, the positions
obtained from the space-based HIPPARCOS (via ASCC)
and Gaia DR2 missions will define a tangent to any orbit

at a mean Epoch of ∼2003. Therefore the elliptical orbit
will only exist on the side of this tangent containing the
primary.

3.1 First constraint

The first constraint is to delete obviously non-viable
ellipses by discarding all generated ellipses where the ori-
gin was outside the ellipse.

3.2 Orbital Elements

Next, Orbital Elements associated for each ellipse are cal-
culated. This involves a two-step process.

First, five of the seven Orbital Elements (a, i,Ω, e and
𝜔) are calculated using the Kowalski method (Section 1).

The longitude of the ascending node of the apparent
relative orbit, Ω, is:

Ωradians =
⎧
⎪
⎨
⎪
⎩

1
2

arctan 2(Q,R)
Ω = Ω + 𝜋, if Ω < 0
Ω = Ω − 𝜋, if Ω > 𝜋

(9)
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6 of 13 LETCHFORD et al.

where Q = −2(FG −H), R = F2 − G2 + A − B;
and,

arctan 2(Q,R) =

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

arctan(Q∕R), if R > Q
𝜋

2
− arctan(Q∕R), if Q > 0

− 𝜋

2
− arctan(Q∕R), if Q < 0

arctan(Q∕R) ± 𝜋, if R < 0
undefined, if R = 0 and Q = 0

(10)

If the ascending node is unknown, then Ω < 𝜋.
The inclination of the plane of the true relative orbit

to that of the celestial sphere, i, is given by either
Equation (11a) or (11b):

iradians = arctan 2(
√
∣ 2Q ∣,

√
∣ S sin(2Ω) − Q ∣) (11a)

iradians = arctan 2(
√
∣ 2R ∣,

√
∣ S cos(2Ω) − R ∣) (11b)

where S = F2 + G2 − A − B and i = 𝜋 − i if the apparent
orbit is retrograde (clockwise).

The argument of periastron, 𝜔, is given by:

𝜔
radians =

⎧
⎪
⎨
⎪
⎩

arctan 2(−U cos(i),−V)
𝜔 = 𝜔 + 2𝜋, if 𝜔 < 0
𝜔 = 𝜔 − 2𝜋, if 𝜔 > 2𝜋

(12)

where U = F cos(Ω) − G sin(Ω) and V = F sin(Ω) +
G cos(Ω).

By convention, 0 ≤ 𝜔 ≤ 2𝜋.
The eccentricity of the true relative orbit, e, is either

Equations (13a) or (13b):

e =
||||||

−U cos(i)
sin(𝜔)

√
2

S − Q
sin(2Ω)

||||||
(13a)

e =
||||||

−V
sin(𝜔)

√
2

S − R
cos(2Ω)

||||||
(13b)

For ellipses, 0 < e < 1.
The semi-major axis of the true relative orbit, a, is given

by Equations (14a) or (14b):

a′′ = 1
1 − e2

√
2

S − Q
sin(2Ω)

(14a)

a′′ = 1
1 − e2

√
2

S − R
cos(2Ω)

(14b)

The remaining two Orbital Elements, the orbital period
(P) and time of periastron (T) are estimated using the mean
anomaly (MA).

To find the mean anomaly for the HIPPARCOS (via
ASCC), MHIPP, and Gaia DR2 MGaiaDR2, positions, the true
anomaly (VA) is followed by the eccentric anomaly (EA),
which is first found for each position:

VA = arctan 2 [(sin(𝜃 − Ω) sec(i), (cos(𝜃 − Ω)] − 𝜔 (15)

EA = 2 arctan

(√
1 − e
1 + e

tan (VA∕2)

)

(16)

MA = EA − e sin (EA) (17)

where−2𝜋 < VA < 2𝜋;−𝜋 < EA < 𝜋; and−𝜋 < MA < 𝜋. 𝜃
is the PA of the secondary with respect to the primary at
time t and at Equinox 2000.0.

Continuing:

P =
||||
2𝜋 2015.5 − 1991.25

MGaiaDR2 −MHIP

||||
(18)

T = MGaiaDR21991.25 −MHIP2015.5
MGaiaDR2 −MHIP

(19)

The time of periastron, T, is the year of closest approach
normally presented as the one nearest 2000.0, and given
as a decimal year. The orbital period, P, is measured in
decimal years.

3.3 Second constraint

The second constraint is to delete all orbits where the cal-
culated total mass of the system (Msystem) is greater than a
preset tolerance of ±10% of the known combined masses
of the primary and secondary.

In most double star work, the ultimate aim is to obtain
direct measures of the stellar masses using Kepler’s third
law:

msystem = mA +mB =
a3

Π3P2
(20)

where mA and mB are the masses of the primary and sec-
ondary respectively, in solar masses; a is the semi-major
axis of the real relative orbit in arcseconds; Π is the par-
allax of the system (the primary star) in arcseconds; and
P is the orbital period of the secondary, in years. In this
paper, we reverse the procedure and begin with good esti-
mates of the combined masses obtained from luminosity
data from Gaia DR2 and using the mass-luminosity func-
tion, Equation (2). We set the mass constraint to ±10% of
the combined masses.
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LETCHFORD et al. 7 of 13

The parallax of the system (Π) is deemed to be the
parallax of the primary, obtained from Gaia DR2. Thus:

a3

P2

⎛
⎜
⎜
⎜
⎝

> Π3
(

mA +mB −
mA+mB

10

)

< Π3
(

mA +mB +
mA+mB

10

) (21)

3.4 Third and fourth constraints

Finally, we assumed that the best results will be obtained
if the calculated positions of the secondary at 1991.25
and 2015.5 fell within the 1𝜎 uncertainty ellipse of the
HIPPARCOS (via ASCC) and Gaia DR2 positions. HIP-
PARCOS positions (via ASCC) in right ascension have
a 1𝜎 uncertainty of ∼6 mas and ∼3 mas in declination.
Gaia DR2 positions in right ascension and declination
have a 1𝜎 uncertainty of ∼0.1 mas. Requiring the calcu-
lated positions at Epochs 1991.25 and 2015.5 to be within
the 1𝜎 uncertainty ellipse of the HIPPARCOS (via ASCC)
and Gaia DR2 positions proved to be the most severe
constraints.

The uncertainties of the secondary position in Carte-
sian coordinates (𝜎x, 𝜎y) for both the HIPPARCOS (via
ASCC) and Gaia DR2 positions is approximated by:

𝜎x = ±
√

cos (DE1)2
(
𝜎

2
RA1 + 𝜎

2
RA2

)
+ (RA2 − RA1)2 sin (DE1)2𝜎2

DE1

𝜎y = ±
√
𝜎

2
DE1 + 𝜎

2
DE2 (22)

where x = (RA2 − RA1) cos(DE1) and y = DE2 − DE1.
RA1 and DE1 are the right ascension and declina-

tion coordinates, respectively, of the primary at Equinox
2000.0; RA2 and DE2 are the right ascension and declina-
tion coordinates, respectively, of the secondary at Equinox
2000.0; and 𝜎RA1, 𝜎DE1, 𝜎RA2, and 𝜎DE2 are their respective
uncertainties (errors), obtained from ASCC and Gaia DR2.

To find the position at time t of the secondary implied
by the recalculated orbit, the following ephemeris proce-
dure must be undertaken.

First, the true anomaly of the calculated position must
be found via the mean and eccentric anomalies:

MA =
t − T
2𝜋P

(23)

where MA is the mean anomaly of the calculated position.
Next, E must be calculated using Kepler’s transcendental
equation:

MA = EA − e sin (EA) (24)

where e is the eccentricity of the calculated orbit.
Now, the true anomaly of the calculated position can

be determined from:

VA = 2 arctan

[

tan
(EA

2

)√1 + e
1 − e

]

(25)

And the polar coordinates of the ephemeris position
can be calculated:

𝜃
radians = arctan 2 [(sin (VA) + 𝜔, cos (VA) + 𝜔] + Ω (26)

𝜌
′′ =

a
(
1 − e2) cos (VA) + 𝜔

(1 + e) cos (VA) cos(𝜃 − Ω)
(27)

where 𝜃 and 𝜌 are converted to Cartesian coordinates
using:

x′′ = 𝜌 cos(𝜃) (28)

y′′ = 𝜌 sin(𝜃) (29)

3.5 Bringing in the historic data

It is only at this point that historic measures of the dou-
ble stars, as recorded in the WDS, are introduced into the
computation.

The measures of PA contained in the WDS are given
at Equinox of Epoch, and are converted to Equinox 2000.0
(𝜃◦). PA◦s from HIPPARCOS (via ASCC) have Epochs of
1991.25 and Gaia DR2 have Epochs of 2015.5. Both PAs are
given in the WDS at Equinox 2000.0 and therefore are not
converted.

The formula for conversion of PAi (other than those at
1991.25 and 2015.5) at Equinox of Epoch to Equinox 2000.0
(𝜃i) is:

𝜃
◦
i = PA◦

i + [0.00417 ⋅ pmRA1 ⋅ sin(DE1)

+0.00557 sin(RA1)
cos(DE1)

]
(2000.0 − ti) (30)

where pmRA1 is the proper motion of the primary in
arcseconds, and ti is the Epoch of observation given in
Besselian years.

Thus converted, 𝜃i together with the separation
(𝜌i) are then converted to Cartesian coordinates via
Equations (28) and (29). Using an ephemeris algorithm
(Equations (23)–(29)), the positions of the historic data at
times t (ti, xi, y1), based on the Orbital Elements of each
surviving orbit are calculated.

For each orbit calculated, the residuals (Ro) are deter-
mined by the sum of the squares of the distances between
the historic positions and their predicted ephemeris posi-
tions. The orbits are then ranked in ascending order
of Ro.
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8 of 13 LETCHFORD et al.

T A B L E 4 Test double star

Orbital
Elements OLS TLS

This
paper

Sixth
orbit

Pyears 375.1 404.3 444.9 433.8

a′′ 2.5 2.4 2.4 2.4

i◦ 121.3 128.4 134.85 132.7

Ω◦ 19.1 27.6 16.4 13.0

Tyear 1911.7 1912.0 1905.8 1907.2

e 0.70 0.80 0.80 0.81

𝜔
◦ 208.6 215.6 199.2 193.1

Note: Orbital Elements of WDS J16160+0721 (STF 2026AB) were
obtained by four different methods. See Section 3.8. Results have been
truncated to one decimal place (except for eccentricity) for clarity of
comparison. Columns 2 (OLS) and 3 (TLS) contain initial Orbital
Elements where the ellipses were determined by ordinary least
squares and total least squares, respectively, and the Orbital Elements
then calculated using the Kowalski method. Column 4 contains
initial Orbital Elements obtained using the method proposed in this
paper. Column 5 (sixth orbit) contains the Orbital Elements currently
listed in the Sixth Catalog of Orbits of Visual Binary Stars.

3.6 Final constraint

Finally, we rejected all orbits where Ro > Rr, where Rr
is the sum of the squares of the distances between the
historic positions and the ephemeris positions calculated
from a rectilinear line drawn through the HIPPARCOS
(via ASCC) and Gaia DR2 positions. Clearly, if an orbit
produces residuals (Ro) larger than those of a rectilinear
motion (Rr) then either rectilinear motion is more likely
to be present (i.e., it is a possible optical double star) or
the orbital arc is still too small to distinguish between
rectilinear and orbital motion.

3.7 Estimating the uncertainties of the
Orbital Elements

By the above method, the orbit with the lowest sum of
residuals is deemed to be the best estimate of any possible
orbit, provided Ro < Rr.

In an earlier paper, Letchford et al. (2018), we esti-
mated the uncertainty of each Orbital Element (𝜎OE) with
the following simple equation:

𝜎OE =∣ OE − OE ∣ (31)

where OE is the particular Orbital Element and OE is the
mean of those found, which satisfy Ro < Rr.

The problem with Equation (31) is that it implies that
the best estimate of an Orbital Element is its mean (OE).
Here however the best set of Orbital Elements is not the
mean but the set with the lowest found Ro, which satisfies
Ro < Rr.

-1

0

1

2

3

4

-2 -1 0 1 2 3

WDS 16160+0721                        STF 2026AB

H

T

E

N

F I G U R E 1 Test double star. WDS J16160+0721 (STF
2026AB). The orbit obtained in this paper is marked by the solid
black ellipse. The orbit currently in the Sixth Catalog of Orbits of
Visual Binary Stars is the dash-dot ellipse. The primary is at 0,0
(represented by the large + sign) and the axis scales are in
arcseconds. The long straight dashed line is the ascending node
calculated in this paper, and the long straight dash-dot line is the
ascending node from the Sixth Catalog of Orbits of Visual Binary
Stars. Individual measures (from the Washington Double Star
Catalog [WDS]) are color-coded: green, blue, and purple indicate
micrometric, interferometric, and photographic/CCD measures,
respectively, while red symbols indicate measures from space-based
instruments (Hartkopf & Mason 2020). Measures are connected to
their predicted locations by dotted lines

A better estimate is to use the Ro for each set of Orbital
Elements that satisfy Ro < Rr as normalized weights (wi),
so that:

𝜎OE = ±
√

∑
wi

(
OEi − OE

)2
(32)

where,
wi =

1
Roi

∑ 1
Roi

(33)

and,
OE =

∑
wiOEi (34)

3.8 Test binary double star

Any new or modified method of computing an orbit must
be proven with respect to existing methods. To this end,
the binary star WDS J16160+0721 (STF 2026AB) was
chosen for testing as it was studied by Lobão (1994) and
Sharaf et al. (2014) in their work on the Kowalski method.
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LETCHFORD et al. 9 of 13

T A B L E 5 Orbital Elements for five double stars from the Working Dunlop Catalog, at Equinox 2000.0, where Ebinding < 1

No. WDS Discoverer code Pyear +/− a′′ +/− i◦ +/− 𝛀◦ +/− Tyear +/− e +/− 𝝎
◦ +/−

5 01398-5612 DUN 5 620.0 9.9 120.0 21.0 1800.0 0.35 61.0

750.0 5.7 4.8 43.0 210.0 0.15 63.0

38 07040-4337 DUN 38AB 55,000.0 110.0 81.0 170.0 −3500.0 0.87 130.0

— — — — — — —

55 07442-5027 DUN 55AB 230,000.0 160.0 95.0 110.0 91,000.0 0.41 83.0

97,000.0 37.0 1.9 6.0 71,000.0 0.24 23.0

116 11567-3216 DUN 116AB 24,000.0 30.0 110.0 82.0 3600.0 0.69 100.0

24,000.0 16.0 2.6 1.9 180.0 0.08 20.0

245 23086-5944 DUN 245 37,000.0 23.0 110.0 110.0 4200.0 0.60 260.0

25,000.0 9.3 2.7 4.0 500.0 0.13 22.0

Note: All results and uncertainties have been rounded to two significant figures, due to the large uncertainties. Below each Orbital Element (except for No.
38) is an estimate of its uncertainty (“+/−,” Section 3.7) is given.

Both component stars of STF 2026AB have HIPPARCOS
(via ASCC) and Gaia DR2 data. It is also a Grade 3 orbit
in the Sixth Catalog of Orbits of Visual Binary Stars, where
Grade 3 orbits are described as “at least half of the orbit
defined, but the lesser coverage (in number or distribu-
tion), or data consistency, leaves the possibility of larger
errors than in Grade 2” (Matson et al. 2020).

Table 4 presents four sets of Orbital Elements where
(a) OLS is used to obtain the ellipse coefficients, prior to
determining the orbit elements by the Kowalski method
(column 2); (b) TLS is used followed by the Kowalski
method (column 3); (c) the method in this paper (col-
umn 4); and finally; (d) the Orbital Elements from the
current Sixth Catalog of Orbits of Visual Binary Stars (6th
orbit, source paper, Izmailov 2019) (column 5). It should
be noted that the results from the method presented in this
paper (column 4) and the OLS (column 2) and TLS (col-
umn 3) methods were conducted without weighting the
historic data and without any outliers removed. Thus, they
do not represent a final solution, but initial estimates that
can be improved upon by further processing.

From Table 4 and Figure 1, it can be seen that of
the three methods presented, the results obtained by the
method presented in this paper are closest to the currently
published values in the Sixth Catalog of Orbits of Visual
Binary Stars in six of the seven Orbital Elements.

4 RESULTS AND DISCUSSION:
ORBITAL ELEMENTS

Of the 40 double stars from the Working Dunlop Catalog
whose binding energies were calculated, eight are consid-
ered probable binaries (Table 3). Of the eight candidate
binaries selected, five generated orbits (Nos. 5, 38, 55,

116, and 245). The remaining three (Nos. 80, 232, and
242) failed to generate orbits probably due either to the
stringent constraints (namely: a ± 10% combined mass
tolerance; the requirement that the 1991.25 and 2015.5
(equinox 2000.0) calculated positions fall within the 1𝜎
error ellipse of the HIPPARCOS (via ASCC) and Gaia DR2
positions; and a search limited to 4′ from the primary, see
Section 3), or to the possibility that the arcs are still too
short for the technique to distinguish between rectilinear
and orbital motion (Section 3.6).

Sets of Orbital Elements for the five binary double stars
are given in Table 5. All Orbital Elements in Table 5 are
at Equinox 2000.0. Column 1 of Table 5 is the number of
the pair in the Dunlop Catalog, column 2 is the designa-
tion of the double star system in the WDS, column 3 is the
Discoverer code of the particular double star used in the
WDS (Disc), and columns 4–10 are the Orbital Elements as
defined in the Sixth Catalog of Orbits of Visual Binary Stars
(Matson et al. 2020). Associated orbital plots are given in
the Appendix.

Table 6 presents the mean and median values of the
orbital periods (P) and semi-major axes (a) of the five orbits
found from the computational technique presented above.
The mean orbital period is ∼81,000 years and the mean
semi-major axis is ∼76′′. Comparing our results in Table 6
with those of the Sixth Catalog of Orbits of Visual Binary
Stars in Table 1, it is clear that these orbits are Grade 5
orbits and extend the scope of possible orbits beyond those
of “close” binaries.

As expected, the uncertainties of the Orbital Elements
are large. The average percentage uncertainties of the
Orbital Elements in Table 5, in P, a, i,Ω, e, and𝜔 are 83, 44,
3, 54, 34, and 40%, respectively. The average value of the
uncertainty in T is 3600 years, ∼4% of the average period,
P, of 81,000 years.
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10 of 13 LETCHFORD et al.

T A B L E 6 Statistics on orbits for Nos. 5, 38, 55, 116, and 245

Grade Pyears
mean Pyears

median
a′′mean a′′

median

5 81,000 37,000 76 30

Note: Numbers in columns 3–6 have been rounded to two significant
figures, because of the large uncertainties inherent in each of the three
sets of Orbital Elements.

In the case of No. 38, the proposed method did not pro-
duce uncertainties because only one orbit could be found
that satisfied the curvature criteria Ro < Rr.

One binary double star detected in the Working Dun-
lop Catalog, DUN 5 has a Grade 4 orbit in the current Sixth
Catalog of Orbits of Visual Binary Stars, taken from Scardia
et al. (2018). Our Orbital Elements are close to those in the
Sixth Catalog of Orbits of Visual Binary Stars (for example,
our orbital period and semi-major axis of ∼623 years and
∼9.9′′, respectively, are both only ∼25% larger than the
current respective measures in the Sixth Catalog of Orbits
of Visual Binary Stars). We also include uncertainties for
DUN 5, as none are given in the current Sixth Catalog of
Orbits of Visual Binary Stars.

5 CONCLUSION

Presented here is an unbiased, computationally-based
method of determining orbits that are defined by short
arcs. High precision astrometric measures were utilized as
historic measures of less accuracy. Stellar mass data were
incorporated and physical constraints were applied. Mul-
tiple random orbits were generated and compared with
modern and historic measures, and the fit to the measures
was optimized to define the orbit and its uncertainties.
Our test binary star STF 2026AB (Section 3.8), and DUN 5,
yielded results close to those in the current Sixth Catalog
of Orbits of Visual Binary Stars.

We proposed Grade 5 Orbital Elements for five double
stars from the Working Dunlop Catalog (Table 6), Nos. 5,
38, 55, 116, and 245. We recommend that Orbital Elements
for Nos. 38 and 55 be included in the Sixth Catalog of Orbits
of Visual Binary Stars.
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APPENDIX: PLOTS OF BINARY DOUBLE
STARS

A total of 40 double stars from the Working Dunlop Catalog
had sufficient Gaia DR2 data for their binding energies to
the calculated. Of those 40, just two had binding energies
< 0 (Nos. 38, and 55), indicating that they are most proba-
bly binary double stars.

Plots of the two probable binary double stars and No.
5 are presented here, and their Orbital Elements (rounded
to two significant figures) are listed in Table 6. Refer to
Figure 1 for an explanation of the contents of each Figure.
Plots of two other orbits are displayed; No. 116 and 245.
Double stars Nos. 5, 116, and 245 returned 0 < Ebinding < 1.
No. 5 is currently in the Sixth Catalog of Orbits of Visual
Binary Stars.

Note that the orbital plots rely on the non-rounded
Orbital Elements to ensure that each orbit passes through
the 1𝜎 uncertainty ellipses of the HIPPARCOS (via ASCC)
and Gaia DR2 positions.

The orbit plot of DUN 5 (Section 4), a double star for
which there are currently Orbital Elements in the Sixth
Catalog of Orbits of Visual Binary Stars, includes a com-
parison plot of the Orbital Elements in the Sixth Catalog of
Orbits of Visual Binary Stars, marked by a dash-dot line. It
is discussed in Section 4 (Figures A1–A5).
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